
Journal of Theoretical Biology 426 (2017) 134–139 

Contents lists available at ScienceDirect 

Journal of Theoretical Biology 

journal homepage: www.elsevier.com/locate/jtbi 

Reverse allostasis in biological systems: Minimal conditions and 

implications 

Nasrollah Rezaei-Ghaleh 

a , b , ∗, Davood Bakhtiari c , Armin Rashidi d 

a Department of Structural Biology in Dementia, German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Strasse 3a, 37075 Göttingen, Germany 
b Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany 
c Functional Imaging Section, Deutsches Primatenzentrum GmbH, Kellnerweg 4, 37077 Göttingen, Germany 
d Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, 420 Delaware Street SE, MMC 480, Minneapolis, 

MN 55455, USA 

a r t i c l e i n f o 

Article history: 

Received 15 December 2016 

Revised 10 May 2017 

Accepted 22 May 2017 

Available online 26 May 2017 

Keywords: 

Homeostasis 

Enzyme 

Drug 

Aggregation 

Population 

a b s t r a c t 

Biological control systems regulate the behavior of biological systems in a constantly changing environ- 

ment. Homeostasis is the most widely studied outcome of biological control systems. Homeostatic sys- 

tems maintain the system in its desired state despite variations in system parameters or the externally- 

determined input rates of their constituents, i.e. they have zero or near zero steady state error. On the 

other hand, allostatic systems are not resistant against environmental changes and the steady state level 

of their controlled variables responds positively to the changes in their input rates. Little is known, how- 

ever, on the existence and frequency of reverse allostatic systems, where the steady state value of the 

controlled variable correlates negatively with the input rate of that variable. In the present study, we de- 

rive the minimal conditions for the existence and local stability of reverse allostatic systems, and demon- 

strate in examples of metabolic, pharmacological, pathophysiological and ecological systems that the re- 

verse allostasis requirements are relatively non-stringent and may be satisfied in biological systems more 

commonly than usually thought. The possible existence of reverse allostatic systems in nature and their 

counter-intuitive implications in physiological systems, drug treatment, ecosystem management, and bio- 

logical control are explored and testable predictions are made. 

© 2017 Elsevier Ltd. All rights reserved. 
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1. Introduction 

In the face of continuously changing environments, living or-

ganisms have developed efficient control systems to maintain

within appropriate ranges the variables critical to their survival

( Northrop, 20 0 0 ). The controlled variable may be physical, chemi-

cal or biological. Physical variables are exemplified by body tem-

perature or blood pressure, chemical variables by blood glucose

or cellular adenosine triphosphate (ATP) concentration, and bio-

logical variables by population of different cell types within tis-

sues or population of different organisms within an ecosystem. The

time-dependent level of the controlled variable is determined by

its flux rates into and out of the biological system, as well as its

generation and degradation or dissipation rates inside the system.

When changes in the environment alter the relevant influx or ef-

flux rates, the controlled variable undergoes a transient response
∗ Corresponding author at: German Center for Neurodegenerative Diseases 

(DZNE), Göttingen, c/o Max Planck Institute for Biophysical Chemistry, Am Fassberg 

11, 37077 Göttingen, Germany. 
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hich gradually pushes it towards a new steady state level. For ex-

mple, when dietary glucose intake is increased, the glucose con-

rol system triggers a complex series of hormonal, metabolic, and

ehavioral responses which regulate blood glucose in the new con-

ition. 

Biological control systems can be categorized on the basis of

ow the steady state value of their controlled variable depends

n the input rate (the net balance of the influx and efflux rates)

f that variable. Many control systems show zero steady state er-

or, i.e. the steady state value of the controlled variable is inde-

endent of its input rate. Most homeostatic mechanisms, for ex-

mple, include control systems with zero or near-zero steady state

rror ( Wilkin, 1998 ). The blood concentration of critical ions such

s potassium should be maintained within a remarkably narrow

ange for the organism to survive. Negative feedback loops are

ommonly found in such systems. 

