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Abstract. Recent advances in the representation of soil car-
bon decomposition and carbon–nitrogen interactions imple-
mented previously into separate versions of the land sur-
face scheme JSBACH are here combined in a single version,
which is set to be used in the upcoming 6th phase of coupled
model intercomparison project (CMIP6).

Here we demonstrate that the new version of JSBACH
is able to reproduce the spatial variability in the reactive
nitrogen-loss pathways as derived from a compilation of
δ15N data (R = 0.76, root mean square error (RMSE)= 0.2,
Taylor score= 0.83). The inclusion of carbon–nitrogen inter-
actions leads to a moderate reduction (−10 %) of the carbon-
concentration feedback (βL) and has a negligible effect on
the sensitivity of the land carbon cycle to warming (γL) com-
pared to the same version of the model without carbon–
nitrogen interactions in idealized simulations (1 % increase
in atmospheric carbon dioxide per year). In line with ev-
idence from elevated carbon dioxide manipulation experi-
ments, pronounced nitrogen scarcity is alleviated by (1) the
accumulation of nitrogen due to enhanced nitrogen inputs by
biological nitrogen fixation and reduced losses by leaching
and volatilization. Warming stimulated turnover of organic
nitrogen further counteracts scarcity.

The strengths of the land carbon feedbacks of the re-
cent version of JSBACH, with βL = 0.61 Pgppm−1 and γL =

−27.5 Pg ◦C−1, are 34 and 53 % less than the averages of
CMIP5 models, although the CMIP5 version of JSBACH
simulated βL and γL, which are 59 and 42 % higher than
multi-model average. These changes are primarily due to the
new decomposition model, indicating the importance of soil
organic matter decomposition for land carbon feedbacks.

1 Introduction

The version of the Max Planck Institute Earth System Model
(MPI-ESM) used in the 5th phase of the coupled model in-
tercomparison project (CMIP5) experienced pronounced bi-
ases in simulated soil carbon (Todd-Brown et al., 2013),
soil hydrology (Hagemann and Stacke, 2014), and the lack
of carbon–soil nutrient interactions (Zaehle et al., 2014a;
Wieder et al., 2015), hampering the reliability of the simu-
lated response of land system to increasing carbon dioxide
(CO2), climate and land use and land cover changes. Re-
cent model developments addressed these issues (Goll et al.,
2012, 2015; Hagemann and Stacke, 2014) in separate ver-
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sions of the land surface scheme of the MPI-ESM, JSBACH,
but have not been yet combined in a single model version.

The projected carbon balance in JSBACH was substan-
tially affected by recent model developments: the implemen-
tation of carbon–nitrogen–phosphorus interactions reduced
accumulated land carbon uptake by 25 % between 1860–
2100 under a business as usual scenario (Goll et al., 2012),
while the implementation of a new decomposition model
(YASSO) reduced the accumulated land carbon uptake by
about 60 % in the same period (Goll et al., 2015). The ex-
change of the former CENTURY-type soil decomposition
model (Parton et al., 1993) with the YASSO decomposi-
tion model (Tuomi et al., 2008, 2009, 2011) improved the
present-day state of the carbon cycle compared to observa-
tions as well as the response of decomposition to soil warm-
ing, and substantially reduced the uncertainties of land use
change emissions for a given land use change scenario (Goll
et al., 2015). The strong impact on the carbon balance of each
of both developments underlines the importance of combin-
ing them in a single version.

The capacity of land ecosystems to increase their nitro-
gen storage as well as to enhance recycling of nitrogen in or-
ganic matter are major constraints on their ability to increase
carbon storage under elevated CO2 concentrations (Hungate
et al., 2003; Thomas et al., 2015; Liang et al., 2016). The
respective response patterns of nitrogen processes governing
the balance and turnover of organic nitrogen are crucial (Niu
et al., 2016) to assess the likelihood of the occurrence of
(progressive) nitrogen limitation (Luo et al., 2004). Recent
advances in the interpretation of soil δ15N global data sets
provide a promising tool (Houlton et al., 2015; Zhu and Ri-
ley, 2015) by allowing for a more detailed evaluation of the
nitrogen-loss pathways in land carbon–nitrogen models than
previously done (e.g., Parida, 2011; Goll et al., 2012).

Since future scenarios of CO2 concentrations differ among
CMIP phases, an idealized setup of an annual increase in
CO2 concentration by 1 % is used to foster the analysis of
the carbon cycle feedbacks among models, and to compare
emerging properties of different model versions in various
CMIPs (Eyring et al., 2016). We adopt this approach taking
advantage of existing simulations of climatic changes in this
idealized setup of the CMIP5 intercomparison (Arora et al.,
2013) to drive the land surface model JSBACH uncoupled
from the atmosphere and ocean components of the Earth sys-
tem model.

This article documents the modifications to the soil carbon
decomposition (Goll et al., 2015) and nitrogen cycle (Parida,
2011; Goll et al., 2012) submodels and the combination of
both developments in a recent version of JSBACH includ-
ing an advanced soil hydrological scheme (Hagemann and
Stacke, 2014), scheduled to be used in CMIP6. We further
analyzed the state of the nitrogen cycle using soil δ15N data
and quantified the carbon cycle feedbacks to increasing CO2
concentrations and climate change. The analysis aims at fa-
cilitating the interpretation of the models dynamics in the up-

coming round of CMIP experiments (Eyring et al., 2016),
and allows for a straightforward comparison to the result
from the previous round of CMIP (Taylor et al., 2012).

2 Methods

2.1 Model description

The implementation of the nitrogen cycle and the soil car-
bon and litter decomposition model YASSO is described in
detail in Parida (2011), Goll et al. (2012) and Goll et al.
(2015), respectively. In the following, a brief summary of the
major concepts is given and afterwards the modifications to
the original developments needed to combine them are docu-
mented in detail. The notation applied here follows Goll et al.
(2012, 2015) and a scheme of the cycling of carbon and ni-
trogen as well as their interactions are given in Fig. 1.

The decomposition model (YASSO) is based on a compi-
lation of litter decomposition and soil carbon data and dis-
tinguish organic matter fractions according to litter size and
solubility (Tuomi et al., 2008, 2009, 2011). In JSBACH we
use two litter size classes, which correspond to litter from
non-lignified and lignified plant material (Goll et al., 2015).
Each of the two litter classes is further refined into four solu-
bility classes (acid soluble (CA), water soluble (CW), ethanol
soluble (CE), non-soluble (CN)) (Eq. 1). One additional pool
(CH) represents humic, slowly decomposing substances.

The interactions between nitrogen availability and car-
bon fluxes, namely primary productivity and decomposition,
are based on the concept of CO2-induced nutrient limita-
tion (CNL) (Goll et al., 2012). In this framework, we dis-
tinguish between CNL and background nutrient limitation.
The latter is assumed to be indirectly considered in the orig-
inal parametrization of carbon cycle processes as they are
based on measurements in present-day ecosystems and there-
fore reflect present-day nutrient conditions. CNL is an ad-
ditional nutrient limitation caused by the increase in atmo-
spheric CO2 and is computed dynamically according to nutri-
ent supply and demand. In case microbial and vegetation ni-
trogen demand cannot be met by the supply, all carbon fluxes
of which the donor compartment has a higher C : N ratio than
the receiving pool (i.e., the fluxes of carbon from the solubil-
ity classes pools to the humus pool) are downregulated. The
concept of CNL allows one to introduce carbon–nitrogen in-
teractions to YASSO, as the needed conditions are met; e.g.,
the parametrization of YASSO indirectly reflects present-day
nutrient effects on decomposition as it is based on leaf litter
experiments.

Following Goll et al. (2012), CNL affects the decompo-
sition of all pools except the slowly decomposing nutrient-
rich pool (Eqs. 2–5). The litter decomposition data on which
YASSO is based is not suited to link the fate of nitrogen in
litter to the respective solubility pools. Therefore, we assume
one single nitrogen pool representing all nitrogen linked to
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the four carbon solubility pools per litter class (Eq. 7). This
can be refined in the future if appropriate data become avail-
able.

