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a discontinuous signal and m-dependent errors: A difference-based

approach”

Appendix A. Proofs and auxiliary results for Section 3

Throughout this supplementary materials we use the following notation: nm := n−2(m+

1), nh := n − h; fi denotes f(xi), vi:(i+h) denotes the vector (vi vi+1 · · · vi+h)> ∈ Rh+1 (we

use this notation with v ∈ {y, f, ε}), 〈a, b〉 denotes the inner product between the vectors a

and b, 1 denotes the vector of ones, and for x ∈ Rd, ‖x‖ denotes its Euclidean norm.

A.1. Proofs for Section 3.1.

We begin with some preliminary results. For l < n, let Q1(Y,wl) be a difference-based

estimator of order l and gap 1, cf. Eq. (2.2). With D̃ as defined in (3.1) define the (l+ 2)×
(l + 2) matrix D := D̃> D̃. Observe that the identity

j+1∑
i=j

(d0yi + d1yi+1 + · · ·+ dl yi+l)
2 = y>j:(j+l+1)D yj:(j+l+1), j ≤ n− 2l − 3,

implies that

2nl P (wl)Q1(Y,wl) = 〈wl, y1:(1+l)〉2 +

nl∑
j=1

y>j:(j+l+1)D yj:(j+l+1) + 〈wl, y(n−l):n〉2, (A.1)

where P (wl) =
∑l

i=0 d
2
i . In Eq. (A.1) it is not difficult to see that E[〈wl, yk:(k+l)〉2] =

o(n) for k = 1, n − l and that for j < n − l, E[y>j:(j+l+1)D yj:(j+l+1)] = ‖D̃fj:(j+l+1)‖2 +

E[ε>j:(j+h+1)D εj:(j+h+1)]. Next, we combine this with Proposition A.1 and get that,

E [P (wl)Q1(Y,wl)] = w>l Σl+1wl +
1

2nl

nl∑
j=1

‖D̃fj:(j+l+1)‖2 + o(1), (A.2)

where Σl+1 is the (l + 1)× (l + 1) autocovariance matrix Σl+1 =
(
γ|i−j|

)
i,j=1,...,l

.

Proof of Theorem 5. It suffices to consider the difference-based estimator of order l < n

and gap 1, Q1(Y,wl). For l ≤ m, due to Lemma 1, (A.2) becomes

E [P (wl)Q1(Y,wl)] = Bl +O

n−1 JK l∑
k=1

(
l∑

j=k

dj

)2
 , (A.3)

where

Bl = w>l Σl+1wl = γ0(d
2
0 + · · ·+ d2l ) + 2γ1(d0d1 + · · ·+ dl−1dl) + · · ·+ 2γld0dl. (A.4)
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From now on in this proof we assume that JK = o(n) and disregard the second summand

in the right-hand side of (A.3). Since constraint 〈wl,1〉 = 0 implies that at least one of

the weights dj is nonzero, for simplicity from now on we assume that d0 6= 0. According to

Lemma A.1 in this case there does not exist any constant c such that Bl = c γ0, that is, no

difference-based estimate of the form Q1(Y,wl) can be an asymptotically unbiased estimate

for γ0 for l ≤ m.

Next, suppose that m < l ≤ n. In what follows, for simplicity, let us assume that

n = N(g + 1) for some integer N ≥ 1 and g = m. Observe that in this case Proposition A.1

and (A.3) yield, E [p(wl)Q1(Y,wl)] = Bl + o(1). Due to m-dependency, the covariance

matrix Σl+1 appearing in Bl is an (m + 1)-banded Toeplitz matrix, i.e., the (i, j) entry of

Σl+1 is given by γ|j−i| 6= 0 if |j − i| ≤ m, and outside the (m + 1)-diagonal the entries of

Σl+1 are equal to 0. Suppose that wl has entries d0 = 1 and dj 6= 0, for j = k(g + 1) with

k = 1, . . . , N − 1, and dj = 0 otherwise. Clearly, Bl = P (wl) γ0. Now we show that any

asymptotically unbiased estimate for γ0 is necessarily of the form just described. Indeed,

it suffices to consider the vector w∗l , whose entries are identical to those of wl except for

dκ 6= 0 for some κ ∈ {1, . . . ,m}. In this case, due to the form of the covariance matrix

Σl+1, (w∗l )
>Σl+1w

∗
l = c1γ0 + 2 dκ γκ, for some constant c1. Since γκ 6= 0, no difference-based

estimate of the form Q1(Y,w
∗
l ) can be an asymptotically unbiased estimate for γ0.