There also exist homeostatic systems with non-zero steady state

rrors. To be distinguished from homeostatic systems with zero

teady state errors, systems with a positive steady state error are

eferred to as “allostatic systems”. In these systems, the steady

tate value of the controlled variable rises with its increasing in-

http://dx.doi.org/10.1016/j.jtbi.2017.05.025
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jtbi
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jtbi.2017.05.025&domain=pdf
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ut rate. Allostatic systems are not necessarily detrimental or rep-

esentative of pathology ( Korte et al., 2007 ). Departure from the

reviously advantageous homeostatic value and settling into a new

alue when encountering conditions requiring new functionalities

ay in fact improve the fitness of the organism under stressful

onditions in the short term ( Lesne, 2008 ). The long-term effects of

uch chronic adaptive responses, however, are usually deleterious

 Logan and Barksdale, 2008; Oken et al., 2015 ). Type 2 diabetes,

or example, is the pathological outcome of a chronic glucose load

ia increased carbohydrate intake ( Stumvoll et al., 2003 ). 

Even though “reverse allostatic” systems in which the steady

tate value of the controlled variable negatively correlates with the

nput rate of that variable are theoretically possible, very few of

hem are known in physiological systems. Allostasis and reverse

llostasis properties are unique in that they make the system ex-

remely sensitive to the input-related parameters. “Resistance” (the

bility of a system to withstand displacement by a disturbance in

ts environment) and “resilience” (the speed at which a system re-

urns to its equilibrium following a perturbation) are two widely

iscussed concepts in ecosystem stability ( Mori, 2016; Oliver et al.,

015 ). Allostatic and reverse allostatic systems show no resistance

gainst perturbations that change the input rate of the variable for

hich the system has the non-zero steady state error property. In

his article, we will derive minimal conditions for the existence

f reverse allostatic systems, explore their local stability, and dis-

uss situations where such systems could be found in nature. We

rovide examples of ecosystems which may show the reverse al-

ostatic dynamics and explain how the “no resistance” property of

uch systems might be utilized in practice in the direction of inter-

st. Also, in examples of simple metabolic and protein aggregation

ystems, we demonstrate how a particular disease condition may

nvolve the system switch from one type to the other (e.g. from

llostasis to reverse allostasis), and how knowledge about the be-

avior of the system would guide designing mechanistic therapeu-

ic strategies. 

. Theory 

Consider a dynamical system with one state variable, x(t) and

ne state equation: 

 x/d t = I + f ( x ) (1)

here I is a state-independent input rate of x. I is an exter-

ally determined parameter of the system. f(x) represents a state-

ependent rate of x , which depends on the value of x . At steady

tate, we have 

 = − f ( x ∗) (2) 

here x ∗ is the steady state value of x . For (1) to exhibit reverse

llostasis, f(x ∗) must be an ascending function of x ∗. This simple

ystem, however, is not stable around its equilibrium point because

f x > x ∗, f ( x ) > f ( x ∗) and therefore dx / dt > 0, leading to further

isplacement of x from x ∗. A similar situation occurs if x < x ∗. It

s therefore necessary to increase the dimension of the system in

rder to have both reverse allostasis and local stability properties. 

Now, let us consider a two-dimensional system with two state

ariables, x and y , and two state equations: 

dx 

dt 
= I 1 + f ( x, y ) 

dy 

dt 
= I 2 + g ( x, y ) 

(3) 

here I 1 and I 2 are state-independent input rates of x and y , re-

pectively, and f and g represent state-dependent rates. At steady

tate we have: 

 1 = − f ( x ∗, y ∗) 
 2 = −g ( x ∗, y ∗) 

(4) 
here x ∗ and y ∗ are the steady state values of x and y , respectively.

ow, suppose that I 1 changes to I 1 + dI 1 and I 2 remains constant

( d I 2 = 0 ) . Then, 

 I 1 = −( ∂ f/∂ x ) dx − ( ∂ f/∂ y ) dy 
 I 2 = 0 = −( ∂ g/∂ x ) dx − ( ∂ g/∂ y ) dy 

(5) 

hich gives: 

dy 

dx 
= − ( ∂ g/∂ x ) 

( ∂ g/∂ y ) 

d I 1 
dx 

= −∂ f 

∂x 
− ∂ f 

∂y 

dy 

dx 
= −∂ f 

∂x 
+ 

∂ f 

∂y 

( ∂ g/∂ x ) 

