SUPPORTING INFORMATION FOR “AUTOCOVARIANCE ESTIMATION IN REGRESSION WITH
A DISCONTINUOUS SIGNAL AND m-DEPENDENT ERRORS: A DIFFERENCE-BASED
APPROACH”

APPENDIX A. PROOFS AND AUXILIARY RESULTS FOR SECTION [3]

Throughout this supplementary materials we use the following notation: n,, :=n—2(m-+
1), np == n — h; f; denotes f(x;), vi.i4+n) denotes the vector (v; viq - - Viyn) ' € RAFL (we
use this notation with v € {y, f,€}), (a, b) denotes the inner product between the vectors a

and b, 1 denotes the vector of ones, and for z € R?, ||z|| denotes its Euclidean norm.

A.1. Proofs for Section [3.1l
We begin with some preliminary results. For [ < n, let Q;(Y,w;) be a difference-based
estimator of order [ and gap 1, cf. Eq. . With D as defined in define the (I 4 2) x
(I + 2) matrix D := DT D. Observe that the identity
j+1
Z (doyi + diyiss + -+ + diyin)” = ?JjTr(j+l+1) Dyj.rivry, J<n—20-3,
i=j

implies that

ny
21y P(w;) Qi (Y, w;) = (wy, yl:(1+l)>2 + Z Z/jT;(j+z+1) D y;.(j4i1) + (wy, y(nfl):n>2a (A1)

j=1
where P(w;) = Y)'_ d?. In Eq. (A1) it is not difficult to see that El{wi, yr:porn))?] =
o(n) for k = 1,n — 1 and that for j < n —1, E[y} ;111 DYigrrn] = 1D figrnl? +

E[ejT:(jJth) D €j.(j+nt1)]. Next, we combine this with Proposition and get that,

1 .~
E[P(w)Qu(Y, w)] = w, Sy wi + o Z 1D f:G+14n I” + (1), (A.2)
j=1

where ¥, is the (I 4+ 1) x (I + 1) autocovariance matrix ;41 = (7|,~_j‘)ij:1 T

Proof of Theorem [5. It suffices to consider the difference-based estimator of order I < n
and gap 1, Q1 (Y, w;). For | < m, due to Lemmal [l (A.2) becomes

E[P(w)Qu(Y,w)] =B+ O | n™" Jg Z <Z dj) , (A.3)

where

B =w/ Y w; =yo(di+ - +dD) +2y(dody + -+ +diady) + -+ 2vidod;. (A4)
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From now on in this proof we assume that Jx = o(n) and disregard the second summand
in the right-hand side of (A.3)). Since constraint (w;, 1) = 0 implies that at least one of
the weights d; is nonzero, for simplicity from now on we assume that dy # 0. According to
Lemma in this case there does not exist any constant ¢ such that B; = ¢y, that is, no
difference-based estimate of the form Q;(Y,w;) can be an asymptotically unbiased estimate
for vy for I < m.

Next, suppose that m < [ < n. In what follows, for simplicity, let us assume that
n = N(g+ 1) for some integer N > 1 and g = m. Observe that in this case Proposition
and yield, E [p(w;)Qi(Y,w;)] = B; + o(1). Due to m-dependency, the covariance
matrix 3, appearing in B; is an (m + 1)-banded Toeplitz matrix, i.e., the (i,j) entry of
Y1 is given by ;—y # 0 if |j — 4| < m, and outside the (m + 1)-diagonal the entries of
Y41 are equal to 0. Suppose that w; has entries dy = 1 and d; # 0, for j = k(g + 1) with
k=1,...,N—1, and d; = 0 otherwise. Clearly, B; = P(w;) . Now we show that any
asymptotically unbiased estimate for 7, is necessarily of the form just described. Indeed,
it suffices to consider the vector wj, whose entries are identical to those of w; except for
d., # 0 for some k € {1,...,m}. In this case, due to the form of the covariance matrix
Yii1, (wZ‘)T Y1 w; = 1Y+ 2d,; s, for some constant ¢;. Since v, # 0, no difference-based
estimate of the form Q; (Y, w}) can be an asymptotically unbiased estimate for 7.