The nitrogen cycling is primarily driven by carbon fluxes
using constant N-to-C ratios of organic pools (Eqs. 6–7),
with the exceptions of the non-lignified litter pool (Eq. 8)
(Parida, 2011). Further exceptions are the processes linking
the terrestrial carbon cycle with the atmosphere (biological
nitrogen fixation and denitrification) and the aquatic systems
(leaching), which are computed either as substrate limited
(Eqs. 16–17) or, for the case of biological nitrogen fixation
(Eq. 15), as driven by demand due to the ample supply of
N2 in the atmosphere (Parida, 2011). The nitrogen cycle and
its interactions with the carbon cycle are not modified. The
only exception is that the turnover times of the nitrogen litter
and soil organic matter pools are derived from the YASSO
decomposition model (Eq. 10) instead of the former decom-
position model.

All parameters and variables are given in Tables 1 and 2.

2.1.1 Nitrogen effect on decomposition

Matrix C describes the soil carbon pools (A, W, E, N) of
the two litter classes (i) in JSBACH, excluding recalcitrant
humic substances (CH):

Ci =


CA,i
CW,i

CE,i
CN,i

 . (1)

The dynamics of the soil carbon pools are described as

dCi

dt
= Apki(F)Ci+ Ii, (2)

where Ap is the mass flow matrix, ki(F) is a di-
agonal matrix of the decomposition rates ki(F)=
diag(kA,i,kW,i,kE,i,kN,i)(F) as a function of climatic
conditions (F), and matrix Ii is the carbon input of type i to
the soil. The dynamics of the humus pool (CH) are described
as

dCH

dt
= pH

N∑
i=1

ki(F)Ci− kHCH, (3)

where pH is the relative mass flow parameter and kH the de-
composition rate of the humus pool. A detail description of
decomposition can be found in the supplementary informa-
tion of Goll et al. (2015), here we only focus on the modifi-
cation of the original implementation.

The climate dependence of the decomposition rate factor
kj,i of the carbon pools was originally implemented by Goll
et al. (2015) based on Tuomi et al. (2008) as

kj,i(F)= αj,i exp(β1T +β2T
2)(1− exp(γP )), (4)

where T is air temperature and P is precipitation, β1, β2,γ
are parameters, and αj,i are decomposition rates at references
conditions (T = 0 and P →∞) of pool i of litter class j . αj,i
is the product of reference decomposition rate rj of solubility
class j and the litter diameter di of litter class i. YASSO uses
precipitation instead of the more direct driver of soil moisture
due the lack of adequate soil moisture observation to relate
the decomposition data the model is based on (Tuomi et al.,
2008).

We introduced a scaling factor, namely the nitrogen lim-
itation factor (f N

limit), to account for the downregulation of
decomposition when nitrogen is in short supply

kj,i(F)= f N
limitαj,i exp(β1T +β2T

2)(1− exp(γP )), (5)

where f N
limit is calculated based on a supply and demand ap-

proach (Parida, 2011; Goll et al., 2012): in a first step, poten-
tial carbon fluxes are computed from which the gross min-
eralization, immobilization and plant uptake of mineral ni-
trogen is diagnosed. In a second step, all fluxes consuming
nitrogen (donor compartment has a higher C : N ratio than
the receiving pool as well as plant uptake) are downregu-
lated in case nitrogen demand cannot be met by the nitrogen
supply. Hereby, a common scalar (f N

limit) (see Appendix A)
is used, thereby no assumption about the relative competitive
strengths of microbial and plant consumption has to be made.
In case nitrogen demand is met by the supply, the fluxes com-
puted in the first step are taken as actual ones without any
modification.

2.1.2 Dynamics of nitrogen in litter and soil organic
matter

Nitrogen in litter and soil organic matter is separated into
three pools, namely slowly decomposing organic matter (hu-
mus)CH, lignified litter and fast-decomposing organic matter
Cl,w, as well as non-lignified litter and fast-decomposing or-
ganic matter Cl,a (Goll et al., 2012). We assigned each of the
three nitrogen pools to one or more corresponding YASSO
pools (Table 3). A refinement of the representation of nitro-
gen in decomposing material following strictly the carbon
classification is not straightforward as the carbon pools (A,
W, E, N) defined by their respective solubility characteris-
tics do not correspond to substance classes with distinguished
stoichiometries.

In JSBACH, nitrogen in compartments with a fixed N-to-C
ratio, namely nitrogen in lignified litter (Nlw) as well as nitro-
gen in slowly decomposing organic matter (NH), are derived
from the corresponding YASSO carbon pools (Cj,i) by

NH = rHCH, (6)
Nlw = rlw(CA,w+CW,w+CE,w+CN,w), (7)

where rH is the N-to-C ratio of former slow carbon pool (CH)
now applied to the humus pool of YASSO, and rlw of former
lignified (woody) litter pool (Cl,w) now applied to the sum of
the solubility class pools for lignified litter of YASSO.
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Figure 1. Schematic representation of carbon (a) and nitrogen (b) cycling in JSBACH. Vegetation is represented by four pools: “active”
(leaves and non-lignified tissue) and “wood” (stem and branches), “reserve” (sugar and starches) and “labile” (mobile nitrogen) (Goll et al.,
2012). Dead organic matter is represented by “non-lignified litter”, “lignified litter” (lignified litter and fast-decomposing soil organic matter),
and “humus” (slow-decomposing organic matter) (Raddatz et al., 2007). All organic matter pools have fixed C : N ratios, except the pools
“reserve”, “labile” and “non-lignified litter”. While the pools “reserve” and “labile” have no corresponding nitrogen pool, the C : N ratio
of the latter pool varies according the balance between immobilization demand and supply. The carbon in the litter compartment is further
refined into the acid-soluble (A), water-soluble (W), ethanol-soluble (E), and non-soluble (N) compounds (Goll et al., 2015), which have no
C : N ratio assigned. Soil mineral nitrogen is represented by a single pool (soil mineral pool). The opposing triangle marks carbon fluxes that
are downregulated in case the nitrogen demand exceeds the nitrogen supply.

The dynamics of nitrogen in non-lignified litter and fast-
decomposing organic matter (Nla) was not modified from the
original nitrogen-enabled version of JSBACH (Parida, 2011)
and are given by

dNla

dt
= rlaF

C
aFla+ (1−β3)εNa− f

N
limitdla×Nla, (8)

where the first term describes the nitrogen influx from active,
non-lignified plant tissue (Na), the second term describes the
flux of nitrogen from herbivores excrements, which is not di-
rectly available to biota, and the third term arises from the
nitrogen released by biological mineralization of litter and
fast-decomposing soil organic matter. We assume that active
plant material (Na) is consumed by herbivores at a constant
rate (ε) and immediately excreted (Parida, 2011). We sepa-
rate the excrement into fast-decomposing (1−β3) and labile

(β3) nitrogen compounds, the first enters the non-lignified
litter pool (Nla) and the latter the soil mineral nitrogen pool
(Eq. 11).

The decomposition rate dla of nitrogen in litter and fast-
decomposing soil organic matter equals the decomposition
rate of the sum of the YASSO carbon pools CA,a+CW,a+

CE,a+CN,a and is given by

d(CA,a+CW,a+CE,a+CN,a)

dt
=

dla(CA,a+CW,a+CE,a+CN,a) (9)

so that dla can be derived from

dla =
CA,a(t + 1)+CW,a(t + 1)+CE,a(t + 1)+CN,a(t + 1)

CA,a(t)+CW,a(t)+CE,a(t)+CN,a(t)
− 1. (10)
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Table 1. Variables of the model.

