Discourse Representation Theory

Discourse Semantics

‘Discourse semantics’ (Dsx) 1s the name given to one of the
varieties of discourse-based semantics that came into being
during the 1980s. Like the other varieties, it is part of a
realist theory of linguistic meaning, that is, a formal theory
aimed at a reconstruction by hypothesis of the processes
involved in and causing the comprehension of linguistic
messages. It is therefore part of cognitive science, and dis-
tinguishes itself from the established discipline of formal
semantics (see Formal Semantics), which is limited to an

982

account of the logical and truth-conditional properties of
sentences.

All forms of discourse-based semantics are based on the
central assumption that comprehension involves the mental
construction by a comprehending subject C of a represen-
tation of some, not necessarily real, state of affairs, to any
degree of detail, on the basis of linguistic material (uttered
sentences) produced by a producer P, who expresses his
own representation. When the two representations coincide,
comprehension has been adequate. P expresses his represen-
tation piecemeal, by an orderly sequence of uttered sen-
tences, each of which contributes to C’s building up of
his representation. The process of successively building up
discourse representations is called ‘incrementation.’” An
adequate logical model-theory, or specification of truth-
conditions, should, in this perspective, not take as its input
sentence structures (of any level of syntactic depth) but,
rather, well-structured discourse representations.

In DSX, a representation of this kind is called a ‘discourse
domain’ (D). The incrementation of a sentence A, or i(A),
to some D results in the storage in D of the semantic infor-
mation carried by A. This is done by setting up repre-
sentations (‘addresses’) for the individuals or sets of
individuals mentioned in the discourse, and subsequently
distributing the information made available by newly added
sentences over the addresses concerned. Besides addresses,
a D may contain ‘instructions,” which constrain its further
development. Negation of a sentence A, for example, results
in an instruction to block the incrementation of A in D. In
this perspective, the linguistic meaning of a sentence A is
conceived of as the contribution of i(A) to any given D in
virtue of A’s systematic linguistic properties.

The ancillary status of sentence meaning with respect to
the construction of superordinate Ds is reflected mainly
by three kinds of phenomena, namely identification across
intensional domains, anaphora phenomena, and presup-
positions. All three have led to a separate approach to dis-
course-based semantics. Yet despite the differences, there
is a common core of ideas. Identification phenomena
prompted Fauconnier to develop his theory of mental
spaces (1985). Anaphora phenomena (after a first shot in
Isard (1975)) led to discourse representation theory (DRT)
(see, for example, Kamp 1981; Heim 1990; Kamp and
Reyle in press), and presuppositions to Dsx, which is at
issue in this article (Seuren 1972, 1975, 1985; Gazdar
1979).

Identification across intensional domains is illustrated by
considering a sentence like The girl with brown eyes has blue
eyes. This sentence seems inconsistent and hence uninter-
pretable, yet it makes perfect sense if interpreted, for
example, as ‘the girl represented in the picture with brown
eyes in reality has blue eyes,” or as ‘the girl who in reality
has brown eyes is represented in the picture as having blue
eyes.” In other words, the context may provide a means of
assigning a sensible interpretation to this seemingly uninter-
pretable sentence. Fauconnier (1985) posits ‘mental spaces,’
autonomous but interconnected cognitive domains of inter-
pretation whose elements are open to denotation by definite
NPs under certain conditions. Anaphora phenomena being
a subset of identification phenomena, this approach has
elements in common with prT. But Fauconnier also brings
presuppositions into play. Although mental space theory

Discourse Semantics

has so far been presented only in relatively rough outline,
it should provide a good basis for integration with brT and
DSX.

DRT is based on anaphora (see Anaphora). Anaphora
occurs when an anaphoric element, usually a pronoun,
takes over the (constant or variable) reference function of
another expression, its ‘antecedent,” whose reference func-
tion is independently grounded. In standard model-theory,
an anaphoric pronoun occurring in a true extensional sen-
tence must be analyzed as either a bound variable or an
expression with (anaphorically related) constant reference.
This gives rise to a problem, known as ‘the problem of the
donkey sentences’ (after Geach 1962). It consists in the fact
that some anaphoric pronouns cannot be analyzed as either
bound variables or referring expressions. For example, even
if a sentence like:

If Nob owns a donkey he feeds it. [€))

is true, the pronoun it does not have to refer to any
given donkey, nor does it allow for regular binding by the
existential quantifier expressed by a donkey. Note that
binding by the universal quantifier, as in Vx[[donkey(x) A
have(Nob, x)] — feed(Nob, x)], lacks generality, in view
of sentences like:

If Nob wants to own a donkey he will have to feed it. (2a)

If Nob finally owns a donkey he will probably feed it. (2b)

where this analysis again runs foul of scope problems.

The problem that donkey sentences pose for standard
model-theory led to the development of DRT, which posits
‘discourse representation structures’ (DRSs) as an interme-
diate station between sentences and any ‘world’ they are
interpreted in. Anaphoric relations are now said to hold
not with respect to any such ‘world,” but with respect to
elements in DRss. Dsx and, presumably, also mental space
theory fully subscribe to this solution.

DRT both continues and innovates on the standard,
strictly bivalent, logical tradition as developed during the
twentieth century. It continues, in particular, an earlier
innovation, mainly due to Davidson and Montague, which
came about in the 1960s and consisted in viewing natural
languages as formal languages, that is, with a precisely
defined syntax and susceptible of logical model-theory. DRT
follows Montague in taking the surface structure of sen-
tences as input to the model-theoretic interpretation pro-
cedure. This is precisely what Montague intended when
viewing English as a formal language: surface structures are
taken to be directly susceptible of semantic interpretation,
without the assumption of an intermediate level of semantic
analysis expressing meanings regularly and unambiguously
in some variety of modern predicate calculus. Instead of a
semantic analysis formulated in terms of predicate calculus,
DRT posits DRss as an intermediate level in the process of
semantic interpretation of (surface structures of) sentences
onto possible worlds (for a full account of DRT see Dis-
course Representation Theory).

Besides anaphora, the subordination of sentence meaning
to the setting up of complex Ds is reflected in the fact
that most sentences carry one or more presuppositions (see
Presupposition). A presupposition A of a sentence B is a
systematic semantic property of B restricting its usability
to those contexts to which A has already been incremented

or admitting the incrementation of A without either logical
or inductive (that is, knowledge-based) incompatibility.
Other than prT, which has not provided a treatment of
presupposition so far—though Heim (1982) suggests
(incorrectly as will be shown in Sect. 2.2) that presupposi-
tion should be taken as a specific form of anaphora—bsx
takes presuppositional phenomena as its starting point.
Among the first to stress the discourse function of presup-
positions were Seuren (1972, 1975) and Gazdar (1979).

As for anaphora, the view is that anaphoric and other
referential expressions refer not directly (this it has in com-
mon with DRT) but via addresses, i.e., ‘discourse represen-
tations’ of the (sets of) individuals referred to. The
treatment proposed for implications and disjunctions is
such that they may involve addresses that need not corre-
spond to real world entities for truth. What counts is not
reference but denotation, i.e., the relation between definite
NPs and their addresses in D.

