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Thyroid hormones influence brain development through regulation of gene expression. This is especially true for
Ca2+-dependent regulation since a major pathway is controlled by the Ca2+/calmodulin-dependent protein ki-
nase IV (CaMKIV) which in turn is induced by the thyroid hormone T3. In addition, CaMKIV is involved in regu-
lation of alternative splicing of a number of protein isoforms, among themPMCA1a, the neuronal specific isoform
of the plasmamembrane calcium pump. On the other hand, hypothyroidism or CaMKIV deficiency can have a se-
vere influence on brain development. This article is part of a Special Issue entitled: ECS Meeting edited by Claus
Heizmann, Joachim Krebs and Jacques Haiech.
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1. Introduction

Growth, differentiation andmaturation of the mammalian brain has
been shown to be under the control of different growth factors and hor-
mones, among them the thyroid hormone 3,3′,5-triiodo-L-thyronine or
T3 [1], the active form of the thyroid hormone. T3 regulates the tran-
scription of specific T3-responsive genes through the T3-receptor
which recognizes regulatory elements of the expressed gene [2] typical
for the steroid/thyroid hormone superfamily (for a review see [3]). The
action of thyroid hormone during brain development can be manifold
influencing different aspects of neurogenesis, but also glial develop-
ment and differentiation (for a recent review see [4]). During the devel-
opment of the fetal brain the availability of T3 is essential in the sense
that thyroid hormone deficiency, even for a short period of time, may
lead to irreversible brain damage [5,6]. Since fetal thyroid hormone de-
rives from thematernal thyroid glandwell before the fetal thyroid gland
is operating, maternal hypothyroidism can cause severe defects during
fetal brain development [7–9]. This is especially critical for the hippo-
campal region since expression of the thyroid receptor and availability
of T3 are crucial for the development of the hippocampus [10]. So it
has been shown that rat embryos hypothyroid during embryonic days
between E12 and E15 displayed defective migration pattern of hippo-
campal neurons [11]. Another area of brain development under T3 con-
trol concerns the cerebellum which in rodents is largely postnatal [12].
Therefore, perinatal hypothyroidism dramatically affects cerebellar
ting edited by Claus Heizmann,
development, especially axodendritic connections between Purkinje
cells and granular neurons (for reviews see [13,14]).

One of the major Ca2+ signaling pathways in brain development is
under the control of the calmodulin-dependent protein kinase IV
(CaMKIV) (for review see [15,16]). In 1996 [17] we provided evidence
for the first time that the expression of CaMKIV during an early stage
of brain development is specifically induced by T3 in a concentration
and time dependent manner using a fetal rat telencephalon primary
cell culture system which can grow and differentiate under chemically
defined conditions [18]. This finding was later confirmed by others
[19,20] including the identification of a 5′-flanking region of the CaMKIV
gene responsive to T3 and binding the thyroid hormone receptor [20]. In
this review I will discuss the importance of the CaMKIV-dependent
Ca2+-signaling pathways for brain function and possible consequences
of hypothyroidism for the malfunction of the enzyme.

2. General properties of CaMKIV

CaMKIV belongs to the family of multifunctional calmodulin-depen-
dent protein Ser/Thr kinases including also CaMKI, CaMKII and CaMKK
[21]. CaMKIV, of which two isoforms exist (α and β), was first discov-
ered in the granular cells of the cerebellum and therefore was named
CaM-kinase Gr [22], but was later renamed as CaM-Kinase IV (CaMKIV)
[23,24]. The enzyme is highly expressed in specific tissues, especially in
brain (here next to the granular cells of the cerebellum [22], also in
other neuronal subpopulations, especially in neuron nuclei of thehippo-
campus [25]). To a lesser extent the enzyme is also detected in the thy-
mus (here particularly in T-lymphocytes, not in B-lymphocytes or
monocytes [26]), in testis, ovary, and in bone marrow-derived cells
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[21]. It is predominantly located in the nucleus [16], but can also be
found in the cytoplasm. CaMKIV is conserved among higher organisms
including zebrafish [27] and C. elegans [28].
3. CaMKIV activity and its function in Ca2+-dependent gene expres-
sion and alternative splicing