Variable Units Description

P mday−1 30-day average of daily precipitation
T ◦C 30-day average of daily 2 m air temperature
Cj,i mol(C)m−2 soil organic carbon of solubility class j and litter class i
Nx mol(N)m−2 nitrogen in compartment x
NPP mol(C)m−2day−1 annual average of daily net primary productivity
FC
xFy mol(C)m−2 day−1 daily flux of carbon from compartment x to compartment y
Fextr mol(C)m−2 day−1 daily flux of nitrogen from/to the atmosphere and to aquatic systems
Fleach mol(C)m−2 day−1 daily flux of nitrogen leached to aquatic systems
Fdenit mol(C)m−2 day−1 daily flux of nitrogen lost to the atmosphere by denitrifcation
BNF mol(N)m−2 day−1 daily nitrogen inputs by biological nitrogen fixation
Dx mol(N)m−2 day−1 nitrogen demand of vegetation (x = veg) or immobilization (x =micr)
fN

limit – nitrogen limitation factor
dx day−1 decomposition rate of nitrogen in compartment x
kj,i day−1 decomposition rate of solubility class j and litter class i
kH day−1 decomposition rate of humus pool
ε day−1 consumption rate by herbivores
fh2o – daily fraction of soil water lost due to runoff and drainage
α – soil moisture stress on biological processes

As we calculate potential decomposition fluxes in a first step
to derive nitrogen demand (see Goll et al., 2012) we know
the state of pools for time t and t + 1.

The dynamics of the soil mineral nitrogen (Nsmin) was not
modified and are given – as originally formulated by Parida
(2011) – by

dNsmin

dt
= Fextr+β3εNa+ dHNH+ (rw− rlw)F

C
wFlw

− f N
limit(Dveg+Dmicr), (11)

where Fextr is the net of fluxes connecting the compartments
considered in the model and outside (here: biological dini-
trogen (N2) fixation, leaching, N2 and nitrous oxide (N2O)
emissions (Eq. 14), β3εNa is flux of labile nitrogen from her-
bivores excrements, and Dmicr and Dveg are the nitrogen de-
mands of vegetation and microbes, respectively. Due to the
lower nitrogen content of litter compared to humus, the de-
composition of lignified and non-lignified litter corresponds
to a net immobilization of nitrogen, which is part of the
Dmicr. The term (rw− rlw)F

C
wFlw represents nitrogen leach-

ing from freshly shedded wood given by the decomposition
and the stoichiometries assigned to wood (rw) and lignified
litter (rlw). The decomposition rate of nitrogen in the humus
pool (NH), dH, equals the decomposition rate of the corre-
sponding YASSO carbon pool (CH), kH. This rate according
to Eq. (4) is given by

kH(F)= αH exp(β1T +β2T
2)(1− exp(γP )). (12)

Note that there is no nutrient effect on the decomposition
of NH, and kH is calculated exactly as described in Goll et
al. (2015).

For the calculation of the microbial (soil) nutrient demand
(Dmicr), we substituted the pools Cl,a and CH with the corre-
sponding YASSO pools in Eq. (15) of Goll et al. (2012):

Dmicr = (rH−
Nla

(CA,a+CW,a+CE,a+CN,a)
)FC

laFs+ (rH− rlw)

FC
lwFs−

Nla

(CA,a+CW,a+CE,a+CN,a)
)FC

laFa− rlwF
C
lwFa. (13)

The fluxes FC
laFs and FC

lwFs are the net fluxes of carbon to the
humus from the solubility pools (AWEN) of non-lignified
and lignified litter, respectively. FC

laFa and FC
lwFa are the re-

spective sums of respiration fluxes of the AWEN pools.

2.2 The processes governing the terrestrial nitrogen
balance in JSBACH

Nitrogen enters terrestrial ecosystems by biological nitrogen
fixation (BNF), as well as atmospheric deposition, while ni-
trogen is lost via leaching (Fleach), erosion (omitted in JS-
BACH) and denitrification (Fdenit):

Fextr = BNF−Fleach−Fdenit. (14)

BNF in global models is commonly represented by an em-
pirical relationship based on a compilation of site measure-
ments (Cleveland et al., 1999). Due to the lack of a process-
based alternative, we use this approach as described in Parida
(2011) despite its shortcomings (Thomas et al., 2013; Sulli-
van et al., 2014; Wieder et al., 2015). In this approach BNF
is derived from the annual average of daily net plant produc-
tivity (NPP) (NPP) using the empirical relationship between

www.geosci-model-dev.net/10/2009/2017/ Geosci. Model Dev., 10, 2009–2030, 2017



2014 D. S. Goll et al.: Carbon–nitrogen interactions in JSBACH

Table 2. Parameters of the model.

Parameter Value Units Description Source

β1 0.095 ◦C−1 Temperature dependence of decomposition Goll et al. (2015)
β2 −1.4× 10−3 ◦C−2 Temperature dependence of decomposition Goll et al. (2015)
γ1 −1.21 m−1 Precipitation dependence of decomposition Goll et al. (2015)
αj,i

∗ day−1 decomposition rates at references conditions
(T = 0 and P →∞) of pool i of litter class j Tuomi et al. (2011)

αH 4.383× 10−6 day−1 decomposition rates at references conditions
(T = 0 K and P →∞) of humus pool Tuomi et al. (2011)

rs 10.0 mol(N)mol−1(C) N-to-C ratio of slowly decomposing organic matter Goll et al. (2012)
rlw 330.0 mol(N)mol−1(C) N-to-C ratio of lignified litter Goll et al. (2012)
rla 55.0 mol(N)mol−1(C) N-to-C ratio of non-lignified litter Goll et al. (2012)
rw 150.0 mol(N)mol−1(C) N-to-C ratio of lignified biomass Goll et al. (2012)
β3 0.7 – fraction of nitrogen in excrement in labile form Parida (2011)
femp −3.0× 10−3 dayg−1(C) NPP dependence of biological nitrogen fixation Cleveland et al. (1999)
fbnf 0.7 g(N)m−2 day−1 scaling factor of biological nitrogen fixation this study
fs 0.1 – fraction of soil mineral nitrogen in soil solution this study
kdenit 2.0× 10−3 – daily fraction of soil mineral nitrogen lost by denitrifcation Parida (2011)
wC 12.011 g(N)m−2day−1 standard atomic weight of carbon
wN 14.007 g(N)mol−1(N) standard atomic weight of nitrogen
t 1 day time step

∗ αj,i is an array and values can be found in Tuomi et al. (2011).

Table 3. The nitrogen pools and the corresponding carbon pools for
humus (H) and lignified (woody) (w) and non-lignified (active) (a)
plant material.

Nitrogen Carbon

NH CH
Nlw CA,w+CW,w+CE,w+CN,w
Nla CA,a+CW,a+CE,a+CN,a

BNF and evapotranspiration (Thornton et al., 2007):

BNF= (fbnf× (1− e(femp×wCNPP)
wN

wC
, (15)

where femp =−0.003 dayg−1(C) is an empirical relation-
ship from Cleveland et al. (1999), fbnf = 0.7 g(N)m−2 day−1

is a calibrated constant to achieve a global sum of BNF of
100 Mtyr−1 for a simulated NPP of 65 Gtyr−1 based on es-
timates for present day (Galloway et al., 2013; Ciais et al.,
2013), and wN and wC the standard atomic weights of nitro-
gen and carbon, respectively.

The losses of nitrogen are given priority over immobiliza-
tion and plant uptake each time step. Following Meixner and
Bales (2002), Thornton et al. (2007) and Parida (2011), daily
losses by leaching are derived from dissolved nitrogen in soil
water and the fraction of soil water lost to rivers per day
(fh2o) assuming a homogeneous distribution of mineral ni-
trogen (Nsmin) in the soil volume:

Fleach = fsNsminfh2o, (16)

where fs is the fraction of mineral nitrogen (Nsmin) in soil
solution. fh2o is computed dynamically accounting for evap-
otranspiration, precipitation, and changes in the soil water
storage using a five layer soil hydrological scheme (Hage-
mann and Stacke, 2014)

Following Parida (2011) and Goll et al. (2012), daily
losses by denitrification are assumed to be at most 0.02 %
(kdenit = 0.002 day−1) of the soil mineral (Nsmin):

Fdenit = αkdenitNsmin, (17)

where α is a JSBACH internal indicator of soil moisture
stress [0–1], which is dynamically computed from soil mois-
ture and used to scale biological activity (Raddatz et al.,
2007).