Note that the arguments above hold also for ¢ > m. Thus, we have shown that for

Q:(Y,w;) to be an (asymptotically unbiased) estimate for -y, the vector of weights w

must have the form w; = (vy vy -+ wy_1)', where v; = (dj, 0 --- 0)7 € RIFL,
i=0,...,N—1;dy #0, dpy # 0 for some 1 <k < N —1, and V" d;,, = 0. This
completes the proof. O

Lemma A.1. Suppose that the conditions of Theorem@ hold. Let Qi(Y,w;) be the difference-
based estimator of orderl < n and gap 1, cf. (2.2). Then forl < m, there does not exist any
constant ¢ # 0 such that B; = w;, Y, w; = cryo, where Y41 is defined by (A.2)).

Proof. We use induction over [. For | = 1, By = v(d3 + d?) + 2vy1dody, cf. . Since by
assumption y; # 0 (and dy # 0), d; is necessarily equal to zero but this implies that v = 0
to fulfill . This contradiction shows that the claim holds for h = 1. Then we assume
that the claim holds for | = k < m — 1. Let k = k + 1 and now note that for B; = cp to
hold for some ¢ # 0, necessarily v;dod; = 0. Since v; # 0 and dy # 0, necessarily di = 0.
The latter shows that B; = Bj. Hence, the claim holds for [ = k + 1 and this completes the
proof. O

Proof of Lemma [1] For j < n—Idefine s;; = (wy, f;:(j+1))? and note that ||15f;(j+l+1)||2 =

Sj1+Sj+1,, see (3.1). In what follows we only consider s;; since s;41; can be handled similarly.
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Under the convention t; = |n7 |, f(x;) = a if and only if t,_; < i < ;. Then

ng K—1 |tit1—1-1 tip1—1

SjJS Z Sj’l—i- Z St - (A5)

=1 i=0 | =t j=tipi—
Then note that for any i € {0,..., K — 1},

tit1—1-1

> si=ai(w, 1)t —t— 11— 1)

and utilizing that dy 4+ --- + d; = 0,

tit1—1 tit1—1 ! ! ?
Yoosii= Y, (ofi+- - difin) = (e —ain)? ) (Z % ) |
J=tit+1-1 J=ti+1—1 k=1
Substituting these expressions into (A.5)) we obtain the right-hand side of (3.2)). This com-
pletes the proof. O

Pr0p051t10n A.1. Forl <n, let w; € R*! be the vector of weights in Q (Y, w;), cf. .
Let D= DT D where D is defined by (3.1 . Then

E[EjT:(j+l+1) ng:(j+l+1)] = szT Y wy.
Proof. Let ¥, be the matrix defined in (A.2]) and note that
Ele).jrir1) D €sgrian] = tr{DTi2} = tr{DTyyp D'}

Then, observe that the 2 x 2 matrix D Yito DT can be written as:

DY D = w/ S (W, Yasna) w; 0
(Wi, Yus1y1)  w] S 0 w)’
where o101 = (1w v 2 m)| € RFLA straightforward calculation yields,
tr{ﬁ El+2 5T} = 2’l,l)l—r Zl+1 w;. O

A.2. Proofs for Section 3.2l

We will assume that the conditions of Theorem [I] hold. Also we will use the following
notation: xn(f;) == fi — fizn, for d € R, 0,(d) = s0(i) + d Sa(m+1)(¢) where for & > 0,
sk(1) := firk — firme1, 0i(d) := € — €iymy1 + d(€iromi1) = Eiymr1), set P(d) = 2(d*> +d+1)
and for given 7;,7; € [0,1], 1 < L, R <,

I_f;fj = [Ti—L/TL,Tj—R/n). (A6)
Also, I}" .= I Under the convention t; = |n7;|, we will denote [tf:tlj = [t; — L, t; — R)
and use that i/n € 1 if and only if i € ItLi:fj, without further mention.
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The following identities are of great use in what follows: for any integers r, s, u and v,

2t =3 4 292, (a7
E[Ez €y 51}] = Y07 |u—v| + 27|r7u\7\r7v| (AS)
E[gr E€s€u 51}] = Yr—s|V|u—v| + Yr—u|Y|s—v| + Yr—v|Y|s—uls (Ag)

cf. Theorem 3.1 of Triantafyllopoulos (2003).

