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Pulsar timing and laser-interferometer gravitational-wave (GW) detectors are superb laboratories to
study gravity theories in the strong-field regime. Here, we combine these tools to test the mono-scalar-
tensor theory of Damour and Esposito-Farèse (DEF), which predicts nonperturbative scalarization
phenomena for neutron stars (NSs). First, applying Markov-chain Monte Carlo techniques, we use the
absence of dipolar radiation in the pulsar-timing observations of five binary systems composed of a NS and
a white dwarf, and eleven equations of state (EOSs) for NSs, to derive the most stringent constraints on
the two free parameters of the DEF scalar-tensor theory. Since the binary-pulsar bounds depend on the
NS mass and the EOS, we find that current pulsar-timing observations leave scalarization windows, i.e.,
regions of parameter space where scalarization can still be prominent. Then, we investigate if these
scalarization windows could be closed and if pulsar-timing constraints could be improved by laser-
interferometer GW detectors, when spontaneous (or dynamical) scalarization sets in during the early (or
late) stages of a binary NS (BNS) evolution. For the early inspiral of a BNS carrying constant scalar charge,
we employ a Fisher-matrix analysis to show that Advanced LIGO can improve pulsar-timing constraints for
some EOSs, and next-generation detectors, such as the Cosmic Explorer and Einstein Telescope, will be
able to improve those bounds for all eleven EOSs. Using the late inspiral of a BNS, we estimate that for
some of the EOSs under consideration, the onset of dynamical scalarization can happen early enough to
improve the constraints on the DEF parameters obtained by combining the five binary pulsars. Thus, in the
near future, the complementarity of pulsar timing and direct observations of GWs on the ground will be
extremely valuable in probing gravity theories in the strong-field regime.

DOI: 10.1103/PhysRevX.7.041025 Subject Areas: Astrophysics, Gravitation,
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I. INTRODUCTION

In general relativity (GR), gravity is mediated solely by
a rank-2 tensor, namely, the spacetime metric gμν. Scalar-
tensor theories of gravity, which add a scalar component to
the gravitational interaction, are popular alternatives to GR.
Though first proposed in 1921 [1], contemporary interest in
these theories has been spurred by their potential con-
nection to inflation and dark energy, as well as possible
unified theories of quantum gravity [2]. A modern frame-
work for the class of scalar-tensor theories we consider was

developed in Refs. [3–8] (see also more generic Horndeski
scalar-tensor theories in Ref. [9]).
Ultimately, the existence (or absence) of scalar degrees

of freedom (d.o.f.) in gravity will be decided by experi-
ments. Most scalar-tensor theories are designed to be
metric theories of gravity; that is, they respect the
Einstein equivalence principle [8,10]. Therefore, precision
tests of the weak-equivalence principle, the local Lorentz
invariance, and the local position invariance in flat space-
time are unable to constrain them [8,10–12]. However, such
theories generally violate the strong-equivalence principle.
Tests of the strong-equivalence principle with self-gravi-
tating bodies provide an ideal window to experimentally
search for (or rule out) the scalar sector of gravity [8,10,13].
Particularly prominent violations of the strong-

equivalence principle are known to arise in the class of
massless mono-scalar-tensor theories, studied by Damour
and Esposito-Farèse in the form of nonperturbative strong-
field effects in neutron stars (NSs) [14–16]. In this paper,
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we investigate the extent to which pulsar timing and
ground-based gravitational-wave (GW) observations can
constrain these phenomena (space-based GW experiments
[17–19] are beyond the scope of this paper). Our results
demonstrate that, depending on the parameters of binary
systems and NS equations of state (EOSs), these two types
of experiments can provide complementary bounds on
scalar-tensor theories [10–12,20,21]. These results are
especially timely as new instruments come online in the
upcoming years in both fields [22,23].
The paper is organized as follows. In the next section, we

briefly review two nonperturbative phenomena (notably,
spontaneous scalarization [14,15] and dynamical scalariza-
tion [20,24–27]) that arise in certain scalar-tensor theories
of gravity. Then, in Sec. III, we derive stringent constraints
on these theories by combining state-of-the-art pulsar
observations of five NS-white dwarf (WD) systems. In
Sec. IV, we employ these constraints and investigate
the potential detectability of nonperturbative effects in
binary NS (BNS) systems using the Advanced Laser
Interferometer Gravitational-Wave Observatory (LIGO)
[28] and next-generation ground-based detectors. Finally,
in Sec. V, we discuss the main results and implications of
our findings and give perspectives for future observations.

II. NONPERTURBATIVE STRONG-FIELD
PHENOMENA IN SCALAR-TENSOR GRAVITY

In this paper, we focus on the class of mono-scalar-tensor
theories that are defined by the following action in the
Einstein frame [4,5,14,15],

S ¼ c4

16πG�

Z
d4x
c

ffiffiffiffiffiffiffiffi
−g�

p ½R� − 2gμν� ∂μφ∂νφ − VðφÞ�

þ Sm½ψm;A2ðφÞg�μν�; ð1Þ
where G� is the bare gravitational coupling constant, g�μν is
the Einstein metric with its determinant g�, R� ≡ gμν� R�

μν is
the Ricci scalar, ψm collectively denotes the matter content,
and AðφÞ is the (conformal) coupling function that depends
on the scalar field φ. Henceforth, for simplicity, we assume
that the potential VðφÞ is a slowly varying function that
changes on scales much larger than typical length scales of
the system that we consider; thus, we set VðφÞ ¼ 0 in our
calculation.
The field equations are derived with the least-action

principle [7,8] for g�μν and φ,

R�
μν ¼ 2∂μφ∂νφþ 8πG�

c4

�
T�
μν −

1

2
T�g�μν

�
; ð2Þ

□g�φ ¼ −
4πG�
c4

αðφÞT�; ð3Þ

with the energy-momentum tensor of matter fields,
Tμν
� ≡ 2cð−g�Þ−1=2δSm=δg�μν, and the field-dependent

coupling strength between the scalar field and the trace
of the energy-momentum tensor of matter fields,
αðφÞ≡ ∂ lnAðφÞ=∂φ.
Following Damour and Esposito-Farèse [7,15], we con-

sider a polynomial form for lnAðφÞ up to quadratic order,
that is, AðφÞ ¼ exp ðβ0φ2=2Þ, and denote α0 ≡ αðφ0Þ ¼
β0φ0, with φ0 the asymptotic value of φ at infinity. This
particular scalar-tensor theory (henceforth, DEF theory) is
completely characterized by two parameters ðα0; β0Þ, and
for systems dominated by strong-field gravity, such as NSs,
it can give rise to potentially observable, nonperturbative
physical phenomena [14,24]. Weak-field Solar System
experiments, generally, only probe the α0 dimension or
the combination β0α

2
0 in the ðα0; β0Þ parameter space (see

Refs. [10,29] and references therein). In GR, α0 ¼ β0 ¼ 0.
Using a perfect-fluid description of the energy-momentum

tensor for NSs in the Jordan frame, in 1993 Damour and
Esposito-Farèse derived the Tolman-Oppenheimer-Volkoff
(TOV) equations [14] for a NS in their scalar-tensor gravity
theory. Interestingly, they discovered a phase-transition phe-
nomenon when β0 ≲ −4, largely irrespective of the α0 value
(a nonzero α0 tends to smooth the phase transition [15]). The
phenomenon was named spontaneous scalarization. With a
suitable ðα0; β0Þ, the “effective scalar coupling” that a NS
develops, αA ≡ ∂ lnmA=∂φ0 (the baryonic mass of NS is
fixedwhile taking the derivative), could beOð1Þwhen theNS
mass mA is within a certain EOS-dependent range [30]. For
masses below and above this range, the effective scalar
coupling is much smaller [32]. In Fig. 1, we show an example
of spontaneous scalarization for a NS with the realistic EOS
SLy4 and compare it to existing individual binary-pulsar
constraints.