Dsx continues an alternative tradition of logico-semantic
analysis, whose origins lie in certain aspects of Frege’s work
and which was taken up by Strawson and others after 1950.
This tradition drops strict bivalence as an axiom of the
logical analysis of sentences, replacing it by either gapped
bivalence or trivalence. It also rejects Russell’s (1905) ana-
lysis of definite descriptions in terms of existential quant-
ification, leaving them intact as legitimate argument terms
of predicates.

A prominent feature of Dsx is the rejection of ‘surface
semantics.” Other than DRT and the Montague tradition,
Dsx regards surface structures of sentences as in principle
unfit for direct semantic interpretation. What is needed is
a grammar relating each surface structure to its semantic
analysis (sA), which is formulated in terms of a variety of
modern predicate calculus (with generalized quantifiers).
The sa of each sentence is taken to be the input to the
incrementation procedure. The motivation behind the rejec-
tion of surface semantics lies in the fact that the surface
form of sentences all too often conceals their true meaning.
For example, many languages show ‘spreading’ (or ‘copy-
ing’) of semantically relevant elements. Negation copying,
as in the Cockney sentence:

‘E ain’t never been no good to no woman, not never. (&)

is rife in the languages of the world. Clearly, the true mean-
ing of this sentence does not correspond to its ‘literal’
logical analysis, i.e., ‘he has sometimes been good to some
woman.” What has happened is that the one, important,
negation is copied a number of times without any semantic
effect. The grammar of Cockney English specifies under
what conditions such copying must or may take place. It
follows that this copying must be ‘undone’ before the sen-
tence is semantically interpreted. Given the multitude of
cases where surface forms appear to conceal or distort their
meanings (see Seuren 1985: 61-110), it seems good strategy
to insert a grammar (G) between surface sentences and any
machinery of semantic interpretation.

Dsx thus posits, in effect, two intermediate stages between
surface structures (ss) of sentences and whatever they may
be taken to refer to in any possible world, i.e., the lin-
guistically structured sa and the cognitively structured dis-
course domain (D), which is directly linked to a knowledge
base (kB) of background (encyclopedic) and situational

983

Discourse Semantics

KB D

ROy ORLN

Figure 1.

knowledge. A set of incrementation rules (I) relates sas to
Ds and vice-versa. The overall structure of the theory is
presented in Fig. 1.

psx is divided into two main sections, the ‘theory of
clausal incrementation’ and the ‘theory of domains and
subdomains.” The former deals with the incrementation
procedure of linguistic clauses to the appropriate (sub)do-
mains (including quantification). The latter deals with the
notion of proper sequentiality in a (sub)domain and the
embedding of subdomains representing what is said to be
the case under an intensional operator or what are said
to be alternative possibilities (as in disjunctions or
implications).

1. The Theory of Clausal Incrementation
1.1 Address Architecture and Model-Theory

A D consists of ‘addresses,” and it may also contain ‘instruc-
tions’ constraining its later development. Addresses are of
different types. The discussion in this article will be limited
to addresses representing individuals or sets of individuals
in any possible ‘verification domain’ (partial world) V (dis-
regarding addresses representing matter, properties, facts,
and all kinds of Meinongian objects). Individual addresses
are marked by the initial capital ‘E.” They are singular or
plural, and either open or closed. An open singular (lst
order) address is of the form Ea,|Pred(a,), as in:

Ea,|cat(a,) “4)

which is the incremental result of There is/was a cat (tenses
are disregarded throughout). The element preceding the
vertical stroke, in this case ‘Ea,,’ is called the address head.
Address heads can be used, in other addresses, as a label
for the address they head. Lower case variables (a,) range
over individuals, capitals (4,) over sets of individuals.

D-structures are the proper formal objects for model-
theoretic intepretation. In (4), ‘cat(a;)’ is a propositional
(characteristic) function from individuals to truth-values,
that is, of the type (e, t), referring to the set of all cats in
the verification domain V. ‘Ea,’ is a function from sets to
truth-values, that is, typed ((e, t), t), delivering truth just in
case the input set is nonempty. So far, the model-theoretic
interpretation of (4) thus runs exactly parallel to that of the
Russellian formula ‘3x[cat(x)]’. The propositional function
‘cat(a,)’ in (4) is called a ‘predication,” the term used for
any propositional function or full proposition stored in an
address.

An open plural (2nd order) address is normally of the
form EA,|; :Pred(a,), as in:

EA,|: :cat(a,))

representing There are/were cats. The expression *: :cat(a,)’

984

reads intuitively as ‘for each individual i of the set whose
existence is asserted by (5), i is a cat.” Formally, the opera-
tor ‘::’ is a function from any set of elements A to the
‘plural power set’ of A or P, (A), i.e., P(A) minus ¢ and
all singleton sets. (At least as a default value; it can be
overridden to the ‘singular power set of A or Py (A)=
P(A)— &, as when the answer to the question Does Carol
have children? is Yes and Carol has only one child. Only
plural power sets will be considered here.) As ‘cat(a;)’ is
typed (e, t), ‘: :cat(a,) is typed ((e, t), t), which makes (5)
a 2nd order address. Open plural address heads are type-
raised to (((e, t), t), t), that is, functions from sets of sets
to truth-values, but with the same satisfaction condition:
the input set must be non-empty. The (default) truth-
condition of (5) is thus that there be at least one set of cats
with cardinality >2.

Open plural addresses, however, may also be of the form
EA,|Pred(A,), in analogy to singular addresses. This
depends on the typing of Pred. If Pred is 1st order, typed
(e, t), as in (5), the distributive operator ‘: :’ is needed. But
if Pred is 2nd order, typed ((e, t), t), then the incremental
result is Pred(A,), as in the 2nd order address:

EA,|team(A,) 6)

representing There is/was a team. Clearly, the two forms
can be combined, as in:

EA, | :cat(a,), disperse(A,) (72)
EA, | ‘cat(a)), 3(A)) (7

representing, respectively, Some cats dispersed and There
were three cats.

Mathematically, an address can be of any order, yet natu-
ral language imposes a limit. A 3rd order address like:

EA,|::team(A,) 8)

reads There are/were teams. °:.team(A,) 1is typed
(((e, t), t), t), which makes (8) a 3rd order address. Natural
language has only few nouns with a 3rd order lexical mean-
ing, standing for sets of sets of individuals. League, as in
football competitions, looks like an example, as it stands
for a set of teams. There was a league is thus represented
as:

EA, |league(A,) 9)
and There were leagues results in the 4th order address:

EA,|: :league(A)) (10)
No addresses of a higher than 4th order seem required for
natural language.

An open address is ‘closed’ as soon as it is denoted in 2
subsequent clause by a definite (anaphoric) term. The effect

Discourse Semantics

of address closure is that the address head is type-changed
from a function to truth-values to a function to an entity
or set of entities, their ‘referents.” The referent of a closed
address under the head Ea, (or EA,) is named Ra, (or
RA,). Closure is symbolized by a double vertical line. Predi-
cations added after closure are no longer propositional
functions, but full propositions with Ra, (or RA,) replacing
the bound variable. If (4) is followed by a sentence like The
cat ran away, the incremental result is given as:

Ea,|cat(a,) | run away(Ra,) (1)

‘Ea,’ is now retyped from ((e, t), t) to ((e, t), €), whereby
the predication before closure normally determines the input
set typed (e, t). The predication ‘run away(Ra,)’ is the pro-
position that the individual selected by Ea,, that is the cat,
is an element of the set of those who ran away.

