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Functional evolution of Lepidoptera olfactory
receptors revealed by deorphanization
of a moth repertoire
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Insects detect their hosts or mates primarily through olfaction, and olfactory receptors (ORs)

are at the core of odorant detection. Each species has evolved a unique repertoire of ORs

whose functional properties are expected to meet its ecological needs, though little is known

about the molecular basis of olfaction outside Diptera. Here we report a pioneer functional

analysis of a large array of ORs in a lepidopteran, the herbivorous pest Spodoptera littoralis.

We demonstrate that most ORs are narrowly tuned to ubiquitous plant volatiles at low,

relevant odorant titres. Our phylogenetic analysis highlights a basic conservation of function

within the receptor repertoire of Lepidoptera, across the expansive evolutionary radiation of

different major clades. Our study provides a reference for further studies of olfactory

mechanisms in Lepidoptera, a historically crucial insect order in olfactory research.
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E
cological interactions between insects and plants are
regulated, to a great extent, by the emission of volatile
organic compounds by flowers, fruits and leaves.

The olfactory perception of these airborne cues drives vital
behaviours, such as foraging and oviposition site selection. Insects
detect odorants through olfactory sensory neurons (OSNs)
housed within sensory hairs—the olfactory sensilla—that cover
the surface of antennae and maxillary palps1. The watershed
event that allowed deciphering the molecular basis of odorant
detection in insects was the discovery of olfactory receptor (OR)
genes in the model Drosophila melanogaster2–4. These genes
encode transmembrane proteins that bind chemical stimuli at the
surface of OSNs and mediate signal transduction1. Each OSN
usually expresses a highly conserved co-receptor named Orco5,6

together with one OR that is responsible for the odour response
spectrum of the OSN. Another family of chemosensory receptors
expressed in a smaller population of OSNs, named variant
ionotropic receptors (IRs), is tuned to complementary chemical
classes of odorants7. The olfactory capacities of an insect thus
depend to a great extent on the repertoire of expressed OR genes
and on the functional properties of OR proteins, notably their
sensitivity and the breadth of their response spectra.

Many insect OR repertoires have now been identified and
unique lineage-specific expansions of OR clades have been
observed in the different insect orders1. This observation
suggests that in each order, ORs have followed different
evolutionary trajectories as insects adapted to new ecological
niches. Such adaptation has been investigated in Diptera, thanks
to the functional characterization of the OR repertoires from
D. melanogaster8–12 and Anopheles gambiae, the primary
malaria vector mosquito13,14; these pioneering works notably
demonstrated that the OR repertoires of these organisms are
specialized for the detection of ecologically relevant chemicals.
However, such specialization remains to be investigated in other
insect orders with distinct evolutionary histories and food
preferences, as no large OR repertoire has yet been functionally
characterized outside Diptera. For instance, only a few OR-ligand
couples have been identified in herbivorous insects apart
from moth sex pheromone receptors15. Chemoecological studies
of herbivorous insects from different orders have led to the
hypothesis that they generally recognize host and non-host
plants by detecting specific combinations of a relatively limited
number of ubiquitous aliphatics, aromatics and terpenes, rather
than taxon-specific volatiles16. Information on the functional
properties of an OR repertoire from an herbivorous species is
needed not only to validate this hypothesis at the molecular level,
but also to better understand the evolution of olfactory capacities
and food preferences in insects.

Here we present a systematic functional analysis of a large
array of ORs from an herbivorous moth, the cotton leafworm
Spodoptera littoralis, and address the evolution of OR function in
the order Lepidoptera. Spodoptera littoralis is a highly poly-
phagous noctuid whose larvae are pests of more than 80 crops in
Africa, the Middle East and the Mediterranean basin17. It has
been established as a model in the fields of chemical ecology and
neurobiology of olfaction, and its antennal transcriptome was one
of the first to be sequenced in insects18. We expressed 35
candidate S. littoralis ORs (SlitORs) in Drosophila OSNs using
the empty neuron system19 and identified SlitORs tuned to a
variety of odorant molecules previously demonstrated to
be physiologically or behaviourally active in this species20–25.
We also provide the first evidence of a functional clustering of
receptors within the phylogeny of lepidopteran ORs, with
receptors from most basal lineages responding to aromatic
compounds, whereas response spectra in more recently emerged
clades are dominated by terpenes or aliphatics.