Lemma A.2. Let s > 1, { > 1, 0 < h < (m+ 1) and deﬁne Ei,l,h = do 5i+d15i+h+d25i+2h+
s+ dlgi—i-lh' Then,

E[ER ] = vo(dg +di + 3+ +df) +2) Y didiyun
=0 k=j+1
Proof. Write E7, ), = Ai1n + 2Bi 5, where

I—

l
7, Jh = Z d] i+jh Bi,l,h = Ilﬁ'j(i, l, h), l’j(i, l, h) = dj5i+jh Z dk Eitkh- (Al())

j k=j+1

—

Il
=)

The result follows by noticing that due to stationarity, for any integers i, j, k and h, E[e? " n =

Yo and E[5i+jh5i+kh] = Ni—klh- O
Corollary A.1. Forl=2,dy=1,d; = —(d+1) and dy = d, E[n?(d)] = 2(d* + d+ 1)y
Lemma A.3. Fori>1,1>1, EE}, ] =3 (dg+di +---+d})*

Proof. From (A10), E}, .., = A7 1 + 4Aiimi1Bigmsr + 487,41 Note that (A.§)
implies that E[AMmH Biim+1] = 0. That is,

E[E;lz 1) = E[A?,l,mﬂ] + 4E[Bz2l il (A.11)

Eq. (A.7)) yields that for any integers ¢, j and k, E[e;1jom+1)] = 37 and E[ei4j(m+1) Eith(msr)] =
2. Consequently,

E[A2,,.1] = (32 i+ 22 4?2 d2> (A.12)

Next, Eq. (A.9) implies that for r # s, E[x,.(i,l,m + )ms(z, I,m+1)] =0, see (A.10]) for
definition of x((7,l,m + 1). Hence,

E[BZQZ m+1]

AMN

I
o

E[23(3,1,m + 1)] Z i d2. (A.13)

j
The last equality follows from (A.7)). The result follows by plugging IA.12| and [A.13] into
ATl O




Lemma A.4. Suppose that the conditions of Theorem[1] hold. Then,

Z Zé (i (d)n; (d)] = —d<d+1>2<m+1>+;q,§m><d>ph o Tk,
(A.14)

where qum)(d) = [2(m + 1) — 3h](d* + 1) + d*h and pr = Yu/Y0-

Proof. For d € R, let S.(d) = > """ 6;(d)dir(d), 1 < r < n,,. First observe that due to
stationarity, for any i > 1 and h > 1, U(h,d) := E[n;(d) nisn(d)] = 2(d* + d + 1)y, — (d +
)Y h—(m+1)| + dVh—2(m+1)- Then due to m-dependency, ¥(h,d) = 0 for all h > 3m + 2.

Consequently, we can write

A 3m—+2
<= > u(r) S, (A.15)
r=1

Next, we present the details on how to compute Sy(d). Utilizing (2.8) and (A.6]), we can

show that for given 7;,

Yoo d) = (m+Dd (a0 —a)’, Y 07(d) = (m+1D(ajn — ;)

IZEIQ(erl) ,m+1 ‘€Im+1,0

Observe that Sy(d) = Z Zw €m0 62(d) = (m+1)(d* +1) J,. The key part
in obtaining the summation S,(d), » > 1, consists of splitting it as shown above (and using
(2-8)-(A.6)). Thus, we can show that S,(d) = T,(d) Jx where
(m+1—r)@+rd+(m+1—r) forr=0,...,m
T.(d) =< d2(m+1)—r) forr=m+1,....2m+1. (A.16)
0 for r >2(m+1)