( ∂ g/∂ y ) 
(6) 

For a system to have the reverse allostasis property, we need

x ∗/ dI 1 < 0. From above, this condition occurs if and only if at ( x ∗,

 

∗) we have: (
∂ f 
∂x 

)(
∂g 
∂y 

)
−

(
∂ f 
∂y 

)(
∂g 
∂x 

)
(

∂g 
∂y 

) > 0 (7) 

According to the Hartman–Grobman theorem, the fixed point

 x ∗, y ∗) is locally stable for the system represented by the system

3) if and only if it is a stable fixed point for the linearization of the

ame system. Using the Jacobian matrix of the linearized system,

he characteristic equation of the stability matrix of the linearized

ystem is: 

2 −
(

∂ f 

∂x 
+ 

∂g 

∂y 

)
λ + 

[(
∂ f 

∂x 

)(
∂g 

∂y 

)
−

(
∂ f 

∂y 

)(
∂g 

∂x 

)]
= 0 (8) 

The condition for local stability, i.e. the two eigenvalues having

egative real parts, reduces to the following two criteria at fixed

oint ( x ∗, y ∗): 

( ∂ f/∂ x ) ( ∂ g/∂ y ) − ( ∂ f/∂ y ) ( ∂ g/∂ x ) > 0 

( ∂ f/∂ x ) + ( ∂ g/∂ y ) < 0 

(9) 

From (7) and (9) , and for (3) to have both the reverse allostasis

roperty and local stability at its fixed point, it is necessary that at

 x ∗, y ∗): 

 g/∂ y > 0 

 f/∂ x < −∂ g/∂ y < 0 

(10) 

Since ( ∂ f / ∂ x )( ∂ g / ∂ y ) < 0, the first stability condition in (9) is

atisfied only if 

( ∂ f/∂ y ) ( ∂ g/∂ x ) < ( ∂ f/∂ x ) ( ∂ g/∂ y ) < 0 (11) 

Finally, taking (9) to (11) into consideration, systems with either

f the following properties: 

A. f and g are respectively descending and ascending functions of

both x and y (class-I) 

B. Both f and g are descending functions of x and ascending func-

tions of y (class-II) 

ould exhibit both reverse allostasis (for x ) and local stability at

quilibrium if: 

( ∂ f/∂ x ) < −( ∂ g/∂ y ) 
( ∂ f/∂ y ) ( ∂ g/∂ x ) < ( ∂ f/∂ x ) ( ∂ g/∂ y ) 

(12) 

Fig. 1 shows a schematic representation of the two classes of

everse allostatic systems, highlighting that the common motif be-

ween them is the auto-inhibition of x (the system variable with

espect to which reverse allostasis is observed), auto-activation of

 and different signs of mutual hetero-interactions: if x activates y ,

hen y should inhibit x and vice versa. 

. Results 

Now that we have determined the minimal requirements for

he existence and local stability of reverse allostatic systems, we

xplore whether and how these conditions could be met in simple

iological systems. 
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X Y

Y

class-I

class-II

X

Fig. 1. Schematic representation of two classes of reverse allostatic systems, show- 

ing reverse allostatic behavior with respect to X. X - > Y indicates “X activates Y”

and X -| Y indicates “X inhibits Y”. 
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3.1. Metabolic systems 

For a simple biochemical system with reverse allostasis and

local stability, we consider a system of two metabolites, x and

y , which are generated with externally determined constant rates

and degraded enzymatically. The enzymatic degradation of the two

metabolites is assumed to be coupled: y is an activator of the en-

zymatic degradation of x , while x inhibits the enzymatic degra-

dation of y (in a non-competitive manner). In addition, the enzy-

matic degradation of y is supposed to follow a substrate-inhibition

scheme, indicating that the enzymatic degradation rate rises to a

maximum then decreases as y concentration increases. This condi-

tion is central to the behavior of our system. The dynamics of this

system can be described as: 

dx 

dt 
= I 1 −

α1 x . 
(
1 + 

y 
μ12 

)
( K 1 + x ) 

dy 

dt 
= I 2 − α2 y 

( K 2 + y + 

y 2 

μ22 
) . 
(
1 + 

x 
μ21 

) (13)

where αi and K i are the maximum rate and constants for the en-

zymatic degradation of the metabolites and μij is the effect of j

on the enzymatic degradation of i ( i,j = 1 or 2, for x or y ). Fig. 2

illustrates the dynamical behavior of this system, exhibiting both

reverse allostasis and local stability. As shown in Fig. 2 , the grad-

ual increase in the input rate of x ( I 1 ) leads to a decrease in the

steady state value of its concentration (i.e. reverse allostasis) and

the system remains stable around the steady state point. Notably,

this system is a class-I reverse allostatic system and the trajectories

revolve around the fixed point in counter-clockwise direction. 