Results
The Drosophila empty neuron works well for non-dipteran ORs.
To provide a better view on the evolution of lepidopteran ORs,
we investigated the function of a large array of ORs in a single
species. Previous analyses of the S. littoralis adult transcriptome
led to the identification of 47 candidate SlitORs, among which
35 had a full-length sequence18,26,27. As a first step, we built a
phylogeny of lepidopteran ORs using S. littoralis receptors,
together with OR repertoires identified in seven other
lepidopteran species from seven different families (Fig. 1). In
this tree, ORs fell into 21 highly supported clades (lettered A–U)
representing the different lepidopteran OR lineages that evolved
from ancestral genes. The 35 SlitORs belonged to 17 of the 21
lineages, thus ensuring a good cross-section of the OR diversity
(Fig. 1). We generated transgenic fly lines, each expressing one
of the SlitORs within ab3A OSNs instead of the endogenous
Drosophila receptor19. Using RT–PCR, we confirmed correct
expression of the SlitOR transgene in the antennae of 30 of the 35
lines (Supplementary Table 1); single-sensillum recordings were
then performed on ab3 sensilla of theses 30 lines. For six lines,
ab3A neurons displayed an abnormal spontaneous firing rate,
with bursts of action potentials (Supplementary Fig. 1a). This
phenotype was reminiscent of that observed in mutant ab3A
neurons expressing no receptor19 and indicated that these SlitOR
transgenes, while expressed, were likely non-functional. The
remaining 24 SlitORs appeared to be functional when expressed
in ab3A OSNs, since they conferred regular spontaneous
background neuronal activity (Supplementary Fig. 1b,c). Such a
success rate (68% of functional ORs) is similar to what has
been obtained with A. gambiae ORs using the same expression
system13.

Next, we systematically investigated the odorant detection
spectrum of these 24 SlitORs using a panel of 51 volatiles
presented at a high dose. These chemically diverse odorants were
chosen based on their effect on the physiology or the behaviour of
S. littoralis and other moths, and include host plant and
herbivore-induced volatiles, oviposition cues, larval frass volatiles
and pheromone components (Supplementary Table 2). Almost
10% of the tested OR-odorant combinations produced responses
that differed statistically from the response to the solvent
(Kruskal–Wallis ANOVA followed by Dunn’s post hoc test,
Po0.001), distributed across 20 of the 24 tested SlitORs (Fig. 2a
and Supplementary Fig. 2). Interestingly, we observed only
excitatory responses and not any inhibitory response, which is
consistent with the current knowledge of functional properties of
moth OSNs21,28. Four SlitORs (5, 9, 21 and 30) did not display
any significant response to stimuli, which may be linked to the
low spontaneous firing rate observed (Supplementary Fig. 1b,e)
or simply to the absence of relevant ligands in the test panel.
Three other receptors (SlitOR10, 22 and 26) gave, at most,
significant yet very low responses (o30 spikes s� 1) and they
were consequently not considered to be deorphanized in any
biologically meaningful sense and not included in the analyses
that follow. A summary of the ‘success rate’ of SlitOR expression
is illustrated in Supplementary Fig. 1d.

To determine whether the empty neuron is a faithful
expression system for SlitORs, we compared the SlitOR response
profiles obtained with those of OSNs previously characterized
in S. littoralis females21. At least six OR profiles clearly
matched OSN profiles (Supplementary Fig. 3), despite the
fact that the sets of SlitORs and S. littoralis OSNs compared
here were partial. Furthermore, the response spectra of two
sex pheromone receptors characterized here (SlitOR6 and
SlitOR13) were previously shown to correlate with S. littoralis
male OSNs29. Other deorphanized SlitORs may correspond to yet
uncharacterized OSNs or, alternatively, OSN response profiles

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms15709

2 NATURE COMMUNICATIONS | 8:15709 | DOI: 10.1038/ncomms15709 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


may lack ligands included in the present panel. In any case, these
correlations, together with the rate of successful expression,
demonstrate that expression in Drosophila OSNs can be
effectively used to carry out large-scale studies of ORs from
outside the dipteran order.

