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Abstract

This thesis studies information theoretic approaches for the motivation

and application of the formula of the entropy production rate of Markov

processes as well as the analysis of interacting stochastic processes.

As a particular example, the stochastic process describing the cathalytic

cycle of tryptophan synthase is investigated in the framework of stochas-

tic thermodynamics. The enzyme tryptophan synthase is characterized

by a complex pattern of allosteric interactions that regulate the catalytic

activity of its two subunits and opening or closing of their ligand gates.

As a single macromolecule, it implements 13 different reaction steps, with

an intermediate product directly channeled from one subunit to another.

Here, a model based on experimental data is used to consider stochas-

tic thermodynamics of such a chemical nanomachine. The Gibbs energy

landscape of the internal molecular states is determined, the production of

entropy and its flow within the enzyme are analyzed and the information

exchange between the subunits resulting from allosteric cross-regulations

and channeling is discussed.

Research from the 80s on the critical dynamics of spin systems described

by a master equation is reviewd and put into context of recent devel-

opments from the field of stochastic thermodynamics. A method for the

Renormalizration Group transformation of the master equation of a single,

non-interacting, blockspin is introduced. This method allows the straight

forward recursive RG transformation of a blockspin.
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Introduction

Non-equilibrium Statistical Mechanics is a very broad field of studies. Possibly all

physical systems are not truly isolated systems. Dissipation may arise due to reasons

such as unknown fundamental theories, measurement processes, emergent phenomena

from complexity or environmental noise. Equilibrium Statistical Mechanics describes

the special type of systems which are thermalised, i.e. systems which have already

relaxed towards an equilibrium state. Under equilibrium conditions, no energy, no

matter or more generally no entropy is exchanged between the system and the en-

vironment. In turn systems undergoing thermalisation, i.e. relaxation towards a

steady state or systems which have already relaxed towards a steady state and dis-

play constant entropy flows towards the environment belong to the huge class of

non-equilibrium processes.

Above and beyond, a central question is at which scale in space and time a physical

system only allows a statistical description. Statistical Mechanics is currently chal-

lenged by the nano-sciences which provide many examples of systems, often out of

equilibrium, of size between atoms and macro systems. Thus it may be difficult to

draw a line between the mircroscopic behaviour where deterministic atomic features

are apparent and the macroscopic behavoir, where the large number of particles, calls

for a statistical description. The new perspective provided by nano-sciences endorses

a the development of non-equilibrium Statistical Mechanics in order to explain prop-

erties of these intermediate systems. Indeed nano-systems may be small enough to be

considered as dynamical systems but also large enough to for the onset of statistical

behavoir.

This thesis is outlined as follows: In chapter 1 the meaning of information conservation

in the fundamental physical laws is reviewd. Coarse grained deterministic dynamical

systems generally follow probablistic time evolution laws which, on average, may not
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obey time reversal symmetry. For these system statistical time reveral symmetry can

be broken and the accessible information about the state of the system changes at

different pace in the future and past. In chapter 2 Shannons entropy is introduced

based on a combinatorial quantification of path histories of a system ensemble. With

the concept of entropy rates the breaking of statistical time reversibility is quantified

and a connection to the thermodynamic entropy production and the second law is

established. Interacting systems allow for an even richer information theoretic anal-

ysis as presented in chapter 3. All systems investigated in this thesis are described

by a so called master equation, obeying the Marov assumption and describing the

time evolution of the probability distribution. The key mathematical properties of

the continuous time master equation are introduced in chapter 4. In chapter 5 the

concept of information flow between sub-systems performing mutual feedback on each

others but undergoing seperate fluctuations is introduced. This theory is expanded

to systems which are in parts directly coupled to the same fluctuations. The chemi-

cal nano-machine Tryptophan synthase is analysed in chapter 6 in the framework of

Stochastic Thermodynamics and the influence of the feedback- and direct-counpling

is investigated. Chapter 7 is a summary of the authors latest but unfinished research

in the field of critical slowing down of spin systems driven close to their critical point.