Note that the arguments above hold also for g ≥ m. Thus, we have shown that for

Q1(Y,wl) to be an (asymptotically unbiased) estimate for γ0, the vector of weights wl

must have the form wl = (v0 v1 · · · vN−1)
>, where vi = (di·g 0 · · · 0)> ∈ Rg+1,

i = 0, . . . , N − 1; d0 6= 0, dk·g 6= 0 for some 1 ≤ k ≤ N − 1, and
∑N−1

i=0 di·g = 0. This

completes the proof. �

Lemma A.1. Suppose that the conditions of Theorem 5 hold. Let Q1(Y,wl) be the difference-

based estimator of order l < n and gap 1, cf. (2.2). Then for l ≤ m, there does not exist any

constant c 6= 0 such that Bl = w>l Σl+1wl = c γ0, where Σl+1 is defined by (A.2).

Proof. We use induction over l. For l = 1, B1 = γ0(d
2
0 + d21) + 2γ1d0d1, cf. (A.4). Since by

assumption γ1 6= 0 (and d0 6= 0), d1 is necessarily equal to zero but this implies that γ0 = 0

to fulfill (2.3). This contradiction shows that the claim holds for h = 1. Then we assume

that the claim holds for l = k ≤ m − 1. Let k̃ = k + 1 and now note that for Bk̃ = c γ0 to

hold for some c 6= 0, necessarily γk̃d0dk̃ = 0. Since γk̃ 6= 0 and d0 6= 0, necessarily dk̃ = 0.

The latter shows that Bk̃ = Bk. Hence, the claim holds for l = k+ 1 and this completes the

proof. �

Proof of Lemma 1. For j < n−l define sj,l = 〈wl, fj:(j+l)〉2 and note that ‖D̃f>j:(j+l+1)‖2 =

sj,l+sj+1,l, see (3.1). In what follows we only consider sj,l since sj+1,l can be handled similarly.
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Under the convention tk = bnτkc, f(xi) = ak if and only if tk−1 ≤ i < tk. Then

nl∑
j=1

sj,l ≤
K−1∑
i=0

ti+1−l−1∑
j=ti

sj,l +

ti+1−1∑
j=ti+1−l

sj,l

 . (A.5)

Then note that for any i ∈ {0, . . . , K − 1},
ti+1−l−1∑
j=ti

sj,l = a2i 〈wl,1〉2(ti+1 − ti − l − 1)

and utilizing that d0 + · · ·+ dl = 0,

ti+1−1∑
j=ti+1−l

sj,l =

ti+1−1∑
j=ti+1−l

(d0fj + · · ·+ dlfj+l)
2 = (ai − ai+1)

2

l∑
k=1

(
l∑

j=k

dj

)2

.

Substituting these expressions into (A.5) we obtain the right-hand side of (3.2). This com-

pletes the proof. �

Proposition A.1. For l < n, let wl ∈ Rl+1 be the vector of weights in Q1(Y,wl), cf. (2.2).

Let D = D̃> D̃ where D̃ is defined by (3.1). Then

E[ε>j:(j+l+1)D εj:(j+l+1)] = 2w>l Σl+1wl.

Proof. Let Σl+1 be the matrix defined in (A.2) and note that

E[ε>j:(j+l+1)D εj:(j+l+1)] = tr{DΣl+2} = tr{D̃Σl+2 D̃
>}.

Then, observe that the 2× 2 matrix D̃Σl+2 D̃
> can be written as:

D̃Σl+2 D̃
> =

(
w>l Σl+1 〈wl, γ(l+1):1〉
〈wl, γ(l+1):1〉 w>l Σl+1

) (
wl 0

0 wl

)
,

where γ(l+1):1 := (γl+1 γl · · · γ2 γ1)
> ∈ Rl+1. A straightforward calculation yields,

tr{D̃Σl+2 D̃
>} = 2w>l Σl+1wl. �

A.2. Proofs for Section 3.2.

We will assume that the conditions of Theorem 1 hold. Also we will use the following

notation: χh(fi) := fi − fi+h, for d ∈ R, δi(d) := s0(i) + d s2(m+1)(i) where for k ≥ 0,

sk(i) := fi+k − fi+m+1, ηi(d) := εi− εi+m+1 + d(εi+2(m+1)− εi+m+1), set P (d) = 2(d2 + d+ 1)

and for given τi, τj ∈ [0, 1], 1 ≤ L,R ≤ n,

IL,Rτi,τj
:= [τi − L/n, τj −R/n). (A.6)

Also, IL,Rτi
:= IL,Rτi,τi

. Under the convention tj = bnτjc, we will denote IL,Rti,tj := [ti − L, tj − R)

and use that i/n ∈ IL,Rτi,τj
if and only if i ∈ IL,Rti,tj without further mention.
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The following identities are of great use in what follows: for any integers r, s, u and v,

E[ε2r ε
2
s] = γ20 + 2 γ2|r−s| (A.7)

E[ε2r εu εv] = γ0γ|u−v| + 2γ|r−u|γ|r−v| (A.8)

E[εr εs εu εv] = γ|r−s|γ|u−v| + γ|r−u|γ|s−v| + γ|r−v|γ|s−u|, (A.9)

cf. Theorem 3.1 of Triantafyllopoulos (2003).