FIG. 1. Illustration of spontaneous scalarization in the DEF
gravity, in comparison to individual binary-pulsar limits, for a NS
with EOS SLy4 and jα0j ¼ 10−5. The blue curves correspond to
(from top to bottom) β0 ¼ −4.5;−4.4;−4.3, and −4.2; the grey
curves in between differ in β0 in steps of 0.01. We indicate with
triangles the 90% C.L. upper limits on the effective scalar
coupling jαAj from the individual pulsars listed in Table I. We
can clearly see a scalarization window at mA ∼ 1.7 M⊙.
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In general, if two compact bodies in a binary have
effective scalar couplings, αA and αB, they produce gravi-
tational dipolar radiation ∝ ðΔαÞ2, with Δα≡ αA − αB,
which is at a lower post-Newtonian (PN) order than the
canonical quadrupolar radiation in GR [15,33]. In
Ref. [16], Damour and Esposito-Farèse, for the first time,
compared limits on the DEF gravity arising from Solar
System and binary pulsar experiments with expected
limits from ground-based GW detectors like LIGO and
Virgo. The analysis in Ref. [16] is based on soft (by now
excluded [34,35]), medium, and stiff EOSs, and for the
LIGO/Virgo experiment, it assumes a BNS merger with
PSR B1913þ 16-like masses (1.44 M⊙ and 1.39 M⊙), as
well as a 1.4 M⊙–10 M⊙ NS-BH merger. Damour and
Esposito-Farèse come to the conclusion that binary-pulsar
experiments would generally be expected to put more
stringent constraints on the parameters ðα0; β0Þ than
ground-based detectors, such as LIGO and Virgo. Since
then, several analyses have followed [35–39], but typically,
those studies did not probe a large set of NS masses and
EOSs. Considering advances in our knowledge of NSs and
more sensitive current and future ground-based detectors,
we revisit this study here. Quite interestingly, as pointed
out in a first study in Ref. [20], the constraints on the
parameters ðα0; β0Þ from binary pulsars depend quite
crucially on the EOSs and the masses of the NSs, in
particular, in the parameter space that allows for sponta-
neous scalarization. By taking into account this dependence
when setting bounds from pulsar timing, we find that
current and future GW detectors on the Earth might still be
able to exclude certain specific regions of the parameter
space ðα0; β0Þ that have not been probed by binary
pulsars yet.
Twenty years after the discovery of spontaneous scala-

rization, Barausse et al. [24] found another interesting
nonperturbative phenomenon in a certain parameter space
of the DEF theory. In this case, the scalarization does not
take place for a NS in isolation but for NSs in a merging
binary. Indeed, modeling the BNS evolution in numerical
relativity, Barausse et al. found that the two NSs can
scalarize even if initially, at large separation, they are not
scalarized. This phenomenon is called dynamical scalari-
zation, and its onset is determined by the binary compact-
ness instead of the NS compactness. Reference [24] also
demonstrated that a spontaneously scalarized NS can
generate scalar hair on its initially unscalarized NS
companion in a binary system through a process known
as induced scalarization. Dynamical and induced scalari-
zation cause BNSs to merge earlier [20,24,26] than in GR,
resulting in a significant modification to the GW phasing
that is potentially detectable by ground-based GW inter-
ferometers [24,25,27,40].
Finally, it is important to note that cosmological

solutions in the strictly massless limit of the DEF theory
are known to evolve away from GR when β0 is negative

[40–43]; to be consistent with current Solar System
observations, such cosmologies require significant fine-
tuning of initial conditions [44]. Various modifications to
the theory have been considered to cure this fine-tuning
problem, e.g., adding higher-order polynomial terms to
lnAðφÞ [43] or including a mass term VðφÞ ¼ 2mφφ

2 in
the action [15,46–48]. To date, none of these proposals
has produced scalar-tensor theories that (i) satisfy cos-
mological and weak-field gravity constraints, (ii) generate
an asymptotic field φ0 that is stable over time scales
relevant to binary pulsars and GW sources, and (iii) give
rise to the nonperturbative phenomena present in DEF
theory. As is commonly done in the literature
[7,14,15,20,24–27,40], we ignore these cosmological
concerns in this paper and focus only on (massless)
DEF theory.

III. CONSTRAINTS FROM BINARY PULSARS

Until now, binary pulsars have provided the most
stringent limits to the DEF theory [15,35,38,39,49].
These limits were usually obtained with individual pulsar
systems and with representative EOSs [39,50]. Here, by
contrast, we combine observational results from multiple
pulsar systems employing Markov-chain Monte Carlo
(MCMC) simulations [52]. In particular, we pick the five
NS-WD binaries that are the most constraining systems in
testing spontaneous scalarization: PSRs J0348þ 0432
[35], J1012þ 5307 [53], J1738þ 0333 [38], J1909 −
3744 [54], and J2222 − 0137 [49]. We choose these five
binaries based on the binary nature (namely, NS-WD
binaries), the timing precision that has been achieved,
and the NS masses. These aspects are important to the study
here; see Refs. [11,12,51] for more discussions. For
convenience, we list the parameters of these binaries in
Table I, and we notice that it is the combination of their _Pint

b
and the NS mass that makes them particularly suitable for
the test of spontaneous scalarization. We obtain the limits
using 11 different EOSs that have a maximum NS mass
above 2 M⊙ [55]. The names of these EOSs are AP3, AP4,
ENG, H4, MPA1, MS0, MS2, PAL1, SLy4, WFF1, and WFF2

(see Refs. [55,56] for reviews). Figure 2 shows the mass-
radius relation of NSs in GR for these EOSs. As evidenced
by the spread of the curves in the figure, we believe that
these EOSs are sufficient to cover the different EOS-
dependent properties of spontaneous scalarization and, at
the same time, satisfy the two-solar-mass limit from pulsar-
timing observations [34,35].
Markov-chain Monte Carlo techniques allow us to pre-

form parameter estimation within the Bayesian framework.
These methods provide the posterior distributions of the
underlying parameters that are consistent with observa-
tions. In Bayesian analysis, given data D and a hypothesis
H (here, the DEF theory), the marginalized posterior
distribution of ðα0; β0Þ is given by [52]
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Pðα0; β0jD;H; IÞ

¼
Z

PðDjα0; β0;Ξ;H; IÞPðα0; β0;ΞjH; IÞ
PðDjH; IÞ dΞ; ð4Þ

where I is all other relevant prior background knowledge
and Ξ collectively denotes all other unknown parameters
besides ðα0; β0Þ, which are marginalized over to obtain
the marginalized posterior distributions for just ðα0; β0Þ
(see below for more details). In the above equation, given
H and I , Pðα0; β0;ΞjH; IÞ is the prior on ðα0; β0;ΞÞ,
PðDjα0; β0;Ξ;H; IÞ≡ L is the likelihood, and PðDjH; IÞ
is the model evidence. As said before, we use MCMC
techniques to explore the posterior in Eq. (4). We discuss
below our choices for the priors and the likelihood function

[see Eq. (9)]. We assume that observations with different
binary pulsars are independent.
We now explain how we employ the MCMC technique

to get the posterior by combining binary pulsar systems.
Let us assume that N pulsars (N ¼ 1, 2, 5, see below)
are used to constrain the ðα0; β0Þ parameter space. To
obtain a complete description of the gravitational dipolar
radiation of these systems in the DEF theory, we need
N þ 2 free parameters in the MCMC runs, which are

θ ¼ fα0; β0; ~ρðiÞc g, where ~ρðiÞc (i ¼ 1;…; N) is the Jordan-
frame central matter density of pulsar i [61]. As an initial
value to the TOV solver, we also need the value of the

scalar field in the center of a NS, φðiÞ
c , but the latter is fixed

iteratively by requiring that all pulsars have a common

asymptotic value of φ, φ0 ≡ α0=β0. Given ~ρðiÞc and φðiÞ
c for

pulsar i, we integrate the modified TOV equations [see
Eq. (7) in Ref. [14] or Eq. (3.6) in Ref. [15]] with initial
conditions given by Eq. (3.14) in Ref. [15]. During the
integration, we use tabulated data of EOSs and linearly
interpolate them in the logarithmic space of the matter
density ~ρ, the pressure ~p, and the number density ~n [55].
Note that only one quantity among f~ρ; ~p; ~ng is free, while
the others are determined by the EOS. The end products
of the integration provide us with, for each pulsar, the

gravitational mass mðiÞ
A , the baryonic mass m̄ðiÞ

A , the NS

radius RðiÞ, and the effective scalar coupling αðiÞA [15].
For the MCMC runs, we use a uniform prior on log10 jα0j

for jα0j ∈ ½5 × 10−6; 3.4 × 10−3�, where 3.4 × 10−3 is the
limit obtained from the Cassini spacecraft [29,62]. We pick
the parameter β0 uniformly in the range ½−5;−4�, which
corresponds to a sufficiently large parameter space where
the scalarization phenomena can take place [14,24]. During
the exploration of the parameter space, we restrict the
values of ðα0; β0Þ to this rectangle region, as well, in order
to avoid overusing computational time in uninteresting

FIG. 2. The mass-radius relation of NSs (in GR) for the 11
EOSs that are adopted in the study. The mass constraint (with 1σ
uncertainty) from PSR J0348þ 0432 [35] is depicted in grey.
The color coding for different EOSs is kept consistent for all
figures in this paper.

TABLE I. Binary parameters of the five NS-WD systems that we use to constrain the DEF theory [35,38,49,53,54]. The observed time
derivatives of the orbit period Pb are corrected using the latest Galactic potential of Ref. [57]. For PSRs J0348þ 0432, J1012þ 5307,
and J1738þ 0333, the mass ratios were obtained by combining radio timing and optical high-resolution spectroscopy, while the
companion masses are determined from the Balmer lines of the WD spectra based on WD models [35,58–60]. For PSRs J1909 − 3744
and J2222 − 0137, the masses were calculated from the Shapiro delay, where the range of the Shapiro delay gives the companion mass
directly, and the pulsar mass is then derived from the mass function, using the shape of the observed Shapiro delay to determine the
orbital inclination [49,54]. The masses below are based on GR as the underlying gravity theory. However, since the companion WD is a
weakly self-gravitating body, they are practically the same in the DEF theory (with a difference ≲10−4). In parentheses, we give the
standard 1σ errors in units of the least significant digit(s).

