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Supplementary Note 4 

In the study presented in the main text, we show energy landscapes from cryo-EM data. This 5 
supplemental text aims to outline the underlying concept and to describe the method we 6 
developed to generate those landscapes.  7 

If not stated differently, particles with and without Oprozomib bound to the proteasome were 8 
treated as separate subsets. All particles of one subset were refined against the initial 26 S 9 
proteasome map using RELION to gain alignment parameters. This reduces the subsequent 10 
calculations in the classification step. The resulting aligned images were randomly split in subsets 11 
of 100,000 particles and a RELION 3D-classification1, yielding 40 classes per subset, was 12 
performed, without aligning the particles again. Each resulting 3D class was further refined with 13 
the assigned particles using RELION.  14 

To further analyze the motions between the in total 346 classes we used principle component 15 
analysis (PCA). The result of a PCA are eigenvectors 𝑒𝑒𝑗𝑗  , that describe the largest covariance 16 
within the dataset. In aligned 3D volumes of the same molecule, the largest covariance are 17 
primarily movements within the molecule2. The eigenvectors can be used as conformational 18 
coordinates.3 Before applying PCA, the refined 3D-classes were aligned in UCSF Chimera 19 
against a model of the most rigid part of the 26S complex, the 20 S proteasome subcomplex. This 20 
is necessary to avoid calculating eigenvectors which describe shifts and rotations of the 3D-21 
classes among themselves. 3D classes from datasets with and without Oprozomib were 22 
combined and normalized, and subsequently eigenvectors were calculated using PCA. Hence, 23 
the eigenvectors describe the movements found in both datasets and allow us to compare the 24 
results in the end. 25 

 One can then describe the conformers 𝑋𝑋𝑖𝑖 on a coordinate 𝑒𝑒𝑛𝑛 (the eigenvector describing 26 
movement n) by: 27 

 28 

𝑋𝑋𝑖𝑖 = 𝑎𝑎𝑛𝑛,𝑖𝑖𝑒𝑒𝑛𝑛 +  𝑋𝑋�                                                           (1) 29 

 30 

where  𝑋𝑋� is the average volume, 𝑒𝑒𝑛𝑛 is a specific eigenvector and 𝑎𝑎𝑛𝑛,𝑖𝑖is a linear factor. In other 31 

words, 𝑒𝑒𝑛𝑛 is a conformational coordinate and  𝑎𝑎𝑛𝑛,𝑖𝑖places the conformer 𝑋𝑋𝑖𝑖 at its specific place on 32 
this conformational coordinate. The addition of the mean volume results from the definition of 33 
PCA. Eigenvectors and hence their corresponding trajectories can be sorted according to their 34 
contribution to the overall mobility.  35 



However, the movements described by the conformational coordinates might be composed out 36 
of several primitive motions of the molecule. Therefore, one cannot assign a single measure (e.g. 37 
rotation angle, translation movement) to all of those movements. The following movements where 38 
found and are listed descending in the value of the covariance:  39 

 40 

Eigenvector Description 

1 Rotation of Lid and translation of ATPase 

2 Resolution differences 

3 conformational stabilization of Rpn9 

4 conformational stabilization of Rpn5,10 and 12, movement of 
Rpn1 

5 Motion of Rpn1, conformational stabilization of Rpn 9,10 , small 
breathing of lid  

6 Translation of Rpn2, 3, 7, 12  

7 Stretching of lid, movement of central helix bundle(Rpn3, 6, 8, 
11), movement of ATPase  

8 Rise of ATPase (including Rpn1), sinking of Rpn2, 8   

9 Rotation of Rpn1 

10 Small movements 

 41 

To understand the motion described by the eigenvectors, video trajectories where interpolated 42 
using equation (1) and subsequent morphing in UCSF Chimera (see Supplementary video 1 ). 43 
Then, for each 3D-class the linear factors with respect to each eigenvector were determined. 44 

By placing the different conformers on the reaction coordinates energetic conclusions can be 45 
drawn. Knowing the number of particles assigned to each class, we can calculate their free energy 46 
differences 𝛥𝛥𝛥𝛥𝛥𝛥 by the Boltzmann Factor: 47 