Lemma A.2. Let i ≥ 1, l ≥ 1, 0 ≤ h ≤ (m+ 1) and define Ei,l,h = d0 εi +d1εi+h +d2εi+2h +

· · ·+ dlεi+lh. Then,

E[E2
i,l,h] = γ0(d

2
0 + d21 + d22 + · · ·+ d2l ) + 2

l−1∑
j=0

l∑
k=j+1

dj dk γ|j−k|h

Proof. Write E2
i,l,h = Ai,l,h + 2Bi,l,h, where

Ai,l,h =
l∑

j=0

d2jε
2
i+jh, Bi,l,h =

l−1∑
j=0

xj(i, l, h), xj(i, l, h) = djεi+jh

l∑
k=j+1

dk εi+kh. (A.10)

The result follows by noticing that due to stationarity, for any integers i, j, k and h, E[ε2i+jh] =

γ0 and E[εi+jhεi+kh] = γ|j−k|h. �

Corollary A.1. For l = 2, d0 = 1, d1 = −(d+ 1) and d2 = d, E[η2i (d)] = 2(d2 + d+ 1) γ0.

Lemma A.3. For i ≥ 1, l ≥ 1, E[E4
i,l,m+1] = 3 γ20 (d20 + d21 + · · ·+ d2l )

2.

Proof. From (A.10), E4
i,l,m+1 = A2

i,l,m+1 + 4Ai,l,m+1Bi,l,m+1 + 4B2
i,l,m+1. Note that (A.8)

implies that E[Ai,l,m+1Bi,l,m+1] = 0. That is,

E[E4
i,l,m+1] = E[A2

i,l,m+1] + 4E[B2
i,l,m+1]. (A.11)

Eq. (A.7) yields that for any integers i, j and k, E[εi+j(m+1)] = 3γ20 and E[εi+j(m+1) εi+k(m+1)] =

γ20 . Consequently,

E[A2
i,l,m+1] = γ20

(
3

l∑
j=0

d4j + 2
∑
k,j

d2k d
2
j

)
. (A.12)

Next, Eq. (A.9) implies that for r 6= s, E[xr(i, l,m + 1)xs(i, l,m + 1)] = 0, see (A.10) for

definition of x(·)(i, l,m+ 1). Hence,

E[B2
i,l,m+1] =

l∑
j=0

E[x2j(i, l,m+ 1)] = γ20
∑
k,j

d2k d
2
j . (A.13)

The last equality follows from (A.7). The result follows by plugging A.12 and A.13 into

A.11. �
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Lemma A.4. Suppose that the conditions of Theorem 1 hold. Then,

A

8
:=

nm−1∑
i=1

nm∑
j=i+1

δi(d)δj(d)E[ηi(d)ηj(d)] =

[
−d(d+ 1)2(m+ 1) +

m∑
h=1

q
(m)
h (d)ρh

]
γ0 JK ,

(A.14)

where q
(m)
h (d) = [2(m+ 1)− 3h](d4 + 1) + d2h and ρh = γh/γ0.

Proof. For d ∈ R, let Sr(d) =
∑nm−r

i=1 δi(d)δi+r(d), 1 ≤ r < nm. First observe that due to

stationarity, for any i ≥ 1 and h ≥ 1, Ψ(h, d) := E[ηi(d) ηi+h(d)] = 2 (d2 + d + 1)γh − (d +

1)2γ|h−(m+1)| + dγ|h−2(m+1)|. Then due to m-dependency, Ψ(h, d) = 0 for all h > 3m + 2.

Consequently, we can write

A

8
=

3m+2∑
r=1

Ψ(r)Sr. (A.15)

Next, we present the details on how to compute S0(d). Utilizing (2.8) and (A.6), we can

show that for given τj,∑
xi∈I

2(m+1),m+1
τj

δ2i (d) = (m+ 1)d2(aj+1 − aj)2,
∑

xi∈Im+1,0
τj

δ2i (d) = (m+ 1)(aj+1 − aj)2.

Observe that S0(d) =
∑K−1

j=0

∑
xi∈I

2(m+1),m+1
τj

∪Im+1,0
τj

δ2i (d) = (m+ 1)(d2 + 1) JK . The key part

in obtaining the summation Sr(d), r ≥ 1, consists of splitting it as shown above (and using

(2.8)-(A.6)). Thus, we can show that Sr(d) = Tr(d) JK where

Tr(d) =


(m+ 1− r)d2 + rd+ (m+ 1− r) for r = 0, . . . ,m

d (2(m+ 1)− r) for r = m+ 1, . . . , 2m+ 1

0 for r ≥ 2(m+ 1)

. (A.16)

In order to get (A.14), substitute (A.16) into (A.15) and arrange terms. This completes the

proof. �

Lemma A.5. Suppose that the conditions of Theorem 1 hold. Then

B := 2
nm−1∑
i=1

nm∑
j=i+1

E[η2i (d) η2j (d)] = 8n2
m (d2 + d+ 1)2γ20 + 2

3m+2∑
r=1

(nm − r) Λr(d) ≥ 0. (A.17)

where

Λr(d; γ(·)) = 8 (d2 + d+ 1)2γ2h + 2(1 + d)4γ2|h−(m+1)| + 2d2γ2|h−2(m+1)|

− 4(1 + d)[(1 + d)3 + (d3 + d2 + d+ 1)]γh γ|h−(m+1)|

− 4d(d+ 1)2γ|h−(m+1)| γ|h−2(m+1)|. (A.18)
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Proof. Straightforward calculations and Eqs. (A.7), (A.8) and (A.9) yield that for i ≥ 1

and r ≥ 0,

E[η2i (d) η2i+r(d)] = 4 (d2 + d+ 1)2γ20 + Λr(d).