Pulsar J0348þ 0432 [35] J1012þ 5307 [53] J1738þ 0333 [38] J1909 − 3744 [54] J2222 − 0137 [49]

Orbital period, PbðdÞ 0.102424062722(7) 0.60467271355(3) 0.3547907398724(13) 1.533449474406(13) 2.44576454(18)
Eccentricity, e 2.6ð9Þ × 10−6 1.2ð3Þ × 10−6 3.4ð11Þ × 10−7 1.14ð10Þ × 10−7 0.00038096(4)
Observed _Pb, _Pobs

b ðfs s−1Þ −273ð45Þ −50ð14Þ −17.0ð31Þ −503ð6Þ 200(90)
Intrinsic _Pb, _Pint

b ðfs s−1Þ −274ð45Þ −5ð9Þ −27.72ð64Þ −6ð15Þ −60ð90Þ
Mass ratio, q≡mp=mc 11.70(13) 10.5(5) 8.1(2) … …
Pulsar mass, mobs

p ðM⊙Þ … … … 1.540(27) 1.76(6)
WD mass, mobs

c ðM⊙Þ 0.1715þ0.0045
−0.0030 0.174(7) 0.1817þ0.0073

−0.0054 0.2130(24) 1.293(25)
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regions. We choose the initial central matter densities f~ρðiÞc g
around their GR values, but they are allowed to explore a
very large range in the simulations. As we discuss below,
we perform convergence tests and verify that when evolv-
ing the chains, all parameters in θ quickly lose memory of
their initial values.
During the MCMC runs, we evolve the N þ 2 free

parameters according to an affine-invariant ensemble
sampler, which was implemented in the emcee package
[63–65]. At every step, we solve the N sets of modified
TOVequations on the fly, using the values listed in Table I
[66] for the companion masses of the binary pulsars.
Then, for the decay of the binary’s orbital period, which

enters the likelihood function [see Eq. (9)], we use the
dipolar contribution from the scalar field and the quad-
rupolar contribution from the tensor field as given by the
following well-known formulas [7,67]:

_Pdipole
b ¼ −

2πG�
c3

gðeÞ
�
2π

Pb

�
mpmc

mp þmc
ðαA − α0Þ2; ð5Þ

_Pquad
b ¼ −

192πG5=3
�

5c5
fðeÞ

�
2π

Pb

�
5=3 mpmc

ðmp þmcÞ1=3
; ð6Þ

with

gðeÞ≡
�
1þ e2

2

�
ð1 − e2Þ−5=2; ð7Þ

fðeÞ≡
�
1þ 73

24
e2 þ 37

96
e4
�
ð1 − e2Þ−7=2: ð8Þ

We find that higher-order terms, as well as the subdominant
scalar quadrupolar radiation, give negligible contributions
to this study. Notice that in Eq. (5), we have replaced the
effective scalar coupling of the WD companion with the
linear matter-scalar coupling constant since, for a weakly
self-gravitating WD, αA ≃ α0 in the β0 range of interest
[68]. Furthermore, we can approximate the bare gravita-
tional constant G� in the above equations with the
Newtonian gravitational constant GN ¼ G�ð1þ α20Þ since
jα0j ≪ 1 (e.g., from the Cassini spacecraft [29,62]).
We construct the logarithmic likelihood for the MCMC

runs as

lnL ∝ −
1

2

XN
i¼1

��
_Pint
b − _Pth

b

σobs_Pb

�2

þ
�
mp=mc − q

σobsq

�
2
�
; ð9Þ

where for PSRs J1909 − 3744 and J2222 − 0137, we
replace the second term in the squared brackets with
½ðmp −mobs

p Þ=σobsmp
�2. In Eq. (9), the predicted orbital decay

from the theory is _Pth
b ≡ _Pdipole

b þ _Pquad
b , and σobsX is the

observational uncertainty for X ∈ f _Pint
b ; q;mpg, as given in

Table I. Note that _Pth
b and mp implicitly depend on

ðα0; β0;ΞÞ, through direct integration of TOV equations
in the DEF theory.
For each EOS, we perform four separate MCMC runs:
(i) 1 pulsar: PSR J0348þ 0432 (J0348),
(ii) 1 pulsar: PSR J1738þ 0333 (J1738),
(iii) combining 2 pulsars: PSRs J0348þ 0432 and

J1738þ 0333 (2PSRs),
(iv) combining 5 pulsars: PSRs J0348þ 0432,

J1012þ 5307, J1738þ 0333, J1909 − 3744, and
J2222 − 0137 (5PSRs).

We pick J0348 and J1738 because of their mass difference
(2.01 M⊙ and 1.46 M⊙, respectively) and their high timing
precision (see Table I), which leads to interesting
differences in the constraints on the DEF parameters,
especially on β0. For each run, we accumulate sufficient
MCMC samples to guarantee the convergence of MCMC
runs. By using the Gelman-Rubin statistic [69], we find
that, for each EOS, 200 000 samples for cases J0348 and
J1738, and 400 000 samples for cases 2PSRs and 5PSRs are
enough, respectively. We discard the first half chain points
of these 44 runs (4cases × 11EOSs) as the BURN-IN phase
[64,70], while we use the remaining samples to hypothesize
on the parameters ðα0; β0Þ.
As an example, we show in Fig. 3 the marginalized 2D

distribution in the parameter space of ðlog10 jα0j;−β0Þ for
the case 5PSRs and the EOS SLy4. As mentioned above, we
distribute the initial values of log10 jα0j and −β0 uniformly
in the rectangle region of Fig. 3. We see that after MCMC
simulations, the region with large jα0j or large (negative) β0

FIG. 3. The marginalized 2D distribution of ðlog10 jα0j;−β0Þ
fromMCMC runs on the five pulsars listed in Table I, for the EOS
SLy4. The marginalized 1D distributions and the extraction of
upper limits are illustrated in the upper and right panels.
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is no longer populated, and only a small corner is consistent
with the observational results of the five NS-WD binary
pulsars.
Furthermore, we extract the upper limits of log10jα0j and

−β0 from their marginalized 1D distributions at 68% and
90% C.L.s. We summarize the upper limits at 90% C.L.
from all 44 runs in Fig. 4. It is interesting to observe the
following facts. First, for all EOSs, J1738 gives a more
constraining limit on α0 than J0348. This result might be
due to the fact that the σobs_Pb

of J1738 is about 2 orders of

magnitude smaller than that of J0348, thus giving a tighter
limit on α20 by roughly the same order of magnitude.
Second, the constraints on β0 from J0348 and J1738 are
extremely EOS dependent. This should be a consequence
of the masses of the NSs, which are (in GR) 1.46 M⊙
for J1738, and 2.01 M⊙ for J0348. For EOSs that favor
spontaneous scalarization at around 1.4 − 1.5 M⊙, J1738
gives a better limit, while for EOSs that favor spontaneous
scalarization at around 2 M⊙, J0348 gives a better limit.
This trend is also consistent with Fig. 5 (to be introduced
below). Third, by combining two pulsars (2PSRs), NSs are
limited to scalarize at neither 1.4 − 1.5 M⊙ nor ∼2 M⊙.
Therefore, almost for all EOSs, β0 is well constrained. This
result demonstrates the power of properly using multiple
pulsars with different NS masses to constrain the DEF
parameter space for any EOS. Fourth, we obtain the most
stringent constraints with five pulsars (5PSRs). This is
especially true for β0, which is constrained at the level of
about −4.2 (68% C.L.) and about −4.3 (90% C.L.) for
all EOSs. Finally, we list in Table II the marginalized 1D
limits for 5PSRs. We use them in the next section when
combining binary pulsars with laser-interferometer GW
observations.
Considering the results that we have obtained when

combining the five pulsars (5PSRs), one might wonder

whether isolated NSs can still be strongly scalarized. To
address this question, we use the limits on ðα0; β0Þ and
calculate the effective scalar coupling that a NS can still
develop as a function of the NS mass, for the 11 EOSs used
in this paper. The results at 90% C.L. are summarized in
Fig. 5, while in Table II, we list the maximally allowed
effective scalar couplings at 68% and 90% C.L.s, and their
corresponding (gravitational) NS masses (marked as dots
in Fig. 5).
Figure 5 clearly shows the nonperturbative nature

of the scalarization phenomenon. The (absolute values
of the) maximally allowed effective scalar coupling for
NSs can be as large as Oð10−2Þ and even 0.1 if the limits
at 90% C.L. are used, while those values are ≲10−3 if
one uses the limits at 68% C.L. (not shown in Fig. 5, but
listed in Table II). Furthermore, quite remarkably, Fig. 5
shows that there are scalarization windows (this feature
could also be seen in Fig. 1 for the EOS SLy4). What we
mean is that the NS masses for the five most constraining
pulsars are 1.46 M⊙ (PSR J1738þ0333), 1.54 M⊙ (PSR
J1909−3744), 1.76 M⊙ (PSR J2222−0137), 1.83 M⊙
(PSR 1012þ 5307), and 2.01 M⊙ (PSR J0348þ 0432).
For these specific masses, using the 11 EOSs that can
give rise to spontaneous scalarization, we have stringently
constrained the DEF parameters. However, some EOSs
can still allow NSs to scalarize strongly (i.e., acquire large
effective scalar couplings) for other values of the masses.
As Fig. 5 shows, using limits at 90% C.L., NSs with
EOSs AP4, SLy4, and WFF2 can still have jαAj≳Oð10−2Þ if
the NS masses are in the range mA ¼ 1.70–1.73 M⊙, NSs
with EOS H4 can still be scalarized to jαAj ∼ 0.03 with
mA ≃ 1.92 M⊙, and NSs with EOSs MS0 and MS2 can still
be strongly scalarized to jαAj≃ 0.1 with mA ≃ 2.26 M⊙.