The aim is to investigate the Kibble Zureck mechanism, i.e. the slow cooling of a spin

system towards its critical point, where the system will fall into a non-equilibrium

state while thermodynamic equilibrium constraints are imposed by the environment.
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Chapter 1

Information in physical systems at
different times and scale

”Out of every 10,000,000,000 bits of information in
the universe, 9,999,999,999 are associated with the
horizons of black holes. It should be evident that our
naive ideas about space, time, and information are
wholly inadequate to understand most of nature.”

Leonard Susskind in
Black Hole Wars

1.1 Information conservation in the fundamental

physical laws

One might expect that a fact as basic as the existence of time’s arrow would be

embedded in the fundamental laws of physics. But the opposite is true. The funda-

mental equations of Quantum Mechanics do not distinguish between the past and the

future: Any pair of distinct Quantum states remains distinct in the future and past.

This fact is closely related to the conservation of information in the future and past

[59]. Since we will formalize the notion of information later, we start with a heuristic

definiton in order to grasp the connection between information conservation and the

fundamental physical laws [53]: ”Information is the ability to distinguish reliably

between possible alternatives.” In the language of Quantum Theory ’possible alterna-

tives’ are orthogonal states. Orthogonal states from the past are orthogonal now and

5



1.2. COARSE GRAINING OF STATES SPACE AND TIME

remain orthogonal in the future for a closed isolated system [57].

〈j(0)|U †(∆t)U(∆t) |i(0)〉 = δij ∀∆t (1.1)

Unitary time evolution of state vectors in Quantum Mechanics is the most funda-

mental law in physics, we use to describe nature. It posses time inversion symmetry

(since valid for all ∆t) and also preserves any distinctions (orthogonality) between

states - in other words information - as they propagate in time.

Figuratively speaking, the equation for the time evolution of a system dictates the

neighboring structure of prior and posteriour states in time. It is a set of rules de-

termining all possible states a given state will transform into after an infinitessimal

time dt. These rules can be formulated in terms of a network structure connecting

states as time evolves.

If this network connects states at time t = 0 only with one prior at t = −dt and

posterior state at t = +dt, then there is no ambiguity into which state the system

can evolve and has come from at a time t. Any state has a unique past and future.

Systems following such evolution laws are called conservative determinsitic dynamical

systems [58, 57].

On the other hand, once there is more than one possibility for a past and future of

a state, everything suddenly becomes more challanging. Systems of this class are

dissipative determinsitic dynamical systems and stochastic dynamical systems. It is

much harder, genrally impossible, to predict the future and reproduce the past in

both cases since they may obey highly complicated dynamics [4, 44].

While the conservation of distinctions is held so sacred in the fundamental laws, it is

astonishing to witness that this perspective is practically inaccessible for the analysis

of most interesting systems. Inevitably, violation of information conservation must

be considered to play a fundamental role in our description of the physical world.

1.2 Coarse graining of states space and time

As opposed to equation (1.1) broken time reversal symmetry appears whenever our

current information about a system does not allow us to exactly predict its future

state and reproduce its past for all times. Time reversal symmetry is broken, when

our information about a system tends to loose its precision with different speed into

future and past as time unfolds. This is often due to the fact that we cannot describe
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1.2. COARSE GRAINING OF STATES SPACE AND TIME

Figure 1.1: (1-3) The fractal like spreading of deterministic trajectories of a dynamical
system can lead to an unpredictable behavior of the system on a coarse grained level. The
rapid spreading of the trajectories and the resulting unpredictable paths through the phase
space cells is commonly referred to as the dynamical randomness of a system.

elementary processes precisely enough: In laboratory experiments our measurements

will always have errors and a lower resolution in space and time than all the pro-

cesses happening on the scales of the fundamental laws. On the pure mathematical

side, we are simply unable to exactly solve the underlying equations in many cases

[56, 23]. For both, the experimental and mathematical limitations, a commonly suc-

cessful approach is to ignore processes at scales we anticipate to be irrelevant for the

phenomena we whould like to understand. Following such a scheme of approximation

is generaly called coarse graining. Degrees of freedom at irrelevant scales are lumped

together to fewer degrees of freedom. The incentive is to simplify the problem [12]. In

other words: We are sloppy with the little things happening in complicated systems

in order to frame a problem into models reflecting the phenomena of interest which

we can explain and analyse.
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1.2. COARSE GRAINING OF STATES SPACE AND TIME
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Figure 1.2: (1) In the illustration, states can only evolve into states connected by a single
link. For systems governed by the fundamental laws of physics, the time evolution of two

distinct initial states u
(1)
0 and u

(2)
0 (marked black) will never fall onto one and the same state.

