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Abstract

In this article we will discuss the development of an algorithm which is to-
day best known in Numerical Analysis under the name Inverse Iteration, for the
computation of one eigenvalue of a general complex matrix. It was invented,
however, by engineers for the stability analysis of mechanical structures, i.e. for
the computation of that eigenvalue of a two-point boundary value problem at
which instability occurs. In later years, when the stability analysis of plasma
configurations became important which are governed by quasilinear partial dif-
ferential equations, the matrix method was adapted to these boundary value
problems, probably without knowledge about its origin at ordinary boundary
value problems. It thus performed a round-trip boundary value problems - matri-
ces - boundary value problems within ca 80 years. During these approximately 80
years - from 1893 to 1970/1977 - computational methods were dramatically im-
proved. This, of course, is also true for the treatment of boundary value problems
accompanying the application of the algorithm.

Zusammenfassung: In diesem Artikel wird die Entwicklung eines Algorithmus
diskutiert, der heute vor allem unter dem Namen Inverse Iteration in der Numerik
bekannt ist, zur Berechnung eines Eigenwertes einer beliebigen komplexen Matrix.
Er wurde jedoch von Ingenieuren zur Stabilitätsanalyse von mechanischen Struk-
turen erfunden, d.h. zur Berechnung desjenigen Eigenwertes eines zwei-Punkt-
Randwertproblems, bei dem Instabilität auftritt. Später, als die Stabilitätsanal-
yse von Plasmakonfigurationen wichtig wurde, die durch quasilineare partielle
Differentialgleichungen beschrieben werden, wurde die für Matrizen übliche Meth-
ode auf diese Randwertprobleme verallgemeinert: vermutlich ohne Wissen um
die Ursprünge dieser Methode für Randwertprobleme. Der Algorithmus machte
also eine Rundreise Randwertprobleme - Matrizen - Randwertprobleme in ca 80
Jahren. In diesen etwa 80 Jahren – von 1893 bis 1970/1977 – wurden numerische
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- Wie mathematische Begriffe zu ihrem Namen kamen Proc. XIII. Österreichisches Symposium zur
Geschichte der Mathematik, Miesenbach NÖ, 1.-7. Mai 2016, Institut für Analysis und Scientific Com-
puting, TU Wien 2017
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Methoden dramatisch verbessert. Dies gilt natürlich auch für die numerische Be-
handlung von Randwertproblemen, die die Anwendung des Algorithmus begleitet
hat.

1 Introduction

In a recent article this author wrote:

We will not discuss here historical differences of names in dependence on
scientific discipline or country. [. . . ] We will also not discuss here the
round-trip of an algorithm which changed its name when used in different
mathematical applications – this case will be treated elsewhere [MSp16b].

Considering the examples (Gauss elimination, Hopf bifurcation, Zorn’s lemma) treated
in that article, there seems to be general international and interdisciplinary agreement
about their names today. Here we will look at the round-trip of the algorithm and see a
very different picture. We will observe a number of changes of names: Engesser method,
Vianello method, Stodola method, Engesser-Vianello method, Stodola-Vianello method;
Iterationsverfahren, Vektoriteration, von-Mises-Iteration, Power method; Gebrochene
Iteration, Inverse Iteration; Continuation method, Fortsetzungsverfahren. Many of
these names are still in use today.

In passing, we will also observe that the use of the terms Eigenwert – charakteris-
tische Zahl and Eigenlösung – Eigenvektor got changed during the same years.

During the approximately 80 years of this development - from 1893 to 1970/1977
- computational methods were dramatically improved [MSp16a]. This, of course, is
also true for the numerical treatment of boundary value problems accompanying the
application of the algorithm. For easier reading we discuss the various versions of the
algorithm in a unified language, using the terms of today.

2 Engesser/Stodola/Vianello Method

It is well known, at least to engineers and architects, that mechanical structures bend,
buckle or break if they are overloaded. This can even be caused by their own weight
if their shape is inappropriate. Already in 1744 Leonhard Euler (1707-1783) gave a
formula for the critical load of a rod as a function of the mechanical properties of
the rod, i.e. for the maximum load that does not cause buckling. This is known as
Euler’s Buckling Formula [Gau08, p.22]. In German, the critical load for a rod is called
Euler’sche Knicklast.