Like other protein kinases also CaMKIV is inhibited in the resting state
by an autoinhibitory segment. The regulation of its activity is tightly con-
trolled and a rather complex process [15,16,21]. The autoinhibition of the
enzyme is released by binding of calmodulin in a Ca2+-dependent man-
ner leading to a basal activity of the enzyme. Due to binding of calmodulin
CaMKIV undergoes a conformational change exposing the activation loop
which contains a threonine (T200 in human, T196 in mouse [16]) to be
phosphorylated by calmodulin-dependent protein kinase-kinase
(CaMKK) [29]. This results in a 10–20 fold activation of CaMKIV [30]. De-
phosphorylation of CaMKIV and thereby inactivation of the enzyme is
mediatedbyprotein phosphatase 2A (PP2A)whichbuilds a tight complex
with CaMKIV [31,32].

One of the main functions of CaMKIV is regulating Ca2+-dependent
gene expression. Therefore some of the major substrates are transcrip-
tion factors such as CREB (cAMP/Ca2+ response element binding pro-
tein) [33–35], SRF (serum response factor) [36] and others. CREB is
phosphorylated at Ser133 by the activated CaMKIV [33] enabling CREB
to interact with the transcription activator CBP, the CREB binding pro-
tein [37]. In this way the recruitment of CBP to the promoter region of
CREB target genes regulates CRE-mediated transcription [25,38].

In recent years it became evident that CaMKIV is also involved in the
regulation of another important Ca2+ signaling pathway, i.e. alternative
splicing [39]. This could became especially important for regulating the
expression of the PMCA1a spliced isoform as outlined in detail below.
PMCA1
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4. Alternative splicing of PMCA, the calcium pump of the plasma
membrane

The plasmamembrane calciumpump (PMCA) is one of the key play-
er to control Ca2+ homeostasis of eucaryotic cells [40,41]. It is responsi-
ble for the fine tuning of the Ca2+ level in the cell, especially in selected
sub-plasma membrane domains [42]. PMCA activity is regulated in
manyways [41], but its major activator is the Ca2+-binding protein cal-
modulinwhich interacts directly with PMCA through a defined calmod-
ulin-binding domain [43], usually located at the C-terminus of the
enzyme. After determination of the primary structure of PMCA from
human [44] and rat [45] tissues it became clear that the enzyme is an es-
sential component of all mammalian plasmamembranes deriving from
four different genes [46]. Additional isoforms of the protein are pro-
duced by alternative splicing of the primary transcripts [46,47]. For all
PMCA genes two splice cites have been characterized (sites A and C
[46]) located close to regulatory regions of the pump (Fig. 1). About
30 different spliced isoforms have been identified [48]. In the context
of this review splice site C of PMCA is of special interest. This site is locat-
ed in the middle of the calmodulin binding domain [49] giving rise to
different spliced isoforms for the 4 different gene products. As will be
clear later, splicing of PMCA1 at site “C” will display some special fea-
tures which will be of interest for the development of the embryonal
mammalian brain. As can be seen from Fig. 1 the splicing products
1a,b,c,d,e can be obtained. PMCA1b is the housekeeping form which
can be found in all mammalian tissues [48,49]. The importance of
PMCA1 is underlined by the fact that PMCA1 knock outmice are embry-
onically lethal [50] in contrast to the other ubiquitously expressed iso-
form, PMCA4, which exhibits no embryolethality [50]. In addition, in
fetal brain development PMCA1 can be detected as early as day 9 or
10 dpc in mice or rats, respectively [48,49]. As can be noted from Fig.
1 the 1b isoform excludes an exon which has been identified as exon
154
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21 [47,50]. This results in an intact calmodulin-binding domain and a C-
terminal sequence, highly conserved among the “b” isoforms of the dif-
ferent PMCA genes [46,48,51] since the reading frame remains intact.
On the other hand, isoforms 1a,c,d,e include exon 21 containing 154 nu-
cleotides in the entire exon. 1a and 1e include either all 154 nucleotides
(1a) or 148 (1e), both isoforms resulting in a frame shift with a shorter
C-terminal sequence due to an early stop codon, and a significantly al-
tered calmodulin binding domain with a different calmodulin affinity.
Due to internal cryptic donor splice sites within exon 21 alternative
splicing can give rise to isoforms 1c (114 nt) and 1d (87 nt), both
resulting in an intact reading frame [51].