If V contains one single cat, ‘Ea,’ selects that as the cat
referred to. With more cats the function ((e, t), e) will fail to
yield a value. But natural language allows for the reference
function to locate its object even if more than one entity
satisfies the address before closure. In such cases the predi-
cations added after closure are ‘called in’ to help identify a
unique reference object. Thus, if V contains two cats, one
that ran away and one that did not, Ea, as in (11) will
lead to the cat that ran away. Then, the proposition ‘run
away(Ra;)’ cannot but be true, since it serves to locate the
reference object. Given such a V, the definite term the cat
in a text There was a cat. The cat ran away is said to have
‘nonspecific reference’ (see Seuren 1985: 459-64). Non-
specific reference is, however, strongly marked and not pre-
ferred. Listeners will expect, normally speaking, that if a
cat-address is introduced, as in (4) above, then closure of
the address will allow reference fixing on precisely one cat
in V. The inference from There was a cat to There was
precisely one cat is thus licensed by the default assumption
that open addresses can be closed in a nonmarked way. This
makes a Gricean explanation in terms of conversational
implicatures (based on the cooperation principle)
superfluous.

When an open plural address EA, | : :Pred;(a,) is closed,
‘EA.’ becomes a function from sets of sets to sets:
(((e, 1), t),(e, t)). The set selected, referred to by RA,, is
normally (that is, with specific reference) uniquely identifi-
able in V. The default case is that the function selects the
largest of the set of sets. Normally, that is, The children left
implies that all the children left. But external factors may
interfere, such as when the largest set is held responsible in
some sense, even though only a few of its individual mem-
bers satisfy the predicate. Thus, The mice have been at the
cheese need not imply that all the mice have, not even all
the mice in the house. Likewise, for example, The Americans
were the first to land on the moon, which does not imply
that all Americans were the first to do so.

Note, moreover, that under these assumptions, closure
of an address like (7b) above requires that there be one
unique set of three cats in V, since if there are more, the
plural power set of the set of cats in V will contain more
than one set of three cats and the reference function will
fail to yield a value. The apparatus thus provides a non-
Gricean explanation for the default interpretation of There
were three cats as ‘there were exactly three cats.’

Plurals are difficult, and only some of the problems can
be dealt with here. One such problem is the well-known
distinction between distributive and group readings. These
may differ truth-conditionally. For example, the sentence
The British voted for Major may be true on the group read-
ing, but false distributively. The sentence The students
taught themselves is true distributively only if each of the
students studied without a teacher, but for the group read-
ing it is sufficient that one group of students taught another.

Group readings are rendered analogously to singular
increments. Thus, given an open plural cat-address, as in
(5) above, the addition They ran away (group reading) is
incremented as in (12), analogously to (11):

EA)|::cat(a,;) || run away(RA,) (12)

To calculate the truth-value of ‘run-away(RA,)’ it is neces-
sary to type-raise the predicate run away from (e, t) to
((e, v), t), so that it can process an input of type (e, t). This
means that the extension of run away in V contains not
only individuals but also sets of individuals: the model is no
longer a first-order structure. Such type raising is normally
possible for Ist-order predicates that are not, in virtue of
their meaning, restricted to individuals (such as dog, tree,
have a headache, intelligent, etc.).

Distributive readings must be rendered differently. They
ran away (distributively) is taken to be incremented as in
(13). Given ‘EA,|: :cat(a,),” closure and i(they ran away)
yields:

EA | cat(a)) [run away(x)I(RA,) (13)

or ‘the set of cats referred to by ‘EA,’ is one of the sets of
more than one individuals running away.” (The variables
x, y, z, are used as ‘handymen’ for odd jobs not directly
associated with special addresses. Like the variables
a,a,,...,a,they range over V.) This enables us to express
the difference between the two readings of, for example,
The children carried a bag, which involves either one bag
(carried by all children) or as many bags as there were
children. The latter, distributive, reading is expressed in
(14a), the former in (14b) (distributively) and in (14¢)
(group) (note that subaddresses are introduced within a
given address; see below):

EA,|::child(a)) [:: Ea|bag(a,), carry(x, a,)}(RA))
(i ranges over RA)) (l4a)

EA,|: : child(a,) || Ea;| bag(a,). [: : carry(x, a;)}(RA;) (14b)
EA,|::child(a))| Eas|bag(a;), carry(RA, . a,) (l4c)

It now becomes clear how important the closure opera-
tion is for simple empirical reasons. Its crucial function
appears, for example, from the following pair of sentences:

(15a)
(15b)

Nob sent few letters that were rude.

Nob sent few letters, and they were rude.

These two sentences have clearly distinct truth-conditions
(unaccounted for in most semantic theories). The difference
is brought out by the closure operation, as is shown in (15¢)
and (15d), respectively, where ‘Ra,” refers to Nob:

EA,|: : letter(a,), : : rude(a,). : : send(Ra, . a:). few(A>) (15¢)
EA,|: :letter(a,), : : send(Ra, . a.). few(A,) i[: : rude(x)[(RA;) (15d)

The next step is universal quantification, whose notorious
complexity is best demonstrated with the help of some

985

Discourse Semantics

examples. First, any semantic theory must account for the
differences between plural the and all (every, each). The
Americans were first on the moon is different from A/l Ameri-
cans were first on the moon, and The Belgians won the match
differs from All Belgians won the match. Compare also The
protesters were numerous and * All protesters were numerous.
It thus seems that at least some group readings disallow
universal quantification. But other (most) group readings
are happy with all (though not with every): All children
dispersed (congregated, sat in a circle, etc.). Note that for
such cases the Russellian analysis Yx[Qx — Mx] falls foul
of type problems, as does the standard analysis in gen-
eralized quantification theory, where truth follows when the
Q-set is contained in the M-set.

An apparatus that aims at accounting for such facts in
a maximally regular way shall now be considered. Take a
few simple examples. 4/l (the) mice escaped is incremented
as (16a). All (the) mice dispersed corresponds to (16b),
and The cat caught all (the) mice to (16cy)
(D contains ‘Ea,|cat(a,)’). They read as ‘the discourse-
defined nonempty set of mice MePy({x|escape(x)}),’
‘Me {X|disperse(X)},” and ‘MePy({x]|catch(the cat, x)}),’
respectively. (16¢c,) reads: ‘the cate{x|catch(x, all the
mice)}.” The notation ‘[Pred(x)]’ is used to refer to the
set of whatever individuals satisfy Pred or ‘{x|Pred(x)}.’
Likewise, ‘[Pred(X)]’ refers to the set of whatever sets
satisfy Pred or ‘{X|Pred(X)},’ and °[::Pred(x)]’ for
‘Poi({x|Pred(x)}).’

EA,|:: mouse(a,) | all([: : escape(x)], RA,) (16a)
EA,|:: mouse(a,) | all([disperse(X)], RA,) (16b)
EA,|::mouse(a,) | ali([: : catch(Ra,, x)], RA)) (16c)
Ea,|cat(a,) || ali({: : catch(Ra,, x)], RA}) (16¢;)

The quantifier a// is thus treated as a higher order predi-
cate that takes terms referring to sets as object, and terms
referring to sets of sets as subject. It is satisfied (delivers
truth) just in case the object set is a member of the subject
set. This applies to all cases and all readings, and thus
provides a unified solution to the type problem set by the
Russell analysis or by standard generalized quantification
theory. (This solution is in conformity with Montague’s
advice to generalize from the most difficult case.)