3.2. Pharmacological systems 

Drugs and exogenous compounds (xenobiotics) frequently ex-

hibit complex mutual interactions at the pharmacokinetic level, e.g.

they can affect the metabolic rate of their own and other drugs by

inducing or inhibiting the responsible enzymes. If two drugs, x and

y , are metabolized by the same enzyme, which is induced by x but

inhibited by y , then the time-dependent changes of the blood level

of the two drugs may be described by the following equations: 

dx 

dt 
= I 1 −

α1 x 
(
1 + 

x 
μ1 

)
( K 1 + x ) 

(
1 + 

y 
μ2 

)
dy 

dt 
= I 2 −

α2 y. 
(
1 + 

x 
μ1 

)
( K 2 + y ) 

(
1 + 

y 
μ2 

) (14)

where αi and K i represent maximum rate and constants for the

enzymatic metabolism of these two drugs and μi represents the

modulatory effect of metabolite i on the involved enzyme ( i, j = 1

or 2, for x or y ). Since x induces degradation of y (and therefore
ecreases its blood level) while drug y has an opposite effect on

 , the system described by Eq. 14 could behave as a class-II re-

erse allostatic system (see Fig. 1 ). As illustrated in Fig. 3 , with the

ight choice of the above parameters, the two-drug system exhibits

table reverse allostasis behavior. The trajectories of this system re-

olve around the fixed point in clockwise direction, contrary to the

ounter-clockwise direction of class-I reverse allostatic trajectories.

.3. Protein aggregation systems 

Another example of reverse allostatic systems is found in cou-

led protein aggregation systems in neurodegenerative diseases.

uppose that we have two proteins, x and y , in aggregate forms

e.g. amyloid- β and tau protein, respectively, in Alzheimer disease).

 induces the formation of y , while y inhibits x aggregation. The

rotein aggregate x is normally degraded according to a Michaelis-

enten-like enzymatic kinetic, and the enzymatic degradation of

rotein aggregate y is inhibited when it is accumulated. The con-

entration evolution of the two protein aggregates is then gov-

rned by the following equations: 

dx 

dt 
= I 1 + 

(
μ12 

n 

μ12 
n + y n 

)
β1 x − α1 x 

( K 1 + x ) 

dy 

dt 
= I 2 + 

(
x n 

μ21 
n + x n 

)
β2 y − α2 y 

( K 2 + y + 

y 2 

μ22 
) 

(15)

here αi and β i are maximum rates of enzymatic degradation and

roduction of these two protein aggregates, respectively, K i are cor-

esponding constants for the enzymatic degradation of these two

rotein aggregates, and μij represents the effect of protein j on the

roduction or enzymatic degradation of protein i ( i,j = 1 or 2, for x

r y ). With the right choice of parameters, this system manifests

everse allostatic behavior and local stability. Supplementary In-

ormation Figure S1 illustrates an example of such systems with

 class-I reverse allostatic behavior. The system trajectories revolve

round the fixed point in counter-clockwise manner. 

.4. Population dynamics 

We explore the fourth example of reverse allostatic systems in

opulation dynamics. Suppose two species, x and y , living together

nd their population evolve according to a logistic-type dynam-

cs: 

f ( x, y ) = α1 .x. 

(
1 − x 

γ1 

)

g ( x, y ) = α2 .y. 