FIG. 4. Marginalized upper limits on jα0j (upper panel) and −β0
(lower panel) at 90% C.L. These limits are obtained from PSRs
J0348þ 0432 (J0348), J1738þ 0333 (J1738), a combination of
them (2PSRs), and a combination of PSRs J0348þ 0432,
J1012þ 5307, J1738þ 0333, J1909 − 3744, and J2222 −
0137 (5PSRs).

FIG. 5. The effective scalar coupling jαAj that an isolated NS
could still develop after taking into account the 95% C.L.
constraints from the five pulsars (see Table II). The point of
the maximum jαAj is marked with a dot, and the values (and the
corresponding masses) are listed in Table II.
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Those scalarization windows could be closed in the
future if binary pulsars with these masses are discovered
and their gravitational dipolar radiation is constrained by
pulsar timing. As we discuss in Sec. IV, the presence of
scalarization windows also opens the interesting possibility
to close these gaps with future GW observations from
BNSs, if the masses of the NSs lie in the scalarization
window.

IV. PROJECTED SENSITIVITIES FOR
LASER-INTERFEROMETER

GRAVITATIONAL-WAVE DETECTORS

Having determined constraints on the DEF’s parameter
space from binary pulsars (see Table II) and having found
scalarization windows, we now address the question of
whether present and future laser-interferometer GW obser-
vations on the ground can still improve these limits and
close the gaps. Two scenarios are considered: (i) asymmet-
ric BNS systems, equipped with separation-independent
effective scalar couplings, whose gravitational dipolar
radiation during the inspiral can modify the GW phasing
[16,71], and (ii) BNS systems that dynamically develop
scalarization during the late stage of the inspiral, leading
to significant, nonperturbative changes in the GW signal
[20,24,26,27]. A complete description of BNSs in the DEF
theory should include both effects. However, complete
waveform models from the theory are still not available, so
here we investigate the two scenarios separately to obtain
some conservative understanding of the whole picture.

A. Dipole radiation for binary neutron-star inspirals

The presence of a scalar field can significantly modify
the inspiral of an asymmetric BNS system because of the
additional energy radiated off by the scalar d.o.f. The most

prominent effect is a modification of the phase evolution in
GW signals. For two NSs with effective scalar couplings αA
and αB, respectively, one finds for the evolution of the
orbital frequency Ω, up to 2.5 PN order [71–73],

_Ω
Ω2

¼ η

1þ αAαB

�
ðΔαÞ2V3 þ 96

5
κV5 þOðV6Þ

�
; ð10Þ

where Δα≡ αA − αB, η≡mAmB=M2, and the (dimension-
less) “characteristic” velocity

V ≡ ½G�ð1þ αAαBÞMΩ�1=3=c: ð11Þ

The quantity κ is given in Refs. [7,35]. In GR, one
has αA ¼ αB ¼ 0 and κ ¼ 1. Note that there is also a sub-
dominant contribution from the scalar quadrupolar waves at
2.5 PN order, which, however, can be absorbed by a ≲1%
change in the mass parameters. Here, we assume that αA
and αB are constant during the inspiral, and their values are
obtained from isolated NSs. This assumption is valid as
long as the induced or dynamical scalarization mechanisms
are not triggered.
For an asymmetric compact binary where αA ≠ αB, the

most prominent deviation from the GR phase evolution
is determined by the dipole term in Eq. (10), i.e., the
contribution ∝ V3. To leading order, the offset in the number
of GW cycles in band until merger due to the dipole term is
given by

ΔN dipole ≃ −
25

21504π
η−1V−7

in ðΔαÞ2; ð12Þ

where V in corresponds to V in Eq. (11) when the merging
system enters the band of the GW detector, i.e., when
Ω ¼ πfin (see Refs. [16,71] for details). In the above

TABLE II. Limits on the parameters of the massless mono-scalar-tensor DEF theory for different EOSs when applying the MCMC
analysis to the five pulsars J0348þ 0432, J1012þ 5307, J1738þ 0333, J1909 − 3744, and J2222 − 0137. Results at 68% and
90% C.L.s are listed. Here, jαAjmax is the maximum effective scalar coupling that a NS could still possess without violating the limits,
and mmax

A is the corresponding (gravitational) mass at this maximum effective scalar coupling (see Fig. 5).

68% confidence level 90% confidence level

EOS jα0j −β0 mmax
A =M⊙ jαAjmax jα0j −β0 mmax

A =M⊙ jαAjmax

AP3 6.5 × 10−5 4.21 1.83 1.1 × 10−3 1.5 × 10−4 4.29 1.85 6.9 × 10−3

AP4 5.5 × 10−5 4.24 1.71 1.2 × 10−3 1.4 × 10−4 4.31 1.73 1.0 × 10−2

ENG 6.0 × 10−5 4.21 1.80 1.0 × 10−3 1.6 × 10−4 4.30 1.81 8.2 × 10−3

H4 5.7 × 10−5 4.24 1.91 1.3 × 10−3 1.7 × 10−4 4.33 1.92 2.8 × 10−2

MPA1 5.7 × 10−5 4.22 1.92 1.1 × 10−3 1.6 × 10−4 4.30 1.93 8.4 × 10−3

MS0 7.7 × 10−5 4.28 2.26 2.7 × 10−3 2.0 × 10−4 4.38 2.26 1.0 × 10−1

MS2 7.9 × 10−5 4.26 2.24 2.1 × 10−3 2.4 × 10−4 4.36 2.26 8.0 × 10−2

PAL1 7.3 × 10−5 4.21 1.99 1.2 × 10−3 2.0 × 10−4 4.29 2.00 8.2 × 10−3

SLy4 5.2 × 10−5 4.23 1.71 1.1 × 10−3 1.4 × 10−4 4.33 1.72 2.2 × 10−2

WFF1 5.3 × 10−5 4.21 1.58 9.1 × 10−4 1.3 × 10−4 4.30 1.60 6.9 × 10−3

WFF2 5.5 × 10−5 4.24 1.68 1.2 × 10−3 1.4 × 10−4 4.32 1.70 1.4 × 10−2
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equation, we have used the approximation κ ≃ 1 and the
fact that V in is much smaller than V just before merger.
Within the approximation of Eq. (12), one can use
V in ≃ ðGNMπfinÞ1=3=c, i.e., replacing the effective gravita-
tional constant G�ð1þ αAαBÞ in Eq. (11) by the Newtonian
gravitational constant GN ≡G�ð1þ α20Þ [7,15]. Again, we
stress that Eq. (12) is based on the assumption that the
effective scalar couplings of the two NSs, αA and αB, remain
unchanged during the inspiral in the detector’s sensitive
frequency band. It therefore neglects the phenomenon of
induced scalarization, which can occur in a BNS system,
when the unscalarized NS is sufficiently exposed to the
scalar field of the scalarized companion [25]. This can
reduce the dipolar radiation considerably on short ranges
if αA approaches αB, and it can lead to a characteristic
change in the late phase evolution of the merging BNSs.
Dynamically changing effective scalar couplings are
explored in the next subsection.
To obtain a rough understanding of the effects of

dipolar radiation, let us calculate the dephasing from GR
by an asymmetric BNS inspiral with mA ¼ 1.25 M⊙ and
mB ¼ 1.7 M⊙. According to Fig. 5, at present, binary-
pulsar experiments cannot exclude jαAj as large as
10−2 − 10−1 for NSs of a certain mass range, which
depends on the EOS. For the EOS SLy4, we find from
the corresponding (dark green) curve in Fig. 5, jαAj≃
0.0007 and jαBj≃ 0.0206; hence, jΔαj≡ jαA − αBj≃
0.0199.
In our study, we consider the Advanced LIGO (aLIGO)

detectors at design sensitivity [28], and future ground-
based detectors, such as the Cosmic Explorer (CE) and the
Einstein Telescope (ET). We use the starting frequencies
fin ¼ 10 Hz for aLIGO, fin ¼ 5 Hz for CE, and fin ¼
1 Hz for ET [23,74,75]. In Table III, we list the number of
GW cycles as predicted by GR,N GR, and the change in the
number of cycles caused by the existence of a dipole
radiation for a BNS signal, ΔN dipole. From Table III, we
can already see that, given the BNS parameters, current
bounds by pulsars still leave room for significant time-
domain phasing modifications in BNS mergers, in particu-
lar, if one of the NSs falls into the scalarization window of
about 1.7 M⊙ (for EOSs AP4, SLy4, and WFF2) to 1.9 M⊙

(for the EOS H4), or if one NS’s mass significantly exceeds
2 M⊙ (for EOSs MS0 and MS2). As reference points, we
also list in Table III the changes in the number of GW
cycles from spin-orbit and spin-spin effects. Indeed, from
the leading-order spin-orbit (1.5 PN) and spin-spin (2 PN)
contributions to the GW phasing [18,76], one has