Arrange terms and use m-dependency to get

B

2
=

nm−1∑
r=1

nm−r∑
s=1

E[η2s(d) η2s+r(d)].

The result now follows by noticing that Λr(d) = 0 for all r ≥ 3(m+ 1). �

Lemma A.6. Suppose that the assumptions of Theorem 1 hold. Additionally, assume that

the correlation function ρh = γh/γ0 satisfies that ρh = ρ ∈ (max{−1,−8/(3m2) }, 1), 1 ≤
h ≤ m. Then p1(d; γ(·)) and BIAS∗[γ̂

(m)
0 (d)] are minimized at d = 1.

Proof. Since BIAS[γ̂
(m)
0 (d)] is minimized at d = 1, cf. Theorem 2, we only need to focus on

minimizing p1(·; γ(·)). Let Q(d) = d2 + d+ 1. It is easily seen that

p1(d; γ(·)) =
m+ 1

Q2(d)

[
2(d4 + 1) +m(d4 + d2 + 1)

m∑
h=1

ρh

]
.

For ρ = 0 (indepent observations) the result follows since argmind∈R(d4 + 1)/Q2(d) = 1. For

ρ > 0, we have that argmind∈R(d4 + d2 + 1)/Q2(d) = 1 and hence for d ∈ R, p1(d; γ(·)) ≥
p1(1; γ(·)). For ρ < 0, note that

∂

∂d
p1(d; γ(·)) =

2(m+ 1)(d2 − 1)(d2(ρm2 + 2) + d(ρm2 + 4) + ρm2 + 2)

Q(d)3
,

It is immediate that on R, the critical points of p1 are -1 and 1. For ρ ∈ (−8/(3m2), 0),
∂2

∂d2
p1(−1; γ(·)) = −4ρm2 > 0 and ∂2

∂d2
p1(d; γ(·)) = 4(9ρm2 + 24)/81 > 0, i.e., both critical

points are minima. The result follows by noting that p1(1; ρ) = p1(−1; ρ)/9. �

The following auxiliary results are used in the proof of Theorem 1. Recall that δ̂(h) is the

ordinary difference-based estimator of gap h, cf. (2.4). Define

C
1/2
h =

n−h∑
i=1

(εi − εi+h)2, D
1/2
h =

K−1∑
i=0

∑
j∈Ih,0ti

(ai − ai+1)(εj − εj+h). (A.19)

We can show that

(2(n− h))2 E[(δ̂(h))2] = h2J2
K + 4hJK(n− h)(γ0 − γh) + E[Ch] + E[Dh]. (A.20)

For E[Ch] observe that due to Eqs. (A.7)-(A.8)-(A.9),

E[(εi − εi+h)2 (εj − εj+h)2] = 4(γ0 − γh)2 + ϑ1(i, j) + ϑ2(i, j)
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with

ϑ1(i, j) = const. γ2|j−i+s|, ϑ2(i, j) =
∑
s,t

const. γ|j−i+s|γ|j−i+t|,

where s, t ∈ {0,±h}. That is,

E[Ch] = [2(n− h)]2(γ0 − γh)2 + S
(h)
1,n, (A.21)

where S
(h)
1,n =

∑n−2h
i,j [ϑ1(i, j) + ϑ2(i, j)]; note that S

(h)
1,n = O(n).

Lemma A.7. Suppose that the conditions of Theorem 1 hold. Let Dh be defined by (A.19).

Then, E[Dh] = Fh(γ(·)) JK where F1 = 2(γ0 − γ1) and for 2 ≤ h ≤ m

Fh(γ(·)) = 2

[
(h− 1)(γ0 − γh) +

h∑
j=2

j+1∑
i=1

(
2γ|j−i| − γ|j−i−h| − γ|j−i+h|

)]
(A.22)

Proof. For h = 1 the result follows by noting that for any ti, I
h,0
ti = { ti−1 }. For 2 ≤ h ≤ m

note that

Dh =
K−1∑
i=0

∑
k∈Ih,0ti

(ai − ai+1)
2(εk − εk+h)2 +

K−2∑
s=1

K−1∑
r=1

(as − as+1)(ar − ar+1)(D̃r,s + D̃s,r),

where

D̃s,t =
∑
i∈Ih,0tr

∑
j∈Ih,0ts

(εi − εi+h)(εj − εj+h).