The semantic difference between all and plural the seems
to be that the selects the set K of elements defined by the
address head after closure, while the sentence says that K
is a member of the set of sets L defined by the predicate.
All, on the other hand, while also saying that K €L, requires
specifically that no member of K be left out with regard to
the predicate symbolizing L. This makes a// unsuitable for
higher order predicates like numerous, but all right for other
higher order predicates like disperse or sit in a circle. Fvery,
as will be shown below, distinguishes itself from a// mainly
in that every does not allow for group readings. The differ-
ences between every and each are not touched upon here.

A predication may contain a reference taken from
another address, as in The cat caught the mouse, with D
containing Ea,|cat(a;) and Ea,|mouse(a,):

Ea,|cat(a,) | catch (Ra,, Ra;) (17
Ea,|mouse(a,) | catch (Ra,, Ra;)

Both addresses are closed, as bqth NPs are definite, and
both receive the information provided by The cat caught the

986

mouse. This means a reduplication of information storage,
following from the principle that D distributes the informa-
tion provided by the text over the addresses representing
the (sets of) individuals at issue.

A sentence like The cat caught a mouse is incremented as
follows, with D containing ‘Ea,|cat(a;):

Ea,|cat(a,) | Ea,| mouse(a,), catch (Ra,, a,) (18)
Ea,| mouse(a,), catch (Ra,, a,)

Ea, now contains the open address Ea,, saying that the cat
(Ra,) caught a mouse. An open address Ea,, being a func-
tion to truth-values, can be stored under another address
Ea, as a predication, provided a., or Ra,, occurs in at least
one of the predications of Ea,. A cat caught a mouse is
represented as:

Ea,|cat(a,), Ea;|mouse(a,), catch (a,, a,) 19)

The discourse may now continue with the cat that caught
a mouse, closing Ea,. Since it may also continue with a
definite NP the mouse, an open address is needed of the
form ‘Ea,|mouse(a,), Ea, |cat(a,), catch (a,, a,).” This must
be supplied by an auxiliary (logical) mechanism (not gone
into here) of ‘inferential bridging,” as is argued in the fol-
lowing section.

1.2 The Incrementation Procedure

The incrementation procedure I works top-down through
the sa-input of any sentence to be incremented. For each
S-structure, I starts with the highest predicate. Unless the
predicate instructs otherwise, I increments the terms in left-
to-right order. The most straightforward cases are those
where a predicate is applied to definite terms, as in (20a).
The grammar G assigns to (20a) the partial (i.e., without
tense) sAa (20b):

The cat caught the mouse. (20a)
/ So
/ \
\'% NP, NP,
catch /' \ /N
IX S X S,

7\ /7 \

\'% NP \% NP

cat x mouse X (20b)

NP, reads as ‘the x such that x is a cat’; analogously for
NP,. The incrementation of Sy, that is, i(So), scans the
predicate (‘V’) of S, first. Catch being a binary lexical verb,
the standard procedure is followed: I is put to work on
NP, first, to be followed by NP, (i(NP,) precedes i(NP,)).
D is deemed to contain ‘Ea,|cat(a;)’ and ‘Ea,|mouse(a,).’

For any NP, formed with the :-operator, i(NP;) consists

of the following stages:

(a) The definite NP-operator “.’ selects d(NP;), that is,
the address Ea, denoted by NP;, taking as input the
S-structure in its scope and selecting the matching
address, which must, in principle, be unique in D.

(b) NP; is replaced by ‘Ra,.’)

(c) Ea, is closed (if still open), and the entire sa-tree 1S
added to the closed address, with ‘Ra,’ for NP;.

(d) Any definite NP; occurring in an address predication
is subjected only to stages (a) and (b): if d(NP;)=
Ea,,, NP, is replaced by Ra,, in the predication S;.

Discourse Semantics

(For practical reasons trees are written as bracketed
strings in predications.)
Thus, i(NP,) in (20b) selects Ea,|cat(a,), and NP, is
replaced by Ra, in the sa-tree. Ea, is closed and the saA-
tree, with Ra, in place, is added to the closed Ea;:

Ea, |cat(a)) | So 2n
//
v NP NP,
catch Ra, /7 \
X S
7/ \
v NP
mouse x

NP, denotes Ea, and is replaced by Ra,:

Ea,|cat(a)]| So
// \
v Ra, Ra
catch
or, as a bracketed structure, ‘Ea, |cat(a,) { catch(Ra,, Ra,).’
Analogously i(NP,) gives ‘Ea, | mouse(a,) | catch(Ra,,
Ra,).” The total result is thus as in (17) above.

A comment on the denotation function is in order here.
If D contains more than one address matching a definite
NP, interpretation halts. If, on the other hand, the operator
* fails to spot any matching address, the first step is to
search background knowledge (with its defaults) to see if
one of the existing addresses can still act as d(NP), as in:

2

Last night a Swiss banker was arrested at Heathrow (22)
Airport. The 53-year old bachelor declared that he
had come to Britain to kidnap the Queen.

Here, the NP the 53-year old bachelor clearly denotes the
address just set up for the Swiss banker, a denotation that
would have been impossible for, for example, the officer in
charge. No formal procedure for this kind of identification
is available as yet. If such identification is impossible, then,
provided nothing in D or in background knowledge stands
in the way, a new address is set up by ‘suppletion post hoc’
(or ‘accommodation’; see Accommodation and Presupposi-
tion). If background knowledge does stand in the way of
post hoc suppletion, interpretation halts.

When a plural NP is involved, there are usually two ways
of incrementation, one for the group reading and one for
the distributive reading. The difference must also be
expressed in the input sA structure, if only to provide a
syntactic analysis for readings like (14a) above. Assuming
‘EA,|: :cat(a,) and ‘EA,|:: mouse(a,)’ given in D, con-
sider sentence (23a) with its sa (23b) representing the group
reading (‘the group of cats chased the group of mice’):

The cats chased the mice. (23a)
So
// ~
\' NP, NP,
chase / \ RN
X S, :X Sz
7\ VRN
A% NP A" NP
cat X mouse X (23b)

(NP, is to be read as ‘the set X such that for each xeX, x is
a cat’; analogously for NP,.) The incrementation proceeds
analogously to the singular NPs: i(NP;) selects

‘EA,|::cat(a;)’ and is replaced by ‘RA,’; EA, is closed,
and S, is added to EA,, NP, being replaced by ‘RA,":

EA,|:cat(a))) So
/// \

v RA, RA,
chase

or: EA, | cat(a;) || chase(RA,, RA;). Similarly: EA, | ::
mouse(a,)] chase(RA;, RA,).

The treatment of distributive plural readings is more
complex. Let wus revert to (13) above (ie,
‘EA, | :: cat(a;) | [::run away(x)](RA,)’). The input sa
of the increment ‘[: run away(x)J(RA,)’ is based on a vari-
ety of A-extraction from the group reading sA (24a), given
in (24b) (4 is replaced by the cap operator):

V/ S\NP

run away /7 \
X S
VRN
v NP
cat X (24a)
/ S ~
\% NP
/ \ / \
X S X S
/ \ /\
\% NP \% NP
run away X cat b3 (24b)

Now the main subject NP will select EA,, close it and add
(24b) with RA, for the subject NP, and with the ::-
operator for "X binding a lower case variable x.