(
1 − y 

γ2 

)
(16)

here 

1 = μ12 y + β1 

2 = μ21 x + β2 
(17)

re Malthusian parameters (maximum rates of population growth)

nd the effect of species j on species i is represented by the inter-

ction parameters μij . If both μ12 and μ21 are negative, the sys-

em describes competition between two species, if both are posi-

ive, the two species benefit symbiosis, and if μ12 is negative but

21 is positive, there is a prey-predator like interaction between

hem (with x as a prey). The two populations are subject to con-

tant (net) input rates, I 1 and I 2 (as in Eq. 3 ) and parameters γ 1 

nd γ 2 represent the intrinsic limiting values of two populations

n the absence of input rates, i.e. when I 1 = I 2 = 0 . In such systems,

f we limit ourselves to the steady states in which the two popu-

ations are below their intrinsic limiting values, then it could be

hown that the stability condition in (11) is not met unless μ
12 
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Fig. 2. Stable reverse allostatic behavior in a coupled biochemical system. Upper row: simulations of system dynamics ( Eq. 13 , see the text) were made using a range of μ22 

values, representing various degrees of substrate inhibition for metabolite y . As indicated by the gray arrow in each panel, a decrease in the input rate of metabolite x leads 

to an increase in its steady state value (filled circles). The reverse allostatic behavior with respect to x is obtained over a broad range of μ22 values, except for the very large 

μ22 value of 110. Lower row: for each μ22 value, the dynamics of the system were simulated around the fixed point ( x ∗ , y ∗) = (1,1), and trajectories starting from a few initial 

points were highlighted. The system stays locally stable in the studied range of μ22 . Note the counter-clockwise direction of the trajectories, which is characteristic of class-I 

reverse allostatic systems. All simulations were made using the following parameters: α1 = 10, K 1 = 0.1, α2 = 10, K 2 = 0.01, μ12 = 2, μ21 = 2. NSSE stands for negative steady 

state error. 

Fig. 3. Stable reverse allostasis in a coupled pharmacological system. Upper row: simulations of system dynamics ( Eq. 14 , see the text) were made using a range of μ2 

values, representing various degrees of the inhibitory effect of drug y on the metabolizing enzyme. As indicated by the gray arrow in each panel, a decrease in the input rate 

of drug x increases its steady state level (filled circles). Reverse allostasis with respect to x is achieved over a range of μ2 values, but lost at μ2 = 11. Lower row: for each 

μ2 value, the dynamics of system were simulated around the fixed point ( x ∗ , y ∗) = (1,1), and trajectories starting from a few initial points were highlighted. The system is 

locally stable around its fixed point despite large variations in μ2 . Note the clockwise direction of the system trajectories, which is characteristic of class-II reverse allostatic 

systems. All simulations were made using the following parameters: α1 = 5, K 1 = 0.1, α2 = 5, K 2 = 0.1, μ1 = 1. NSSE stands for negative steady state error. 
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and μ21 have different signs, i.e. a prey-predator like interaction is

essential for the system to be stable. Supplementary Information

Figure S2 illustrates the dynamical behavior of an example of such

systems which exhibit both the reverse allostatic behavior and lo-

cal stability. A crucial feature of this example is the negative sign

of β2 , indicating a “grouping effect” for species y . In this system,

the gradual increase in the input rate of species 1 ( I 1 ) leads to a

decrease in the steady state value of its population that is the re-

verse allostatic behavior and the system remains stable around the

steady state for a relatively wide range of the varied parameter,

β1 . In addition, this system is again a class-I reverse allostatic sys-

tem and its trajectories move around the fixed point in counter-

clockwise direction. 

4. Discussion 

We explored whether the steady state value of a system vari-

able, x , can change in the opposite direction of its externally de-

termined input rate, i.e. reverse allostasis with respect to x . It was

shown that one-dimensional systems cannot have the reverse al-

lostasis property along with local stability. To behave as a stable

reverse allostatic system with respect to x , the system requires to

be at least two-dimensional and x to be mutually coupled with a

second variable y . We derived the minimal conditions for existence

and local stability of two-dimensional reverse allostatic systems.

We demonstrated in some simple biological systems that these re-

quirements can be satisfied, provided that the coupled variable y

changes with a rate that increases when y itself increases. This lat-

ter condition, as non-trivial as it seems to be, is indeed frequently

encountered in biological systems. 