In order to get ((A.14]), substitute (A.16)) into (A.15)) and arrange terms. This completes the
proof. O

Lemma A.5. Suppose that the conditions of Theorem[1] hold. Then

Nm—1 N 3m—+2
B:=2Y > ERd)n}(d)] =8np, (d°+d+ 1) +2 Z )>0. (A.17)
i=1 j=i+l

where
Ap(d;yey) = 8(d? + d+ 1)y + 2(1 + &)Yy + 2d°YFapmrn)
— 41+ d)[(1 +d)* + (d&® + d® + d + D)]Vn Ve (mt1)|

— 4d(d + 1)*Yjp—(mt1)| Vp—2(m+1)]- (A.18)
5



Proof. Straightforward calculations and Egs. , and yield that for ¢ > 1
and r > 0,

Eln? (d) n7y, (d)] = 4(d” + d + 1)*95 + A (d).
Arrange terms and use m-dependency to get

Nm—1 N —7

Z Z 775 775+r )]

The result now follows by noticing that A,.(d) = 0 for all » > 3(m + 1). O

Lemma A.6. Suppose that the assumptions of Theorem [1] hold. Additionally, assume that
the correlation function p, = /70 satisfies that p, = p € (max{ —1,—-8/(3m?) },1), 1 <
h <m. Then pi(d;~.y) and BIAS*[ﬁém) (d)] are minimized at d = 1.

Proof. Since BIAS[A(m (d)] is minimized at d = 1, cf. Theorem , we only need to focus on
minimizing pi(-; ). Let Q(d) = d* +d + 1. Tt is easily seen that

+1 .
T2 ) md P+ 1)
For p = 0 (indepent observations) the result follows since argmingcp(d* +1)/Q*(d) = 1. For
p > 0, we have that argming.g(d* + d* + 1)/Q*(d) = 1 and hence for d € R, pi(d; 7)) >
p1(1; 7). For p <0, note that

pi(d; ) =

20m+ 1)(d* = 1)(P(pm* +2) + d(pm? +4) + pm? + 2)

Q(d)? ’
It is immediate that on R, the critical points of p; are -1 and 1. For p € (=8/(3m?),0),
53—;2]91(—1;7(.)) = —4pm? > 0 and g—;pl(d; Yey) = 4(9pm* +24)/81 > 0, i.e., both critical
points are minima. The result follows by noting that p;(1; p) = p1(—1;p)/9. O

0
6dp1(d Y )

The following auxiliary results are used in the proof of Theorem . Recall that 6 is the
ordinary difference-based estimator of gap h, cf. (2.4). Define

n—nh
C;ll/Z = Z(&L —eirn)’, 1/2 Z Z — aiy1)(&5 — €j4n)- (A.19)
i=1 i=0 jeho
We can show that
(2(n — B))*E[(6™)?] = h2J% + 4hJw(n — h) (Yo — ) + E[Ch] + E[Dy]. (A.20)

For E[C},] observe that due to Eqgs. (A.7)-(A.8)-(A.9),

El(ei — €irn)? (65 — €j40)°] = ‘é(% — )+ 01(i,7) + 92(4, )



with
191(17.]) = const. 7|2j7i+s|7 792(%]) = Z const. Nj—i+s|V|j—i+ts

s,t

where s,t € {0,+h}. That is,
E[Ch) = [2(n — W)]*(30 = )* + St (A.21)
where SYZ = S04 (i, ) + 04(i, 7)]; note that thrz = O(n).