SlitORs exhibit a diversity of detection spectra. The 17
deorphanized SlitORs presented a large diversity of response
spectra at high-stimulus doses, regarding both the nature and the
number of ligands identified. Thirty-two odorants from the
three chemical classes tested (aliphatics, aromatics and terpenes)
elicited significant responses from at least one SlitOR, with three
ORs activated per ligand on average (Fig. 2a and Supplementary

Fig. 2). Aliphatic and aromatic compounds were detected by 16
and 13 SlitORs, respectively, whereas terpenes were detected by
five ORs (SlitOR3, SlitOR4, SlitOR7, SlitOR29 and SlitOR35). On
the other hand, most SlitORs were activated by several ligands
from different chemical classes (six ligands per OR on average),
consistent with a combinatorial model of odour coding30. There
was a considerable degree of redundancy among OR detection
spectra at this higher screening dose, with several ORs activated
by a partially overlapping spectrum of aromatics and short-chain
aliphatic alcohols (the so-called green leaf volatiles).

To provide a better view of the specificity of SlitORs, we built
tuning curves (Fig. 2b) that represent the distribution of
responses obtained for each SlitOR to the odorant panel and
we calculated the sparseness of the distribution as a measure of
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Figure 1 | Maximum-likelihood phylogeny of lepidopteran ORs. The phylogenetic positions of the 35 SlitORs whose function has been investigated are

indicated. The tree was built from amino-acid sequences of OR repertoires of S. littoralis, Helicoverpa armigera (family Noctuidae, branches coloured in red),

Bombyx mori (Bombycidae, dark blue), Manduca sexta (Sphingidae, light blue), Dendrolimus houi (Lasiocampidae, pink), Heliconius melpomene (Nymphalidae,

orange), Ostrinia furnacalis (Crambidae, purple) and Epiphyas postvittana (Tortricidae, green). The Orco clade was used as an outgroup. Circles represent

nodes highly supported by the likelihood-ratio test (black: aLRT 40.95; grey: aLRT 40.9). The letters in the circles (A–U) appoint the 21 OR clades. The

scale bar represents 0.5 expected amino-acid substitutions per site.
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the OR tuning breadth31. We observed a continuum from very
broad to very specific tuning. The most broadly tuned receptor
was SlitOR35 (significant responses to 16 odorants), with a
sparseness value of 0.48. At the other extreme, we observed that a

large number of SlitORs exhibited a very narrow response
spectrum, especially ORs that responded to ecologically relevant
signals. For instance, SlitOR13 and SlitOR6, both detecting sex
pheromone components, were narrowly tuned to their ligands,
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Figure 2 | SlitOR response spectra at high-stimulus doses. (a) Heat map summarizing the mean responses (n¼ 5 or 10) of 17 SlitORs to the panel of

51 odorants at high dosage (10 mg per pipette for pheromone compounds, 100 mg for the other compounds). Responses are colour-coded according to

the scale on the right (firing rate in spikes s� 1). SlitORs are classified based on a cluster analysis of response spectra (see dendrogram at the top) and

odorants are classified depending on their chemical class (magenta, aromatics; cyan, terpenes; orange, aliphatics; black, unclassified). (b) Tuning curves of

SlitORs, showing the distribution of mean responses (n¼ 5 or 10) to the panel of 51 odorants at high dose. The tuning breadth of each receptor is

represented by the sparseness value of the distribution (S)31. A low S value indicates a broad tuning and a value of 1 indicates a narrow tuning of the

receptor. (c) Bubble plots representing the distribution of OR responses in S. littoralis, D. melanogaster and A. gambiae among a virtual odour space based on

physicochemical properties of the molecules. Odorants are distributed along the first two components from a PCA of the 32 normalized molecular

descriptors described in ref. 62 and the size of each bubble is scaled to the capacity of the considered OR repertoire to detect the odorant. Colours

represent the different chemical classes, as in a.
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thereby confirming previous results on pheromone detection
in S. littoralis29,32. The other receptors exhibiting the
narrowest tunings (that is, SlitOR4, 14, 17 and 31) were
activated by plant volatiles commonly emitted by flowers
(linalool, 2-phenylacetaldehyde, methyl salicylate and eugenol,
respectively).