Since for any ti, E
[∑

j∈Ih,0ti

(εj − εj+h)
]2

= 2(h− 1)(γ0 − γh) + Λ∗(h; γ(·)), where

Λ∗(h; γ(·)) = 2
h∑
j=2

j+1∑
i=1

(
2γ|j−i| − γ|j−i−h| − γ|j−i+h|

)
,

the result is established if we show that E[D̃r,s] = E[D̃s,r] = 0. To this end, observe that for

any s ∈ {1, . . . , K − 2} and t ∈ {s+ 1, . . . , K − 1}:

E[D̃s,r] =
ts−1∑
i=ts−h

tr−1∑
i=tr−h

[
2γ|i−j| − γ|j−i−h| − γ|j−i+h|

]
let x = tr − ts and recall that by assumption, min1≤i≤K−1 |ti − ti−1| > 4(m+ 1) to get,

=
h∑
i=1

h∑
j=1

[
2γ|x+j−i| − γ|x+j−i−h| − γ|x+j−i+h|

]
= 0.

The last equality follows because γ|h| = 0 for all h ≥ m+ 1. A similar argument shows that

E[D̃r,s] = 0. This completes the proof. �
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From now on,
∑

i,j :=
∑nm

i=1

∑nh
j=1.

Lemma A.8. Supppose that the conditions of Theorem 1 hold. Let δ̂(h) and γ̂
(m)
0 (d) be given

by Eqs. (2.4)-(2.5). Then,

E[γ̂
(m)
0 (d)× δ̂(h)] =

1

2P (d)nhnm

{
[I∗ + II∗ + III∗] JK + S

(h)
2,n(d)

}
, (A.23)

where

I∗ = (m+ 1)(d2 + 1) [2nh(γ0 − γh) + h JK ]

II∗ = 8(d2 − 1)Vh, Vh =
m∑
s=0

h∑
t=1

γs+t −
m+1∑
s=1

h∑
t=1

γ|t−s|, 1 ≤ h ≤ m,

III∗ = 2P (d)hnmγ0.

Here, S
(h)
2,n(d) = O(n) and does not depend on JK.

Proof. By definition

E[γ̂
(m)
0 (d)× δ̂(h)] =

E[I + II + III]

2P (d)nh nm
,

where

I =
∑
i,j

[
δ2i (d)(χj + εj − εj+h)2

]
, II = 2

∑
i,j

δi(d) ηi(d)
[
2χj(εj − εj+h) + (εj − εj+h)2

]
III =

∑
i,j

η2i (d) [χj + εj − εj+h]2

Since for all j, E[εj] = 0 and E[(εj − εj+h)2] = 2(γ0− γh), we utilize the arguments leading

to Eqs. (3.3)-(3.7) and get

I∗ = E[I] = (m+ 1)(d2 + 1) [2nh(γ0 − γh) + h JK ] JK . (A.24)

Due to Gaussianity for any i and j, E[ηi(d)(εj−εj+h)2] = 0. Thus, according to Lemma A.9

I∗∗ = E[II] = 4
∑
i,j

E[δi(d) ηi(d)χj(εj − εj+h)] = 8(d2 − 1) JK Vh. (A.25)

Gaussianity and Lemma A.2 yield,
∑

i,j E[η2i (d)χj(εj−εj+h)] = 0, and E[η2i (d)] = 2P (d)γ0,

respectively. Consequently,

I∗∗∗ = E[III] = 2P (d)γ0 nm h JK + S
(h)
2,n(d), (A.26)

where by stationarity, S
(h)
2,n(d) =

∑
i,j E[η2i (d)(εj− εj+h)2] = O(n). In order to get Eq. (A.23)

sum up Eqs. (A.24)-(A.25)-(A.26) and arrange terms. �
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Lemma A.9. Suppose that the conditions of Theorem 1 hold. Let

ΨK,d =
∑
i,j

δi(d) ηi(d)χj(εj − εj+h).

Then,

E[ΨK,d] = 2(d2 − 1)JK Vh. (A.27)

See Lemma A.8 for a definition of Vh.

Proof. Set cm = 2(m+ 1). Since for given j,∑
i∈Icm,cm/2tj

δi(d) ηi(d) = d (aj − aj+1)×
∑

i∈Icm,cm/2tj

ηi := Eτj(d),

∑
i∈Icm/2,0tj

δi(d) ηi(d) = (aj − aj+1)×
∑

i∈Icm/2,0tj

ηi(d) := Fτj(d),

it follows that
∑

i δi(d)ηi(d) =
∑

j

(
Eτj(d) + Fτj(d)

)
.