2.3 Calibration and parametrization of the model

The parametrization of YASSO (version 3.20) and of the ni-
trogen cycle in JSBACH was not changed and is described
in Goll et al. (2012, 2015). The only exception is the re-
calibration of losses of nitrogen by leaching to the new hy-
drological model in JSBACH (Hagemann and Stacke, 2014).
This is achieved, following Goll et al. (2012), by tuning
the fraction of mineral nitrogen in soil solution (fs) so that
the assumption regarding the absence of CNL in the pre-
industrial state is met, which is equal to a negligible (< 2 %))
effect of nitrogen on global net primary productivity and car-
bon storage. We tuned the fraction of soil mineral nitrogen
in soil solution to fs = 0.1, which is comparable to fractions
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used in other models (Wang et al., 2010) as well as in obser-
vations (Hedin et al., 1995).

2.4 Simulation setup

We force the land surface model JSBACH with half hourly
climatic data simulated by the MPI-ESM instead of running
JSBACH coupled with the atmospheric and ocean compo-
nents of the MPI-ESM. Therefore, our simulations, in con-
trast to simulations of the MPI-ESM, do not account for the
feedback between land and atmosphere with respect to the
water and energy cycle. However, the resulting inconsisten-
cies between climate and land surface should not change the
results of the present study and are anyway partly implicit to
the underlying CMIP5 simulations because of the prescribed
atmospheric CO2 levels in case of biogeochemical feedbacks
(Taylor et al., 2012). For the sake of simplicity, we will re-
fer to the JSBACH simulations driven by the climate from
respective ESM simulations, with the respective label of the
ESM simulations.

The climatic forcing is derived from MPI-ESM simula-
tions performed for the CMIP5 project (Table 4) (Taylor
et al., 2012).

2.4.1 Spin-up

The concept of CNL assumes that nitrogen effects on the
carbon cycle are marginal under pre-industrial conditions.
Therefore, the cycles of carbon and nitrogen can be equili-
brated in a two-step procedure in which the carbon cycle is
first brought into equilibrium (less than 1 % change in global
stocks per decade) using the climatic forcing from the pre-
industrial control run (Goll et al., 2012). In a second step, we
then initialize the nitrogen pools using the prescribed C : N
ratios and the equilibrated carbon stocks as well as extremely
high mineral nitrogen pools. The model is run again with the
climatic forcing from the pre-industrial control run to equi-
librate mineral nitrogen dynamics using the same criterion
as for the first step. The resulting length of the simulation is
5.5 and 2.6 kyr for step one and step two, respectively. Atmo-
spheric nitrogen depositions are neglected.

2.4.2 1 % CO2 increase experiment and climate
feedback factors

To analyze the effect of nitrogen limitation on the response
of the land carbon cycle to increasing CO2 concentration
and climate change, we perform simulations with JSBACH
with and without activated nitrogen cycle (Table 4). The
simulations are forced with the climatic conditions from a
set of 140 yr long CMIP5 simulations with the MPI-ESM
in which atmospheric CO2 concentration increases at a rate
of 1 % yr−1 from pre-industrial values until concentration
quadruples (Arora et al., 2013).

The set of MPI-ESM simulations consist of a simulation
where increasing CO2 affects the climate but not the terres-

trial biogeochemistry (radiatively coupled), a second simu-
lation where increasing CO2 affects the terrestrial biogeo-
chemistry but not the climate (biogeochemically coupled),
and a third simulation where increasing CO2 affects both
climate and biogeochemistry (fully coupled). The biogeo-
chemically coupled and the radiatively coupled simulations
allow us to disentangle the carbon-concentration feedback
βL and carbon–climate feedback γL, respectively (Friedling-
stein et al., 2006; Arora et al., 2013). βL is derived from the
biogeochemically coupled simulations by dividing the dif-
ference in the total land carbon between the first and the
last decade by the difference in the atmospheric CO2 con-
centration of the same periods. γL is derived from the radia-
tively coupled simulations by dividing the difference in the
total land carbon between the first and the last decade by the
difference in global land temperature of the same periods.
The MPI-ESM simulations do not include the confounding
effects of changes in land use, non-CO2 greenhouse gases,
aerosols, etc., and so provide a controlled experiment with
which to compare carbon climate interactions in line with the
approach by Arora et al. (2013). The model version also does
not include dynamic vegetation model and disturbances, such
as fire. Natural vegetation cover is prescribed following ap-
proach by Pongratz et al. (2008). Cropland and pasture map
for 1850 is taken from harmonized land use data set by Hurtt
et al. (2011).

2.5 Analysis

2.5.1 Pre-industrial state

We average the model data of last 3 decades of the spin-up
simulations to derive the pre-industrial state. Differences be-
tween model and observation are given by the subtraction of
the observation with the simulation. The fraction of denitri-
fication losses to total losses is computed by dividing the an-
nual flux of denitrification by the sum of the annual fluxes
of denitrification and leaching. Simulated and observation
loss fractions are compared using Pearson correlation coef-
ficients, root mean square error (RMSE), and Taylor scores
(Taylor, 2001).

2.5.2 Nitrogen-loss pathway data

δ15N data measurements are one of the few sources of spa-
tially extensive data relevant to the nitrogen cycle (Houlton
et al., 2015) as one can infer information about the nitrogen
pathways. Houlton et al. (2015) derived the fraction of nitro-
gen loss in gaseous form (fdenit) based on Amundson et al.
(2003) best-fitting multiple regression equation for soil δ15N
as a function of mean annual temperature (MAT) and mean
annual precipitation (MAP). The data set used to generate
this equation consisted of 29 samples, and the coefficient of
determination was 0.39. Amundson et al. (2003) remarked
that “pending the availability of more soil δ15N analyses, the
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Table 4. Simulations performed with JSBACH with and without carbon–nitrogen interactions using climatic forcing from MPI-ESM simu-
lations performed for the CMIP5 project (Taylor et al., 2012).

Acronym C–N interactions climatic forcing description

C without 1pctCO2 1 % yr−1 increase in CO2 (to quadrupling)
Cβ without esmFdbkl Carbon cycle sees piControl CO2 concentration,

but radiation sees 1 % yr−1 rise
Cγ without esmFixClim1 Radiation sees piControl CO2 concentration,

but carbon cycle sees 1 % yr−1 rise
CN with 1pctCO2 1 % yr−1 increase in CO2 (to quadrupling)
CNβ with esmFdbkl Carbon cycle sees piControl CO2 concentration,

but radiation sees 1 % yr−1 rise
CNγ with esmFixClim1 Radiation sees piControl CO2 concentration,

but carbon cycle sees 1 % yr−1 rise

present Figure . . . represents our best estimate of trends . . . in
global soil δ15N values” (p. 5). We have updated this analy-
sis in three ways: (a) by including a larger number (659) of
soil δ15N samples; (b) by substituting an annually integrated
index of temperature-related microbial activity for MAT, and
an index of leaching (derived from runoff) for MAP, i.e., us-
ing indices more closely related to the governing processes;
and (c) by using nonlinear regression to fit a statistical model
that is explicitly based on the isotopic mass balance equation
of Houlton and Bai (2009).