To compare the olfactory detection capacities of the present
repertoire of SlitORs with those of D. melanogaster and
A. gambiae ORs10,13, we built bubble plots representing the
global response of each OR repertoire across the same virtual
odour space, a representation previously used by Carey et al.13

(Fig. 2c). In each graph, dots represent the odorants eliciting a
response from the OR repertoire: the position of a dot in the two
dimensions is dependent on the physicochemical properties of
the molecule, while the area of a dot reflects the capacity of the
repertoire to detect the odorant. Whereas this presentation is,
at this point, limited because of different ligand panels tested
(for example, some aromatics have been tested only on mosquito,
and fewer aliphatics have been tested on SlitORs), we felt this
analysis might nevertheless reveal interesting features. Notably,
although S. littoralis, A. gambiae and D. melanogaster OR
repertoires seemed similarly effective at detecting the aromatic
compounds (right part of the plots), monoterpenes (lower part of
the plots) appeared to be better detected by the SlitOR repertoire
than the D. melanogaster OR repertoire.

SlitORs are narrowly tuned at low concentrations. As previous
observations related only to high-dose stimuli, we next investi-
gated how the detection capacities of SlitORs would change
according to the quantities of odorants. We conducted a sys-
tematic dose–response analysis for the 14 SlitORs that displayed
strong responses (450 spikes s� 1) at high dose of the odorants.
To compensate for differences in volatility, we calculated and
used, for each stimulus concentration, an estimate of the airborne
quantity of molecules flowing out of the stimulus cartridge33.
We first observed that some SlitORs exhibited particularly
high sensitivity (Fig. 3). For example, OSNs expressing
SlitOR14, SlitOR24, SlitOR25, SlitOR27 or SlitOR29 were still
activated when challenged with less than 1 pmol of molecule flux
(Kruskal–Wallis ANOVA followed by Dunn’s post hoc test,
Po0.01). Second, we observed for most SlitORs an apparent
increase in response specificity when lowering the dose. One of
the ligands generally appeared more potent than the others, that
is, it was active at a considerably lower dose (Fig. 3).

To compare SlitOR responses to the exact same amounts for all
odorants, we calculated the theoretical OSN firing rate for each
SlitOR in response to a range of odorant flux from 10,000 down
to 0.01 pmol, using linear regression. To assess the variation of
SlitOR tuning breadth along this range, we plotted the sparseness
of the OR response spectra for each odorant dose (Fig. 4a). As
expected, the specificity of the SlitORs increased as the estimated
airborne odorant dose decreased. The heat map of the theoretical
responses to 100 pmol of odorants (which corresponds to the
middle of the range of doses tested for most OR-ligand couples, as
seen in Fig. 3) illustrates that 8 of the 14 receptors remained
activated by only one ligand at this dose, and two other ORs were
activated by only two ligands each (Fig. 4b). Notably, one-to-one
relationships were found for four receptors (SlitOR31, SlitOR27,
SlitOR17 and SlitOR4) and their four respective ligands. The 25
odorants still active on SlitORs at 100 pmol notably include 8 of
the 12 more widespread flower volatiles34, such as benzyl alcohol,
methyl salicylate, (E)-ocimene or linalool and herbivore-induced
volatiles known to elicit specific behaviour in S. littoralis, such as
indole, DMNT or (Z)-3-hexenyl acetate (Supplementary Table 2).

Using the same dose–response data, we also plotted the
number of ORs activated by each odorant across the range of

doses tested. Notably, this number increased gradually with the
dose for several odorants, irrespective of their chemical class
(Supplementary Fig. 4). Taken together, our observations are in
accordance with the current view that, at the peripheral level,
combinatorial coding is likely to play a role in coding the
variation of odorant quantity.

