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No smooth beginning for spacetime

Job Feldbrugge,[] Jean-Luc Lehners,>[]] and Neil Turok!:[f]

Y Perimeter Institute, 31 Caroline St N, Ontario, Canada
2 Maz—Planck-Institute for Gravitational Physics (Albert-Einstein—Institute), 14476 Potsdam, Germany

We identify a fundamental obstruction to any theory of the beginning of the universe as a semi-
classical quantum process, describable using complex, smooth solutions of the classical Einstein
equations. The no boundary and tunneling proposals are examples of such theories. We argue that
the Lorentzian path integral for quantum cosmology is meaningful and, with the use of Picard-
Lefschetz theory, provides a consistent definition of the semi-classical expansion. Framed in this
way, the no boundary and tunneling proposals become identified, and the resulting framework is
unique. Unfortunately, the Picard-Lefschetz approach shows that the primordial fluctuations are out
of control: larger fluctuations receive a higher quantum mechanical weighting. We prove a general
theorem to this effect, in a wide class of theories. A semi-classical description of the beginning of
the universe as a regular tunneling event thus appears to be untenable.

Quantum gravity is supposed to provide a quantum de-
scription of spacetime. If so, it should address basic ques-
tions like: how did classical spacetime emerge? or even,
how did the universe begin? Vilenkin’s tunneling from
nothing proposal [I] and Hartle and Hawking’s no bound-
ary proposal [2H4] represent two important attempts in
this direction. Both are most naturally formulated in
terms of sums over spacetime geometries, taken to have
a certain form. However, the lack of a consistent defini-
tion for the Feynman path integral for quantum gravity
has significantly hampered attempts to extract clear pre-
dictions from either proposal.

Hartle and Hawking take the Euclidean path integral
for quantum gravity to be fundamental and attempt to
describe the beginning of the universe using a complex,
smooth, saddle point solution of the Einstein equations.
In their picture, the real, Lorentzian universe is obtained
as an analytic continuation from a compact Euclidean
geometry. The big bang singularity is avoided because
the Euclidean region closes off smoothly in the past (left
panel, Fig. . Vilenkin in contrast adopted an entirely
Lorentzian picture, in which the universe begins on a
three-geometry of size zero, i.e., a point. He assumed,
without further justification, that there would be no free-
dom to input boundary data there.

In a previous paper [5] we showed that, in simple cos-
mological models, the Lorentzian path integral for quan-
tum gravity is a meaningful, convergent quantity whereas
the Euclidean version is not. Instead of performing a
Wick rotation of a timelike coordinate, the convergence
of the path integral is improved by analytically contin-
uing in the fields. Picard-Lefschetz theory allows one
to unambiguously identify the contributing saddle points
and integration contours, thereby defining a consistent
semiclassical expansion for the full quantum propagator.

We believe Picard-Lefschetz theory provides the most
conservative and minimal approach to semiclassical
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FIG. 1. Left: the smooth, regular picture of the no boundary
background. Middle: the no boundary picture with hoped-for
small fluctuations, in agreement with observations. Right: the
fluctuations implied by the more rigorous, Lorentzian-Picard-
Lefschetz approach developed here. Our analysis shows that,
to leading semiclassical order, large fluctuations are preferred,
leading to a breakdown of the theory.

quantum gravity, possessing considerable advantages
over other approaches. This being the case, any pro-
posal for the initial conditions of the universe, such as
the tunneling or no boundary proposals, should be pos-
sible to formulate within the Picard-Lefschetz approach.
Like Vilenkin, our starting point is the Lorentzian the-
ory. However, like Hartle and Hawking, we demand that
any contributing saddle point must be a smooth (albeit
complex) solution of the Einstein equations. This con-
dition is equally necessary, we believe, in Vilenkin’s pic-
ture in order to avoid additional boundary data entering
on the initial three-geometry. Remarkably, then, in the
Picard-Lefschetz approach the tunneling and no bound-
ary proposals become equivalent. In [5], we showed that
implementing regularity a la Hartle and Hawking, results
in a negative real part of the semiclassical exponent, dis-
agreeing with them but in agreement with Vilenkin.