Complex systems of enzyme reactions can be modeled using

networks of coupled ordinary differential equations (ODEs) ( Chen

et al., 2010; Wong et al., 2015 ). When spatial distribution of en-

zymes is a relevant factor, e.g. in sequential enzyme reactions,

transport and diffusion of intermediate reactants between con-

secutive enzymes are modeled using partial differential equations

( Eun et al., 2014 ). In our example of the coupled two-enzyme sys-

tem described above, the existence of stable reverse allostatic dy-

namics with respect to a metabolite is crucially dependent on the

substrate inhibition of the enzyme responsible for degradation of

its coupled metabolite. The property indicates that the enzyme

activity increases to a maximum then decreases when the sub-

strate concentration increases. It has been shown for several en-

zymes that substrate inhibition has important biological functions

( Reed et al., 2010 ), and it is estimated that around 20% of enzymes

show some level of substrate inhibition ( Chaplin and Bucke, 1990;

Wu, 2011 ). We speculate that the reverse allostasis behavior may

exist for metabolites coupled to the substrate of enzymes with

substrate inhibition. Since some enzymes involved in neurodegen-

erative diseases are subject to substrate inhibition ( Reed et al.,

2010 ), the potential existence of reverse allostasis related to these

enzymes may have important implications in treatment of neu-

rodegenerative diseases. In such cases, if a decrease in the level of

the coupled metabolite is desired, the input rate of that metabolite

should be increased (rather than decreased, as intuitively thought).

Some pharmacological systems with complex drug-drug inter-

actions provide an important example of reverse allostatic sys-

tems. A prototypical example is cytochrome P450 (CYP450), the

main metabolizing system in the liver responsible for biotransfor-

mation of drugs and xenobiotics. CYP450 has several isoforms (e.g.

3A4, 2D6 and 2C9) each of which metabolizes a specific group of

exogenous compounds. Some compounds activate or inhibit the

specific CYP450 isoform responsible for their own metabolism. If

two drugs metabolized by the same CYP450 isoform have differ-

ent modulatory effects on their CYP40, i.e. one of them activates

while the other one inhibits it, the coupled drug system will be
apable of exhibiting reverse allostasis. If the two drugs are ad-

inistered simultaneously, a counter-intuitive reverse allostatic be-

avior may be detectable for one of the two drugs. One potential

xample of such systems is the pair of carbamazepine (an anti-

onvulsant drug) and verapamil (an antihypertensive drug), which

re both metabolized by the 3A4 isoform. While carbamazepine in-

uces 3A4 activity and thereby promotes degradation of itself and

erapamil ( Kang et al., 2008 ), verapamil inhibits 3A4 activity and

as opposite effects ( Zhou, 2008 ). With the right set of param-

ter values, the coupled carbamazepine-verapamil system could

xhibit class-II reverse allostatic behavior with respect to carba-

azepine: the higher dose of carbamazepine will lower its steady

tate level. Another example is the pair of phenobarbital (an anti-

onvulsant drug) and warfarin (an anticoagulant drug), which are

etabolized by 2C9 and respectively induce or inhibit its activity

 Greenblatt and von Moltke, 2005 ). Under the appropriate condi-

ions, this coupled system could also behave as a class-II reverse

llostatic system with respect to phenobarbital: the lower dose of

henobarbital will increase its steady state level. In case of anti-

onvulsant drugs, low or high drug levels may cause convulsions

r comatose states, therefore it is crucial to consider the possi-

ility of reverse allostatic behavior in such coupled systems. The

wo examples described above are well-known instances of signif-

cant drug-drug interactions and their simultaneous use is usually

voided in medical practice. However, our study suggests that the

equirements for reverse allostasis are relatively non-stringent and

ay be met in many coupled drug-drug and drug-xenobiotic sys-

ems. As a consequence, counterintuitive dose-response behaviors

ay arise for many drugs and be more prevalent than is usually

hought. 