A scenario of OR functional evolution in Lepidoptera. Thanks
to the present results on S. littoralis ORs, receptors have now
been deorphanized in 13 different clades of the lepidopteran OR
phylogeny, including previous results obtained from Bombyx
mori and other moths35–43. To investigate the evolution of OR
function in this insect order, we therefore placed these functional
data in a phylogenetic framework, although it must be noted that
these ORs have been deorphanized using different expression
systems and different odorant panels. In the lepidopteran OR
phylogeny (Fig. 5), clades A–K corresponded to the most basal
lineages and they generally exhibited low mean genetic distances
(Supplementary Fig. 5), as illustrated by short branch lengths in
the tree. Deorphanized receptors from these clades were best
activated by aromatics, with the exception of clades I and K that
contained receptors to terpenes but also showed a much higher
evolutionary rate that the other basal clades. The more recently
emerged clades L–U formed a monophyletic group (Fig. 5) and
deorphanized receptors from these clades had a terpene or an
aliphatic as their best ligand. SlitOR36 represents the single
exception, but this receptor exhibited high response thresholds
towards all active ligands, suggesting that its key ligand(s)
remains to be identified. In addition, receptors to aliphatics
belonged to the OR lineages with the highest mean genetic
distances (Supplementary Fig. 5). This suggests that receptors to
aromatics emerged first and have been more conserved during the
evolution of Lepidoptera, whereas receptors to terpenes and
aliphatics emerged more recently and evolved faster (especially
aliphatic receptors, which include pheromone receptors).

Discussion
We have investigated the molecular basis of olfactory reception in
an herbivorous insect, the crop pest moth S. littoralis, by the
systematic functional characterization of a repertoire of ORs
representative of the diversity of lepidopteran ORs. We found
that SlitORs presented a large diversity of response spectra, with
more than 30 ligands identified from the three chemical classes
tested, and a diversity of tuning breadths, from narrowly to more
broadly tuned receptors. SlitORs appeared particularly effective
at distinguishing short-chain aliphatic alcohols (also called green
leaf volatiles), aromatics and terpenes, with the SlitOR repertoire
being even more potent than the Drosophila repertoire at
detecting monoterpenes. These properties correlate with the
ecological needs of herbivorous and nectar-feeding insects16—
such as moths—since aromatics and monoterpenes are the major
constituents of plant odours emitted by both flowers34 and leaves.

Interestingly, most SlitORs bound only one or two closely
related odorants when tested at minute amounts, quantities
frequently encountered by insects in nature while orienting over
long distances. In Diptera, narrowly tuned receptors are often
strikingly associated with odours of high biological salience. In
D. melanogaster, two receptors are specific for cVA, a volatile sex
pheromone44,45, and several other ORs appear to be the unique
detectors for non-pheromonal odours and are necessary and
sufficient for the completion of vital behaviours. These include
avoidance of toxic microbes by means of a mould odour46

or oviposition decisions by means of fruit volatiles47,48 and yeast
metabolites49. In mosquitoes, highly selective receptors for
human emanations used as kairomones for host recognition
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and blood feeding or for oviposition cues have also been
found13,14,50–52. In moths, such specific pathways have been
very well described for sex pheromone perception, but it remains
unclear whether they also exist for salient plant odorants.
Electrophysiological studies performed on S. littoralis and a
range of herbivorous insects demonstrate that they are all
equipped with numerous sensory neurons narrowly tuned to
common plant volatiles16,21,23,53–55. Although some specialist
species detect compounds specific to a narrow range of plant taxa,
a majority of herbivorous insects discriminate host from non-host
plants through specific combinations of more ubiquitous
odorants. This discrimination capacity could be of particular
relevance for polyphagous feeders such as S. littoralis. Here at low
doses, we found 10 SlitORs tuned to a limited number of odorants
in our panel, all of which are widely occurring odorants emitted
by numerous flowering plants34. These ubiquitous odorants are
components of plant headspaces or synthetic blends already
proven to activate behaviours of S. littoralis, but they have little
effect when presented individually22,24,25,56. Rather, behavioural
activity towards salient odorant blends would arise from
concomitant activation of separate input channels (that is,

SlitORs). Furthermore, the increasing number of ORs activated
when raising the odorant dose, as observed here with SlitORs,
could constitute the molecular basis for a combinatorial coding of
the odorant quantity. Previous work on D. melanogaster larval
behaviour provided evidence that all the receptors detecting a
single, unique odorant at various concentrations are indeed
necessary for the achievement of the behaviour towards the
compound across the range of concentrations11,57. Thus, having
several receptors to the same odorant but with different detection
thresholds would allow for a precise coding of the odorant
quantity over a large range of concentrations, which is critical for
herbivorous insects to successfully discriminate specific plant
odorant mixtures.