ΔN β ≃ 5

64π
η−1V−2

in β; ð13Þ

ΔN σ ≃ −
5

32π
η−1V−1

in σ; ð14Þ

where

β ¼ 1

12

X
i¼A;B

�
113

m2
i

M2
þ 75η

�
L̂ · χ i; ð15Þ

σ ¼ η

48
½−247χA · χB þ 721ðL̂ · χAÞðL̂ · χBÞ�: ð16Þ

The (dimensionless) spins of a BNS system, χA and χB, are
likely to be small in magnitude. The parameters β and σ are
maximized when two spins are aligned with the direction of
the orbital angular momentum, L̂. The limits on jΔN βj and
jΔN σj are listed in Table III, where we have used the
(dimensionless) spins of the double pulsar system, which is
the only double NS system where two spins are precisely
measured. When the double pulsar evolves to the time of
its merger 86 Myr from now, one has jχAj≃ 0.014 and
jχBj≃ 0.00002 [77], assuming a canonical moment of
inertia 1038 kgm2 for NSs. As we can see from
Table III, if the spins of BNSs to be discovered by GW
detectors are comparable to that of the double pulsar, the
inclusion of spins only affects the number of GW cycles at
the percentage level at most. In addition, because ground-
based detectors could observe BNSs from a population
different from the one observed with pulsar timing, we also
give jΔN βj and jΔN σj in Table III when the (dimension-
less) spin of the fastest rotating pulsar ever observed, PSR
J1748 − 2446ad (P ¼ 1.4 ms) [78], is used for both NSs
[79]. Even in this extreme case with jχAj ¼ jχBj≃ 0.26

TABLE III. The number of GW cycles in GR, N GR, for a BNS merger with masses ð1.25 M⊙; 1.7 M⊙Þ for frequencies f > fin, and
its change due to the dipole radiation in the DEF’s theory, ΔN dipole, assuming jΔαj≡ jαA − αBj≃ 0.0199, which comes from the
maximally allowed effective scalar couplings for the EOS SLy4 at 90% C.L. (see Fig. 5). The limits on the contributions from leading-
order spin-orbit and spin-spin terms, jΔN βj and jΔN σ j, are listed where the (dimensionless) spins of the double pulsar (when it merges
in 86 Myr) are used. For jΔN βj and jΔN σ j, we also show parenthetically the case where both NSs are spinning at the maximal spin that
we have ever observed (in an eclipsing binary pulsar J1748 − 2446ad).

Detector fin (Hz) N GR ΔN dipole jΔN βj jΔN σ j
aLIGO 10 1.5 × 104 −3.7 × 101 < 0.76 (< 3.5 × 101) < 1.8 × 10−6 (< 0.43Þ
CE 5 4.8 × 104 −1.9 × 102 < 1.2 (< 5.6 × 101) < 2.3 × 10−6 (< 0.55Þ
ET 1 7.0 × 105 −8.1 × 103 < 3.5 (< 1.6 × 102) < 3.9 × 10−6 (< 0.93Þ
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(assuming a canonical mass 1.4 M⊙), jΔN dipolej is still
larger (or comparable to, in the case of the Advanced
LIGO) than the upper limits of jΔN βj and jΔN σj.
The dephasing quantity ΔN dipole is nevertheless a crude

indicator for realistic detectability. In reality, one has to
consider various degeneracies between binary parameters,
the waveform templates that are used for detection and
parameter estimation, the power spectral density (PSD) of
noises in GW detectors, SnðfÞ, the signal-to-noise ratio
(SNR) of an event ρ, and so on. In order to obtain more
quantitative estimates of the constraints on dipolar radiation
that can be expected from GW detectors, one would need to
compute Bayes factors between two alternatives [80] or
apply cutting-edge parameter-estimation techniques, for
example, the MCMC or nested sampling [81]. However,
given the limited scope of our analysis, for simplicity, here,
we adopt the Fisher-matrix approach [17,71,82,83],
although we are aware of the fact that for events with
mild SNR (ρ ∼ 10), the Fisher matrix can have pitfalls [84].
In Appendix A, we review the main Fisher-matrix tools that
we use.
In Fig. 6, we summarize their dimensionless noise

spectral density
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fSnðfÞ

p
[23,74,75] and also show a

hypothetical BNS signal. For all the studies, we fix the
luminosity distance to DL ¼ 200 Mpc for aLIGO, CE,
and ET. Indeed, within such a distance, aLIGO alone is
supposed to observe 0.2–200 BNS events annually at
design sensitivity [85]. With the four-site network incor-
porating LIGO-India at design sensitivity, the number of
detectable BNS events will double [85]. Therefore, it is a
realistic setting to discuss BNS events for aLIGO; to be
conservative, we only consider a two-detector network for
aLIGO in our study. CE and ET have better sensitivities and

thus will have larger SNRs for these events; besides, they
will be able to detect a larger number of BNSs, including
those with unfavorable orientations. Using the standard
cosmological model [86], the redshift associated with
DL ¼ 200 Mpc is z≃ 0.0438, and we take it into account
in our Fisher-matrix calculation, even if it generates a small
effect. Moreover, we always report masses in the rest frame
of a BNS system.
The Fisher matrix is constructed as usual from the

Fourier-domain waveform ~hðfÞ [71,82,83],

Γab ≡ ð∂a
~hðfÞj∂b

~hðfÞÞ; ð17Þ

with ∂a
~hðfÞ being the partial derivative of the parameter

labeled “a” (see Appendix A for definitions and notations).
We use the waveform parameters flnA; ln η; lnM; tc;
Φc; ðΔαÞ2g to construct the 6 × 6 Fisher matrix Γab. The
inverse of the Fisher matrix is the correlation matrix for
these parameters, from which we can read their uncertain-
ties and correlations [17,71,82,83].
In Fig. 7, we plot with dashed lines the uncertainties in

jΔαj obtained with three GW detectors (aLIGO, CE, and
ET) for an asymmetric BNS with rest-frame masses mA ¼
1.25 M⊙ and mB > 1.25 M⊙, located at DL ¼ 200 Mpc.
For a BNS of masses, for example, ð1.25 M⊙; 1.63 M⊙Þ,

FIG. 6. Dimensionless noise spectral density
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fSnðfÞ

p
of

aLIGO, CE, and ET GW detectors. The quantity SnðfÞ is the
one-side design PSD [23,74,75]. The dashed line describes the
(dimensionless) pattern-averaged characteristic strain hcðfÞ≡
2fj ~hðfÞj for a BNS with rest-frame masses ð1.25 M⊙; 1.63 M⊙Þ
at 200 Mpc (z≃ 0.0438), up to the innermost-stable circular orbit
given by Eq. (A3).

FIG. 7. The sensitivities of aLIGO, CE, and ET to jΔαj
[namely, the uncertainty σðjΔαjÞ obtained from the inverse Fisher
matrix] are depicted with dashed lines, as a function of mB, for a
pattern-averaged BNS inspiral signal with rest-frame component
masses (mA ¼ 1.25 M⊙, mB). The starting frequencies of GW
detectors are labeled. Luminosity distance DL ¼ 200 Mpc is
assumed. The sensitivity to jΔαj from GW detectors scales with
SNR as ρ−1=2. The maximum available values of jΔαj for 11
EOSs, saturating the limits from binary pulsars at 90% C.L., are
shown as solid lines. If a sensitivity curve (dashed) is below a
solid curve, the corresponding GW detector has the potential to
improve the limit from binary pulsars for this particular EOS,
with BNSs of suitable masses.
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which are the most probable masses for the newly dis-
covered asymmetric double-NS binary pulsar PSR J1913þ
1102 [87], we find that aLIGO, CE, and ET can detect its
merger at 200 Mpc with ρ ¼ 10.6, 450, and 153, respec-
tively, after averaging over pattern functions and assuming
two detectors in each case. The characteristic strain of such
a BNS is illustrated in the frequency domain in Fig. 6. In
the large SNR limit, the uncertainties in jΔαj scale with the
SNR as ρ−1=2. In Fig. 8, we give the correlations between
parameters obtained from the matched-filter analysis. We
find that because of its low-frequency sensitivity, ET can
break some degeneracy between parameters better than
aLIGO and CE do.
In Fig. 7, we show with solid lines the maximum values

of jΔαj at 90% C.L. from pulsars for 11 EOSs (calculated
from Fig. 5). If for some NS’s mass range a solid line
(which is associated with a certain EOS) is above a dashed
line (associated with a certain detector), then for NSs
described by that EOS, the corresponding GW detector has
the potential to further improve the DEF’s parameters with
the observation of a BNS within that mass range. From the
figure, we can see that, with the expected design sensitivity
curves of aLIGO, CE, and ET [23,74,75],

(i) aLIGO has the potential to further improve the
current limits from binary pulsars with a discovery
of a BNS of suitable masses, if the EOS of NSs is
one of (or similar to) H4, MS0, MS2, SLy4, and WFF2;

(ii) CE and ET, because of their low-frequency sensi-
tivity and better PSD curves, are able to significantly
improve current limits from binary pulsars on the
DEF’s parameters, no matter what the real EOS of
NSs is.