In this Letter, we extend the discussion to linear fluc-
tuations around such a background, and to slow-roll in-
flationary models. Contrary to the small perturbations
hoped for in both proposals, we find large fluctuations
are preferred. The middle and right panels in Fig. [1] are
increasingly accurate descriptions of the no boundary or
tunneling proposal. Perturbation theory and the nor-
malizability of the perturbations break down, making a
smooth, semi-classical beginning of spacetime impossible.
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There is a basic conundrum at the heart of quantum
cosmology, whose resolution underlies our main claim.
The problem is that the scale factor of the universe (the
so-called conformal factor) has a negative kinetic term,
unlike all other bosonic fields. This simple, but funda-
mental fact prevents one from Wick rotating time so that
the phase factor /" appearing in Lorentzian path in-
tegrals becomes a real suppression factor e 52/% for all
bosonic fields. Hence, our approach is to perform no
Wick rotation at all, but instead use Picard-Lefschetz
theory to make sense of the Lorentzian path integral as
it stands. In doing so, we uncover an important sub-
tlety. For the simplest case of quantum de Sitter space-
time, the relevant cosmological background is a round
Euclidean four-sphere, as Hartle and Hawking claimed,
but obtained from de Sitter via the conjugate contin-
uation [5]. This inverts the semiclassical weighting fac-
tor, with the physically appealing consequence that large,
rather than small, universes are suppressed.

However, as it turns out things are not so pleasant for
the perturbations. Within the no boundary picture, the
quantum amplitude for linearized perturbations is fixed
by the complex, classical solution which equals a given
perturbation amplitude on the final three-geometry and
is regular on the past background four-geometry. Since
the perturbation action is quadratic, the functional de-
terminant is independent of the final perturbation ampli-
tude. The Picard-Lefschetz construction ensures the con-
vergence of the path integrals and determines the pref-
actor uniquely. However, as a result of the complex con-
jugate nature of the background solution already men-
tioned, arising from the negative sign of the scale factor’s
kinetic term, the final expression for the probability dis-
tribution of perturbations takes the form of an inverse
Gaussian in the final perturbation. Hence, the distribu-
tion is unbounded and the perturbations are out of con-
trol. At the end of the paper we give a general topological
argument indicating that this conclusion is unavoidable.

To set the stage, we briefly review the path inte-
gral computation of perturbations in the flat slicing of
a classical de Sitter background. The line element is
a’(n)(—dn? + d7?) with a(n) = —1/(Hn), (constant)
Hubble parameter H and conformal time —oo < n < 0.
The Fourier modes of the perturbations decouple and
can be treated independently. The quadratic action
for a perturbation mode ¢ — for example, a gravita-

tional wave — of wavenumber k takes the form S((fl) =

i 7:)1 dna?(n) [(QS’U)Q - k2¢2], with g the initial and 7;
the final conformal time. We assume |kno| > 1 so that
the perturbations start out in the local adiabatic vacuum
at some early time 7. For simplicity, we take 7, — 07,
so the mode ends up frozen, with its physical wavelength
far outside the Hubble radius. The amplitude for a final
perturbation ¢4 is then given by
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where the action Sé?l) incorporates the boundary condi-
tions ¢(10,1) = @o,1, and the functional measure includes
an integral over ¢g. The second factor represents the
initial (assumed) adiabatic ground state wavefunction.

The functional integral is Gaussian so the saddle point
approximation is exact. Stationarizing with respect to
¢ and using the Hamilton-Jacobi equation 856’21) /O¢o =
—7s(no) = —a?¢.,(no), we find the saddle point solution
to be “negative frequency” at early times. Solving the
perturbation equation ¢ ,,, —(2/n)¢ ., +k*¢ = 0, with the
given boundary conditions, the classical solution is ¢ ~
#1€" (1 — ikn). Evaluating the semiclassical exponent
and carefully taking the limit 77; — 07, we find
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The probability density is determined by the modulus
squared of the amplitude. The divergent phase (which
physically represents the final momentum of the mode)
disappears and we recover the familiar result of a scale-
invariant power spectrum for ¢.

The same result can be obtained by analytic continu-
ation from the Euclidean theory. First, we Weyl trans-
form the line element to flat space, and ¢ to x = a¢.
After an integration by parts, the Lorentzian action be-

comes S((),Q1) =1 7;701 dn [(X-,n)2 — (K? —2/772))(2] Now

we pass to Euclidean time X = in and S = —i5, ob-

taining Sp = 1 ;(01 dx {(X’)2 + (k2 +2/X2)X2}, with

"= d/dX, i.e., a positive Euclidean action. We com-
pute G, [x[X1]] from the Euclidean path integral over x.
Again, we seek a classical saddle point solution. Finite-
ness of Sg imposes regularity at X — —oo, automati-
cally selecting the ground state wavefunction. The de-
sired classical solution is x(X) = x1f(X)/f(X1), with
f(X) =e*¥(1/X — k). The on-shell action is Sg(X;) =
IxX'(X1) = $x3f/(X1)/f(X1). We continue back to
Lorentzian time by setting X; = in;. Taking the limit
n1 — 07 again yields , with an additional phase gen-
erated from the change of variables from ¢ to x.