The phylogeny of lepidopteran ORs suggests that advanced
lepidopteran species (Ditrysia) share the same basic groups of
ORs, which evolved from a limited number of ancestral genes.
This observation is consistent with the low number of lineage-
specific expansions observed among lepidopteran ORs, and the
fact that they evolved under strong purifying selection58.
The radiation of Ditrysia appears to coincide with the radiation
of angiosperms59, suggesting that Ditrysia ORs could have
evolved in tandem with early floral diversification. Strikingly,
the combination of functional and phylogenetic analyses we
performed on lepidopteran ORs shows a basic major division in
the phylogeny, where receptors for aromatics are housed in basal
clades of the tree and are the most conserved, whereas sex
pheromone receptors and a large part of ORs tuned to terpenes
and short-chain acetates generally belong to later lineages with a
higher rate of evolution. Hence, these OR lineages are more likely
to be involved in the adaptation of the chemosensory system of
these animals to new ecological feeding niches.

Deorphanization of additional ORs from S. littoralis and other
herbivorous insects, as well as functional assays carried out with
larger panels of odorants, are expected to complement and
strengthen the findings from the current study. Here we
expressed SlitORs in the empty neuron system, which has been
used previously for studying large OR repertoires in only the
dipterans D. melanogaster8–12 and A. gambiae13. Although we
show that the empty neuron is suitable for deorphanizing ORs
from outside Diptera, some SlitORs were not functional in this
in vivo expression system and may need important factors
necessary for correct functioning that are lacking in ab3 sensilla.
For instance, at1 neurons constitute a better expression system for
a Drosophila terpene receptor as well as some moth pheromone
receptors, possibly due to the presence of sensory neuron
membrane proteins32,47,60. Alternatively, we cannot exclude
that these SlitORs are in fact non-functional in natura. Another
limitation of large-scale studies of ORs is the number of candidate
ligands included in functional assays. In this regard, the
development of more high-throughput in vitro assays should
allow a significant increase in the number of odorant molecules
tested and a reduction in the portion of remaining orphan
receptors. Moreover, standardized assays conducted with similar
sets of odorants will encourage more in-depth comparisons
between OR repertoires of different insects.

In conclusion, we have performed a systematic functional
characterization of a high number of ORs from a lepidopteran
species, and have also linked their function to their evolutionary
history. As such, our study provides not only a reference for
further investigations of the molecular bases of olfaction in
Lepidoptera, but it also lays the foundations to understand how a
polyphagous herbivore uses a receptor array in the complex task
of selecting a host plant among many potential hosts. Our work
also opens up new routes for crop pest control, since narrowly
tuned receptors involved in vital behaviours have been identified.
Such receptors appear to be particularly good targets for the
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distributions across the repertoire. (a) Variation of SlitOR tuning breadth
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(b) Heat map of the responses of SlitORs to 100 pmol of odorants.

Response rates were predicted based on linear regression equations,

and are colour-coded according to the scale on the right (spikes s� 1).

*: OR-ligand couple for which responses to less than 100 pmol are

statistically different from 0 (Kruskal–Wallis ANOVA followed by a

Dunn’s post hoc test, Po0.001, n¼ 5).
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screening of activators and/or inhibitors that would interfere with
host plant finding.

Methods
Generation of UAS-SlitOr constructs. For the generation of pUAST and
pUAST.attB constructs, cDNA fragments were first cloned into pCRII-TOPO
(Invitrogen, Carlsbad, CA, USA), sequenced, and subcloned into destination
vectors using the appropriate restriction enzymes. For the generation of
pUASg-HA.attB vectors, cDNA fragments were cloned into the pCR8/GW/TOPO
Gateway Entry vector (Invitrogen), sequenced, and subcloned into pUASg-HA.attB
via Clonase II-mediated enzymatic transfer (Invitrogen). Before injection into
Drosophila embryos, plasmid constructs were purified from liquid cultures of
One Shot TOP10 E. coli using the EndoFree Plasmid Maxi kit (Qiagen, Venlo,
Netherlands).