1/7.7
Lemma A.7. Suppose that the conditions of Theorem[]] hold. Let Dy, be defined by (A.19).
Then, E[Dy] = Fip(v)) Jx where Fy =2(yo — m1) and for 2 < h <m

[ ES|

Fu(yo) =2 | (h =1 (v — ) + D D (2Vmil = Wimiohl — Vij=i+hl) (A.22)

j=2 i=1

Proof. For h = 1 the result follows by noting that for any ¢;, ]Z’O ={t;—1}. For2<h<m
note that

K-1 K-2K-1
D), = Z Z (ai = air1)*(ex = pn)” + (a5 — as41)(ar — ar11)(Drs + Dy, ),
1=0 ke[t}Lio s=1 r=1
i
where
st - Z Z 5z+h 5]+h)

IhO IhO

2
Since for any t;, E [Zjelf_’o(gj - 5j+h)} =2(h —1)(v0 — ) + A*(h; 7)), where

J+1

) =2 Z > 2Vl = Vjmionl — Wimitnl)

7j=2 =1

the result is established if we show that E[D, ] = E[D;,] = 0. To this end, observe that for
any s € {l,..., K —2}andte {s+1,..., K — 1}

ts—1 tr—1
=> D : (29161 = Wjmimhl — Ni—ithl]
i=ts—h i=t,—

let © = t, — ts and recall that by assumption, minj<;<x—1 |t; — t;—1| > 4(m + 1) to get,

h
= Z Z [2Vi0j—il — Vot+i—i=hl — Va+j—ith)] = 0.

i=1 j=1
The last equality follows because 7, = 0 for all h > m + 1. A similar argument shows that

E[D,.,] = 0. This completes the proof. O
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From now on, 3, ;= > /" >0,

Lemma A.8. Supppose that the conditions of Theorem hold. Let 6 and /y\ém)(d) be given
by Eqs. (2.4)-(2.5). Then,

EF™ (d) x o) I+ I + I11*] Jg + Sg?,z(d)} , (A.23)

I= 2P(d)npn, {[
where

I* = (m+1)(d* + 1) [2n,(70 — ) + h Jk]
m+1 h

I[*:8(d2—1)Vh, Vh—ZZ%H ZZW sy 1 <h<m,

s=0 t=1 s=1 t=1

111" =2P(d) hng,.-

Here, Séhrz(d) = O(n) and does not depend on J.

Proof. By definition

i E[I+IT+1II]
ERS™ (d) x 0™] =
[70 ( )X ] 2P(d>nhnm

where

I = Z [512(d>(X] —+ &T] 6]+h s II1 =2 Z (5 2X]( 5j+h) + (€j — €j+h)2]
IIT = "0 (d) [x; + & — gjen)”

Since for all j, E[¢;] = 0 and E[(g; — &;11)?] = 2(70 — V1), we utilize the arguments leading
to Egs. (3.3)-(3.7) and get

I = E[I] = (m+ 1)(d* + 1) [2n4(v0 — ) + h Jk] Ji- (A.24)

Due to Gaussianity for any i and j, E[;(d)(e; —;14)? = 0. Thus, according to Lemmal[A.9]

Gaussianity and Lemmayield7 > i EMi(d)x;(ej —¢€j4n)] = 0, and E[nF(d)] = 2P(d)o,

respectively. Consequently,

I = E[I11] = 2P(d)o num h Jic + S$2(d), (A.26)
where by stationarity, S ( ) =2 EM7 (d) (g5 —€j44)°] = O(n). In order to get Eq. (A.23)
sum up Egs. (|A.24|)—(|A.25|) (A.26]) and arrange terms. O




Lemma A.9. Suppose that the conditions of Theorem[1] hold. Let
Uia= Y 6i(d)ni(d)x;(ej — €j+n)-
2%

Then,
E[Wka] = 2(d* — 1)Jg V. (A.27)

See Lemmal[A.§ for a definition of V.

Proof. Set ¢,, = 2(m + 1). Since for given j,

Y. Gldm(d) =d(aj—a;)x D> m=E (d),

ie[:;"’cmm el em /2
Z 6i(d) mi(d) = (aj — aj1) X Z ni(d) :== Fr,(d),
zeICm/2 0 ieqem/20
J

it, follows that Y-, 6;(d)ni(d) = 32, (E-(d) + F,(d)).