In that sense information is conserved. (2) Our limited acces to the microscopic degrees of
freedom divides the state space in into cells containing all configurations which represent a
single state in a coarse grained model. (3) The mapping of the states onto cells can lead to a
time evolution of transitions between sectors which is not time inversion symmetric. These
dynamics of a coarse grained model do not necessarily preserve information (see text).

Coarse graining deterministic systems

Now, we exploit the possible consequences to the time evolution of a conservative

system by analysing the dynamics of a coarse grained state space

dtu(t) = f(u(t)), Rp 7→ Rp
classical deterministic dynamical
system on a continous state space
evolving in continous time

(1.2)

σ(t) = g(u(t)), Rp 7→ N

a surejective mapping which
represents the limited
resolution of the measurment
space

(1.3)

where f(•) is a bijective mapping and g(•) is a surjective mapping. The role of the

surjective mapping is the coarse graining of the underlying state space into cells, which

can be labeled by integer numbers, i.e. σ(t) ∈ {1, 2, ..., N} (see figure 1.2). Since a

surjective mapping is not invertible it is clear that it is a source of information loss.

We call

σt := (σ0, σ1, ..., σt)
ᵀ, (1.4)

8



1.3. DYNAMICAL RANDOMNESS

a typical path or sequence of a realization of the stochastic process σt further on.

1.3 Dynamical Randomness

A coarse grained state σ(t) can be followed by a variety of different outcomes. The

actual sequence ultimately depends on the initial configuration u(0) of the determin-

istic dynamical system.

As a consequence of the surjective mapping (1.3), a system described on the level

of a sequence of coarse grained states evolves in time due to a rich possibility of all

trajectories of u(t) traversing different cells (see figure 1.2). The system u(t) may

trace complicated, fractal like trajetories in its state space [44] and therefore traverse

many different sectors (see figure 1.1). We will see below that this ambiguity leads to

an observation of the time evolution of paths σt which may obey statistical temporal

asymmetry, in the sense that not given the initial condition u(0) we cannot exactly

determine the future outcomes σt′>t or reproduce their past sequence from the cur-

rent knowledge of σt alone.

The extensive neighboring structure of the time evolution network for the coarse

grained states with more than one ingoing and outgoing connections to other coarse

grained states gives inherently random, logically irreversible sequences of states. Such

dynamics are called stochastic processes or random walks, since without the exact

knowledge of all underlying dynamics, they seem to randomly evolve in time.

As opposed to solutions of an ordinary differential equation a stochastic process can

evolve in many, sometimes infinitely many ways. Such a process is generically charac-

terised by both a random variable for the sequence of states σt and one for the jump

times τt [65].

1.4 Statistical temporal asymmetry

Due to the uncertainty arising from the coarse graining procedure the information

about the state of the system can only be given as a probability distribution P(σt) of

a symbolic sequence over some time interval [0 : t]. We can investigate whether this

probabalistic information of a coarse grained system is conserved in the future and

past, i.e. whether the probability distributions are distinguishable. Whenever this

information is conserved for all times in the past and future sequence of states, we

9



1.5. MARKOV AND STATIONARY PROCESSES

obviously have time reversal symmetry with regards to the probablistic description,

i.e.

P(σ−t) = P(σt). (1.5)

If the probability distribution of future and past sequences aren’t symmetric we say

that information is not conserved and

P(σ−t) 6= P(σt). (1.6)

In translating the time evolution of systems into sequences of measurment outcomes,

better yet the probability of these sequences, we have arrived at the core conceptual

starting points of the thesis: We are interested in the transformation of the reversibil-

ity of the time evolution for systems at different levels of time resolution and scale.