Heterologous expression of SlitORs in Drosophila. For P-element transgenesis,
pUAST-SlitOR plasmids were injected into w1118 fly embryos, and fly lines
harbouring a transgene insertion into the third chromosome were used for
further crossings. For phiC31-targeted transgenesis, pUAST.attB-SlitOR or
pUASg-HA.attB-SlitOR plasmids were injected into embryos with the genotype y1

M{vas-int.Dm}ZH-2A w*; M{3xP3-RFP.attP}ZH-86Fb, leading to an insertion of
the UAS-SlitOR constructs into the genomic locus 86Fb of the third chromosome
(see Supplementary Table 1 for the procedure followed for each OR). Flies were
reared on standard cornmeal-yeast-agar medium and kept in a climate- and
light-controlled environment (25 �C, 12 h light: 12 h dark cycle). The presence of
the UAS-SlitOR transgenes was verified by PCR on genomic DNA extracted from
two flies, and the expression of the SlitORs in antennae was verified by RT–PCR on
total RNA extracted from Z100 pairs of antennae.

Single-sensillum recordings. For all experiments, a randomly chosen fly within a
strain (female, 2- to 6-day-old) was restrained in a plastic pipette tip with only the
head protruding from the narrow end. The pipette tip was fixed with dental wax on
a microscope glass slide with the ventral side of the fly facing upward. Then, the
antenna was gently placed on a piece of glass slide and maintained by placing a
glass capillary between the second and third antennal segments, held in place by
dental wax. Afterwards, the slides were placed under a light microscope (BX51WI,
Olympus, Tokyo, Japan) equipped with a � 50 magnification objective (LMPLFLN
50X, Olympus) and � 15 eyepieces. Desiccation of the flies was avoided with the
help of a constant 1.5 l min� 1 flux of charcoal-filtered and humidified air, delivered
through a glass tube of a 7 mm diameter, which terminated ca. 1.5 cm from the
antenna.

Stimulation cartridges were built by placing a 1 cm2 filter paper in the large
opening end of a Pasteur pipette and dropping 10 ml of an odorant solution onto
the paper before closing the pipette with a 1 ml plastic pipette tip. Odorant
stimulations were performed by inserting the tip of the Pasteur pipette into a hole
in the glass tube and generating a 500 ms air pulse (0.6 l min� 1), which reached the
permanent air flux (1.5 l.min� 1) while going through the stimulation cartridge.

Action potentials were recorded from ab3 sensilla using electrolytically
sharpened tungsten electrodes. The reference electrode was inserted into the eye of
the fly by a manually controlled micromanipulator. The thinner recording
electrode was inserted at the base of the sensillum of interest using a motor-
controlled DC-3K micromanipulator (Märzhäuser, Wetzlar, Germany) equipped
with a PM-10 piezo translator (Märzhäuser). The electrical signal was amplifed
using a UN-06 AC-DC amplifier (Syntech, Kirchzarten, Germany), digitized
through an IDAC-4-USB (Syntech) then recorded and analysed using Autospike
(Syntech), or amplified using an EX-1 amplifier (Dagan, Minneapolis, MN, USA),
digitized through a Digidata 1440A acquisition board (Molecular Devices,
Sunnyvale, CA, USA) then recorded and analysed using the pCLAMP 10 software
(Molecular Devices). The net responses of ab3A neurons expressing a SlitOR were
calculated by subtracting the spontaneous firing rate from the firing rate during the
odorant stimulation. The time windows used to measure these two firing rates
lasted for 500 ms and were respectively placed 500 ms before and 100 ms after the
onset of stimulation. This 100 ms time lag was defined to take into account the time
for the odorants to reach the antenna. For pheromone compounds (which have a
lower volatility and reached the antenna later), the response counting window was
shifted to begin 400 ms after the onset of the stimulation.

As is it not possible to distinguish ab3 sensilla only by localization and
morphology, 100 ng of 2-heptanone were used as a diagnostic stimulus, since this
odorant is one of the most potent ligands for DmelOR85b, which is expressed in
the ab3B neuron10. The absence of DmelOR22a in ab3A neurons expressing a
SlitOR was verified using a stimulus cartridge containing 100 ng of ethyl hexanoate,
a strong ligand for DmelOR22a10.