Let >, j.r = Z ZleIL r. Note that x; = (a; aj+1)]11h0( i) and this, in turn, implies
’ T]

that > . xi(e; — €irn) = ZJ Z(aj aji1)(€i — €irn) = Gy, Consequently,
K-1
\IIKAZ (ETJ(d)—FFT](d)) XGh:T1+T2+T3+U1+U2+U3,
j=0
where
T1 = d Z ((lj — aj+1)5i Gh, T2 = —d(]. + d) Z (Clj — aj+1)8i+cm/2 Gh
jJt(;m,m/z) jJt(;:m,m/m
Ty=d > (4= 0110)1en Gny U= D (45— aji1)ei G,
j,Ié;m’m/Q) jylt(;.n/Q’O)
Up=—(1+d) Y (aj=0j11)eisc,2Gn Us=d Y (a5 — ajs1)cite, G-
.I(m/Q,O) .I(m/Q,O)
s t] s t]

The result follows by computing the expected value of T7s and U’s. Now we compute E[T7]

and E[U,], the remaining terms of E[W 4] can be treated similarly. In what follows,

Z 8L1 R LoRe . Z Z r(Es + €san)-

61”1 Ry GILQ Ra

We begin by writing E[T1] = dE[T11+T1 5], where Ty = Zfzgl(aj—aj+1)2 Dors Sj”?’c’"/lh’o

m,Cm/2,h,0 m,Cm/2,h,0
and T172 = Zz Z] 'L+1( a’i+1) (a’] - aj+1) <Zr,s Si] o/ + Zr,s S;,’L o/ > Note
9



now that for any 7; and due to m-dependency,

T;—(m+2) T;—1 2(m+1) m+h  h
m, em/2,R0 [
[ZS ] > Z Yir—sl = Ve—tsaml] = Y Z%s 0= D> > Wes
r=Tj;—Cm S$=Tj— s=m+2 t=1 s=m+1 t=1
(A.28)
These calculations hold independently of the value of 7;, and consequently we get that
E[Ti.1] = ZZ:;: i ';:1 Yjr—s| Jic. Similar calculations along with the m-dependency and
(2.8) allows us to get that E[T} o] = 0. All in all, we have shown that
m—+h
T1 =d Z Z Yh—(s+t)| JK <A29)
s=m+1 t=1

Similar arguments yield,

m+1 h
E[T5] = —d(1+d) Z [Ve—s| = Ne—(s+m)l] I (A.30)
s=1 t=1
m h
E[T3] = &’ Z Z s+t = Vn—(st+o)] - (A.31)

Now, we consider E[U;]. Write U; = Uy + Uy 2, where

K-1

¢m/2,0,h,0
U1,1: E Gj+1 E Sm
7=0
K-2 K-1
cm/2 0,h, D h,0,em /2,0
U12_ E _az+1 aj+1 E 8 E Sjﬂ'
1=0 j=i+1 7,8

Following (A we can show that for any 7;, E [ZHSET;‘/N}LO] S Zt sl —
Vih—(t+5)|)- Agam m-dependency and (2.8)) allow us to show that E[U; 5] = 0. Therefore,

m+1 h

O =Y > Dir—sl = Vsl - (A.32)
r=1 s=1
Similar arguments yield,
m+1 h
E[UQ] == 1 + d Z Z Vr4+s — /7\}1 r+s)|] JK <A33>
r=0 s=1
m+h  h
ElUs] = —d Z Z Vih—(r+5)| K- (A.34)
r=m+1 s=1

m h
Since > oz —1 VNh—(r+s)| Zr 1 Z 1 Vo=l Doy Z L1 Vs—(r+h)] = Dop Doset Vrbss
(A-27) follows after summing up (A.29)-(A.34). O
10



APPENDIX B. PROOFS AND AUXILIARY RESULTS FOR SECTION [4]

In this Appendix we will assume that the conditions of Theorem [7] hold and use the
notation introduced at the beginning of Appendices[A]and Also throughout this section
¢m = 2(m + 1) and the symbols k1, ko, etc., will denote constants which do not depend on