Around 1900 it became very important for engineers and architects to compute in an
efficient way the critical loads of the structures they designed. Mathematically speak-
ing, the simplest case consists in computing the smallest eigenvalue of the parameter-
dependent ordinary boundary value problem

y′′ = − P

EJx
y with 2 given boundary conditions. (1)
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In 1893 the engineer Friedrich Engesser published the following method [Eng93]: guess
the buckled shape y0(x) by engineer’s intuition and solve a short sequence of linear
boundary value problems

y′′ν+1 = − P

EJx
yν , with 2 given boundary conditions, ν = 0, 1, 2, . . . (2)

with known r.h.sides yν(x). If y0(x) is a good guess, only very few iterations will be
needed to find the solution y(x) = yν+1(x). How much µ = yν(x)/yν+1(x) depends on
x is a measure for the quality of the solution.

In 1898 the engineer Luigi Vianello published [Via98] essentially the same iteration
scheme, with a different, a graphical, integration method for the linear boundary value
problems (2). Probably in 1903 Aurel Stodola published a similar iteration scheme,
combined with a graphical method, for solving the free vibration problem of a rotating
shaft, i.e. for computing an eigenvalue (a critical rotational frequency) for a 4th order
ordinary boundary value problem:

A similar method was used by Vianello to solve buckling problems, and
Delaporte describes a related method in “Revue de mécanique” 1903, vol
III, p. 517 [Sto24, p. 381ff]. 1

The first edition of Stodola’s book appeared in 1903.
This iteration method was also applied to other engineering problems involving ordi-

nary eigenvalue problems, and several authors investigated its convergence properties,
sometimes calling it Vianello’s method, sometimes Stodola’s method [Poh21, Ko27].
Since all three authors were important personalities and wrote important text books on
different problems in structural mechanics [Eng92, Via05, Sto24], all three were cited
as inventors of the method.

Friedrich Engesser (1848-1931) was professor at Technische Hochschule Karlsruhe
(Karlsruhe Institute of Technology). Aurel Stodola (1859-1942) was professor at ETH
Zürich. Luigi Vianello (1862-1907) was born near Venice. His place of birth belonged
to the Austrian-Hungarian Empire at the time of his birth. He studied engineering
in Northern Italy and then took jobs with German companies. Most of the time he
worked with Siemens & Halske on the construction of railways. He was concerned with
the construction of the S-Bahn in Berlin (particularly with ‘Gleisdreieck’) and with the
Schwebebahn in Wuppertal.

Today, the names Engesser-Vianello method and Stodola-Vianello method seem to
dominate among structural engineers. In 1955 Kollbrunner and Meister commented on
this: Engesser invented the method, Vianello made it popular [KoM55, p.31].

3 From ‘Vianello’s Method’ to ‘Inverse Iteration’

This part of the development lasted from 1929 until ca 1950.

1Citations in English of sentences from publications in German were translated by the present
author.
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3.1 Vianello’s Method – Iterationsverfahren – Power Method

In part 2 of their paper Praktische Verfahren zur Gleichungsauflösung [MPG29-2],
Richard von Mises (1883-1953) and Hilda Pollaczek-Geiringer (1893-1973) discussed
in 1929 the application of Vianello’s method to symmetric real n × n matrices A.
They proved convergence in the case of these matrices and remarked that their proof
is analogous to the proof by Koch and more or less also to the proof by Pohlhausen
[Ko27, Poh21], though Pohlhausen treated a generalised matrix eigenvalue problem
Bx = λAx, with special non-singular real n× n matrices A and B.

v.Mises/Pollaczek-Geiringer considered the vector iterations

zν+1 = µνAzν , A = At, zo and all µν given, ν = 0, 1, 2, . . . (3)

which converge to the eigenvalue λ of smallest modulus and the associated eigenvector
(Eigenlösung - eigensolution) of

x = λAx, i.e. λ−1x = Ax, (4)

if that eigenvalue is positive and simple (i.e. has multiplicity one) and if there is no
negative eigenvalue with the same modulus (their Theorem 11). Then they considered
more complicated cases: higher multiplicity of the eigenvalue with smallest modulus;
positive as well as negative eigenvalues of smallest modulus; and also, how to compute
higher eigenpairs (λ, x) if those of smaller modulus are known.

Also, they give an example how to compute the smallest eigenvalue of a self-adjoint
two-point boundary value problem2

d

dx

[
p(x)

dy

dx

]
+ λk(x)y(x) = 0, y(a) = y(b) = 0, (5)

combining discretization by the Ritz method with their Iterationsverfahren, i.e. with
the iterations (3) on the discrete system.

In the following years, this ‘Iterationsverfahren’ for solving the matrix eigenvalue
problem was considered and further developed by several authors, always giving the
v.Mises/Pollaczek-Geiringer paper as reference.