Let
∑

j,IL,Rτj
:=
∑K−1

j=0

∑
i∈IL,Rτj

. Note that χi = (aj − aj+1)1lIh,0τj
(i) and this, in turn, implies

that
∑

i χi(εi − εi+h) =
∑

j,i(aj − aj+1)(εi − εi+h) := Gh. Consequently,

ΨK,d =
K−1∑
j=0

(
Eτj(d) + Fτj(d)

)
×Gh = T1 + T2 + T3 + U1 + U2 + U3,

where

T1 = d
∑

j,I
(cm,m/2)
tj

(aj − aj+1)εiGh, T2 = −d(1 + d)
∑

j,I
(cm,m/2)
tj

(aj − aj+1)εi+cm/2Gh

T3 = d2
∑

j,I
(cm,m/2)
tj

(aj − aj+1)εi+cm Gh, U1 =
∑

j,I
(m/2,0)
tj

(aj − aj+1)εiGh,

U2 = −(1 + d)
∑

j,I
(m/2,0)
tj

(aj − aj+1)εi+cm/2Gh, U3 = d
∑

j,I
(m/2,0)
tj

(aj − aj+1)εi+cm Gh.

The result follows by computing the expected value of T ’s and U ’s. Now we compute E[T1]

and E[U1], the remaining terms of E[ΨK,d] can be treated similarly. In what follows,∑
r,s

S
L1,R1,L2,R2

i,j :=
∑

r∈IL1,R1
ti

∑
s∈IL2,R2

tj

εr(εs + εs+h).

We begin by writing E[T1] = dE[T1,1+T1,2], where T1,1 =
∑K−1

j=0 (aj−aj+1)
2
∑

r,s S
cm,cm/2,h,0
j,j

and T1,2 =
∑K−2

i=0

∑K−1
j=i+1(ai − ai+1) (aj − aj+1)

(∑
r,s S

cm,cm/2,h,0
i,j +

∑
r,s S

cm,cm/2,h,0
j,i

)
. Note

9



now that for any τj and due to m-dependency,

E

[∑
r,s

S
cm,cm/2,h,0
j,j

]
=

τj−(m+2)∑
r=τj−cm

τj−1∑
s=τj−h

[γ|r−s| − γ|r−(s+h)|] =

2(m+1)∑
s=m+2

h∑
t=1

γ|s−t| =
m+h∑
s=m+1

h∑
t=1

γ|s−t|,

(A.28)

These calculations hold independently of the value of τj, and consequently we get that

E[T1,1] =
∑m+h

r=m+1

∑h
s=1 γ|r−s| JK . Similar calculations along with the m-dependency and

(2.8) allows us to get that E[T1,2] = 0. All in all, we have shown that

E[T1] = d

m+h∑
s=m+1

h∑
t=1

γ|h−(s+t)| JK . (A.29)

Similar arguments yield,

E[T2] = −d(1 + d)
m+1∑
s=1

h∑
t=1

[γ|t−s| − γ|t−(s+h)|] JK (A.30)

E[T3] = d2
m∑
s=0

h∑
t=1

[γs+t − γ|h−(s+t)|] JK . (A.31)

Now, we consider E[U1]. Write U1 = U1,1 + U1,2, where

U1,1 =
K−1∑
j=0

(aj − aj+1)
2
∑
r,s

S
cm/2,0,h,0
j,j

U1,2 =
K−2∑
i=0

K−1∑
j=i+1

(ai − ai+1) (aj − aj+1)

(∑
r,s

S
cm/2,0,h,0
i,j +

∑
r,s

S
h,0,cm/2,0
j,i

)

Following (A.28) we can show that for any τj, E
[∑

r,s S
cm/2,0,h,0
j,j

]
=
∑m+1

s=1

∑h
t=1[γ|t−s| −

γ|h−(t+s)|]. Again m-dependency and (2.8) allow us to show that E[U1,2] = 0. Therefore,

E[U1] =
m+1∑
r=1

h∑
s=1

[γ|r−s| − γ|s−(r+h)|] JK . (A.32)

Similar arguments yield,

E[U2] = −(1 + d)
m+1∑
r=0

h∑
s=1

[γr+s − γ|h−(r+s)|] JK (A.33)

E[U3] = −d
m+h∑
r=m+1

h∑
s=1

γ|h−(r+s)| JK . (A.34)

Since
∑m

r=0

∑h
s=1 γ|h−(r+s)| =

∑m+1
r=1

∑h
s=1 γ|s−r|,

∑m+1
r=1

∑h
s=1 γ|s−(r+h)| =

∑m
r=0

∑h
s=1 γr+s,

(A.27) follows after summing up (A.29)-(A.34). �
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Appendix B. Proofs and auxiliary results for Section 4

In this Appendix we will assume that the conditions of Theorem 7 hold and use the

notation introduced at the beginning of Appendices A and A.2. Also throughout this section

cm = 2(m + 1) and the symbols κ1, κ2, etc., will denote constants which do not depend on

n. We will write
∑

i,j to denote
∑nm−1

i=1

∑nm
i=j+1.

Lemma B.1. Suppose that the conditions of Theorem 7 hold. Then, for h = 0, . . . ,m,

E[γ̂
(m)
h (dh,m)] = γh +O(Sn), Sn =

Kn∑
j=1

ϑ2
j

n
+

Kn∑
j=1

n−2(αj+1/2).