. . Nm—1 Nm
n. We will write ), ; to denote > ;™" >~

1=7+1"°

Lemma B.1. Suppose that the conditions of Theorem |7 hold. Then, for h =0,...,m,

Kn 192 Ky
E[’yh (dh m)] = Yn -+ O(Sn), Sn — Z # + Z n—2(aj+1/2)'
Jj=1 j=1

Proof. We begin with the case h = 0. Since ’y\ém)(d) = (2(d*+d+
n:(d))?, see Appendix for definition of ¢;(d) and n;(d), and E[nz(
cf. Corollary , in order to analyze the asymptotic bias of 7, ’70 ( )
> 02(d). To this end we write 67(d) = s§(i) + 2d so(i) se,, (i) + d* 52
given ¢ there exists a unique 7; such that

1) nm) ™t 320 (0:(d) +
)| = 2(d® + d + 1)y,
it suffices to focus on
(7) and note that for

t(i, ) := a;(i/n) — a;((i + m +1)/n) for i € 10m/?)

s0(i) = 2,0
u(i, j) = a;(i/n) — a1 (i +m+1)/n) forie ](Cm/ )’

and a similar characterization holds for s, (+), see Eq. in Appendix for definition
of ]ﬁ?’_cf’f/j?) and ]gm/ 200 This implies that the dominat terms in 67(d) are of the form
t2(1,7) + u%(4,7) and in what follows we provide bounds for these terms.

Recall that ; = a;(7;; ) — a;41(7j41) and by assumption there exists a number ¢ > 0 such
that |0;] > ¢ for all j. Utilizing the Holder condition of f we get

K,—1 K,—1

PO DENECE) ETP Bl (B.1)

=1 (0,em /2)
J ]] ;ﬂ_r

as well as
Kn—1 Kn Ky Ky
SID SRR FS ST STETIRUS SPs)
J=1 eqlem/2,0) j=1 j=1 Jj=1
7j
Here 1, = sup; (m + 1)% < 00, Kom = 2K1m. Define the set of indices I, = {j €

{1,..., K,} : |9;] > 1} and observe that

K7L

|Zn‘”19|<{2192+2|19\}<{2192+Z 192}<1+c ZW (B.2)

J€lKy, Ik, JelK, J&ZIKn
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From (B.I) and (B.2) follows that Y., 67(d) ( S V343000 n‘Qaﬂ'). Consequently,
Ky 2 Ky
EFS™ (d)] = 70 + O (S - Z # z 2(0s+1/2) (B.3)

For h > 1, firstly note that by writing 0 = (2(n — h))~* >t (so(i) + m;(0))* we can
mimick the calculations above and get

-~

E[é(h)] =Y — Y + O(S). (B.4)

Then, by definition, ’i,gm) (d) = /i(m)(d) — 5™ ¢f. (2.6) in the Introduction, and the result
follows by adding Egs. (B.3]) and ( . 0

Lemma B.2. Suppose that the assumptions of Lemma hold. Then

VARG () = O(3 (92 /n + n=@*2)) 1+ O ™) (B.5)

the same result holds for VAR(g(h)). Moreover,

Ky

VAR(," (d)) = O(VAR(T"( Zw )P+ Qo) (B6)

Jj=1

Proof. We write 3™ (d) = n~'S" b2(d), where b;(d) = &;(d) + n:(d), see Appendix
for notation. It is easily seen that VAR(b(d)) = 462(d) VAR(n;(d)) + VAR(n?(d)). From
Corollary and Lemma [A.3] VAR(7:(d)) and VAR(n?(d)) are uniformly bounded. This
implies that the order of magnitude of Y, VAR(b?(d)) depends solely on >, 6(d). From
arguments in the proof of Lemma we get that

i VAR(bZ(d)) = O (Z W3+ Z n_%‘j) + O(n). (B.7)