In his important, much read book of 1950 on matrices, Zurmühl (1904-1966) called
the solutions (λ, x) of equation (4) eigenvalues and eigenvectors (Eigenvektoren), and
the solutions (µ, x), µ = 1/λ, of

Ax = µx (6)

characteristic numbers (charakteristische Zahlen) and eigenvectors [Zu50, p.285ff], prob-
ably following the already existing convention about eigenvalues of differential equations
and characteristic values of the equivalent integral equations. Today, we call the µs the
eigenvalues of matrix A, and the λs the eigenvalues of A−1. We will not investigate here
when and by whom these changes of names were introduced.

Zurmühl considered the iteration

zν+1 = Azν , zo given, ν = 0, 1, 2, 3, . . . (7)

2In this case all eigenvalues are positive, and the smallest eigenvalue is always simple.
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or rather

zν∗ =
1

zνj
zν , zo given, j = 1, . . . , n (8)

zν+1 = Azν∗ , ν = 0, 1, 2, 3, . . . , (9)

where the zνj are the components of zν , for solving

µx = Ax, i.e. x = µ−1Ax. (10)

This is a considerable simplification of the Iterationsverfahren by v.Mises/Pollaczek-
Geiringer, though the division by the components zνj in eq. (8) might lead to division
by zero. It thus got soon replaced by a division by some norm ||zν ||.

3.2 The Basic Idea of a Proof of Convergence

Assume that the non-singular real n×n matrix A is symmetric, i.e. A ∈ IRn×n, A = At .
Then there exist n real numbers µi, i = 1, 2, . . . , n and n vectors x1, x2, . . . , xn ∈ IRn

which are pairwise linearly independent and perpendicular, i.e. xi ⊥ xj for i 6= j, which
satisfy

µixi = Axi, i = 1, 2, . . . , n.

Assume that µ1 � µ2 ≥ µ3 . . . ≥ µn > 0.
Now let zo ∈ IRn, zo 6= 0 be given. Then there exist coefficients ci ∈ IR such that

zo = c1x1 + c2x2 + . . .+ cnxn,

and thus

z1 = Azo = µ1c1x1 + µ2c2x2 + . . .+ µncnxn,

= Azo = µ1

(
c1x1 +

µ2

µ1

c2x2 + . . .+
µn
µ1

cnxn

)
, (11)

zν = Aνzo = (µ1)
ν

(
c1x1 + (

µ2

µ1

)νc2x2 + . . .+ (
µn
µ1

)νcnxn

)
, ν = 1, 2, . . . .

Since (µi/µ1)
ν tend to zero for i = 2, . . . , n and ν → ∞, we see that non-zero zν+1

i /zνi
converge to µ1 for i = 1, . . . , n, and that the zν are parallel to x1 for large enough ν.

Now it is obvious that the convergence behavior is changed very much if µ1 is not
positive, simple and dominant. Assume, for instance, that the eigenvalue with largest
modulus is negative: then we see from equations (11) that the sequence {zν}∞ν=o is
alternating. More complicated are the cases µ1 = µ2 or µ1 ≈ µ2 or µn = −µ1 < 0
or . . . . Even much more complicated patterns are produced by the iterations if the
matrix A is real but not symmetric. In that case eigenvalues and eigenvectors may
be complex, and real iterations produce real results that are hardly understandable
without looking at them in the framework of complex numbers. A very complete, very
impressive analysis of all different cases that are possible for non-symmetric matrices
was published by Helmut Wielandt (1910-2001) [Wie44a] in 1944 (sic!).
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Today, a variety of other methods for computing eigenvalues is available. Thus
using this elementary iteration scheme does make sense only if it is known in advance
that µ1 � µi > 0, i = 2, . . . , n and if only (µ1, x1) are needed. In such cases, this
iteration method (called Power Method, Power Iteration - Potenzmethode today) is
quite efficient.

3.3 Further Development of Names and Methods

As already mentioned, the name first used for the application of this iterative method to
matrices was Iterationsverfahren [Wie44a, Zu50]. In later years, the names von-Mises-
Iteration3 and Vektoriteration became common in the German numerical-analysis com-
munity, see various textbooks in German, particularly editions 2-4 of Zurmühl’s book.
In the 5th edition in 1986, the co-author Sigurd Falk of the late Rudolf Zurmühl used
the name Potenziteration nach von Mises [Zu50]. Each of the seven editions of that
book was a revised and enlarged version of the previous one, so the historical devel-
opment may be observed more closely by comparing the various editions. In English,
the names Power Method (numerical analysis) and Power Iterations (Markov chains)
became common, and that probably led to the names Potenzmethode and Potenzitera-
tion.