We take the standpoint that temporal asymmetry in physical systems may naturally

emerge from our own ignorance and ability to follow all processes in detail. Temporal

asymmetry of coarse grained processes is studied in terms of time series of stochastic

processes and their associated probability distributions.

1.5 Markov and stationary processes

In general the sequence of the symbols in σt is not drawn independent and identically

distributed random variables. Interactions within the system and the environment

lead to stochastic processes where the sequence of symbols σt is not arbitrary. A

simple example of such a stochastic process with dependence among the symbols is

one in which each random variable σ ∈ σt is only dependent on the one preciding it.

Especially it is conditionally independent of all the other preciding random variables

from the past. Such a type of process is called a Markov process, where

p(σt+dt|σt) = p(σt+dt|σt) (1.7)

is commonly called the Markov property. Under this condition the probability of a

particular realisation of the process becomes

p(σt) = p(σ0)p(σ1|σ0)p(σ2|σ1)...p(σt−dt|σt). (1.8)

A stochastic process is said to be time invariant or stationary if the conditional

probability p(σt+dt|σt) does not depend on t, i.e.

p(σt+dt|σt) = p(σt+∆t+dt|σt+∆t). ∀∆t (1.9)

10



Chapter 2

Entropy rates and statistical
temporal asymmetry

”The entropy of a car and the entropy of a rust heap
have something to do with the number of
arrangements that we would recognize as rust heaps
versus the number that we would recognize as a car.”

Leonard Susskind Black Hole Wars

2.1 Information content as the average code length

Physicists usually gather data about a system and deduce a hopefully simple model,

from which one can predict and understand the time evolution of the system. As a

fact, the success of building a model may highly depend on how well we can classify

the data points and detect patterns to draw the right conclusions about the dynamics

and interactions of the system. Information Theory gives us the tools to quantify the

notion of information [14] and randomness in data generated when observing a system.

In order to distinguish all possible states of a system, binary codes can be used. The

sequence σt can simply be seen as an abstract message where the different states

are signals or data points to be encoded into binary strings [15]. The tricky part

is to actually find a suitable, compressed code that we can handle in practise since

we aim to build simple laws predicting the content of these binary strings for the

future and past. As we saw in the preceeding chapter, the sequence σt can have a

huge variety of outcomes over time. It is the concept of entropy which allows us to

11



2.1. INFORMATION CONTENT AS THE AVERAGE CODE LENGTH

Figure 2.1: A decription of a system depends on the state of our knowledge. Here all three
configurations look similar at different times. Clearly by visual inspection it is not possible
to find a law which exactly describes the time evolution of the different configurations. We
can e.g. count how often black appears on the cubes and try to deduce a law for the time
evolution. This would result into a probabalistic discription. But I can also tell you that
the configuration is rotated by 90 degrees from t1 to t2 and t3, from which we can clearly
deduce a deterministic description.

quantify the average number of bits needed to encode these time series of a system,

which simultaneously reflects the variety of outcomes.

Estimating the number of arrangements that conform to a
specific recognizable criterion

After all we want to quantify how many bits are needed to encode the sequences of

the signal σt into binary strings. Of course this will vary from each realisation of the

stochastic process, s.t. whe can only determine the statistical average of bits needed.

So we better ask: How many different sequences σt are there in an ensemble

{σt} := lim
N→∞

{
σ

(1)
t ,σ

(2)
t , ...,σ

(N)
t

}
(2.1)

of N copies of the system, observed during a time interval [0 : t], and how likely are

they? Taken literally, at time t we would classify all systems in the ensemble which

have traced identical sequences σt of states and record the count by the number Nσt .

In the limit of very large N the probability that a single system traces the sequence

σt, can be defined as the frequency of occurences in the ensemble

p(σt) := lim
N→∞

Nσt
N

. (2.2)

12



2.1. INFORMATION CONTENT AS THE AVERAGE CODE LENGTH

?
Figure 2.2: When we drop an ensemble of bottles, then there is almost an infinite number
of ways the bottles will burst into pieces. Yet there is only a limited number of ways in
how the pieces of the bottles can reassmble again such that we recognise them as the initial
bottles.