It can be shown that COV(b7(d), b5(d)) = 40;(d)d;(d)E[n;(d) n;(d)] + 20;(d)E[n:(d) n7(d)] +
20;(d)E[n;(d) ni(d)] + COV(n7 (d), n7(d)). Due to m-dependency and stationarity of moments
up to 4-th order we get for any i and j, E[ni(d)n;(d)] = k2 pa(|j — il), Eni(d)n7(d)] =
k3 ps(|j —1i]) and COV(n7(d), n3 (d)) = ka pa(]j — i), where pip(-), p13(-) and puy(-) are functions
which depend only on sums of moments of second, third and fourth order of ¢, respectively.
With the same arguments used in Lemma , we can establish that >, ; 6;(d) 6;(d)ua(j —
i) = O(n). Similar arguments allow us to get that >, ;0;(d) u3(j — i) = O(3_; di(d)) and

2215 COV(ni(d), mj(d)) = O(n).
12



All in all, we have proven that

> CoV(bi(d), b (d)) = O (Z @-(d)) + O(n). (B.8)

Since §;(d) = so(i) + ds,, (i), see Appendix for notation, from the characterization of
so(*) and s,,, (+) given in Lemma [B.1]it follows that the order of magnitude of (B.§) is driven

by >, so(i). We get,

Zm:so(z’): 2 ot + Y ulhi) ‘ZO(i(n_a1+|ﬁj’2)).

=1 6I(O sem /2) jEI%m/Z’O)

Ti—1:T4

(B.9)
The latter follows because of Holder condition on f and calculations leading to (B.2)). Observe

that Eq. (B.5)) follows by a combination of Egs. (B.7)-(B.8)-(B.9)).

For h > 1, we write 6 = (2(n — h))_l o 1(so( ) 4+ 7:(0))? and mimick the calculations
~(m) _

above to deduce that A(m)(d) and 6 have variances of the same order. Then, since o
%m) — 5 (h) | f. . in the Introduction, we combine Eq. (B.5 - and Lemma below to
show the validity of Eq. . This completes the proof. U

Lemma B.3. Suppose that the assumptions of Lemma|B.1| hold. Then

COVA™ (dnm), 8 (Zw | /n)? Zn (a;+1)) >+o< b. (B.10)

Proof. We begin with the case dj, ,, = 1. Throughout this proof k € {h, ¢,,}. By definition,

~m) 1y 1 & .
COVEE™ (1,0%) = 5 B0 - COV(zie, i) + O, (B1)
m i=1 j=1
where for given index i, 2z, = y;:(i k1) Dyo Yiirk+1), see Appendix [A| for notation of

Yiti+kr1) and Eq. for definition of the (k + 2) x (k + 2) matrix Dgyo. We also
write ¢;(k) = fi—:r(i—l-k—i-l) Diis €ir(itkt) and d;(k) = €I(i+k+1) Di42 €i:(i4k+1) Which by standard
calculations yield COV(z;.,., zjn) = 4E[ci(cm) ¢j(h)] + 2E[ci(cn) d;(R)] + 2E[cj(h) di(cm)] —
tr(De,, 12 Xe,,+2) tr(Dpio Xpi2). Stationarity and m-dependency, arguments also used in
Lemma [B.2] allow us to get that the second, third and fourth summands above are sums of
stationary moments of second, third and fourth order, respectively. Hence the contribution
of these terms to is of order O(n™'). It is not difficult to see that for given indeces i
and 7, ¢;(m) cj(h) is the sum of 8 terms of the form (f; — fit(m+1))(fj — fi+n) (€ — 2€i4me1 +
Eitam+1))(€; —€j4n) and due to stationarity and m-dependency, E[c;(m) c;(h)] is bounded by
\fi = firoma))(fj — fi+n)|- Now, since s;(i) = fHk fixma+1, see notation in Appendix ,



we utilize the ideas leading to the bound of VAR(%m)(l)), cf. (B.5]), and obtain that

5SS Feomen) s — fre)| =0 ((Z [9,0)% + <f, n>) SN RE)

=1 j=1

Thus for dp,, = 1, the result follows by a combination of Eqs. and - For
the other values of dj,,, cf. in the Introduction, we mimick the calculations above to
complete the proof. O
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