The changes of the names of the algorithm is only a side-effect and indicates that
the computation of eigenpairs is an important problem in many applications. Thus it is
not surprizing that the power method was a germ for a rich family of algorithms which
are taylored for different patterns of spectra. Already in 1944 (sic!) Helmut Wielandt
introduced an algorithm which he called Gebrochene Iteration [Wie44b], today mostly
called Inverse Iteration, both in German and in English. This is essentially the power
method applied to the inverse of the matrix. It turns out that this reformulation has
big advantages, see subsection 3.4 and the review article by Kerner [Ke89].

Algorithms adapted to matrices with eigenvalues and eigenvectors which are diffi-
cult to separate are for instance Krylov subspace iterations, Lanczos iterations and the
Arnoldi method. With these methods, the difficult task of separating clustering eigen-
values and their eigenvectors is replaced by computing the subspaces spanned by those
eigenvectors, and the sets of the related eigenvalues. For more information, see any
modern textbook on matrix computations, for instance the one by Demmel, Dongarra
et al [BDD00].

3.4 Gebrochene Iteration – Inverse Iteration

As we have seen in subsection 3.2, the iterations of the Power method converge in gen-
eral (i.e. if all necessary assumptions are satisfied) to the eigenvalue of largest modulus,
and the sequence of vectors is unbounded if |µ1| > 1. For one of the most important
applications, however, for the solution of the stability problem, convergence to the eigen-
value of smallest modulus is needed. This led to the development of Inverse Iteration:

3This is an example both for the Matthew-Effect: ‘The more famous person in a group gets all the
credit’ [Mer68] and of the Mathilda-Effect: ‘Women are more often not mentioned for their achievements
than men’ [Ros93].
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the Power method for A−1, with normalization of the iterates. As already mentioned, it
was introduced by Wielandt under the name Gebrochene Iteration [Wie44b]. In today’s
formulation for real matrices:
Let A ∈ IRn×n and zo ∈ IRn be given; iterate

zν∗ :=
zν

||zν ||
,

Azν+1 = zν∗ , µν+1 =
(zν+1)tAzν+1

(zν+1)tzν+1
, ν = 0, 1, 2, . . . (12)

for solving
Ax = µx, |µ| < |µi|, i = 2, . . . n (13)

Its big advantage over the power method: if a first guess µ̃ for the desired eigenvalue
µ is known, A may be replaced by the shifted matrix B = A − µ̃E, where E is the
identity matrix. Thus B is nearly singular, and the largest eigenvalue of B−1 is huge in
comparison to all other eigenvalues. Thus convergence is very fast.

4 Inverse Iteration on Partial Differential Equations

Using a physicists intuition, Lackner [La70] generalized Inverse Iteration for application
to nonlinear eigenvalue problems of type

Lu = αf(u) in D ⊂ IR2, u|∂D = g, (14)

where L are a linear differential operator and f a nonlinear operator B → B, B some
Banach function space. A simple model problem was

−∆u = λeu in D ⊂ IR2, u|∂D = 0. (15)

The equations depend on several parameters which are not shown here. Treatment
of these parameters was a problem: it was not clear which ones should be fixed and
which ones should be left free to obtain a formulation that made sense both mathe-
matically and physically and led to convergence of the iterations [La70, p.3184], [HL75,
p.141]: such equations may have any number of solutions, depending on outer and inner
parameters [MSp81, MSp99].

In the case of eq. (15) Hagenow-Lackner got satisfactory results with:
M,αo ∈ IR, g, uo∗ ∈ B given, ||uo∗|| = M , iterate

Luν+1 = ανf(uν∗), uν+1|∂D = g, (16)

uν+1
∗ := uν+1 M

||uν+1||
, αν+1 = αν

M

||uν+1||
, ν = 0, 1, 2, . . . (17)

5 Continuation Method

All uncertainties about the treatment of parameters in the iterations were eliminated
in a paper by Herbert B. Keller (1925-2008) [Ke77]:
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Let B be a Banach space as before, rewrite

Lu = λf(u) in D ⊂ IR2, u|∂D = g, (18)

as G(u, λ) = 0. Introduce an additional condition on the solutions N(u, λ). Make sure
that system is solvable by introducing an additional parameter s:

G(u(s), λ(s)) = 0, N(u, λ, s) = 0. (19)

N(u, λ, s) = ||u|| − s : This is the normalization of eqs. (17) with s = M .

N(u, λ, s) = ||du/ds||2 + |dλ/ds|2 (20)

This condition defines arclength of the solution branch (u(s), λ(s)) if certain assump-
tions on eqs. (19) are satisfied. In the existence theorems for solutions of eqs. (19)
[Ke77], the norm N is defined according to (20). In practical computations, a numer-
ical approximation to arclength is much more convenient [Ke77, MK80]. The method
was applied successfully to various parameter-dependent systems of partial differential
equations, see for instance the very involved solution branches displayed in [MSp99],
and the references therein.
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