      48 

𝛥𝛥𝛥𝛥𝛥𝛥 = 𝑘𝑘𝐵𝐵𝑇𝑇 ln �𝑝𝑝𝑖𝑖
𝑝𝑝0
�                                                                         (2) 49 

, where 𝑇𝑇  is the absolute temperature, 𝑝𝑝𝑖𝑖 is the number of particles in state 𝑖𝑖  and 𝑝𝑝0   is the 50 
number of particles in the most populated state 4. The number of particles belonging to each 3D 51 



was counted from the respective data output files from RELION. Free energy differences were 52 
calculated using equation (2) as multiples of 𝑘𝑘𝐵𝐵𝑇𝑇.  From equation (2) it becomes obvious that 53 
regions with high energies have a lower number of single particles belonging to them. To visualize 54 
the energy landscape with and without Oprozomib, combinations of two eigenvectors 𝑒𝑒𝑛𝑛, 𝑒𝑒𝑚𝑚 were 55 
used as the axis of a new three-dimensional coordinate system. The 3D classes were placed as 56 
data points in these landscapes with the dimensions being the respective linear factors 𝑎𝑎𝑛𝑛,𝑖𝑖and 57 

𝑎𝑎𝑚𝑚,𝑖𝑖, and the difference in free energy 𝛥𝛥𝛥𝛥𝛥𝛥. By Interpolating between those discrete states, we 58 
could in the end describe energy landscapes in which the molecule moves.  59 

To account for false-positives, i.e. 3Ds which are classified in two separate classes but do only 60 
differ slightly, we applied a final binning of close data points. Therefore, all data points within a 61 
given distance were averaged. This distance was set to the half-width of the peak around one 62 
linear factor.  63 

These landscapes have important limitations. In contrast to e.g. Molecular Dynamics simulations, 64 
the 3D volumes yielded from single particle analysis sample the conformational space discrete 65 
and sparse. Hence, large areas in the landscapes – especially those of high energy - are highly 66 
interpolated. This also represents in the fact that the very low sampled areas close to unfolding 67 
and complex decomposition are not accessible to the method.  68 

However, the method offers an opportunity to quantify the results of 3D classifications and, as in 69 
our specific case, allows to learn about the influence of small molecule binding on the functional 70 
conformational landscape of a macromolecular machine.  71 

 72 
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Supplementary Figures and tables 90 

 91 

Supplementary Figure 1: Western Blot against ubiquitin   92 

We measured the level of polyubiquitinated substrate bound to the purified 26S proteasome by 93 
SDS PAGE and Western Blot analysis using an antibody directed against ubiquitin. Similar 94 
ubiquitin levels were detected for the inhibited (Oprozomib) and the non-inhibited (native) 95 
proteasome. 96 

 97 

  98 

 99 

  100 



 101 

 102 



Supplementary Figure 2: Computational Particle Image Sorting scheme 103 

The scheme shows the various computational image sorting steps required for the determination 104 
of the 3.8 Å resolution structure. First an initial 3D model was calculated using the software Simple 105 
PRIME.  In an initial 3D classification particles were sorted with respect to the two main rotational 106 
conformations of the RP. Particles contributing to the non-rotated state were further classified. 107 
The highest populated class has been classified by focused classification using a mask for the 108 
19S subcomplex. The best classes were chosen and two consecutive rounds of focused 109 
classification have been performed using a mask for the lid subcomplex and finally a mask for 110 
Rpn2. The remaining particles were refined in RELION to 3.8 Å. Furthermore, the signal 111 
contributing to the 20S density was computationally removed from the raw images in RELION 112 
and the remaining 19S subcomplex was refined to 4.1 Å   113 

 114 

 115 

 116 
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 129 

Supplementary Figure 3: Oprozomib binding site in a low-pass filtered density at 4.8 Å 130 
resolution 131 

Close-up view of the Oprozomib binding site in the β5 subunit of the CP. This is essentially the 132 
same Figures like Fig. 1f and 1g. In contrast to Fig. 1f both maps are shown at the same level of 133 
resolution (4.8 Å) to allow direct comparison and to avoid potential resolution effects. 134 

  135 



 136 

 137 

 138 

 139 

Supplementary Figure 4: Representation of densities, corresponding to the modeled 140 
subunits 141 