The fraction of N loss in gaseous form (fdenit) was esti-
mated using the principle described by, e.g., Houlton and Bai
(2009) and Bai et al. (2012), but using a process-based sta-
tistical model for the relationship between soil δ15N data and
environmental predictors fitted to publicly available data on
soil δ15N (Patiño et al., 2009; Cheng et al., 2009; McCarthy
and Pataki, 2010; Fang et al., 2011, 2013; Hilton et al., 2013;
Peri et al., 2012; Viani et al., 2011; Sommer et al., 2012; Yi
and Yang, 2007). It was assumed that soil δ15N reflects the
source (atmospheric) δ15N modified by isotopic discrimina-
tion that occurs during leaching (slight) and gaseous losses
(much larger). For simplicity, the source δ15N was assumed
to be zero and discrimination during leaching was neglected.
Mean annual runoff (q, in mm) was estimated from precipita-
tion and potential evapotranspiration following (Zhang et al.,
2004), with ω = 3. Following Xu-Ri et al. (2008), we as-
sumed that leaching losses increase to a maximum dependent
on soil water capacity, yielding an annual runoff factor f (q):

f (q)=
q

q +Wmax
, (18)

where Wmax = 150 mm. Mean monthly soil temperatures
(Tm, in K) were estimated for 0.25 m depth following Camp-
bell and Norman (1998). We assigned a generic activation
energy of Ea = 55 kJ mol−1K−1 (Canion et al., 2014) and
summed the monthly index values

fm(Tm)= exp
(
Ea

Rgas
(

1
Tref
−

1
Tm
)

)
(19)

over the 12 months

f (T )=

12∑
m=1
= fm(Tm) (20)

yielding the annual soil temperature factor f (T ), where
Tref = 293 K.

The data were then fitted via ε the gaseous discrimination
factor and a constant k by nonlinear least-squares regression
to the relationship

δ = δ0+ ε

(
1+ k(

f (q)

f (T )
)

)−1

, (21)

where δ is soil δ15N, δ0 is the δ15N of the N inputs. Assum-
ing the leaching discrimination factor is 0, fdenit can be ex-
pressed as

fdenit =
δ− δ0

ε
(22)

from the first principle (Houlton and Bai, 2009). Re-
arranging Eqs. (21) and (22) we get

fdenit =

(
1+ k(

f (q)

f (T )
)

)−1

. (23)

A spatial map of fdenit was derived from the empirical re-
lationship between temperature, runoff and fdenit using sim-
ulated values of f (q) and fm(Tm) from JSBACH. Thereby,
model biases in climate are accounted for in the data-derived
fdenit, which allows for a straightforward comparison with
simulated fdenit. In addition, we derived maps of fdenit based
on monthly grids of observed mean climate from 1961 to
1990 covering the global land surface at a 10 min spatial res-
olution (CRU CL2.0) (New et al., 2002), which are shown in
Fig. C1.
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3 Results and discussion

3.1 Model evaluation: pre-industrial state

The model simulates nitrogen stocks and fluxes under pre-
industrial conditions well within the wide range of the few
available observation-based estimates (Table 5). Most of the
estimates are for present-day conditions and thus are not di-
rectly comparable due to the human influence on the nitrogen
cycle (Galloway et al., 2013).

The organic nitrogen stocks and fluxes are given by the
prescribed C : N stoichiometry and the state variables of
the carbon cycle and thus are not affected by the changes
we introduced here, except for non-lignified litter and fast-
decomposing soil organic matter, which shows in general
good agreement with observed C : N ratios for most biomes
(see Appendix B). Mineralization of organic nitrogen is the
major source of nitrogen for vegetation and the simulated
flux is less than existing model-based estimates for present
day ranging between 980 and 1030 Mtyr−1 (Smith et al.,
2014; Zaehle et al., 2010). In models, nitrogen mineralization
is solely a by-product of decomposition of soil organic car-
bon and we thus attribute the differences between simulated
mineralization to the use of YASSO decomposition model
compared to the use of the CENTRUY decomposition model
(Smith et al., 2014; Zaehle et al., 2010), as the soil C : N sto-
ichiometries are comparable among models. We refer to the
evaluation of the carbon cycle in JSBACH elsewhere (Anav
et al., 2013; Goll et al., 2015), as the concept of CO2-induced
nutrient limitation prevents an effect of nitrogen on the car-
bon cycle under pre-industrial CO2 concentrations.

Estimates of global fluxes and stocks of nitrogen are often
lacking or associated with large uncertainties; thus, a detailed
analysis of the simulated nitrogen cycle is hampered (Za-
ehle, 2013). However, recent advances in the use of δ15N data
(Houlton et al., 2015), which are one of the few sources of
spatially extensive data relevant to the nitrogen cycle, allow
for the evaluation of the respective importance of nitrogen-
loss pathways in space. Due to the different environmental
controls of the loss pathways, which are on first order repre-
sented in the model, we can test the underlying assumptions
by comparing the simulated fraction of denitrification losses
to total nitrogen losses (fdenit) to fdenit reconstructed from
δ15N data. However, this comparison does not allow one to
draw any conclusion about the magnitude of total losses.

The reconstructed fdenit maps (Figs. C1 and 2) presented
here are generally similar to those presented by Houlton et al.
(2015), with high fractions (ca. 80 %) in the tropics and mid-
latitude deserts, a strong gradient of decreasing fractions with
decreasing temperature towards high altitudes and latitudes,
and values in the range 0–20 % reached in cold, wet climates
in the north. For a detailed discussion of differences see Ap-
pendix C.

In comparison with the reconstructed fractional gaseous
loss from simulated climate (Fig. 2a), we find that the model
is in good agreement (Pearson R = 0.76, RMSE= 0.2, Tay-
lor score= 0.83). The model underestimates high values of
fdenit and overestimate low values (Fig. C2). In regions with
cold winter temperatures where denitrification losses are
small the model overestimates denitrification losses (Fig. 2c).
These model biases likely derive from the simplistic rep-
resentation of denitrification as a function of soil moisture
and substrate availability, which omits effects of temperature
(Butterbach-Bahl et al., 2013). Additionally, other omitted
factors like oxygen concentration, soil pH, mineralogy and
transport processes (Butterbach-Bahl et al., 2013) might con-
tribute to the bias.

3.2 Changes in the land carbon cycle in the 1 % CO2
increase simulations

JSBACH simulates a strong increase in NPP due to increas-
ing CO2 from pre-industrial level to 4× pre-industrial level
(Fig. 3). The simulated increase in NPP of 16.0 % for a rise
in atmospheric CO2 from 370 to 550 ppm is somewhat lower
than the estimated increase of 23 % from four free-air car-
bon dioxide enrichment (FACE) experiments (Norby et al.,
2005) (Table 6). A lower increase than in the FACE experi-
ment can be expected as the long-term effect of elevated CO2
is likely to be less than the one derived from short duration
FACE experiments (Norby et al., 2010) on early successional
forests (Norby et al., 2015). The simulated increase in gross
primary productivity (GPP) of 23.1 % for an increase in at-
mospheric CO2 concentration from the level of the year 1900
to 2013 is close to the 25 % increase for the same increase
in CO2 estimated from intramolecular isotope distributions
(isotopomers), a methodology for detecting shifts in plant
carbon metabolism over long periods (Ehlers et al., 2015).

The increase in NPP translates to an increase in carbon
storage of approximately 600 Gt by end of the biogeochem-
ically coupled simulation (Fig. 3). Climate change, in par-
ticular increasing temperature, overall has a slightly negative
effect on global NPP: the carbon losses by autotrophic res-
piration in low latitudes outweigh the increases in NPP in
temperature-limited ecosystems. Globally, warming stimu-
lates the decomposition of soil organic matter (not shown),
which leads to a smaller increase in carbon storage in the
fully coupled simulation compared to the biogeochemically
coupled simulation, and even a reduction in carbon storage
in the radiatively coupled simulations. The effect of CO2
and climate change on land carbon storage is much less pro-
nounced in the recent version of JSBACH than in the CMIP5
version, and the responses of the new version lie well within
the range of CMIP5 models (Arora et al., 2013). The more
moderate response can mainly be attributed to the recent im-
provement in respect to the carbon cycle and are discussed in
detail later.
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Table 5. Comparison of simulated net primary productivity and biomass carbon as well nitrogen stocks and fluxes for pre-industrial conditions
with observation-based estimates for 1850 and present day.