Since the copies in the ensemble are statistically independent, the number of all

possible realisations of the distribution P(σt) is given by (Boltzmann 1877 [46])

W[σt] :=
N !∏

{σt}Nσt !
. (2.3)

Definition (2.3) counts the many ways in which the ensemble could evolve to produce a

particular distribution. The larger (2.3), the more difficult it is to distinguish between

all this possibilities. At the same time the number of bits needed to reliably record

the time evolution grows. For large N the combinatorial number (2.3) is proportional

to (see Appendix B.1),

W[σt] ∼ exp
(
−
∑
{σt}

p(σt) log p(σt)
)

(2.4)

= exp
(
H[σt]

)
, (2.5)

Thus (2.3) grows exponentially with a rate called the Shannon entropy [14]

H[x] := −
∑
x

p(x) log p(x) ≥ 0. (2.6)

Note that the actual base of the logarithm is arbitrary and determines the units (bits,

nats etc.) we measure information with (see Appendix B.2). The Shannon entropy

13



2.1. INFORMATION CONTENT AS THE AVERAGE CODE LENGTH

can be interpreted as an estimate of hidden, undetected information or uncertainty in

a random variable x and its associated probability distribution P(x). With regards

to coarse grained deterministic synamical systems it is a measure of our ignorance

we employ when lumping the original dynamics (1.2) into coarse grained dynamics

(1.3). The dynamics of a deterministic conservative dynamical system don’t produce

entropy since there is no ambiguity in the way how a probability distribution of such

a system evolves. This fact is also known as Liouville’s theorem [32]. Shannons

entropy (2.6) is maximized if all random variables are equally likely and grows with

the number of possible outcomes x. Hence, the hidden information about the state

of the ensemble {σt} grows if the number of possible sequences grows in time. The

growth rate is maximized when they are equally likely, i.e. indistinguishable [14].

Reversed paths

Based on a probablistic description of the system we can quantify how much the

information about a system differs when time evolves into future and past. Cer-

tainly, every once in a while, the system will produce sequences of outcomes σRt :=

(σt, σt−dt, ..., σ0)ᵀ, which happen to be exactly the reverse sequence of σt := (σ0, σdt, ..., σt)
ᵀ,

as if time would have been reversed. This is possible for any reversibel stochasitc

process and lies at the heart of the requirement of thermodynamic reversibility in

physics. This requirement can be employed by the use of an involution with the

property σRt = Θ̂σt and σt = Θ̂2σt. We demand that Θ̂σt 6= /0 for all σt, which again

is the requirement of thermodynamic reversibility, i.e. each sequence can be reversed.

We now aim to quantify the ratio

p(σt)

p(Θ̂σt)
:= exp

[
s(σt)

]
. (2.7)

in terms of the exponent s(σt), in in order to estimate the statistical temporal asym-

metry of future and past sequences. According to (1.9), if s(σt) = 0 then we say

information about the system is conserved in the future and past. On the other

hand, when s(σt) 6= 0 the information is not conserved, since the future and the past

of a sequence are not equally likely.

For statistical time reversibility the following equality holds [48]

p(σt) = p(σRt ) (2.8)
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2.2. INFORMATION CONTENT OF TYPICAL AND REVERSED PATHS

Figure 2.3: Sequences 0100011... and their reverse ...1100010 are denoted by σt and σRt .

which is equal to say that a sequence and its reverse are always equally likely when

we, formally, let time evolve in opposite directions in both cases.

Note hat (2.8) demands the sublte but important fact that we only observe one single

ensemble and therfore don’t need to worry about matching the right initial conditions,

which would be the case if we’d run a new, seperate experiment to investigate the

time reversal [62]. Taking this restriction into account (2.7) can equally be written as

s(σt) = log
p(σt)

p(σRt )
. (2.9)

This means we can equally look at the time reversal of an ensamble by counting how

often a sequence σt is actually realized and, for its time reversal, we simply count σRt

(see figure 2.4). We obtain σt and σRt by running a single experiment, in other words

considering a single ensemble.