If this procedure is applied to (23), the result is:

EA, | cat(@) [« [y : chase(x, YIRAJRA))
EA,|::mouse(a;) } [y : : [, : chase(x, y)(RA)IRA,)

{25a)
(25b)

The square brackets are subscripted to indicate the
order in which the variables are to be rotated (i.e., substit-
uted by names for all individuals in V). in
[x: [y :: catch(x, y)I(RA3)] of (25a) the x-variable is
rotated first, followed by the y-variable. For example, let
there be three cats, three dogs, three mice, and three birds.
First assign cat, to x and establish for each of the twelve
individuals y whether cat; chased y. This gives {y|cat,
chased y}. Now check if the set referred to by RA;, that
is, the three mice, is a member of P, {y|cat, chased y}. If
so, assign the value ‘I’ to cat,. If not, assign ‘0. Likewise
for cat,, cats, dog,, dog,, etc. for all twelve individuals.
This gives the set of individuals x in V such that x chased
the mice, e.g., {cat,, cat,, cat;, dog,, dogs, bird;}. Now
check if the set referred to by RA, that is, the cats, is a
member of P, {cat,, cat,, cat;, dog,, dogs, bird, }. If so, the
sentence (increment) is true (‘1’); if not, false (‘0’). The
reader notices that in the example the sentence is true. Anal-
ogously for (25b), which is, of course, also true. Note that
the truth-checking for the distributive reading is based on
a lIst-order model structure, whereas the group reading
requires a higher order model structure (with sets as refer-
ence values for Ist-order predicate terms).

987

Discourse Semantics

Existentially quantified sentences are treated as follows.
Take (26a) with sa (26b):

The cat caught a mouse. (26a)
So
// \
A\ NP, NP,
an / \ / \
X S,
/ l ~N /7 \
V. NP; NP, v NP
catch / \ X mouse X
. S,
/ \
V NP
cat y (26b)

In (26b) an is the singular existential quantifier. sas have
generalized quantifiers, that is, binary higher order predi-
cates over plural terms, NP, and NP,. NP, is the matrix
term (M-term) representing the M-set. NP, is the Q-term
and represents the Q-set (the set quantified over). With
existential quantification, the M-set and the Q-set are of
the same order, the quantifier assigning them a nonempty
intersection. (26b) is thus to be read as ‘“The intersection of
the set of things caught by the cat and the set of mice
contains at least one element’ (for the grammatical treat-
ment of quantifiers, see Seuren 1984).

Incrementally, quantifiers are ‘technical’ predlcates 1.e.,
they contain a special instruction. Existential quantifiers set
up a new address, of the same type as the variable under
the "-operator in NP, and NP,. The new address is fitted
out with the predications S; and S, in that order, with the
bound variable replaced by the address variable:

Eaz\ SZ S]
/ \ 5 / \\
v NP v NP, NP,
mouse a; catch /7 \ a;
1y S
7\
A% NP

cat -y (27
Given ‘Ea, |cat(a,)’ in D, NP; is replaced by ‘Ra,’ according
to (d) above, resulting in:
Ea,|mouse(a,), catch(Ra,, a,) (28)
i(NP3) still has to be carried out. d(NP;)=Ea, |cat(a,),

which is closed. NP; is replaced by ‘Ra;’ and the entire tree
(26b), with ‘Ra,’ for NP;, is added to Ea;,:

Ea,|cat(a,)] X (29)
//
\% NP, NP,
an VAR / \
"X S, “x S,
VAN / N\
V Ra, NP, \Y NP
catch X mouse X

Now S, must be incremented again. This gives:
Ea,|cat(a,) | Ea,|mouse(a;), catch(Ra, , a,) (30)

or ‘the cat is one of the set of individuals that caught a
mouse.’ (28) and (30) together are the incremental result
of (26a).

988

Now consider (31) (the predicate some represents the
plural existential quantifier):

The cat caught (some) mice. (31a)
So
// \
\% NP, NP,
some /7 \ / \
X S X S,
/7 I\ /\
V NP NP \% NP
catch/ \ x/X mouse X
ty S
/\
V NP
cat y (31b)

This runs parallel to (26), with the extra proviso that a 1st-
order predication ‘Pred(x)’ under the operators ‘X’ or X’
corresponds to ‘. :Pred(a,).” For intrinsically 2nd-order
predicates (e.g., disperse, be numerous) ‘Pred(X)’ is incre-
mented as ‘Pred(A,).” Since group readings automatically
type-raise the predicates concerned (provided they are not
semantically restricted to individuals), S, in (31b) has the
alternative variables x and X. With x, I produces (32a),
e., ‘the cat caught individual mice’; with X (32b) or: ‘the
cat caught a set of mice’:
(a) Ea|cat(a))| EAz|:
EA,|: . mouse(a,), : : catch(Ra,, a,)
(b) Ea,|cat(a,)| EA|: : mouse(a,), catch(Ra,, A,)
EA;|: : mouse(a,), catch(Ra,, A,)

. mouse(a,), | catch(Ra,, a,) 32)

Double existential quantification is treated analogously.
(33b) yields (33c):

A cat caught a mouse. (33a)
So
//// \
A% NP, NP,
an 7/ N\ /7 \
“x S, “x S,
\% NP, NP, V NP
an /\ / \ cat X
"y S "y S,
7 1IN / \
V NP NP V NP
catch x 'y mouse Y (33b)
Ea,|cat(a,), Ea;|mouse(a,), catch(a,, a,) (33c)

To account for the fact that a text may continue with a
definite description like the mouse, a process of ‘inferential
bridging’ must be assumed, deriving from (33c) an indepen-
dent open address:

Ea,|mouse(a,), Ea, |cat(a,), catch(a,, a,) 34
The setting up of (34) is subject to constraints which are
not clear at the moment, given the insufficiency of available

knowledge of plurals. The problem appears, for example,
in sentences like:

Few cats chased many mice. (35
I will, in the distributive reading, correctly yield a new
plural cat-address:

EA,|::cat(a,), few(A)), EA,|:
. .chase(a;, a,)

: mouse(a,), many(A,), (36)

Discourse Semantics

but must be prevented from incorrectly yielding also a new
distributive address:

EA;| . . mouse(a,), many(A,), EA,| . : cat(a,), few(A)), 37
.. chase(a,, a,)

which corresponds to Many mice were chased by few cats.
This sentence is equivalent to (35) only in the strictly collec-
tive reading according to which a small set of cats chased
a large set of mice. Given the lack of clarity in this matter,
the process of inferential bridging is left out of account
here.