We stress that those conclusions are obtained with a
Fisher-matrix analysis and should be made more robust
in the future by using more sophisticated tools, notably
Bayesian analysis.

1. Constraints outside the
spontaneous-scalarization regime

With the results above, it is fairly straightforward to
calculate the limits from aLIGO, CE, and ET on jα0j when
β0 is outside the spontaneous scalarization regime, i.e.,
β0 ≳ −4, and compare them to existing limits from the
Solar System and pulsars [16]. For completeness, we
present the relevant results here. Shibata et al. [20] have
shown that for small α0, there exists a simple relation
between αA, α0, and mA as long as spontaneous scalariza-
tion does not set in [see Eq. (44) in Ref. [20]], which in our
notation reads [88]

αA ≃AðAÞ
β0

ðmA; β0;EOSÞα0: ð18Þ

With this equation at hand, one can directly convert the
limits from ground-based GW detectors of Fig. 7, for any
given β0 ≳ −4, into limits for jα0j via

jα0j ¼
���� Δα

AðAÞ
β0

−AðBÞ
β0

����: ð19Þ

Figure 9 gives the results for two different mass configu-
rations and the EOS AP4. A more stiff EOS would generally
lead to less constraining limits for ground-based GW
detectors and binary pulsars. As one can see, in the range
β0 ≳ −4, current Solar System and pulsar tests are already
clearly more constraining than what aLIGO is expected to
obtain. For CE and ET, only inspirals with a very massive
component will provide constraints that are better than
present limits, for a limited range of β0 (see also aLIGO
[89] and ET [89,90] limits from a NS-BH inspiral for the
special case of β0 ¼ 0, i.e., Jordan-Fierz-Brans-Dicke
gravity). By the time CE or ET is operational, however,
the expected limits from GAIA [91] and SKA [11] will

FIG. 8. The correlations between six parameters, obtained from the inverse Fisher matrix in the matched-filter analysis for a BNS with
rest-frame masses ð1.25 M⊙; 1.63 M⊙Þ. Here, FðρcorÞ≡ log10 ½ð1þ ρcorÞ=ð1 − ρcorÞ� − ρcor log10 2 is a function defined in Ref. [13]
such that it counts 9’s in the limit of large correlations [e.g., Fð0.99Þ≃þ2, Fð−0.9Þ≃ −1, and Fð0Þ ¼ 0]. On the diagonal, Fðρcor ¼ 1Þ
diverges and is plotted in black.
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have left little room for ground-based GW observatories in
the regime. The space-based GW observatories LISA
[17,18] and DECIGO/BBO [19] could, in principle, also
provide limits on the DEF theory from an inspiral of a NS
into an intermediate-mass black hole, provided such BHs
exist. However, the resulting limits on jα0j are not expected
to be better than limits from future ground-based GW
observatories [17]. It is worth mentioning that for very large
(positive) β0, say, β0 ≳ 102 − 103, massive NSs might
develop instabilities [92,93], which is beyond the scope
of Fig. 9.

B. Dynamical scalarization

In addition to the nonlinear gravitational self-
interaction testable with binary pulsars, GW detectors
probe the nonlinear interactions between coalescing NSs.
Dynamical scalarization stems from the interplay between
these two regimes of strong gravity and thus offers a
promising means of complementing pulsar-timing con-
straints on scalar-tensor theories.
Numerical relativity simulations have demonstrated

that dynamical scalarization can significantly alter the
late-time behavior of a BNS system. If this transition
occurs before merger, the sudden growth of effective
scalar couplings impacts the system’s gravitational bind-
ing energy and energy flux so as to shorten the time to
merger [20,24,26].
The prospective detectability of this effect was inves-

tigated in Refs. [40,94] using Bayesian model selection.

The authors sought to recover injected inspiral waveforms
containing dynamical scalarization with template banks
constructed from similar waveforms. The injected signals
and template banks used PN waveforms augmented with
various nonanalytic models of dynamical scalarization. To
mimic the abrupt activation of the dipole emission at the
onset of dynamical scalarization, Ref. [94] added a −1 PN
correction modulated by a Heaviside function to a GR
waveform, i.e., signals of the form

~hðfÞ ¼ ~hGRðfÞeiΨ−1PNðfÞΘðf−f�Þ; ð20Þ

where Ψ−1PNðfÞ ¼ bf−7=3, and b and f� are parameters of
the model. Injected signals were recovered with a template
bank of waveforms of the same form. In Ref. [40], the
authors injected waveforms constructed in Ref. [25] by
integrating the 2.5 PN equations of motion combined with a
semianalytic model of scalarization; they then performed
parameter estimation using both templates, which included
−1 PN and 0 PN scalar-tensor effects throughout the entire
inspiral and those that modeled their sudden activation as
in Ref. [94].
Combined, these analyses provide a loose criterion for

whether a dynamically scalarizing BNS system could be
distinguished from the corresponding system in GR by
aLIGO. The key characteristic of such systems is the
frequency fDS at which dynamical scalarization occurs.
To be distinguishable from a GR waveform, a significant
portion of the dynamically scalarized signal’s SNR must
occur after fDS, or equivalently, fDS must be sufficiently
lower than the merger frequency. Using waveforms of the
form of Eq. (20), in Ref. [94] the authors found that
dynamical scalarization can only be observed with aLIGO
if fDS ≲ 50–100 Hz. In only one injection considered in
Ref. [40] was dynamical scalarization detectable, occurring
at fDS ≈ 80 Hz. Understandably, these analyses rely on
some initial assumptions that may bias these estimates
away from the real detectability criteria, such as the limited
range of masses and EOS considered and ignoring any
degeneracies introduced by the merger and ringdown
portions of the waveform or by the inclusion of spins.
Ignoring these subtleties for the moment, we investigate
whether the pulsar-timing constraints described in Sec. III
can exclude the possibility of observing dynamical scala-
rization with aLIGO using the conservative detectability
criterion from Refs. [40,94] that scalarization must occur
by fDS ≲ 50 Hz.
We consider binary systems composed of NSs with

masses ranging from 1.3 M⊙ to 1.9 M⊙. We compute fDS
within the “post-Dickean” (PD) framework, a resummation
of the PN expansion formulated in Ref. [27]. This model
introduces new dynamical d.o.f. that capture the non-
perturbative growth of the scalar field using a semianalytic
feedback loop. This approach provides a mathematically
consistent backing to previous models of dynamical

FIG. 9. Upper limits on jα0j as a function of β0 for aLIGO
(green line), CE (blue line), and ET (orange line) [16]. The
dashed lines correspond to a 1.25 M⊙=1.6 M⊙ BNS merger, and
the dotted lines correspond to a 1.25 M⊙=2.0 M⊙ BNS merger.
The chosen EOS is AP4. For comparison, we have plotted Solar
System limits (grey line) and the limits from PSR J1738þ 0333
(magenta line), which currently give the best limit for β0 ≳ 3. The
limit from Cassini [62] and the limit expected from GAIA [91]
are also shown.
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scalarization [25]. The model incorporates a certain flex-
ibility in the choice of resummed quantities; we adopt the
ðmðREÞ; Fð ~φÞÞ scheme outlined in Table I of Ref. [27]
because it was found to give the best agreement with
numerical computations of quasiequilibrium configurations
[26]. For clarity, we dress quantities defined in the PD
framework with tildes and leave quantities defined in the
PN framework unadorned; in the limit where no resum-
mation is performed, the PD quantities reduce to their PN
analogs.
Within the PD framework, the effective scalar coupling

of each NS is promoted to a function of both the asymptotic
scalar field φ0 and the local scalar field in which the body
is immersed, i.e., ~αA ¼ ~αAðφ0;φAÞ. Unlike in the PN
treatment, this coupling evolves as the BNS coalesces.
Similarly, the inertial mass of each body ~mAðφ0;φAÞ
evolves in the PD framework. However, this mass varies
by no more than 0.01%, so in practice, one can simply use
the PN mass mA in place of ~mA.
We define the mass-averaged scalar coupling of the

system as

ᾱ≡ ~mA ~αA þ ~mB ~αB
~mA þ ~mB

; ð21Þ

where precise definitions of ~mA and ~αA are given in
Eqs. (A3) and (A4) in Ref. [27]. Note that for equal-mass
binaries, we have ~αA ¼ ~αB ¼ ᾱ.
Following the work of Ref. [27], we compute the mass-

averaged scalar coupling as a function of frequency for
binaries on quasicircular orbits to 1 PD order. The average
scalar coupling is plotted in Fig. 10 for equal-mass binaries
for theories that saturate the pulsar-timing constraints at
90% C.L.s, as given in Table II. Scalarization occurs earlier
for larger mass systems, with an ordering (by EOS)
determined by the magnitude of

βA ¼
�
dαA
dφ

�
φ¼φ0

: ð22Þ

To compute this quantity, one takes the difference in
effective scalar couplings of NSs (of equal baryonic mass)
with infinitesimally different asymptotic scalar fields φ0;

FIG. 10. Mass-averaged scalar coupling as a function of orbital angular frequency for equal-mass BNS systems with masses
ð1.3 M⊙; 1.3 M⊙Þ, ð1.5 M⊙; 1.5 M⊙Þ, ð1.7 M⊙; 1.7 M⊙Þ, and ð1.9 M⊙; 1.9 M⊙Þ. We use the limits on ðα0; β0Þ at 90% C.L.s, given in
Table II, for each EOS. The corresponding GW frequency is given along the top axis, with fGW ¼ Ω=π. Dashed vertical lines highlight
the conservative detectability criterion for aLIGO that fDS ≲ 50 Hz, derived in Refs. [40,94].