Proof. We begin with the case h = 0. Since γ̂
(m)
0 (d) = (2(d2 + d + 1)nm)−1

∑nm
i=1(δi(d) +

ηi(d))2, see Appendix A.2 for definition of δi(d) and ηi(d), and E[η2i (d)] = 2(d2 + d + 1)γ0,

cf. Corollary A.1, in order to analyze the asymptotic bias of γ̂
(m)
0 (d) it suffices to focus on∑

i δ
2
i (d). To this end we write δ2i (d) = s20(i) + 2d s0(i) scm(i) + d2 s2cm(i) and note that for

given i there exists a unique τj such that

s0(i) =

t(i, j) := aj(i/n)− aj((i+m+ 1)/n) for i ∈ I(0,cm/2)τj−1,τj

u(i, j) := aj(i/n)− aj+1((i+m+ 1)/n) for i ∈ I(cm/2,0)τj

,

and a similar characterization holds for scm(·), see Eq. (A.6) in Appendix A.2 for definition

of I
(0,cm/2)
τj−1,τj and I

(cm/2,0)
τj . This implies that the dominat terms in δ2i (d) are of the form

t2(i, j) + u2(i, j) and in what follows we provide bounds for these terms.

Recall that ϑj = aj(τ
−
j+1)−aj+1(τj+1) and by assumption there exists a number c > 0 such

that |ϑj| > c for all j. Utilizing the Hölder condition of f we get

Kn−1∑
j=1

∑
i∈I(0,cm/2)τj−1,τj

t2(i, j) ≤ κ1,m

Kn−1∑
j=1

n−2αj , (B.1)

as well as

Kn−1∑
j=1

∑
i∈I(cm/2,0)τj

u2(i, j) ≤
Kn∑
j=1

ϑ2
j + κ2,m

Kn∑
j=1

n−αj ϑj + κ1,m

Kn∑
j=1

n−2αj .

Here κ1,m = supj (m + 1)αj < ∞, κ2,m = 2κ1,m. Define the set of indices IKn := {j ∈
{1, . . . , Kn} : |ϑj| ≥ 1} and observe that

∣∣ Kn∑
j=1

n−αj ϑj
∣∣ ≤ {∑

j∈IKn

ϑ2
j +

∑
j /∈IKn

|ϑj|} ≤ {
∑
j∈IKn

ϑ2
j +

∑
j /∈IKn

1

c
ϑ2
j} ≤ (1 + c−1)

Kn∑
j=1

ϑ2
j . (B.2)

11



From (B.1) and (B.2) follows that
∑nm

i=1 δ
2
i (d) = O

(∑Kn
j=1 ϑ

2
j +

∑Kn
j=1 n

−2αj
)

. Consequently,

E[γ̂
(m)
0 (d)] = γ0 +O (Sn) , Sn =

Kn∑
j=1

ϑ2
j

n
+

Kn∑
j=1

n−2(αj+1/2). (B.3)

For h ≥ 1, firstly note that by writing δ̂(h) = (2(n − h))−1
∑nh

i=1(s0(i) + ηi(0))2 we can

mimick the calculations above and get

E[δ̂(h)] = γ0 − γh +O(Sn). (B.4)

Then, by definition, γ̂
(m)
h (d) = γ̂

(m)
0 (d) − δ̂(h), cf. (2.6) in the Introduction, and the result

follows by adding Eqs. (B.3) and (B.4). �

Lemma B.2. Suppose that the assumptions of Lemma B.1 hold. Then

VAR(γ̂
(m)
0 (d)) = O(

Kn∑
j=1

(ϑ2
j/n

2 + n−(αj+2))) +O(n−1) (B.5)

the same result holds for VAR(δ̂(h)). Moreover,

VAR(γ̂
(m)
h (d)) = O(VAR(γ̂

(m)
0 (d)) + (

Kn∑
j=1

|ϑj|/n)2 + (
Kn∑
j=1

n−(αj+1))2). (B.6)

Proof. We write γ̂
(m)
0 (d) = n−1

∑
b2i (d), where bi(d) = δi(d) + ηi(d), see Appendix A.2

for notation. It is easily seen that VAR(b2i (d)) = 4δ2i (d)VAR(ηi(d)) + VAR(η2i (d)). From

Corollary A.1 and Lemma A.3, VAR(ηi(d)) and VAR(η2i (d)) are uniformly bounded. This

implies that the order of magnitude of
∑

i VAR(b2i (d)) depends solely on
∑

i δ
2
i (d). From

arguments in the proof of Lemma B.1 we get that

nm∑
i=1

VAR(b2i (d)) = O

(
Kn∑
j=1

ϑ2
j +

Kn∑
j=1

n−2αj

)
+O(n). (B.7)

It can be shown that COV(b2i (d), b2j(d)) = 4δi(d)δj(d)E[ηi(d) ηj(d)] + 2δi(d)E[ηi(d) η2j (d)] +

2δj(d)E[ηj(d) η2i (d)] +COV(η2i (d), η2j (d)). Due to m-dependency and stationarity of moments

up to 4-th order we get for any i and j, E[ηi(d) ηj(d)] = κ2 µ2(|j − i|), E[ηi(d) η2j (d)] =

κ3 µ3(|j−i|) and COV(η2i (d), η2j (d)) = κ4 µ4(|j−i|), where µ2(·), µ3(·) and µ4(·) are functions

which depend only on sums of moments of second, third and fourth order of ε, respectively.