Let us now turn to a consistent semiclassical treatment
of both the background and the perturbations in the no
boundary proposal, in order to understand why this fails
to yield the standard results just explained. We assume
a homogeneous and isotropic, closed background cosmol-
ogy: ds* = —N,(t,)?dt2 +a(t,)?dQ3, with lapse function
N, scale factor a(t,) and unit 3-sphere metric dQ23. The
time t, is the physical time if N, is set to unity. We as-
sume the only matter is a positive cosmological constant
A. The Einstein-Hilbert action for the background is

1 a?
S8 = 272 / [—3@ 2 4 N,(3a — a3A)] dt, ,
0

Np

where we have set 87G = 1. The quantum propagator
to evolve from a(0) = ag to a(l) = ay is [6, [7]

GOlay; ao) :/ dN/DaeiSé‘?Na,N]/h_
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Re-defining the lapse and the time coordinate via
N, dt, = (N dt)/a renders the action quadratic in ¢ = a?,

s<°>:27r2/01[ %q + N(3 - Aq)} (2)

The path integral over g can now be performed exactlyﬂ
The classical solution satisfying ¢(0) = go, ¢(1) = ¢1 is

A A
q(t) = §N2t2 + {ql — SNQ} t + qo-

The no boundary condition is implemented by specifying
go = 0 and requiring the complex classical solution to
be a regular, locally Euclidean metric there, i.e., that
near ¢ = 0 one can choose coordinates in which ds? ~
do? + 02d02. The propagator reduces to:
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with ¢+ = (¢1 £ qo)/2. This oscillatory integral is then
evaluated by deforming the integration contour into the
complex N-plane, using Picard-Lefschetz theory [9] [10]
to identify the relevant saddle points, and evaluating the
integral in a semiclassical expansion.

The on-shell background action S [q;;0; N] has four
saddle points, each located in a different quadrant of the
complex N-plane. The relevant saddle is located at
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yielding for the no boundary propagator
G[q1; 0] e 12# 147T2\/>( )3/2

As discussed in [5], Picard-Lefschetz theory implies semi-
classical suppression |G[g1;0]] < 1, in agreement with
Vilenkin but not with Hartle and Hawking.

We have performed the analogous calculation with
a slow-roll inflaton field ¢ whose potential is well-
approximated by V(¢) &~ A — m?¢? near p = 0. We
find that, as one would naively expect, for small ¢y,

1272
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so there is a higher weighting for a larger initial potential
energy V(¢) [I1] . Given that the radius of the universe
is approximately 1/3/V (¢) when space and time become
classical, this supports the intuition that it is easier to
nucleate a small rather than a large universe.

1 Modulo issues regarding operator ordering and the path integral
measure, and the restriction ¢ > 0, further discussed in [5] [§].

The same results can be obtained in physical time ¢,
using the correspondence

sinh(Ht,) = H*Nt—1, (3)

where we define H = 3

The no boundary point ¢ = 0 corresponds to Ht, = —7Z.

\/z and a(t,) = Hcosh (Htp).

Let us now extend our analysis to include perturba-
tions — for example, gravitational waves — treated at lead-
ing (linearized) order. The full propagator is

Glar; d15 90, Po] :/ dN/Dq/pgbeiS[q,aﬁ,N]/n,
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where the action S = S +52) and the boundary condi-
tions are implicit. In the ¢ coordinates the perturbation
action for gravitational waves reads

S\ 2
1
S — 3 /Nsdtdgx ¢ <]$> —1(1+2)¢?| ,

with [ the principal quantum number on the 3-sphere.
For tensor perturbations, { > 2. (For more general situ-
ations, one may also have scalar or vector perturbations,
with [ > 0 and [ > 1 respectively: see, e.g., Ref. [12]).
The path integral over the perturbations is again
quadratic, so the saddle point approximation gives the
01 dependence exactly. The equation of motion for ¢ is

¢+2q¢—|— 5 l(l+2)¢) = 0, where we use the saddle point

N of the background, neglecting backreaction. The so-
lution satisfying ¢o = 0 is ¢(t) = ¢1 F(t)/F(1), with
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Note ¢(t) o 2 as t — 0, implying ¢ is regular there.