SHAO, SENNETT, BUONANNO, KRAMER, and WEX PHYS. REV. X 7, 041025 (2017)

041025-12



however, for stars that are not spontaneously scalarized, βA
is given approximately by

βA ≈
β0jαAj
jα0j

; ð23Þ

provided that jαAj is sufficiently small. Binaries with
spontaneously scalarized stars begin with an appreciable
effective scalar coupling at large separations that continues
to grow as they coalesce. In light of this remark, we note
that there is no observational distinction between sponta-
neous (or induced) scalarization and dynamical scalariza-
tion that occurs at sufficiently low frequencies; for
example, compare the scalarization of ð1.7 M⊙; 1.7 M⊙Þ
systems composed of NSs with the EOSs SLy4, AP4, and
WFF1 (the dark green, red, and beige curves in the lower left
panel of Fig. 10, respectively).
The sharp feature for the WFF1 EOS in the ð1.9 M⊙;

1.9 M⊙Þ system occurs because of the relatively low mass
at which spontaneous scalarization occurs for this particular
EOS. We provide a more detailed analysis of this

phenomenon in Appendix B. Similarly, abrupt transitions
occur for other EOSs in more massive binary systems with
individual masses ≳2 M⊙.
We adopt the method introduced in Ref. [26] to extract

fDS. The average effective scalar coupling can be closely
fit by the piecewise function

ð1þ ᾱ2Þ10=3 ¼ 1þ a1ðx − xDSÞΘðx − xDSÞ; ð24Þ

where Θ is the Heaviside function, a1 and xDS are fitting
parameters, and x≡ ðG�MΩ=c3Þ2=3. In practice, we iden-
tify xDS with the peak in the second derivative of the left-
hand side of Eq. (24) with respect to x. The gravitational
wave frequency at which dynamical scalarization occurs is
then given by fDS ¼ ΩDS=π. In Ref. [27], the PD prediction
was found to reproduce numerical-relativity results to
within an error of ≲10% with this fitting procedure.
The dynamical scalarization frequencies for the configu-

rations considered in Fig. 10 are given in Table IV for
theories constrained at the 68% and 90% C.L.s. Systems
containing spontaneously scalarized stars (i.e., those with

TABLE IV. Frequency fDS at which dynamical scalarization occurs for various equal-mass binaries, given in Hz. Results are given for
theories that saturate the constraints given in Table II at 68% and 90% C.L.s. Binary systems are specified by their component NS
masses, given in units of M⊙. We highlight systems that scalarize at frequencies below 50 Hz with boldface.

68% confidence level 90% confidence level

EOS 1.3 − 1.3 1.5 − 1.5 1.7 − 1.7 1.9 − 1.9 1.3 − 1.3 1.5 − 1.5 1.7 − 1.7 1.9 − 1.9

AP3 838 354 123 84 694 246 50 20
AP4 577 183 57 199 461 105 8 109
ENG 858 358 118 102 694 236 39 24
H4 1301 650 235 51 1131 513 131 < 1
MPA1 955 436 162 67 809 325 84 11
MS0 1503 854 422 165 1320 700 302 81
MS2 1471 843 426 177 1290 687 306 88
PAL1 1350 693 287 95 1190 570 193 32
SLy4 674 217 66 356 508 106 < 1 197
WFF1 386 118 128 841 251 33 35 608
WFF2 519 154 57 302 391 72 < 1 181

TABLE V. Frequency fDS (in Hz) at which dynamical scalarization occurs for various unequal-mass binaries with the EOS MPA1.
Results are given for theories that saturate the constraints given in Table II at 68% and 90% C.L.s. Binary systems are specified by their
component NS masses, given in units of M⊙. We highlight systems that scalarize at frequencies below 50 Hz with boldface.

68% confidence level 90% confidence level

1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

1.2 1340 1130 942 767 611 471 364 304 1160 973 788 618 458 315 194 119
1.3 … 955 795 649 515 399 306 258 … 809 653 511 380 262 158 99
1.4 … … 661 538 427 329 253 212 … … 529 415 305 210 129 79
1.5 … … … 436 347 268 206 172 … … … 325 240 165 101 62
1.6 … … … … 274 212 163 136 … … … … 178 120 73 46
1.7 … … … … … 162 126 105 … … … … … 84 51 31
1.8 … … … … … … 96 80 … … … … … … 32 19
1.9 … … … … … … … 67 … … … … … … … 11

CONSTRAINING NONPERTURBATIVE STRONG-FIELD … PHYS. REV. X 7, 041025 (2017)

041025-13



appreciable effective scalar coupling even in isolation) are
demarcated as scalarizing below 1 Hz; as noted above,
these systems would be indistinguishable to GW detectors
from those that dynamically scalarize below 1 Hz. For
clarity, we highlight the systems in Table IV that scalarize
(dynamically or spontaneously) below 50 Hz. Recall that,
under our definition, induced scalarization occurs in
binaries comprised of one initially scalarized star and
one initially unscalarized star; this asymmetry cannot be
achieved in equal-mass systems like those discussed above.
We next consider the onset of dynamical scalarization in

unequal-mass systems. For the sake of compactness, we
show in Table V the dynamical scalarization frequencies
for binaries with NS masses of 1.2 M⊙ to 1.9 M⊙ with just
the MPA1 EOS. We find that the total mass plays a more
important role in determining the onset of dynamical
scalarization than the mass ratio. Fixing the total mass,
we find that scalarization occurs earlier in more asymmetric
binaries of lower mass (e.g., M ≲ 3.2 M⊙ for the MPA1

EOS). None of the systems listed in Table V undergoes
induced scalarization. As before, we highlight the systems
in Table V that scalarize below 50 Hz.
To summarize, Tables IV and V demonstrate that binary-

pulsar constraints cannot entirely rule out the possibility
of dynamical scalarization occurring at frequencies fDS ≲
50 Hz at 90%C.L. Initial detectability studies—Refs. [40,94]
discussed above—suggest that this early scalarization should
be observable with aLIGO (although these conclusions
should be confirmed with future studies in light of the
limitations of these works; see above). Thus, failure to detect
dynamical scalarization in future GW observations could
provide tighter constraints on the parameters ðα0; β0Þ in DEF
theory than pulsar timing. However, as can be seen from
Table IV, the prospects of producing such complementary
constraints depend critically on the observed NS masses and
the EOS of NSs.

V. CONCLUSIONS

In this paper, we have studied the scalarization phenom-
ena [14,24] in the massless mono-scalar-tensor theory of
gravity of DEF with pulsar timing and laser-interferometer
GW detectors on the Earth. We now summarize the key
conclusions of our analysis.
(1) The spontaneous scalarization phenomenon [14]

occurs at different NS mass ranges for different
EOSs [20]. Therefore, in a well-timed relativistic
binary-pulsar system with a specific NS mass, the
scalar-tensor gravity might be stringently con-
strained for some EOSs whose spontaneous-
scalarization phenomenon occurs near that specific
NS mass. However, in general, strong scalarization
could still take place if NSs are described by an EOS
whose scalarization occurs at a mass that is different
from the one observed.

(2) Combining two well-timed binary-pulsar systems
with quite different NS masses, one could, in
principle, constrain the scalar-tensor theory with
whatever EOS nature provides us. Using MCMC
simulations, we showed in Sec. III that, by combin-
ing five binary pulsars [35,38,49,53,54] that best
constrain gravitational dipolar radiation, we can
already bound the scalarization parameter β0 to be
≳ − 4.28 at 68% C.L. and≳ − 4.38 at 90% C.L., for
any of the eleven EOSs that we have considered.

(3) Nevertheless, because of the limited distribution of
masses of the five chosen binary pulsars, we found
that if the EOSs of NSs were similar to the ones of
AP4, SLy4, or WFF2, NSs with masses of mA ≃
1.70–1.73 M⊙ could still develop an effective scalar
coupling≳Oð10−2Þ. This is also true for the EOS H4
withmA ≃ 1.92 M⊙, and for the EOSs MS0 and MS2
with mA ≃ 2.26 M⊙ (see Fig. 5).

(4) Using the upper limits on the effective scalar
coupling of NSs from binary pulsars, we found that
for BNSs in the frequency bands of aLIGO, CE,
and ET, we could still have a large time-domain
dephasing in the number of GW cycles, on the orders
of Oð101Þ, Oð102Þ, and Oð103Þ, respectively (see
Table III).