With the same arguments used in Lemma A.4, we can establish that
∑

i,j δi(d) δj(d)µ2(j −
i) = O(n). Similar arguments allow us to get that

∑
i,j δi(d)µ3(j − i) = O(

∑
i δi(d)) and∑

i,j COV(η2i (d), η2j (d)) = O(n).
12



All in all, we have proven that∑
i,j

COV(b2i (d), b2j(d)) = O

(∑
i

δi(d)

)
+O(n). (B.8)

Since δi(d) = s0(i) + dscm(i), see Appendix A.2 for notation, from the characterization of

s0(·) and scm(·) given in Lemma B.1 it follows that the order of magnitude of (B.8) is driven

by
∑

i s0(i). We get,

∣∣∣∣ nm∑
i=1

s0(i)

∣∣∣∣ =

∣∣∣∣Kn−1∑
i=1

 ∑
j∈I(0,cm/2)τi−1,τi

t(j, i) +
∑

j∈I(cm/2,0)τi

u(j, i)

∣∣∣∣ = O

(
Kn∑
j=1

(n−αj + |ϑj|2)

)
.

(B.9)

The latter follows because of Hölder condition on f and calculations leading to (B.2). Observe

that Eq. (B.5) follows by a combination of Eqs. (B.7)-(B.8)-(B.9).

For h ≥ 1, we write δ̂(h) = (2(n− h))−1
∑nh

i=1(s0(i) + ηi(0))2 and mimick the calculations

above to deduce that γ̂
(m)
0 (d) and δ̂(h) have variances of the same order. Then, since γ̂

(m)
h =

γ̂
(m)
0 − δ̂(h), cf. (2.6) in the Introduction, we combine Eq. (B.5) and Lemma B.3 below to

show the validity of Eq. (B.6). This completes the proof. �

Lemma B.3. Suppose that the assumptions of Lemma B.1 hold. Then

COV(γ̂
(m)
0 (dh,m), δ(h)) = O

(
(
Kn∑
j=1

|ϑj|/n)2 + (
Kn∑
j=1

n−(αj+1))2

)
+O(n−1). (B.10)

Proof. We begin with the case dh,m = 1. Throughout this proof k ∈ {h, cm}. By definition,

COV(γ̂
(m)
0 (1), δ̂(h)) =

1

12nm nh

nm∑
i=1

nh∑
j=1

COV(zi,cm , zj,h) +O(n−1), (B.11)

where for given index i, zi,k = y>i:(i+k+1)Dk+2 yi:(i+k+1), see Appendix A for notation of

yi:(i+k+1) and Eq. (3.1) for definition of the (k + 2) × (k + 2) matrix Dk+2. We also

write ci(k) = f>i:(i+k+1)Dk+2 εi:(i+k+1) and di(k) = ε>i:(i+k+1)Dk+2 εi:(i+k+1) which by standard

calculations yield COV(zi,cm , zj,h) = 4E[ci(cm) cj(h)] + 2E[ci(cm) dj(h)] + 2E[cj(h) di(cm)] −
tr(Dcm+2 Σcm+2) tr(Dh+2 Σh+2). Stationarity and m-dependency, arguments also used in

Lemma B.2, allow us to get that the second, third and fourth summands above are sums of

stationary moments of second, third and fourth order, respectively. Hence the contribution

of these terms to (B.11) is of order O(n−1). It is not difficult to see that for given indeces i

and j, ci(m) cj(h) is the sum of 8 terms of the form (fi− fi+(m+1))(fj − fj+h)(εi− 2εi+m+1 +

εi+2(m+1))(εj−εj+h) and due to stationarity and m-dependency, E[ci(m) cj(h)] is bounded by

|fi − fi+(m+1))(fj − fj+h)|. Now, since sk(i) = fi+k − fi+m+1, see notation in Appendix A.2,
13



we utilize the ideas leading to the bound of VAR(γ̂
(m)
0 (1)), cf. (B.5), and obtain that

∣∣ nm∑
i=1

nh∑
j=1

(fi − fi+(m+1))(fj − fj+h)
∣∣ = O

(
(
Kn∑
j=1

|ϑj|)2 + (
Kn∑
j=1

n−αj)2

)
. (B.12)

Thus for dh,m = 1, the result follows by a combination of Eqs. (B.11) and (B.12). For

the other values of dh,m, cf. (2.14) in the Introduction, we mimick the calculations above to

complete the proof. �
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