2.2 Information content of typical and reversed

paths

Suppose we also have access to the number of how often the reversed sequences
{
σRt
}

are actually realised by the ensemble within the time interval [0 : t]. If the process

possesses time reversal symmetry within [0 : t], we would assume that
{
NσRt

}
=

{Nσt} with absolute certainty, i.e. p(σt) = p(σRt ). Whenever
{
NσRt

}
6= {Nσt}, at

least one sequence of the process must have a statistically preferred direction into

future or past, thus breaking statistical temporal symmetry. The probability to find

a reversed sequence σRt can be defined by1

p(σRt ) := lim
N→∞

NσRt
N

. (2.10)

1Counting on ergodicity,
∑
σR

t
NσR

t
= N holds.
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2.2. INFORMATION CONTENT OF TYPICAL AND REVERSED PATHS

Figure 2.4: The N systems in the ensamble of stochastic processes is sorted according to
the typical paths σt of the systems and their reverse σRt (translated into binary strings).
The numbers Nσt and NσRt , counting how often the system traces the path σt and σRt , are

going to be different whenever the ensemble dosen’t trace path σt and σRt equally often.
In that sense the probability of observing a sequence in normal time and reversed time are
different.

Hence, knowing all values of NσRt and Nσt can be seen as two different sequence

classifiactions of the ensemble. To compare both information sources we are going to

quantify how much uncertainty about the vaules Nσt remains once NσRt is known. In

other words, we quantify how well the knowledge of the reversed sequences (the past

if you will) suffices in order to encode the time evolution of σt with the same binary

code. On the ensemble level this encodability condition is equal to write (see Jaynes

2003 p.290 [31] or [46])

P[σt] := W[σt]
∏
{σt}

p(σRt )Nσt (2.11)

where P[σt] is the likelyhood that a particular distribution {Nσt} is realized, given

the prior knowledge of the probability distribution P(σRt ) of the reversed sequences.

Again with the use of Stirling’s approximation for large N , this is (see Appendix B.1).

P[σt] ∼ exp

−∑
{σt}

p(σt) log
p(σt)

p(σRt )

 (2.12)

= exp
(
− DKLD[P(σt) ‖ P(σRt )]

)
(2.13)

= exp
(
−
〈
s(σt)

〉
{σt}

)
(2.14)
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2.2. INFORMATION CONTENT OF TYPICAL AND REVERSED PATHS

where the brackets denote the ensemble average. Here, the combinatorial number

(2.14) decays exponentially with an exponent called the Kullback-Leibler Divergence

[14]

DKLD[P(x) ‖ Q(x)] :=
∑
x

p(x) log
p(x)

q(x)
≥ 0. (2.15)

which quantifies in bits how close a probability distribution P(x) is to a source (prior)

distribution Q(x). The exponential decay is reasonable: The more copies of systems

there are, the less likely that, just by chance, the number of occurances
{
NσRt

}
and

{Nσt} are the same and thus p(σt) = p(σRt ). With (2.14) we see that the ensemble

average of (2.9) indeed quantifies the breaking of time reversal symmetry in terms

of an information theoretical uncertainty between the probability distributions P(σt)

and P(σRt ), namely〈
s(σt)

〉
{σt}

= DKLD[P(σt) ‖ P(σRt )] ≥ 0. (2.16)

Equation (2.16) allows us to quantify the temporal asymetry or irreversibility of

stochastic processes. If all sequences, forward and backward in time, are equally

likely then (2.16) equals zero, and from observing σt we can predict the past with the

same precision. If the probability of a time reversed sequences tends to zero, then

(2.16) diverges.

Equation (2.16) gives rise to a very intuitive conclusion which can be derived for

systems with statistical temporal asymmetry: The bigger (2.16), the more unlikely

that the process can be described with equal probability distribution for its future

and past for a time interval [0 : t]. From observing the forward process, we cannot

deduce viable information about the reversed process. Therefore systems breaking

statistical time reversal symmetry have the property of tracing sequences which are

statistically very typical for the system in one direction but not for the reversed. We

will see later that, the stronger time reversibility symmetry is broken, the better we

can predict what sequences a system will trace in the future and yet the less can be

reconstructed about its past.
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2.3. DYNAMICAL RANDOMNESS AND STATISTICAL TEMPORAL ASYMMETRY AS ENTROPY
PRODUCTION