Odorant stimuli. Response spectra of ab3A neurons expressing SlitORs were
tested against a panel of 51 odorants (Supplementary Table 2). Pheromone
compounds were used at a 1 mg ml� 1 dilution in hexane (10 mg deposited on the
filter paper). Other compounds were used at a 10 mg ml� 1 dilution in paraffin oil
(100 mg on the filter paper), apart from indole, which was also diluted in hexane.

The stimulation cartridges were used at most two times on each fly and a
maximum of five times in total. Pipettes with filter papers containing 10 ml of
solvent were used as controls. For each receptor, the entire odorant panel was
tested five times on five different flies. Odorants were considered as active if the
response they elicited was statistically different from the response elicited by the
solvent alone (Kruskal–Wallis ANOVA followed by a Dunn’s post hoc test,
Po0.001). Then, for each receptor, odorants considered as active were tested
five more times.

Data analysis. Statistical analyses were performed with Prism (GraphPad
Software, La Jolla, CA, USA). Heat maps, principal component analyses (PCA) and
measures of Euclidean distances were performed using the PAST 3 software61.
Bubble plots were obtained through a PCA (using the variance-covariance matrix)
of an optimized set of 32 molecular descriptors62 for 154 odorants tested on S.
littoralis, D. melanogaster or A. gambiae ORs10,13. Classes that have not been tested
on SlitORs (that is, sulfurs, lactones, acids and amines) were excluded from this
analysis. Molecular descriptors were obtained with the Dragon 6 software (Talete,
Milano, Italy) and were normalized13 to their respective maximum value. For each
odorant tested on a given OR repertoire, the area of the dot was scaled to the
Euclidean distance (in a space where the response of each OR in spikes s� 1 is a
dimension) between the response to the odorant and a null response across the
repertoire. To take into account differences in the range of response amplitudes
between OR repertoires from different species, Euclidean distances were
normalized to the maximum distance measured for each repertoire.

The sparseness of the SlitOR response spectra was calculated using the formula
of Rolls and Tovee31: S ¼ ð

P
i¼1; n ri=nÞ2=

P
i¼1; n ðr2

i =nÞ with ri being the firing rate
to the stimulus i in the set of n stimuli. As this formula cannot compute negative
responses, they were set to 0. We used standard subroutines of IBM SPSS v21 for
hierarchical clustering of SlitOR response profiles by CLUSTER with default
settings (Squared Euclidean distance, Average linkage between groups), using
solvent response corrected responses (spiking frequency of SlitOR-expressing ab3A
neurons) at n45 per OR type and stimuli for an initial check that recorded cells
clustered with their designated type. For display of SlitOR responses per stimulus,
we used the mean value per OR type. Before clustering of both individual cell data
and their means, cases were standardized to Z scores (to mean 0 and an s.d. of 1 by
subcommand PROXIMITIES), to compensate for differences in absolute activities
recorded from each OSN.

Phylogeny. To take into account the taxonomic diversity of Lepidoptera, the OR
phylogeny was built from OR sequences from seven different lepidopteran families.
For each family, the species in which the OR repertoire was best annotated was
chosen. The data set contained 469 OR amino-acid sequences from S. littoralis27,
Helicoverpa armigera63 (Noctuidae), Bombyx mori35,37,41 (Bombycidae), Manduca
sexta64 (Sphingidae), Dendrolimus houi65 (Lasiocampidae), Ostrinia furnacalis66

(Crambidae), Heliconius melpomene67 (Nymphalidae) and Epiphyas postvittana68

(Tortricidae), plus two sequences of ORs deorphanized in Spodoptera litura40

and Spodoptera exigua38 (Noctuidae). Sequences were aligned with MAFFT v.7
(http://mafft.cbrc.jp/alignment/server/). The maximum-likelihood tree was built
with PhyML 3.0 (http://www.atgc-montpellier.fr/phyml/), using the JTTþGþ F
substitution model as determined by ProtTest 2.4 (http://darwin.uvigo.es/software/
prottest2_server.html). Node support was estimated using a hierarchical
likelihood-ratio test69. Phylogenetic distances were extracted from the maximum-
likelihood tree using SeaView v.4 (http://pbil.univ-lyon1.fr/software/seaview).

Data availability. All relevant data are available on request to the corresponding
authors.
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