(5) We performed a Fisher-matrix study of BNS inspiral
signals using aLIGO, CE, and ET. We found that
for BNSs at a luminosity distance DL ¼ 200 Mpc,
where we expect to observe those sources, aLIGO
can still improve the limits from binary pulsars for a
couple of EOSs with BNSs of suitable masses. CE
(whose bandwidth starts at 5 Hz) can improve the
current limits for all EOSs, while ET (whose
bandwidth starts at 1 Hz) will provide us with even
more significant improvements over current con-
straints for all EOSs. This is mainly because of
better low-frequency sensitivity. Our conclusions
for aLIGO differ from the one obtained in
Refs. [16,36,37], where the authors concluded that
pulsar timing would do better than aLIGO in
constraining scalar-tensor theories. The main reason
for this difference comes from a better understanding
and larger span of the NS masses and EOSs during
the past two decades [34,35], and the different PSD
for aLIGO used in Refs. [16,71]. If we restricted the
analysis to the same NS masses and the same EOS
used in Ref. [16], we would recover the same
conclusions as in Ref. [16] (see Fig. 7).

(6) We investigated dynamical scalarization in equal-mass
and unequal-mass BNS systems. With the criterion
that the dynamical scalarization transition frequency
must fall below about 50 Hz [40,94] to be detectable,
we found that aLIGO could observe this phenomenon
given the constraints obtained from binary-pulsar
timing, even away from the scalarization windows.
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We found that the prospects for observing dynamical
scalarization with GW detectors depends critically on
the NS EOS—for example, dynamical scalarization of
NSs with the MS0 EOS could not be detected with
aLIGO. Producing new constraints on scalar-tensor
theories from GW searches for dynamical scalariza-
tion requires waveform models that can faithfully
reproduce this nonperturbative phenomenon; ulti-
mately, these conclusions should be revisited once
such models are developed.

Our comparisons between binary pulsars and GWs made
use of the current limits of the former and the expected
limits of the latter. We show that advanced and next-
generation ground-based GW detectors have the potential
to further improve the current limits set by pulsar timing.
Nevertheless, the binary-pulsar limits will also improve
over time, especially if suitable systems filling the scala-
rization windows are discovered in future pulsar surveys.
Better mass measurements of currently known pulsars will
also help in narrowing down the constraints, especially with
PSRs J1012þ 5307 [53] and J1913þ 1102 [87], whose
observational uncertainties in masses are still large, and
they might have the right masses to close the windows
below 2 M⊙. To reach this goal, the next generation of
radio telescopes, such as FAST and SKA, will play a
particularly important role [22,95].
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APPENDIX A: INGREDIENTS FOR THE
FISHER-MATRIX ANALYSIS

For a GW detector with the one-side PSD, SnðfÞ, the
SNR of a Fourier-domain waveform, ~hðfÞ, is

ρ ¼ ð ~hðfÞj ~hðfÞÞ1=2; ðA1Þ

where the inner product is defined to be [82,83]

ð ~h1ðfÞj ~h2ðfÞÞ≡ 2

Z
fmax

fmin

~h�1ðfÞ ~h2ðfÞ þ ~h1ðfÞ ~h�2ðfÞ
SnðfÞ

df:

ðA2Þ

For all calculations in Sec. IVA, we use the design zero-
detuned high-power noise PSD, starting from 10 Hz for
aLIGO [75], the target noise PSD, starting from 5 Hz
for CE [23], and the ET-D noise PSD, starting from 1 Hz for
ET [74]. Thus, in Eq. (A2), we choose fmin ¼ 10 Hz, 5 Hz,
and 1 Hz for aLIGO, CE, and ET, respectively. Somewhat
arbitrarily, we choose for fmax twice the innermost stable
circular orbit (ISCO) frequency computed from the binary’s
binding energy at 2 PN order. It reads [96]

fmax ¼
c3

πGM

�
3

14η

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

14

9
η

r ��3=2
: ðA3Þ

Because the three detectors do not have good sensitivity at
high frequency, say≳kHz, the choice of fmax influences the
result very marginally.
For the nonspinning BNS inspiraling waveform in the

Fourier domain, we use a restricted waveform with the
leading-order term in amplitude A and up to 3.5 PN terms
in the phase ΨðfÞ [17,71,76],

~hðfÞ ¼ Af−7=6eiΨðfÞ; ðA4Þ

ΨðfÞ ¼ 2πftc −Φc −
π

4
þ 3

128η
u−5=3

�
1 −

5

168
ðΔαÞ2u−2=3 þ

�
3715

756
þ 55

9
η

�
u2=3 − 16πu

þ
�
15293365

508032
þ 27145

504
ηþ 3085

72
η2
�
u4=3 þ π

�
38645

756
−
65

9
η

�
ð1þ lnuÞu5=3

þ
�
11583231236531

4694215680
−
640

3
π2 −

6848

21
γE −

6848

63
ln ð64uÞ þ

�
−
15737765635

3048192
þ 2255

12
π2
�
ηþ 76055

1728
η2

−
127825

1296
η3
�
u2 þ π

�
77096675

254016
þ 378515

1512
η −

74045

756
η2
�
u7=3

	
; ðA5Þ

where u≡ πGMf=c3; A ∝ M5=6=DL with the chirp mass
M≡ η3=5M and the luminosity distance DL; tc and Φc
are reference time and phase, respectively; and γE ¼
0.577216… is the Euler constant. Note that in Eq. (A5),

the gothic u is equal to η−3=5u, where u≡ πGMf=c3, as
defined in Ref. [71]. In Eq. (A5), we include only the
leading dipole term for the scalar contribution. Further-
more, since the spins of BNS systems are supposed to be
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small, we do not include them in the analysis (see Table III, where we give a rough estimation of the spin terms in the GW
phasing).
To calculate the Fisher matrix (17), we need to compute partial derivatives of the frequency-domain waveform (A4).

They read (notice that, when calculating derivatives, u depends on both η and M)

∂ ~hðfÞ
∂ lnA ¼ ~hðfÞ; ðA6Þ

∂ ~hðfÞ
∂ ln η ¼ i

η
u−5=3

�
−

1

3584
Δα2u−2=3 þ

�
−

743

16128
þ 11

128
η

�
u2=3 þ 9

40
πuþ

�
−
3058673

5419008
þ 5429

21504
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�
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þ π

�
−
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η
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~hðfÞ; ðA8Þ

∂ ~hðfÞ
∂tc ¼ i2πf ~hðfÞ; ðA9Þ

∂ ~hðfÞ
∂Φc

¼ −i ~hðfÞ; ðA10Þ

∂ ~hðfÞ
∂ðΔαÞ2 ¼ −i

5

7168η
u−7=3 ~hðfÞ: ðA11Þ

APPENDIX B: DYNAMICAL SCALARIZATION
IN ULTRARELATIVISTIC BINARY

NEUTRON STARS

In this appendix, we discuss the sharp feature observed
in the averaged effective scalar coupling of a very massive
BNS that undergoes dynamical scalarization (see the
1.9 M⊙ − 1.9 M⊙ case in Fig. 10). We find that, generi-
cally, NSs of very high mass can scalarize more abruptly
than their less massive counterparts.
From Fig. 5, we observe that very massive NSs exhibit

very small effective scalar couplings αA. In these stars, the
effective scalar coupling is nonperturbatively suppressed
below the nonrelativistic (low-mass) limit αA ≈ α0. The
cores of these stars are ultrarelativistic, with a negative
trace of the stress-energy tensor T� ¼ ϵ� − 3p� < 0.

The mass at which NSs become ultrarelativistic, in this
sense, depends on the EOS and can be read off from
Fig. 7 as the mass at which the best constraint on jαj drops
to zero. Recall that spontaneous scalarization stems from a
large, positive source on the right-hand side of Eq. (3) that
grows with φ. In ultrarelativistic stars, this source term
becomes negative, causing the star to spontaneously
“descalarize.”
When placed in a binary system, ultrarelativistic NSs

can dynamically scalarize, but the transition occurs very
abruptly (e.g., the 1.9 M⊙ − 1.9 M⊙ system with the EOS
WFF1 shown in Fig. 10). As the system scalarizes, the
massive NSs transition to a state in which T� is everywhere
positive. Figure 11 depicts this transition in comparison to
dynamical scalarization in less massive systems. The top
panel shows ~βA—the PD equivalent of the quantity defined
in Eq. (22)—for 1.8 M⊙ (solid line) and 1.9 M⊙ (dashed
line) stars with the EOS WFF1 plotted as a function of the
scalar field. The highlighted points indicate the field at each
NS in an equal-mass binary before (blue), during (red), and
after (green) dynamical scalarization. The bottom panels
depict the profile of T� within each star at each of these
points.
The top panel of Fig. 11 demonstrates why dynamical

scalarization occurs abruptly for ultrarelativistic NSs.
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Recall that βA (and consequently ~βA) quantifies how easily
a NS can scalarize, with larger values indicating that the
star is more susceptible to dynamical scalarization. As
expected, when immersed in a weak scalar field (i.e., during
the early inspiral), ~βA is significantly smaller for ultra-
relativistic stars than less massive stars, indicating that
the latter will dynamically scalarize at a lower frequency.
However, unlike for less massive stars, ~βA increases slightly
as the scalar field reaches larger values (φ ∼ 0.002 in
Fig. 11) for ultrarelativistic NSs. This triggers a runaway
process in a binary system, as a small increase in the scalar
field produced by one star causes the other star to scalarize
more easily, which in turn allows the second star to produce
a larger scalar field for the first. For the ultrarelativistic
BNS depicted in the top panel of Fig. 11, this transition is
completed after an evolution of only 0.2 Hz.
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