Segmentation of all 26S proteasome components (Supplementary Table 1) sorted by lid proteins 142 
(upper rows), ATPase, α and β subunits (lower three rows). The horizontal line below the ATPase 143 
(Rpt) subunits indicates the surface plane of the CP.  144 

 145 

 146 

 147 

  148 



 149 

 150 

Supplementary Figure 5: B-Factor Distribution 151 

We obtained model B-factors by an atomic displacement factor refinement in Phenix and defined 152 
three quality levels, which were used to decide about the validity of building side chains into 153 
various regions of the final 3.8 Å resolution structure. Side chains are in general clearly visible in 154 
areas of the 3D density with B factors <110 Å2.  For segments with B-Factors in the range of 110 155 
Å2 < B < 150 Å2 side chains are no longer clearly visible but there is sufficient density for the 156 
protein backbone. Regions with B factors higher than 150 Å2 are not suitable to build reliable 157 
models at all. We therefore included side chains in the deposited model only for those parts of 158 
the 3D map where B factors <110 Å2 were obtained. In our model, the protein backbone is included 159 
for B factors 110 Å2 < B < 150 Å2 and no model was built for B factors >150 Å2. 160 

 161 

  162 
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 177 

Supplementary Figure 6: Refined 3D-Classes 178 

346 3D classes of the 26S proteasome (with and without Oprozomib) which were used to study 179 
the major modes of motion in the RP. The structures are shown with the corresponding number 180 
of particles which were used for 3D reconstruction. All 3D structures were used for the analysis 181 
of the RP mobility by PCA and to calculate the corresponding energy landscape (Supplementary 182 
Fig. 2) 183 

 184 

 185 

  186 



 187 

 188 

Supplementary Figure 7: Nucleotide Densities 189 

Nucleotide densities were clearly visible for all 6 ATPase subunits. At the given resolution it cannot 190 
clearly be distinguished between ATP and ADP. Therefore, all nucleotides were built as ADP. 191 
Interestingly, the rpt2 nucleotide is the only one revealing a different sugar pucker which is in line 192 
with the strong deviation from perfect symmetry in this particular area of the ATPase. 193 

  194 



 195 

 196 

 197 

Supplementary Figure 8: Exemplary micrograph showing human 26S and 30S 198 
proteasomes 199 

Cryo-EM micrograph of the purified proteasome. Most particles show the doubly capped 30S 200 
form. About 20 % of particles are singly capped 26S proteasomes.  201 

  202 



 203 

Supplementary Figure 9:  Electron microscopic analysis of Oprozomib bound 204 
Proteasome   205 

a) Micrograph depicting the various orientations of the purified 26S proteasomes.  206 
b) Representative reference free 2D class averages.  207 
c) Fourier Shell Correlation curves between the two half maps (map map) and the model 208 

and the map are depicted. The curve describing the correlation of the two half maps 209 
indicates the resolution of 3.8 Å using the 0.143 criterion. The curve describing the map-210 
model correlation indicated a resolution of 4.2 Å using the 0.5 criterion.       211 



Supplementary Table 1: 26S Proteasome nomenclature and positioning of proteins in the cryo-EM 3D structure 212 

 213 

Yeast Human  Chain MW 
[kDa] 

Activity/ Domain 
type 

% of residues modeled Structure 
Source 

Reference Note 

α1 α1 G U 27.40  95.12% 98.37% 5LEY Schrader et al. (2016)  

α2 α2 A O 25.80   98.71% 98.71% 5LEY Schrader et al. (2016)   

α3 α3 B P 29.50  89.66% 93.49% 5LEY Schrader et al. (2016)  

α4 α4 C Q 27.90   94.35% 96.37% 5LEY Schrader et al. (2016)   

α5 α5 D R 26.40  96.68% 96.68% 5LEY Schrader et al. (2016)  

α6 α6 E S 29.60   88.97% 91.25% 5LEY Schrader et al. (2016)   

α7 α7 F T 28.30  91.73% 94.49% 5LEY Schrader et al. (2016)  

β1 β1 N B 25.30 caspase-like 
protease activity 

84.94% 99.02% 5LEY Schrader et al. (2016)  