Coupled protein aggregation systems exemplify another class of

iological systems with potential of stable reverse allostatic be-

avior. Neurodegeneration-related protein aggregation is frequently

utually coupled, a prototypical example of which is the coupling

etween amyloid- β and tau protein aggregation in Alzheimer dis-

ase where each protein aggregate could influence the rate of gen-

ration or degradation of the other protein aggregate ( Nisbet et al.,

015 ). For example, it is believed that amyloid- β aggregation in-

reases tau protein aggregation, while tau protein aggregation at a

ater stage induces neurodegeneration and therefore indirectly re-

uces the level of amyloid- β and its aggregation. A key require-

ent for reverse allostasis in such systems is that the proteolytic

egradation of an aggregated protein is reduced when it is ac-

umulated, which could be easily fulfilled in our example when

usceptibility of tau protein aggregates to proteases decreases at

igher assembly states of tau protein, or even further, the prote-

lytic machinery of neurons is impaired in response to tau pro-

ein aggregation. Since the sufficient conditions for the existence

f reverse allostasis in such systems are not very stringent, we hy-

othesize that reverse allostasis may exist in the course of protein

ggregation-related diseases, at least in some phases. Counterintu-

tive phenomena may arise as a result. In Alzheimer disease, for

xample, the steady state level of amyloid- β aggregates in a spe-

ific brain compartment may decrease when higher level of dif-

usible amyloid- β aggregates are imported into that compartment

rom other brain regions. 

In addition to the organism-level physiological and patholog-

cal systems, reverse allostatic systems may have important im-

lications at the level of populations. In our example of a sim-

le predator-prey system, we demonstrated that reverse allostasis

ith respect to the prey species emerges if the predator follows

 strong “group effect”. Counterintuitively and because of the in-

riguing dynamics of the system, the steady state frequency of or-

anism x decreases with increasing rates of their immigration. If

or environmental concerns one is interested in lowering the fre-

uency of x , one should try to promote rather than block its influx.
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 similar scenario may occur when there is a mixed population

f two pathogens, say x and y in the body, with a constant in-

ux. Each pathogen releases certain substances (e.g. products of

etabolism, toxins, and growth factors) in the body. If these sub-

tances negatively impact survival of x , but are beneficial for y (e.g.

ubstances used as nutrients), then f will decrease while g will in-

rease with increases in either x or y , as required for class-I reverse

llostatic systems. If the reverse allostatic behavior with respect to

 arises, the steady state density of microorganism x will be a di-

ect (rather than inverse, as intuitively thought) correlate of the

mmune barriers against x . From an evolutionary perspective, if x is

 more serious threat than y to survival, the selection pressure for

mmune barriers against x may become relaxed during the course

f evolution in order to lower the steady state of x in the body. 

The possible existence of pathophysiological reverse allostatic

ystems suggests a new conceptual framework to understand dis-

ase versus healthy states not only in terms of the steady state or

ynamical behavior around the fixed points, but also in terms of

esponse to changes in the input rates, i.e. whether they are com-

letely resistant against changes in the input rates (homeostatic

ystem) or behave as an allostatic or a reverse allostatic system.

urther classification of disease states on the basis of their allo-

tatic or reverse allostatic behavior has significant therapeutic im-

lications. In addition, it may offer new ways to interpret and ex-

lain the claims and findings of a complementary clinical school

nown widely as homeopathy. According to this school, in order to

reat a disorder in a physiological system, a force should be applied

pon the system in the same direction as the disorder ( Bell et al.,

013; D’Huyvetter and Cohrssen, 2002; Jonas et al., 2003 ), e.g. if

he blood glucose is above normal, a medication which normally

ould elevate the blood glucose should be prescribed. This medi-

ation can result in lowering the blood glucose in a hyperglycemic

atient. The present study offers a potential explanation for cases

n which disease behaves as a reverse allostatic system. However,

ne should notice that the conditions we derived only guarantee

ocal, and not necessarily global, stability of the steady state. This

eans that large changes in the input rate of the variable of inter-

st do not necessarily result in the system moving to its new stable

xed point. Also, the apparent rarity of reverse allostatic conditions

n physiological systems limits the applicability of homeopathy. 

In conclusion, we derived the minimal conditions for a two-

imensional dynamical system to exhibit stable reverse allostatic

ehavior and provided a number of biological examples where

uch systems may be found. Reverse allostasis may have implica-

ions in areas other than biology, e.g. economy and sociology. Fu-

ure studies may look into these fields, explore higher dimensional

ystems, or consider time-dependent influx rates. 
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