The classical action for the perturbations is given by a
surface term on the final boundary,

d [¢% - 2 _F
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The full propagator for the perturbed background factor-
izes at this order G[g1, ¢1;0,0] = Glg1; 0]Gy[¢1;0], with

1(1+1)(1+2) ;2
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corresponding to an inverse Gaussian distribution. A
similar result is obtained for the curvature perturbations
in slow-roll inflation [IT].

In order to compare our results with the Bunch-Davies
vacuum, we convert to conformal time dn = di,/a.




The physical time and the conformal time are related

by tan (5 + 2) = tanh(H;”) , where —oo < ¢, < o0

corresponds to —m < 1 < 0. Thus, as n — 0,

tan(% + 1) _>_l+ﬂ+13+
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which, using , leads to the late time approximation
1 2 & 3

O =¢1 1+§l(l+2)77 —gl(l+1)(l+2)n +...] .

This is the late time expansion of the “positive fre-
quency” mode function, confirming that the no boundary
condition selects the “wrong” mode function as compared
to the adiabatic ground state.

Having demonstrated our claim that the perturbations
are out of control in the no boundary description of quan-
tum de Sitter spacetime, we would like to establish how
general the result is. To begin with, we shall consider
a fluid more general than a cosmological constant, but
which is still “adiabatic”, namely, the background pres-
sure P is a function of the energy density p so that there is
a unique cosmological history parameterized by the scale
factor a. Furthermore, we assume this classical evolution
results in a smooth “bounce” of the scale factor such as
occurs in the closed slicing of de Sitter spacetime.

From our discussion above, it is clear that the on-shell
classical action is all that is needed to determine the semi-
classical exponent in the quantum propagator both for
the background and for the perturbations. In the no
boundary solutions, ¢ = a? runs from ¢y = 0 to ¢, a
positive value. Thus ¢ itself may be used as a time co-
ordinate. The Friedmann constraint allows us to express
the background line element as

d¢?

= (e D)

+ qdQ3, (5)

where we allow the energy density p(q) to vary with q.
Cauchy’s theorem enables us to deform the time (or q)
contour upon which we evaluate the classical action as
long as it does not cross any singularity. In particular,
we can deform it to one in which ¢ is real everywhere.
The line element is Lorentzian for ¢ > 3/p(q) but
Euclidean for 0 < ¢ < 3/p(q), and is easily checked to
be regular at ¢ = 0. At ¢ = 3/p(q), where ¢ = g,
the real, Lorentzian solution “bounces,” and ¢ therefore
ceases to be a single-valued time coordinate. Our com-
plex saddle point solution passes below this point in
the complex g-plane: it is precisely this topological fact
which results in the suppression of the semiclassical am-
plitude, required by Picard-Lefschetz theory [B]. Using
the Friedmann constraint, the classical action gives
iSO = —6772iqu\/pq/3— 1. Since we start in the
Lorentzian region we take the branch cut to run left-
wards from the point ¢p, the classical “bounce.” Con-
tinuing the ¢ integral below the branch cut to ¢ = 0,

q= a® ‘7] = qu %éﬁ
n=—iX, X <0
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FIG. 2. Left: Analytic continuation contours (red) in the

Hartle-Hawking (H-H) and Picard-Lefschetz (P-L) descrip-
tions, above and below the branch cut in the complex g-plane.
Right: Corresponding contours for the conformal time.

we obtain for the real part of the semiclassical expo-
nent —6m?2 OqB v/1—pq/3. For a cosmological constant
p(q) = A, we obtain —1272/A. Continuing above the
branch cut yields +1272 /A, Hartle and Hawking’s result,
which is inconsistent with Picard-Lefschetz theory.

To analyze the perturbations, we pass to coordinates
in which the metric is conformally static: for ¢ > ¢p,
we set dn = dq/(2¢\/pq/3 — 1) to obtain the line ele-
ment q(n)(—dn? +d03). We take 7 = 0 to correspond to
the “bounce,” so 7 is positive in the Lorentzian region.
Now, when ¢ passes below the branch cut commencing at
qB, the square root in the definition of dn means that n
continues from the positive real n-axis onto the negative
imaginary n-axis, 7 = ¢X with X < 0 in the Euclidean
region. Conversely, following X forward from the Eu-
clidean region, it “turns right” into the Lorentzian region,
whereas in the usual Wick rotation, assumed by Hartle
and Hawking, it “turns left” (see Fig. [2). Taking the
continuation implied by Picard-Lefschetz theory for the
background, the Euclidean action for the perturbations
has the “wrong” sign. We can still impose regularity
of the modes in the Euclidean region, but the resulting
semiclassical weighting factor will inherit the wrong sign.