5. Expression of PMCA1a in different brain regions and its possible
regulation

As mentioned before PMCA1 can be detected in the brain at very
early stages of its development [48,52]. Brandt and Neve [52] already
noticed that in rat brain isoform PMCA1b is visible first, expression of
isoformPMCA1awas later detectable at E16 [52]. These authors also no-
ticed that during rat brain development into postnatal days the expres-
sion of the mRNA of PMCA1b declined whereas the expression of the
mRNA of the PMCA1a isoform was steadily increasing suggesting that
this isoform was important for the maturation of neurons and building
of synaptic plasticity [52]. This view was later confirmed by several de-
tailed studies [53–55]. As reported by Filoteo et al. [53] using antibodies
specific for the different spliced isoforms PMCA1a was mainly detected
in frontal cortex followed by the hippocampus and less identified in cer-
ebellum. In contrast, PMCA1bwas practically not detectable in those re-
gions investigated. Kenyon et al. [54] pointed out that PMCA1 can be
detected in all brain regions represented mainly by the spliced isoform
1a. As already reported by Brandt andNeve [52] PMCA1b is expressed at
early stages of development of the rat brain but is progressively re-
placed by PMCA1a during the maturation process of the brain until it
reaches a steady state level after birth. Even if Kenyon et al. [54] con-
firmed that PMCA1a is present at synapses they also reported that
PMCA1a is expressed at higher levels in the soma or dendritic compart-
ments of many neurons, but is absent in non-neuronal cells. It is inter-
esting to note that in the cerebral cortex Kenyon et al. noticed an
uneven distribution of PMCA1a indicating a possible concentration of
the enzyme in specialized microdomains of the plasma membrane
[54]. These authors also reported the presence of PMCA1a in all hippo-
campal regions indicating that the staining was much stronger in CA1
than in CA2 or 3. Using primary cultures derived from hippocampal
neurons of 18 days old rat embryos Kip et al. [55] reported a similar
shift in expression from PMCA1b to 1a during the development of hip-
pocampal neurons. Interestingly, for PMCA2b which is abundantly
expressed in hippocampal neurons such a shift to the spliced isoform
2a was not observed [55]. It is further of interest that next to a number
of other areas of the brain PMCA1a was strongly expressed in the cere-
bellum, especially in the granular cells [55]. The most intriguing result
reported by Kenyon et al. [54] was the finding that PMCA1b can only
bedetected early in the developingbrain, but as soon as neuronsmature
and synapse plasticity increases isoform expression is switched from
PMCA1b to 1a, even if PMCA1a is not directly involved in synapse-relat-
ed processes. On the other hand, the neuron-specific replacement of
PMCA1bby the 1a spliced isoformduring brain developmentmay be re-
lated to the specific differences in handling Ca2+ signaling. As already
pointed out before, the two isoforms differ in their calmodulin-depen-
dent regulation since PMCA1a due to alternative splicing results in a
change in the reading frame within the middle of the calmodulin-bind-
ing domain leading to significant differences in the affinity for calmod-
ulin between PMCA1b and 1a. This results in a low basal Ca2+ activity
and high calmodulin sensitivity for PMCA1b in contrast to PMCA1a
which has a much higher basal Ca2+ activity similar to the differences
reported for PMCA4a and 4b [56]. Therefore it is of considerable interest
to get information how this switch from PMCA1b to 1a is regulated
during brain development. Here I will discuss a possible mechanism
how this change could occur.