Now consider universal quantification, as in:

All (the) mice escaped. (38a)
So
// \
\% NP, NP,
all / \ / \
X S :X S;
/\ / \
v NP \% NP
escape x/X mouse X (38b)

With lower case x, that is, in the distributive reading,
(38b) reads as ‘the discourse-defined set of mice
MeP,({x|escape(x)}).” Capital X represents the group
reading ‘the discourse-defined set of mice M is one of the
groups that escaped’ (compare (16a, b) above). Let D con-
tain ‘EA;|:.mouse(a,;).” Universal quantifiers take the
plural address denoted by NP,, in this case EA,, ordering
the addition of Sp, with NP, replaced by RA,. NP, is
rendered as ‘[: escape(x)),” or as ‘[escape(X)].” The result
is the distributive (39a) (=(16a)) or the group-reading
(39b):

EA,|::mouse(a,) || all([: : escape(x)}, RA)) (39a)
EA,|:: mouse(a,) | all([escape(X)], RA)) (39b)

Note that this machinery makes it possible to distinguish
in a natural way between every and all. The difference
resides in their subcategorization conditions. Every, in par-
ticular, requires distribution in NP, so that, for example,
*Every mouse dispersed becomes ungrammatical and unin-
terpretable, and Every mouse escaped can be interpreted
only as (40a), and not as (40b): ‘

EA,|: : mouse(a,) || every((: : escape(x)], RA,) (40a)
1EA,]:: mouse(a,) | every(fescape(X)], RA,) (40b)
Now consider (41), with D containing ‘EA,| . : cat(a,)’:

All (the) cats chased (some) mice. (41a)
/ So \
v NP, NP,
"X S, X S
AN 7\
V NP, NP, \% NP
some / \ /7 \\ cat x
Y §0 7Y Ss
1N\ / \
V NP NP V NP
chase x/X y/Y mouse y (41b)

Application of the above principles gives four possible
Incrementations:

EA,|::cat(a,)|all({: : EA,|:: mouse(a,), : : chase(x, a;)}, RA,) (42a)
EA,|::cat(a) fall([: : EA;| . : mouse(a,), chase(x, A,)], RA,) (42b)
EA,|::cat(a,) | all[EA.| : : mouse(ay), : : chase(X, a;)], RA)) (42¢)
EA,|::cat(a,)|{all((EA,|: : mouse(a,), chase(X, A,)], RA)) (42d)

Finally the following is discussed:

All (the) cats chased all (the) mice. (43a)
So
//7 \
NP, NP,
all PN /7 \
~X S X S
7 T / \
\" NP, NP, \' NP
all / \ / \ cat X
Y S 'Y S
A RN /\
V NP NP \" NP
chase x/X y/Y mouse Yy (43b)

As the reader will be able to work out, the result is fourfold,
each reading specifying group or distributive readings for
the set of cats (RA;) and the set of mice (RA,):

EA,|::cat(a))]l all([, : : all(],: : chase(x. y)J. RA3]), RA)) (44a)
EA; | mouse(a,) | all([, : : all([,: : chase(x. y)], RA}]). RAy)

EA;|::cat(a,) | all([xall([, : : chase(X, y)], RA:]), RA}) (44b)
EA,|:: mouse(ay) |f all([, : : all({xchase(X, y)]. RA|]).RA,)
EA\|::cat(ay) | all([, : : all([y chase(x, Y)], RA:]). RA) (44c)

EA,|:: mouse(a,) | all([yall([, : : chase(x, Y)]. RA]).RA;)

EA,|:: cat(a,) | all([xall({y chase(X. Y)}, RA;]). RA)) (44d)
EA;| . : mouse(a,) | all{(yall([x chase(X, Y)]. RA,]).RA;)

Analogous treatments can be provided for noncanonical
quantifiers like most, half, many, few, or the default quan-
tifier occurring in generics.

1.3 Negation

In sA, negation is an abstract predicate, like the quantifiers.
Its subject-S is what is normally called its scope. Thus, (45a)
has the sA (45b) (disregarding tense):

The mouse did not escape. (45a)
— ’ ™~
A% S
not e \
\' NP
escape N
X S
VAN
\% NP
mouse X (45b)

In D-structures, not is represented as **’ preceding the predi-
cate just below it in sa:

Ea, |mouse(a,) | *escape(Ra,) (46)

The discourse-semantic function of negation 1s an instruc-
tion preventing the addition of the predication immediately
following it to the address in question. For the instruction
to work, the nonnegated predication must be normally
incrementable. I takes the subject-S of not in the sa-tree and
processes it first in the normal way. i.e.. without negation.

989

Discourse Semantics

Subsequently, not causes an asterisk to be placed, in princi-
ple (but see below for the type-sensitivity of negation),
before the predication resulting from its subject-S. In the
case at hand, there must, therefore, be an appropriate
mouse-address available in D. In (46), ‘“*escape(Ra,)’ is to
be read as ‘the mouse belongs to the class of those that did
not escape.’ Generally, * is presupposition-preserving, and
differs, therefore, from the negation in classical logic (see
Presupposition).

Since negation is typed (t, t) it requires an input typed t
or (X, t). Open addresses can, therefore, be negated:

*Ea [mouse(a;) 47

(There is/was no mouse). The asterisk prevents the addition
of any address of the form ‘Ea,|mouse(a,)’ to D. But
negated open addresses cannot be closed, due to the type-
shift after closure. In (47), the head ‘Ea,’ is typed ((e, t), t),
but in (46) it has been retyped ((e, t), €), no longer provid-
ing an input for the negation function (t, t). The machinery
thus automatically accounts for the fact that no definite
anaphoric reference is possible to a negated existential.

Negation is, apparently, type-sensitive. That is, it checks
the basic type of the ‘nuclear’ predicate of its subject-S in
the sa-tree and ends up in D as ‘*’ just before the predica-
tion of the right type. Thus, in (48b), the verb escape is the
nuclear predicate of the main V of S, and is typed (e, t).
Therefore, ** ends up in (48c) before escape, and not before
‘[: escape(x)],” which is typed ((e,t),t). This accounts for
the fact that (48a) entails that none of the mice escaped,
not just that not all mice did:

The mice did not escape. (48a)
/ > \
\Y S,
not / \
\ NP
"X S X S
\% NP Vv NP .
escape X mouse X (48b)
EA,{:: mouse(a,) | (:: *escape(x)(RA,) ' (48¢)

In general, **' will never immediately precede the ::-
operator in any address.

Likewise for universal quantification. The negation of
(38), or:

Not all (the) mice escaped. (49)
is incremented, analogously to (39), as either (50a) or
(50b):

EA,|:: mouse(a,) | *all({: - escape(x)], RA) (50a)

EA,|:: mousefa,) *all(fescape(X)]. RA)) (50b)

The asterisk stands before all, the nuclear predicate of the
negated S, whose basic type is ((e, t), t). Application of
these principles yields, correctly, (51b,,) for (51a), inter-
preted with large scope for all:

All (the) mice did not escape. (Sla)
EA,|: mouse(a,) | all([: : *escape(x)]. RA,) (51by)
EA, | mouse(a,) | ali([*escape(X)]. RA|) (51bs)

990

A sentence like (52a) is incremented as (52b), and (53a)
as (53b):

No mice escaped. (52a)
*EA,| .. mouse(a,), .. escape(a,) (52b)
Some mice did not escape (53a)
EA,|:: mouse(a), :: *escape(a;) (53b)