As in our earlier discussion, it is convenient to go to a
Weyl frame in which the kinetic terms are canonical. So
we set ¢ = x/a, obtaining for the Lorentzian action

. ) a
iS® — z7r2/d17 [(X,n)2 + #XZ — (1 + 2)X2] . (6)

The background equations imply that a,,/a = %(% —
w)pa?—1, where w = P/p is the equation of state. Ana-
lytically continuing ) back into the Euclidean region and
then on to ¢ = 0 (corresponding to X = —o0), as ex-

plained above, we obtain the Euclidean action
(2) 0
-5 = 7r2/ dX [X?+U(X)x*] , (7)

where X' = dy/dX and U(X) =1(1+2) + 1+ 3¢ (wg —
%)pE. Here, wg and pg are the analytic continuations of
their Lorentzian counterparts into the Euclidean region.
Whatever the equation of state of the matter, U(X) is
positive at large [, since regularity demands that pg re-
mains finite, and correspondingly wg — —1, as ¢ — 0.



In fact U(X) is positive for all tensor modes as long as
pr > 0and wg > —17/3.

As before, the quantum amplitude’s dependence on the
final perturbation y; on the final three surface, where
q = q1, is given by the classical action. The no boundary
prescription selects the mode x = f(X) which is regular
at ¢ = 0, i.e., which vanishes at X = —oco (in the large

[ limit, we simply have f(X) ~ eV!/+2X)  Using an

integration by parts, from we obtain the on-shell Eu-
clidean action —SEEQ) = m2x3f(X1)/f(X1). The quantity
f1(X)/f(X) is positive at X = —oo: as long as U(X)
is real and positive, the classical equation of motion for
f implies f/(X)/f(X) remains positive throughout the
Euclidean region.

Continuing the conformal time into the Lorentzian re-
gion, we can show that the real part of the semiclassical
exponent remains positive. Expressing the mode func-
tion in terms of its real and imaginary parts, f(X) =
R(X) +4I(X), we have shown that Re[f’/f] = (RR' +
I /(R*+I?) > 0at X =0. When X turns in the neg-
ative imaginary direction, X = —in, with 7 positive, the
Cauchy-Riemann equations yield R’ +4I' = i(R,, +1I ;).
Therefore, at X =7 =0, wehave R ,, = I"and I ,, = —R’
and follows that the Wronskian IR ,, — RI ,, which is in-
dependent of 1), equals (R?+1%)Re[f’/f] at X = 0, which
is positive. Now, the real part of the semiclassical expo-
nent, at a final Lorentzian time 7; is similarly given, af-
ter an integration by parts, by m2xiReli f.,,(m1)/f(m)] =
m°x3(IR,,— RI,)/(R*+I?) (in fact, I vanishes there by
assumption). Since the Wronskian is positive, it follows
that the semiclassical exponent for the perturbation xi
is positive, for all positive 7.

In more general situations, the background pressure
may not be expressible in terms of the density. In this
case, it may not be possible to describe both the Eu-
clidean and Lorentzian regions in terms of a real poten-
tial U. Nevertheless, even in this more general situa-
tion, where the “bounce” point ¢p satisfying ¢g = 3/pp

is complex, we still need to pass below it in the com-
plex g-plane to be consistent with Picard-Lefschetz the-
ory. This topological result again implies that the con-
formal time 7 runs from —ico in the region around
q = 0 to positive, nearly real values in an approximately
“Lorentzian” region. For modes of large I, the (in gen-
eral complex) potential U(X) is dominated by the [?
term, and the no boundary solution is accurately de-
scribed by the WKB Euclidean growing mode, so that
Re[f'/f] ~ VI(1+2)+ O~ at large I. The argu-
ments above again demonstrate that the final semiclassi-
cal exponent has a positive real part. We conclude that
the problem of unbounded perturbations, at small wave-
lengths, is unavoidable in the no boundary approach.

The no boundary and tunneling proposals had as
their objective to provide theories of initial conditions
for the universe, and in particular to explain the initial
smoothness of the universe. As we have demonstrated
here, when analyzing these proposals in a well-defined
mathematical setting the picture that emerges is rather
the opposite. Large perturbations are preferred, to such
an extent that the propagator becomes non-normalizable
and the entire framework fails. As detailed in a
forthcoming publication [I1], the situation cannot be
improved by considering steeper inflationary potentials,
even in cases where the lapse function becomes real
at the saddle points (and even for negative ekpyrotic
potentials the same problems arise). A smooth semi-
classical beginning to the universe, where the big bang
singularity is avoided, is thus not an option.
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