6. Regulation of alternative splicing by CaMKIV

Black and his coworkers demonstrated that Ca2+-dependent regula-
tion of alternative splicing is under the control of CaMKIV [57–59]. In
2001 Xie and Black reported [57] that the splicing of the stress axis-reg-
ulated exon (STREX) of the calcium-activated potassium channel is re-
pressed through the action of CaMKIV. They identified a CaMKIV-
responsive RNA element (CaRRE1) mediating the alternative splicing
of the pre-mRNA. Later it was shown [58,59] that the alternative splic-
ing of the STREX exon occurs also in neurons controlled by the CaMKIV
pathway [58]. Here the authors identified a CaMKIV-responsive consen-
sus sequence (CACATNRTTAT) in a number of human genes (including
PMCA1a, see below) responding to CaMKIV [58]. CaRRE1 is located at
the 3'splice site which is a highly conserved region of introns [60]. The
CA/AC richmotif is known to be critical for the binding of heterogenous
nuclear ribonucleoproteins as trans-acting factors [61]. One of these
hnRNPs, hnRNP L, has been identified as an essential component to sup-
press the STREX exon of the Ca2+-dependent potassium channel in a
CaMKIV dependent manner [62]. Important for this regulation is the
phosphorylation of a conserved serine residue of hnRNP L by CaMKIV
[63]. By examining the human genome Black and his co-workers [59]
established CACA(T/C)N1-4A as a minimum consensus sequence
matching the CARREmotif in a number of exons. These authors induced
differentiation in P19 cells by depolarization obtaining cells with neuro-
nal morphology. One of the spliced exons identified in these screening
experiments was exon 21 of PMCA1whichwas spliced in a CaMKIV de-
pendent manner [59]. By analysing the pre-mRNA of PMCA1 a CARRE
motif (CACATGTA) could be identified in exon 21 (see Ref. [47]). As
shown by Strehler et al. [47] exon 21 of PMCA1 contains 2 internal splice
donor sites with the CARRE consensus sequence located at the second
site. If PMCA1a has to be expressed the total sequence of 154 nucleo-
tides of exon 21 have to be includedwhichmeans the 2 internal spliced
donor sites have to be suppressed. This could be achieved by CaMKIV
recognizing the CARRE consensus sequence at the second splice donor
site, site one could be suppressed by the secondary structure of the
pre-mRNA since it is known that those structures can influence the reg-
ulation of alternative splicing [64]. As already shown by the group of
Black [59] expression of PMCA1a is increasing in a CaMKIV dependent
way the more the P19 cells differentiate during depolarization. Similar
observations have been made by Guerini et al. [65] for cerebellar gran-
ular cells which differentiate by depolarization in a Ca2+ dependent
way inducing an increased expression of PMCA1a. By analysing the se-
quences of the other PMCA genes it was interesting to note that the
CaMKIV-responsive CARRE motif could only be identified in PMCA1 in-
dicating that such a CaMKIV-dependent regulation of alternative splic-
ing is unique for PMCA1.

What could be the advantage for the brain development to switch
from PMCA1b to PMCA1a as neuronal differentiation improves? This
is most certainly connected with the significant difference in the C-ter-
minal amino acid sequence between the 2 isoforms since due to the in-
clusion of exon 21 in PMCA1a the reading frame has changed leading to
an early stop codon and a significantly reduced C-terminal sequence
(see Ref. [48]). In addition, the calmodulin sensitivity for PMCA1a is
much lower, but the basal Ca2+ activity is higher for PMCA1a. This
might be an advantage for fast spiking neurons since PMCA1a could
bemore efficient in fast changing conditions to control Ca2+ homeosta-
sis. This conclusion is supported by findings that if in fast spiking inter-
neurons in which parvalbumin (PV) plays an essential role as Ca2+

buffer (for a recent review see [66]) PV is knocked down Ca2+ extrusion
systems are increased, especially PMCA [67] indicating an important
control function for PMCA1a in those neurons.