2. The Theory of Domains and Subdomains
2.1 The Sequentiality Criterion
The incrementation of a sequence of sentences in D is sub-
ject to certain conditions, some of which form the ‘sequen-
tiality criterion’ (sc) (also discussed in Presupposition). sC
does not apply to actual texts, which are hardly ever fully
sequential (a fully sequential text would be unbearably ver-
bose), but to Ds. Besides sc, there are other structuring
principles for texts and Ds, which will not be discussed here.
Foremost among these is the principle of ‘topic-comment
modulation,” based on the notion that each new sentence
in a discourse is meant as an answer to an, often implicit,
question. (Van Kuppevelt 1991; see Topic and Comment).
A general condition on the incrementation of any sen-
tence A is that all predicates occurring in A have ‘cognitive
backing,” that is, the relations they enter into in the D
under construction form, or fit into, a ‘scenario’ that makes
functional sense. This condition is particularly relevant for
the complex of possessive predicates (have, with, of, geni-
tives, etc.). The semantic description of these predicates
contains an open parameter whose value is to be somehow
retrieved from general or particular background knowledge
(see Psychological Semantics). For example, to say of a
hotel that all its rooms have a shower implies truth-
conditionally that there is a specific shower for (in or near)
each room. But to say of a faculty that all its students have
a supervisor does not require such one-to-one mapping.
This is because the predicate have refers the user to his or
her background knowledge, which tells him or her what it
is for a hotel room to have a shower, and what it is for a
student to have a supervisor. It will, normally, fail to tell
the user, for example, what it is for a room to have an
engine. Hence the fact that a sequence of sentences like She
entered a room, but she could not get its engine started will
normally be uninterpretable. Similar conditions hold for
compounds. Unless a special discourse has provided one,
there is no cognitive backing, for example, for a compound
like wheel fire. Compounds depend on background knowl-
edge for a specification of the relation between their constit-
uent parts. Needless to say, the condition of cognitive
backing has so far eluded any attempt at formal treatment.
More formally manageable are the specific conditions of
sc. sc implies that the incrementation of a conjunction
A A B, that is, i(A A B), consists, at least in principle, simply
of i(A) followed by i(B): D then contains A + B. By defini-
tion, the set of verification domains V (‘worlds’) in which
D is true, or /D/, is the intersection of the set of Vs in
which A is true, or /A/, and the set of Vs in which B is
true, i.e., /B/. Generally, /D/= O for all SeD. If and how
and is to be represented in D has so far remained an open

question. Where applicable, the comma that links predica-
tions may be taken to represent it. Further research will

Discourse Semantics

have to reveal how the semantic differences with other con-
junctive operators, such as but or for, should be expressed.
In any case, the structural conditions for negation over
and are not fulfilled. Likewise, a conjunction cannot carry
presuppositions: presuppositions are properties of sen-
tences that are incrementable as a single unit (see
Presupposition).

Moreover, sc requires that any newly added incrementa-
tion restricts the set of Vs in which D is true: for any i(A)
to D, /D+A/</D/. This is the ‘informativeness condi-
tion’ for Ds. It implies, for example, that D does not accept
i(A or B) if i(A), or i(B), is already in D. And ‘possible(A)’
is not acceptable if i(A)eD (though incrementation is still
allowed in intensional subdomains introduced by therefore
and the like). Yet, no new i(A) may restrict /D/ to such
an extent that /D/=J. In other words, sc requires that
no incrementation i(A) is to result in the empty set of pos-
sible Vs for which D is true. That is, D must be consistent.
We therefore speak of the ‘consistency condition.” The con-
sistency condition is a much heavier constraint than the
informativeness condition, which does not preclude inter-
pretability the way the consistency condition does.

Finally, sc requires that no sentence be incremented
unless all its presuppositions have been incremented first.
This does not mean that all the presuppositions of a sen-
tence must be actually uttered in the text that is produced
(that would be unbearably verbose). Since presuppositions
are structurally retrievable from their carrier sentences, I
can retrieve them and supply them by accommodation (see
Accommodation and Presupposition). Accommodation of a
presupposition is, of course, subject to the conditions of
cognitive backing, informativeness, and consistency.

Interestingly, at any stage of development of a D there
is a set of sentences of the language that simply cannot be
processed in D, on account of the consistency condition.
(The condition of cognitive backing can be satisfied ad hoc
by providing suitable background information, and the
informativeness condition does not, strictly speaking, affect
interpretability.) This set, the ‘nonlanguage of D’ or
NL(D), consists of the sentences whose presuppositions have
been denied in D. The radical negation operator NoT (i.e.,
not with heavy accent) is used to say of a sentence that it
belongs to NL(D). The normal (minimal) negation as in
‘not-A,” incremented as ‘*,” yields truth for the complement
of /A/ in /D/ after all A’s presuppositions have been
accommodated, not for the complement of /A/ in the uni-
verse of all possible Vs, as classical negation does. A gapped
logic thus seems required to describe the logical properties
of sentences incremented in Ds. Or else, only those sen-
tences that are interpretable in any given D must be consid-
ered valid objects for logical treatment, which means that
the logic must work with an ever changing universe of dis-
course (see Presupposition for a fuller discussion).

2.2 Alternative Incrementations and Subdomains

‘Alternative incrementations’ have not been discussed so
far. They result mainly from the operators or and if and
epistemic possibility. Disjunctions, that is, sentences of the
form ‘A or B’ are incremented as consisting of the alterna-
tives ‘A’ and ‘not-A and B, or: ‘A/[not-A and B].” Like-
wise, ‘not-A or B’ is incremented as ‘not-A/[A and B}’
The truth-condition is that at least one of the alternatives

be true. A sentence like John is happy or he is ignorant is
incremented as shown in (54) (with ‘“John”’ for ‘be called
“John™’):

Ea,|*“John”(a,) || [happy(Ra,)/*happy(Ra,), ignorant(Ra,)] (54)

This accounts, in principle, for the much debated ‘exclusive’
character of natural language or, since the alternatives in
(54) cannot both be true.

It also accounts for ‘donkey’ anaphora in a disjunction,
as in (55a, b):

Either John bought no car, or it is white. (55a)

Ea,|“John”(a,) || [*Ea,car(a;), buy(Ra,, a,)/Ea,|car(a,),
buy (Ra,, a,) || white(Ra,)]

(55b)

Since, in the second alternative, the address Ea, has been
closed, ‘Ra,’ stands for the car that John bought if he
bought one. The predication after closure reads as ‘either
John bought no car or he did buy a car and that car is
white.”

Implications, another source of donkey anaphora, are
considered to involve at least the following treatment.
A sentence of the form ‘if A then B’ is incremented as ‘not-
A or B, that is, ‘not-A/[A and B].’ Analogously, ‘if not-
A then B’ becomes ‘A/[not-A and B).” Thus i(56) involves
at least the structure of (55b):

If John bought a car it is white. (56)

DRT, mentioned above, has essentially the same approach
to donkey anaphora. It also gives up the premise that an
anaphoric pronoun in a true extensional sentence must be
analyzed as either a bound variable or a term with fixed
reference. The intermediary stage of discourse domains
allows for the view that anaphora, and, for that matter,
reference, is not a direct relation between a sentence and a
verification domain V, but is mediated by a cognitive dis-
course structure.