Simulated Observation-based

1850 1850 present day reference

NPP (Gtyr−1) 65.1 – 50–56 Ito (2011)
Biomass carbon (Gt) 514.7 – 470–650 Saugier and Roy (2001); Ciais et al. (2013)
Biomass nitrogen (Gt) 4.6 – 3.5 Schlesinger (1997)
Mineral nitrogen (Gt) 1.3 – –
Total nitrogen (Gt) 63.6 – 60–75 Galloway et al. (2013)
Leaching (Mtyr−1) 50.0 70 13–180 Galloway et al. (2004, 2013)
Denitrification (Mtyr−1) 49.2 – 43–290 Galloway et al. (2013)
BNF (Mtyr−1) 98.3 40–120 100–139 Galloway et al. (2004); Vitousek et al. (2013)
Mineralization (Mtyr−1) 717.3 – –

Figure 2. Comparison of simulated and reconstructed nitrogen lost by denitrification as a fraction of total nitrogen losses (fdenit). Shown
are fdenit reconstructed from δ15N measurements and simulated climate (a), fdenit as simulated (b), the difference between simulated and
reconstructed fdenit (c), as well as the frequency distribution of simulated (yellow) and reconstructed (green) fdenit (d).

3.3 Changes in the land nitrogen cycle in the 1 % CO2
increase simulations

Increasing atmospheric CO2 concentration leads to the accu-
mulation of nitrogen in the terrestrial system (Fig. 4a), due
to elevated inputs by BNF (Fig. 4c) in combination with re-
duced losses by leaching and denitrification (Fig. 4e, f). The
increasing primary productivity and the subsequent incorpo-
ration of soil mineral nitrogen are the main drivers behind the
accumulation. Increasing NPP (Fig. 3) directly stimulates the
demand-driven process of BNF and therefore BNF rates in-
crease nearly as strong as NPP (50 % compared to 59 % by

end of the simulations). The decline in soil mineral nitrogen
(Fig. 4b) due to the incorporation of nitrogen in accumulating
biomass leads to reduced losses by leaching and denitrifica-
tion.

An increase in the nitrogen stock by 8.5 % was found in
a 15 yr ecosystem-scale CO2 enrichment experiment (Shi
et al., 2016), which is more pronounced than the simulated
increase in the nitrogen stock of 3.2 % for a comparable in-
crease in CO2 (year 29–69; 369–551 ppm). A strong stim-
ulation of BNF by 44 %, with a strong decline in leaching
by 42 % and no significant changes in denitrification, min-
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Figure 3. Changes in total land carbon (a) and global net primary productivity (b) in the set of 1 % CO2 increase simulations with (solid
line) and without (dashed line) carbon–nitrogen interactions.

Table 6. Simulated response ratios of gross and net primary productivity to elevated CO2 in comparison with observation-based estimates.

Response ratio Simulated Observed Reference

GPP396 /GPP295 1.23± 0.03 1.25 Ehlers et al. (2015)
NPP550 /NPP370 1.16± 0.03 1.23± 0.02 Norby et al. (2005)

eralization and soil organic nitrogen were found in a compi-
lation of CO2 enrichment experiments (Liang et al., 2016).
However, the representativeness of these findings was ques-
tioned recently (Rütting, 2017). In addition to that, CO2 was
increased abruptly in CO2 enrichment experiments while it
increased gradually in our simulations. As the different ni-
trogen processes have different response patterns, they are
likely to react differently to an abrupt than to a gradual in-
crease in CO2. Although the relative contributions of reduced
losses and increased inputs to an accumulation remain some-
what elusive due to methodological biases (Rütting, 2017)
and limited data, an accumulation of nitrogen under elevated
CO2 is a plausible scenario.

We find that the processes governing the nitrogen balance
operate on different timescales (Fig. 5). The mineral nitrogen
stocks decline from 1.33 to 1.06 Gt during the first 35 yr and
thereby reduce the substrate-driven nitrogen losses (Fig. 5)
from 98 to 83 Mtyr−1. However, losses by leaching start to
increase afterwards and are higher by the end of the simula-
tion than at the start. While the reduction in losses and gains
in inputs contribute in equal parts to the accumulation in the
first decades of the simulation, BNF dominates the accumu-
lation afterwards (Fig. 5). This highlights the importance of
long-term manipulation experiments for improving our un-
derstanding about the long-term effects of increasing CO2
on the terrestrial biosphere.

We find that the effect of increasing CO2 and climate
change on the nitrogen balance differ. Elevated CO2 alone
leads to a shift from inorganic nitrogen to organic nitrogen
(Fig. 4a, b), whereas climate change is dampening this shift
as warming stimulates the decomposition of organic nitrogen
(Fig. 4d) and thereby slow down the progressive immobiliza-
tion of mineral nitrogen into biomass and soil organic matter.
Climate change alone leads to a loss of nitrogen from the sys-

tem (Fig. 4a): the enhanced mineralization of organic nitro-
gen due to warming leads to increased losses of nitrogen via
leaching and denitrification. We further found that changes in
the water cycle due to climate change are increasing losses by
leaching, while denitrification follows primarily the changes
in substrate availability despite the influence of soil moisture
in Eq. (17) (Fig. 5). Overall, we find that total nitrogen losses
are intensified relative to the substrate availability at the end
compared to the start of the simulations (Fig. 5).

The simulated increase in tightness of the nitrogen cycle as
mineral nitrogen stocks deplete is in line with the substrate-
based mechanisms proposed based on recent compilation of
ecosystem nitrogen addition experiments (Niu et al., 2016),
in which mineral nitrogen exerts a major control on the min-
eral nitrogen consuming processes. However, the respective
observed response patterns of ecosystem nitrogen processes
remain to a large degree unknown and are represented in a
strongly simplified way in JSBACH. In general, we find that
the effect of nitrogen availability on carbon storage is rather
moderate in all simulations (Fig. 3) due to the adjustments of
the nitrogen balance to changes in the carbon cycle (Fig. 5).

3.4 The effect of nitrogen on the carbon feedbacks

We quantify the strengths of the climate–carbon feedback
(γL) and the carbon-concentration feedback (βL) from the
radiatively “coupled” and biogeochemically “coupled” sim-
ulations, respectively (Fig. 6a, c). Both land feedbacks,
with a global βL of 0.61 Pg(C)ppm−1 and a global γL
of −27.5 Pg(C) ◦C−1, are 34 and 53 % smaller than the
multi-model averages of the CMIP5 models, despite that the
CMIP5 version of JSBACH simulated global βL and γL,
which are 59 and 42 % larger than the average of CMIP5
models (Table 7).
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Figure 4. Changes in the nitrogen cycling in the set of 1 % CO2 increase simulations with carbon–nitrogen interactions: (a) total nitrogen,
(b) mineral N, (c) biological nitrogen fixation, (d) gross mineralization, (e) leaching and (f) denitrification.

Table 7. Carbon cycle feedbacks in simulations with JSBACH compared to results from CMIP5.

Land carbon-concentration feedback Land carbon–climate feedback reference
[Pg ppm−1] [Pg ◦C−1]

CMIP5 MPI-ESM-LR 1.46 −83.2 Arora et al. (2013)
CMIP5 multi-model mean 0.92± 0.44 −58.5± 28.5 Arora et al. (2013)
JSBACH C 0.74 −26.2 this study
JSBACH CN 0.61 −27.5 this study

In CMIP5 the two ESMs with nitrogen limitation (which
shared the same terrestrial biosphere component) had feed-
back strengths 70–75 % lower than averaged across models
(Arora et al., 2013), suggesting a prominent role of nitro-
gen in dampening both carbon cycle feedbacks. Here, we
find that the dampened response is primarily related to the
modifications of the soil and litter carbon decomposition
module, rather than to the inclusion of the nitrogen cycle.
The global βL in the simulation without nitrogen cycle is
only 10 % larger than in the simulation with nitrogen, while
there is hardly any difference in global γL between simula-

tions, as the small positive and negative differences cancel
out (Fig. 6). The contrasting findings regarding the effect of
nitrogen on the land carbon feedbacks illustrates the need of
a multitude of carbon–nitrogen models to draw general con-
clusions.