As indicated before the availability of the thyroid hormone T3 is crit-
ical for the development of the brain. So it has been demonstrated by
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Fig. 2. Schematic view of different signal transduction pathways of CaMKIV as induced by
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dependent regulatory element binding protein; hnRNPL = heterogenous nuclear
ribonucleoprotein L.
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Morte et al. [19] that gene expression in the developing brain of rats
controlled by the CaMKIV signaling pathway is regulated by thyroid
hormone. Since it is well known that the developing fetal brain is totally
dependent on the maternal supply of the thyroid hormone [7,68] the
findings reported by Zhang et al. [8] are of interest. These authors dem-
onstrated that due to maternal hypothyroidism the expression of
CaMKIV and its activating kinase CaMKK have been significantly re-
duced leading to the impairment of theCREB-dependent signalingpath-
ways which are associated with synaptic plasticity, learning and
memory [8]. Since the expression of PMCA1a is controlled by CaMKIV
it can be assumed that a significant reduction of CaMKIV and its con-
trolled pathways may lead to a severe reduction of PMCA1a which
could impair Ca2+ homeostasis during neuronal development and syn-
aptic formation. Similar conclusions could be made considering obser-
vations made with CaMKIV−/− mice which show severe hippocampal
deficits influencing memory function [69] and cerebellar malfunction
[70].

7. Consequences of CaMKIV−/− for neural development

CaMKIV as well as PMCA1a are highly expressed in the cerebellum
and in hippocampus as two examples of well studied areas of the
brain [22,25,53,54]. By investigating CaMKIV null mice Ribar et al. re-
ported [71] locomotor defects indicating a malfunction of the cerebel-
lum. The authors further observed a severe reduction of mature
Purkinje neurons together with a significant decrease of p-CREB, phos-
phorylated at Ser-133 [71], a major target of CaMKIV to control Ca2+-
dependent gene transcription [25] and synaptic transmission. In a
later studyMeans and his coworkers [72] reported a similar impairment
for the development of cerebellar granule cells in mice deficient of ei-
ther CaMKIV or CaMKK2, the activator kinase of CaMKIV. These results
underline the importance of Ca2+ signaling via the CaMKK2-CaMKIV-
pCREB pathway for the synergistic development and maturation of cer-
ebellar granule and Purkinje cells to be able to form synaptic connec-
tions with each other.

Also in the hippocampus the CaMKIV regulated pathwayplays a crit-
ical role to enable synaptic plasticity and cognitive functions such as
learning and memory [73] since CaMKIV null mice [69] or transgenic
mice containing a dominant-negative form of CaMKIV [74] displayed
severe hippocampal defects resulting in an impairment of memory
function. An interesting aspect was recently discussed by Tsien and his
co-workers [75] who investigated CaMK pathways in parvalbumin
(PV) containing GABAergic hippocampal neurons (PV(+)). Their activ-
ity is crucial for the morphological development and the synaptic plas-
ticity of the hippocampus. Cohen et al. reported [75] that CaMKIV is
responsible for the rate-limiting phosphorylation of CREB in PV(+)
cells thereby regulating the dynamics of Ca2+ signaling in fast-firing
PV(+) cells [75]. In this context it is interesting to note that grid cells
in the medial entorhinal cortex which are responsible for spatial orien-
tation target PV(+) interneurons to tune their firing activity [76].

In summary, I outlined in this review that the CaMKIV controlled
pathway is essential for Ca2+-dependent gene expression. This is im-
portant for neuronal development contributing to synaptic plasticity
and cognitive functions such as learning and memory [77]. In addition,
CaMKIV is also a unique regulator of alternative splicing [78] which be-
comes important for the expression of the spliced isoformPMCA1a [39],
the latter has the special function to control Ca2+ homeostasis in the de-
veloping brain [54]. Both regulatory roles of CaMKIV are probably de-
pendent on the induction by the thyroid hormone T3 [17] (see Fig. 2)
since maternal hypothyroidism results in a significant reduction of
CaMKIV and CaMKK in the fetal brain [8] leading to the impairment of
its neurodevelopment. Therefore it would be important to analyse in
more detail the role of PMCA1a during brain development, whether
its expression is influenced bymaternal hypothyroidism or by deficien-
cy in CaMKIV or CaMKK2 expression, i.e. what consequence has an im-
pairment of PMCA1a expression for brain development.
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