One must note, however, that though this affords some
breathing space with regard to the donkey sentences prob-
lem, it does not solve it. This appears from the fact that
predications involving at least one definite term must still
have a truth-value even when the definite term lacks refer-
ence in V, if the disjunction and implication operators are
to remain truth-functional. Assignment of simple falsity will
not do, as the negation operator would then yield truth,
which would be wrong in any theory taking account of
presuppositions as discourse phenomena, such as psx. It
seems, therefore, that a psx solution to this problem neces-
sitates (a) the acceptance of intensionai objects as reference
values (see Seuren 1985: 472-76), and (b) the acceptance
of a third truth-value (‘radical falsity’). If these conclusions
hold, then the proper logic for Dsx is trivalent, and also
gapped if the universe of discourse is to remain constant.
DRT will face the same dilemma when it gets down to
presuppositions.

It is in no way implied, of course, that the analysis
presented here provides an answer to all questions arising
in connection with disjunctions and implications. It seems,
for example, that an implication ‘if A then B’ is appropriate
only if the possibility of A has been raised in previous
discourse. It also seems that the addition of B after A in the
second alternative is normally qualified by some modality

991

Discourse Semantics

(‘must,” ‘will’). Nothing more than a partial framework can
be given here.

Subdomains represent what is usually called ‘intensional
contexts’ (see Intensionality). They are a special kind of
address. Like ordinary addresses, they contain predications
and can be closed. They also have domain properties, in
particular the property of being able to contain addresses,
predications, and instructions, which are limited to the sub-
domain in question. A double notation is therefore used:
they are represented both as a special kind of address and
as a (subscripted) domain. A sentence like (57a) is incre-
mented as (57b), which contains both the domain-address
D, and the specification of what D, contains. The main
domain (truth domain) D is assumed to contain the address
‘Ea;|“Mars”(a;), planet(a;),’ which is then closed and
enriched as in (57c). Note that in D, Ea; is immediately
closed and given the predication ‘inhabited(Ra,),” indicat-
ing that Ea, has been ‘borrowed’ from D so that the object
referred to is taken to exist in the real world (so-called
‘transparent reference’).

[t is possible that Mars is inhabited. (57a)
D, | possible(D,) (57b)
D, Ea, | inhabited(Ra,)

E,|*“Mars”(a;), planet(a,) || possible(RD;) (57¢)

Opaque reference occurs in, for example, (58a), incre-
mented as (58b), with D containing Ea, for John, closed
and expanded as in (58c):

John believes that there is a planet Minerva and that (58a)
this planet is inhabited

ED,|believe(Ra,, D)) (58b)
D, Ea,[*Minerva (a,), planet(a,) || inhabited(Ra,)

Ea,|"John™(a,) | believe(Ra,, D,) (58¢)

Now Ea" is properly opened and closed within Dy, so that
the existence of this planet is limited to the world of John’s
beliefs. The definite NP this planet now refers opaquely.

A few general principles hold for subdomains. First,
addresses from the truth domain ‘percolate’ downwards
into subdomains, as shown in (57), where the address Ra;
is taken from D. This downward percolation is stopped
only if the subdomain in question explicitly negates the
existence of the referent in question. Then, presuppositions
of clauses incremented in subdomains must in any case be
introduced into the subdomain in question (according to
sc), but they will, by way of a default procedure, ‘climb’
up into higher domains and into D unless stopped either
by their explicit negation or by lack of cognitive backing.
This process is called ‘projection’ (see Projection Problem).
Both downward percolation of addresses and upward pro-
jection of presuppositions serve the functional purpose of
ensuring maximal unity and coherence in the whole D-
structure.

Anaphora may delve into subdomains. The predicate
exist, for example, being intensional with regard to its sub-
ject term (see Existence Predicate (Discourse Semantics)),
naturally makes its subject term look for an address in some
intensional subdomain. Its incremental result is that this
address is given a place in the truth domain. Thus in:

Marion believes that she has a brother, but he does not exist. (59)

the pronoun he closes the brother-address set up in

992

Marion’s belief-domain, and the negated existential state-
ment prevents it from being added to the truth domain. In
this respect, anaphora contrasts with presuppositions,
which can never be retrieved from intensional subdomains.
The sentence:

'Marion is under the illusion that she has a brother. He (60)
lives in Texas.

is incoherent because the presupposition of the second sen-
tence (‘Marion has a brother’) is not fulfilled in the truth
domain, only in the subdomain of Marion’s illusions,
which, in virtue of the meaning of illusion, is per se barred
from the truth domain. Even so, the pronoun, ke is clearly
anaphoric to Marion’s thought-up brother. Heim’s (1982)
suggestion that presupposition is really a special form of
anaphora thus seems hard to uphold.

A further principle of domain economy concerns the
structuring of alternatives. When a sequence of alternative
domain splits occurs, new alternatives will latch on to old
ones to the extent that sc allows for it. Thus, a sequence
like:

If John is not in his office he is with his girlfriend. (61)

And if his wife finds out he is in for trouble.

splits up D into four hierarchically ordered alternatives:
one in which John is in his office and one in which he is
not but with his girifriend, in which case either his wife
does not find out or she does and he is in for trouble.

In addition to the cognitive aspects of sentence compre-
hension, a proper elaboration of the machinery outlined
should account also for the logical and intensional proper-
ties of sentences, as well as for the phenomena that have
been observed in connection with presuppositions.

See also: Accommodation and Presupposition; Presupposi-
tion; Projection Problem; Topic and Comment.

Bibliography

Fauconnier G 1985 Mental Spaces: Aspects of Meaning
Construction in Natural Language. MIT Press, Cambridge, MA

Gazdar G 1979 Pragmatics, Implicature, Presupposition, and
Logical Form. Academic Press, New York

Geach P 1962 Reference and Generality: An Examination of Some
Medieval and Modern Theories. Cornell University Press,
Ithaca, NY

Heim I 1982 The semantics of definite and indefinite noun phrases
(Doctoral dissertation, University of Massachusetts)

Heim I 1990 E-type pronouns and donkey anaphora. Linguistics
and Philosophy 13: 137-77

Isard S 1975 Changing the context. In: Keenan E (ed.) Formal
Semantics of Natural Language. Cambridge University Press,
Cambridge

Kamp H 1981 A theory of truth and semantic representation. In:
Groenendijk J, Janssen T, Stokhof M (eds.) Formal Methods
in the Study of Language, vol. 1. Mathematisch Centrum,
Amsterdam

Kamp H, Reyle U in press From Discourse to Logic: An
Introduction to Modeltheoretic Semantics of Natural Language.
Formal Logic and Discourse Representation Theory. Kluwer.
Dordrecht

Russell B 1905 On denoting. Mind 14: 479-93

Seuren P A M 1972 Taaluniversalia in de transformationele
grammatika. Leuvense Bijdragen 61: 311-70

Seuren P A M 1975 Tussen taal en denken: Een bijdrage tot de
empirische funderingen van de semantiek. Oosthoek, Scheltema,
Holkema, Utrecht

Seuren P A M 1984 Operator Lowering. Linguistics 22: 573-627

Discrimination and Minority Languages

Seuren P A M 1985 Discourse Semantics. Blackwell, Oxford

Strawson P F On referring. Mind 59: 320-44

Strawson P F 1952 Introduction to Logical Theory. Methuen,
London

Van Kuppevelt J 1991 Topic en comment: Expliciete en impliciete
vraagstelling in discourse (Doctoral dissertation, Nijmegen
University)

P. A. M. Seuren

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12