The large difference between the CMIP5 version of JS-
BACH and the recent version described here can primarily
be attributed to the new decomposition model. The drasti-
cally reduced γL is primarily caused by the smaller initial
soil carbon stock, as well as by the long-term acclimation
of decomposition to warming due to substrate depletion in
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Figure 5. The terrestrial nitrogen balance during the fully “cou-
pled” simulation. Shown are the average fluxes and stocks for
10 yr time period for initial conditions (year= 0; 284 ppm), fourth
decade (year= 35; 400 ppm) and the last decade (year= 135;
4× 284 ppm).

YASSO (Goll et al., 2015). The importance of the initial soil
carbon stock for the carbon losses due to warming was il-
lustrated by Todd-Brown et al. (2014). The lower βL can be
attributed to a much lower fraction of biomass, which is con-
verted into stable soil organic matter. Therefore, the increas-
ing productivity translates to a much smaller increase in car-
bon storage. JSBACH does not account for the stimulation of
decomposition of recalcitrant carbon under elevated CO2 due
to increases in labile organic matter (priming effect) observed
in lab incubation experiments (Kuzyakov et al., 2000), which
could potentially alter the response of soil carbon to increas-
ing CO2, but for which there is no evidence of its relevance
on multi-decadal timescales (Cardinael et al., 2015).

A dampening effect of the nitrogen cycle on the response
of the terrestrial carbon cycle to climate change and increas-
ing CO2 is in line with the majority of carbon–nitrogen
model studies (Ciais et al., 2013; Zaehle, 2013), but not all
(Esser et al., 2011; Wårlind et al., 2014). The mechanism by
which nitrogen can dampen βL is via an increasing decou-
pling of gross primary productivity from biomass accumula-
tion under increasing CO2 concentration: the incorporation
of nitrogen into biomass reduces the mineral nitrogen avail-
ability (Luo et al., 2004; Liang et al., 2016), which nega-
tively affects growth (Norby et al., 2010) and increases root
respiration (Vicca et al., 2012; Mccormack et al., 2015). The
dampening of γL is mainly via an enhanced nitrogen min-
eralization in cold regions due to warming (Zaehle, 2013;
Wårlind et al., 2014; Koven et al., 2015), which cannot be
fully captured by JSBACH due to the assumption of CO2-
induced nutrient limitation, and therefore the model is prone
to underestimate the effect of nitrogen on γL.

3.5 Model limitations and future development
directions

The current understanding of processes governing the terres-
trial nitrogen balance is still rather limited (Zaehle, 2013),
and several processes that might be of importance – in par-
ticular stand dynamics (Wårlind et al., 2014), which can po-
tentially alter biomass turnover (Brienen et al., 2015), inter-
actions between plants and microbes, which can stimulate
nitrogen scarcity by non-altruistic symbioses (Franklin et al.,
2014), plasticity in stoichiometry and leaf nutrient recycling
(Zaehle et al., 2014a; Meyerholt and Zaehle, 2015) – and the
availability of other nutrients (Goll et al., 2012) are not rep-
resented in JSBACH. In addition, the loss of organic mat-
ter in general due to erosion, although potentially of impor-
tance (Lal, 2002), is not yet represented in global land surface
models, but developments are underway (Naipal et al., 2015,
2016).

Due to the concept of CO2-induced nutrient limitation in
JSBACH, the nitrogen cycle serves primarily as an additional
constraint on the carbon uptake. The advantage of the ap-
proach is its low complexity and avoidance of assumptions
about the initial state of nutrient limitation thereby taking
into account (1) the lack of data regarding the nitrogen cy-
cle (Zaehle, 2013) as well as (2) the large uncertainty about
the nutrient constraint on plant productivity (Letters et al.,
2007; Zaehle, 2013). The shortcomings of this approach are
that it limits the applicability of the model to carbon cycle
projections for scenarios of increasing atmospheric CO2 and
that it cannot capture any stimulation of the plant productiv-
ity due to changes in nitrogen availability itself; in addition
to direct increase in nitrogen availability by nitrogen deposi-
tion and fertilization, a stimulation of plant productivity can
occur due to reduced losses of nitrogen by pathways that are
not under control of biota, such as fire, leaching, or erosion
(Thomas et al., 2015). As a result, the model might underes-
timate the importance of nitrogen cycling for carbon uptake
under elevated CO2.

Regarding the processes resolved in JSBACH, the extent
of BNF increase has to be regarded as highly uncertain, de-
spite its agreement with short-term experiments (Liang et al.,
2016): the formulation of BNF used here is based on an em-
pirical correlation between evapotranspiration and BNF and
therefore the rate at which BNF rates increase strictly fol-
lows the increase in productivity, whereas in reality the dif-
ferent processes leading to changes in BNF on ecosystem
scales operate on differing timescales; the control of plants
on their symbiotic partners via glucose export, and in case
of nodules via oxygen regulation, result in changes in BNF
from hours to months. On longer timescales, the composi-
tion of the ecosystem, namely the fraction of BNF associated
species, affects nitrogen inputs to the system. While for trop-
ical ecosystems there is evidence that any governing mech-
anism(s) ought to operate at a synoptic scale (Hedin et al.,
2009), a higher-latitude system might experience longer lag
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Figure 6. Spatial map of the carbon-concentration feedback βL (a) and the carbon climate feedback γL (b) (of the simulations with carbon–
nitrogen interactions) as well as the effect of the nitrogen cycling on the respective feedbacks (c, d).

times. Additionally, other nutrients, such as phosphorus or
molybdenum, might slow down or reduce the potential of
BNF to increase (Vitousek et al., 2013). BNF models, which
better resolve the governing mechanisms, for example, Ger-
ber et al. (2010) and Fisher et al. (2012), should be incorpo-
rated into ESMs to increase the reliability of the simulated
pace of changes in BNF (Meyerholt et al., 2016).

Models that simulate simultaneous competition for soil ni-
trogen substrates by multiple processes match the observed
patterns of nitrogen losses better than models such as JS-
BACH, which are based on sequential competition (Niu
et al., 2016). Here we find that despite the sequential com-
petition, the simulated behavior is in general agreement with
the dynamics of substrate-based mechanisms derived from
manipulation experiments (Niu et al., 2016) and the spatial
variability in the respective loss pathways is to a large de-
gree in line with δ15N-derived patterns, despite the low per-
formance of another sequential competition model (Houlton
et al., 2015; Zhu and Riley, 2015)

The high-latitude permafrost processes are not represented
here but were shown to be of importance for the effect on
warming on carbon and nitrogen losses. Permafrost regions
store about 1000 Gt C within the upper few meters of soil
(Hugelius et al., 2014). The thawing of permafrost and deep-
ening of the active layer in response to global warming can
potentially lead to a much stronger climate carbon feedback
(Schneider Von Deimling et al., 2012; Schuur et al., 2015).

The recent study of Koven et al. (2015) with the CLM model
showed these carbon losses in high latitudes can be partly
offset by increased nitrogen mineralization, and in turn pro-
ductivity and input to the soils.

Finally, as advocated by, for example, Prentice et al.
(2015) and Medlyn et al. (2015), the stringent use of obser-
vational data sets to evaluate the present-day state of ecosys-
tems as well as their response to manipulations must drive
and guide new model developments whenever possible. With
respect to JSBACH and other land surface models, the use of
observation-derived climatology instead of the ESM climate
as well as the use of site-specific simulations to allow for a
straightforward comparison to manipulation experiments is a
research priority to increase the model reliability (Luo et al.,
2012). In this study, the use of the ESM climatology is justi-
fied by a focus on the feedback analysis in the framework of
idealized simulations as suggested in the climate–carbon cy-
cle model intercomparison project C4MIP (Anav et al., 2013;
Jones et al., 2016). For further evaluation of the nitrogen lim-
itation, however, the preferable setup includes site-level sim-
ulations driven by observation-derived climatology (Zaehle
et al., 2014b).
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4 Conclusions

The simulated response of primary productivity to increasing
CO2, simulated litter stoichiometries, as well as the simu-
lated spatial variability in nitrogen-loss pathways are in good
agreement with observation-based estimates. Here we show
that a simple representation of mineral nitrogen dynamics
can achieve a high agreement with observation in respect
to nitrogen-loss pathways. Further refinements of denitrifica-
tion should address the relationship between denitrification
and low soil moisture availability and as well as introduce a
temperature scaling function.