β2 β2 H V 29.90 trypsin-like protease 
activity 

79.42% 94.02% 5LEY Schrader et al. (2016)   

β3 β3 I W 22.90  100.00% 99.51% 5LEY Schrader et al. (2016)  

β4 β4 J X 22.80   97.51% 97.51% 5LEY Schrader et al. (2016)   

β5 β5 K Y 22.90 chymotrypsin-like 
protease activity 

95.67% 98.04% 5LEY Schrader et al. (2016)  

β6 β6 L Z 26.50   88.80% 88.38% 5LEY Schrader et al. (2016)   

β7 β7 M A 29.20  81.82% 99.54% 5LEY Schrader et al. (2016)  

Rpt1 S7 C  48.6 AAA+ ATPase 80.32%  Robetta (4CR2) Unverdorben et al 
(2014) 

 



Rpt2 S4 D   49.2 AAA+ ATPase 75.68%   Robetta (4CR2) Unverdorben et al 
(2014) 

HbYX motif not 
resolved 

Rpt3 S6b E  47.3 AAA+ ATPase 89.71%  Robetta (4CR2) Unverdorben et al 
(2014) 

 

Rpt4 S10b F   44.1 AAA+ ATPase 89.46%   Robetta (4CR2) Unverdorben et al 
(2014) 

  

Rpt5 S6a G  49.1 AAA+ ATPase 82.69%  Robetta (3CF2) Davis et al (2008)  

Rpt6 S8 H   45.7 AAA+ ATPase 85.71%   Robetta (4CR2) Unverdorben et al 
(2014) 

  

Rpn1 S2     100.2 Scaffold 83.37%   - - highly flexible, not 
modelled  

Rpn2 S1 I  105.9 Scaffold 35.05%  Robetta (4CR2) Unverdorben et al 
(2014) 

 

Rpn3 S3 J   61 PCI 78.46%   Robetta (4D10) Lingaraju et al   

Rpn5  K  52.9 PCI 92.75%  Robetta (4D10) Lingaraju et al  

Rpn6 S9 L   47.4 PCI 89.07%   Robetta (4D10) Lingaraju et al   

Rpn7 S10a M  45.5 PCI 72.49%  Robetta (4D10) Lingaraju et al  

Rpn8 S12 N   37.1 MPN 59.88%   Robetta (4D10) Unverdorben et al 
(2014) 

Highly problematic 
N-terminus and 
MPN domain  

Rpn9 S11 O  42.9 PCI 50.80%  Robetta (4CR2) Unverdorben et al 
(2014) 

registration of 
sequence partly by 
secondary 
structure 
prediction  

Rpn10 S5a P   40.7 vWA; ubiquitin 
receptor 

74.54%   Robetta (4F1J) Pihlajamaa et al 2012   



Rpn11 S13 Q  34.6 MPN+; 
deubiquitination 

77.74%  Robetta (4D10) Lingaraju et al 2014  

Rpn12 S14 R   30 PCI 93.77%   Robetta (4CR2) Unverdorben et al 
(2014) 

  

Rpn13    17.90 PRU; ubiquitin 
receptor 

   - - not found in 
structure 

sem1p DSS1 / 
SHFM1 

S   8.20 intrinsically 
disordered 

37.14%   3T5X Ellisdon et al (2012)   

 214 



 215 

Supplementary Table 2: Model statistics 216 

 Human 26S proteasome 

+ Oprozomib 

Data collection  

Particles 233513 

Pixel Size (Å) 1.27 

Defocus range (µm) 0.4-8 (mean 1.9) 

Electron dose (e-/ Å2) 40.2 

  

Refinement  

Space group P1 

     a,b,c (Å) 426.27 

     α,β,γ (°) 90.0, 90.0, 90.0 

Resolution (Å) 3.8 

Wilson B (Å2) 66.3 

Map sharpening B-factor (Å2) -184.9 

Resolution at FSC = 0.143  3.83 

rwork 0.4526 

Rachmachandran statistics  

     Outliers 2.46 % 

     Favored 83.02 % 

R.m.s. deviations       

     Bond length (Å) 0.015 

     Bond angles (°) 1.669 



Validation  

EMRinger score 1.94 
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