The effect of nitrogen cycling on the land carbon uptake
in idealized simulations with JSBACH is globally minor, but
not negligible. In particular, the carbon-concentration feed-
back is affected by mineral nitrogen availability, but the ex-
tent is moderate compared to earlier studies (Arora et al.,
2013; Zaehle, 2013). During the first decades of the simula-
tions, nitrogen limitation is circumpassed by a strong initial
decline in loss terms in combination with increases in biolog-
ical nitrogen fixation. Afterwards progressive increases in bi-
ological nitrogen fixation drive the accumulation of nitrogen
in ecosystems. In addition, warming enhances mineralization
and counteracts the immobilization of nitrogen in biomass.
Our study is in line with the majority of carbon dioxide en-
richment studies (Liang et al., 2016), showing that progres-
sive nitrogen limitation under elevated carbon dioxide con-
centrations is less likely to occur than originally suggested
(Luo et al., 2004).

The timescale and the extent to which the nitrogen cycle
adjusts to increasing carbon dioxide and changing climate
depend on the response of the input and loss processes of ni-
trogen as well as turnover of organic nitrogen. Here, we illus-
trate that the processes counteracting nitrogen scarcity oper-
ate on different timescales and have different trajectories due
to differences in the respective environmental drivers, which
indicates a picture more complicated than drawn from envi-
ronmental response functions (Niu et al., 2016; Liang et al.,
2016). It is difficult to assess to what extent the timescales
in our experiments are realistic, as timescale on which these
processes operate is well beyond the typical duration of ma-
nipulation experiments.

Our results suggest that nitrogen limitation of land carbon
uptake of natural ecosystems could be temporally restricted,
being the result of the inertia of the balancing processes (Al-
tabet et al., 1995; Hedin et al., 2009). Ultimately, other nutri-
ents like phosphorus, whose sources are depleted over time,
are likely to dominate the long-term capacity of carbon stor-
age.

Code availability. The JSBACH model version 3.10 used here in-
cludes the soil module YASSO and nitrogen components. The
model version corresponds to the revision 8691 from the 19 July
2016 in the Apache version control system (SVN) of the Max
Planck Institute for Meteorology (https://svn.zmaw.de/svn/cosmos/
branches/mpiesm-landveg). This version will be used in the CMIP6
simulations, where other components (land use, dynamic vegeta-
tion, fire) will be included as well. The source code of the CMIP6
version of JSBACH as a part of MPI-ESM will be available in 2017
under the MPI-M Software License Agreement obtained at http:
//www.mpimet.mpg.de/en/science/models/license/. In meantime,
please contact Thomas Raddatz (thomas.raddatz@mpimet.mpg.de)
for the code of the JSBACH if you plan an application of the model
and envisage longer-term scientific collaboration.

Data availability. Primary data and scripts used in the analysis
and other supplementary information that may be useful in repro-
ducing the author’s work are archived by the Max Planck Insti-
tute for Meteorology and can be obtained by contacting publica-
tions@mpimet.mpg.de.
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Appendix A: The nitrogen limitation factor

The nitrogen limitation factor, f N
limit, is calculated based on

a supply and demand approach (Parida, 2011; Goll et al.,
2012). In a first step, potential carbon fluxes are computed
from which the gross mineralization, immobilization (Dmicr)
and plant uptake of mineral nitrogen (Dveg) are diagnosed.
In a second step, all fluxes consuming nitrogen (donor com-
partment has a higher C : N ratio than the receiving pool as
well as plant uptake) are downregulated in case nitrogen de-
mand cannot be met by the nitrogen supply. Hereby, a com-
mon scalar (f N

limit) is used, and thereby no assumption about
the relative competitive strengths of microbial and plant con-
sumption has to be made.

f N
limit =

{
[

dNsmin
dt ]

max

Dmicr+Dveg
for (Dmicr+Dveg) > [

dNsmin
dt ]

max

1 otherwise
, (A1)

where the term in square bracket is the maximum rate at
which the soil mineral nitrogen pool can supply nitrogen.
Note that in the discretized formulation the mineral nitrogen
pool can at most be depleted during a single model time step
(1t). We thus set this maximum rate to dNsmin

1t
.

Appendix B: Evaluation of dynamically computed C : N
ratios

The only ecosystem compartment in JSBACH that has
a flexible stoichiometry is non-lignified litter and fast-
decomposing organic matter. The simulated carbon to nitro-
gen ratios of this compartment for the six plant functional
types in JSBACH are in rather good agreement with obser-
vations of foliage litter from the ART-DECO database (Ta-
ble B1), except for tropical broadleaved deciduous trees and
extra-tropical evergreen trees. The reason for the overesti-
mation of nitrogen content in litter from extratropical ever-
green trees is the global parametrization of leaf stoichiom-
etry applied in JSBACH, which does not capture the lower
leaf nitrogen concentration in needle-leaved trees compared
to broadleaved trees (Kattge et al., 2011). The data for tropi-
cal species are very scarce and the variability among species
is large, which hamper the interpretation of the mismatch be-
tween model and observation for the tropical broadleaved de-
ciduous trees.

Appendix C: Consistency of nitrogen-loss pathways
with earlier estimates

The reconstructed fdenit map from observed climatology
(Fig. C1) is generally similar to one presented by Houlton
et al. (2015), with high fractions (ca. 80 %) in the tropics and
mid-latitude deserts, a strong gradient of decreasing fractions
with decreasing temperature towards high altitudes and lati-
tudes, and values in the range 0–20 % reached in cold, wet

Table B1. Carbon to nitrogen mass ratio [g(C)g−1(N)] of non-
lignified litter compared to observations of foliage litter from Corn-
well et al. (2008); Brovkin et al. (2012).

PFT Simulated Observed

Tropical broadleaved evergreen trees 53.5 55.9
Tropical broadleaved deciduous trees 55.1 29.4
Extra-tropical evergreen trees 50.4 68.3
Extra-tropical deciduous trees 54.4 55.9
C3 perennial grass 54.5 47.6
C4 perennial grass 53.4 54.1

climates in the north. However, some differences are appar-
ent, most obviously connected with the use of mean annual
temperature (MAT) by Houlton et al. (2015) to index micro-
bial activity. MAT becomes extremely low in Eurasia towards
the northeast, for example, and accordingly, Houlton et al.
(2015) estimates of the denitrification fraction become very
low there. Craine et al. (2015) noted that climates with very
low MAT (including sites in NE Siberia) showed anomalous
values of soil δ15N, more similar to those of warmer climates.
Our approach takes account of this by the use of an index
that is much more responsive to the warm summers than to
the extreme cold winters found in hypercontinental climates.

When simulated climatology is used to upscale the empir-
ical relationship between temperature, runoff and soil δ15N,
the influence of biases in simulated climatology on fdenit be-
come apparent. The overestimation of precipitation and sub-
sequently runoff of about 20 % in MPI-ESM (Weedon et al.,
2011; Hagemann et al., 2013) leads to a pronounced peak
in the histogram of fdenit at about 0.1–0.2 (Fig. C1), which
is mostly in the mid- and high-latitude regions in northern
hemisphere.
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Figure C1. Reconstructed fractions of nitrogen lost by denitrification relative to total losses (fdenit). Shown are loss fractions recon-
structed from observational data on δ15N and observed climatology (a) and the frequency distribution of reconstructed fdenit from observed
(turquoise) and simulated (green) climatology, respectively (b).

Figure C2. Scatter plot of simulated and reconstructed denitrifca-
tion fractions (fdenit) derived from simulated climatology.
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