2.3 Dynamical randomness and statistical tempo-

ral asymmetry as entropy production

As a next step we want to quantify how fast information about a system tends to

loose its reliability when time evolves into future and past. This can be done by

the concept of entropy per unit time, which has been introduced by Shannon [14] in

the context of stochasitc processes and later by Kolmogorov [38] and Sinai [54] in

dynamical systems theory. The entropy per unit time23 is defined as

Ḣ[σ] := lim
t→∞
−1

t

〈
log p(σt)

〉
{σt}

. (2.19)

This quantitiy is the average rate at which the amount of bits needed to record the

sequence of the process σt changes when the system evolves dt further and refers to

the dynamical randomness of a dynamical system. Similarly we can introduce an

entropy rate, characterizing the disorder in time for the reversed paths

ḢR[σ] := lim
t→∞
−1

t

〈
log p(σRt )

〉
{σt}

. (2.20)

The time-reversed entropy per unit time characterizes the dynamical randomness of

the time-reversed paths in the forward process σt.

2The supremum of the entropy rate (2.19) over all the possible coarse graining mappings g(•)
(c.f. equation (1.3)) defines the Kolmogorov-Sinai (KS) entropy per unit time of dynamical systems
theory [13, 23].

ḢKS := sup
g

(
Ḣ[σ]

)
(2.17)

Pesin’s theorem states that the KS entropy is given by the sum of positive Lyapunov exponents for
isolated dynamical systems [20]. For stochastic processes, the KS entropy depends on the sampling
time dt as well as on the coarse-graining mapping g(•). Randomness can be found at all spatial and
time scales for stochastic processes, which calls for the entropy per unit time to diverge for small
time and spatial resolution [24]. At the microscopic scale where the deterministic feature of the
underlying dynamics (c.f. equation (1.2)) take over, this divergence saturates.

3In the continuous time limit, where dt → 0, the entropy rate can be written as path integral
expression, i.e.

Ḣ[σ] =
dt→0

lim
t→∞

−1

t

∫
D[σt]P(σt) logP(σt), (2.18)

where the path integral ranges over all possible stochastic trajectories.
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2.4. PREDICTABILITY OF STOCHASTIC PROCESSES

With (2.19) and (2.20) we at the so called entropy production rate per unit time

Ṡsys[σ] := ḢR[σ]− Ḣ[σ] = lim
t→∞

1

t
DKLD[p(σt) ‖ p(σRt )] ≥ 0, (2.21)

which can also be formulated as a time dependent rate,

Ṡsys[σ]t :=
dDKLD[p(σt) ‖ p(σRt )]

dt
≥ 0 (2.22)

which quantifies how much, on average, the probability distribution of the forward and

backward process differ when the process evolves dt further. Under non-equilibrium

conditions, i.e. P(σt) 6= P(σRt ), the probabilities of the forward sqeuances and those

of the corresponding time-reversed sequences break the time-reversal symmetry. This

manifests itself in the fact that the decay rate (2.19) of the time-reversed paths is

larger than the decay rate (2.19) of the typical paths. Their difference (2.21) is

positive and gives the well-known thermodynamic entropy production for systems

described by a master equation [22]. Thus the entropy production is directly related

to the breaking of the time-reversal symmetry in the dynamical randomness of the

nonequilibrium fluctuations. We note that under Markovian NESS coditons (see

chapter 4.2.8)

Ṡsys[σ] = lim
t→∞
Ṡsys[σ]t = lim

t→∞

1

t

〈
s(σt)

〉
{σt}

(2.23)

2.4 Predictability of stochastic processes

According to the Shannon-McMillan-Breiman theorem [8, 22], the path-probability

indeed decays as

p(σt) ∼ exp
(
−tḢ[σ]

)
, (2.24)

for almost all the trajectories if the process is ergodic. This result shows that the

more pronounced the spreading of the probabilities along all possible paths in the

future, the higher will be the entropy per unit time. Consequently, the entropy per

unit time can be seen as the dynamical randomness of the time evolution within σt.

Analogously for a typical path of the process, the probability to find the time-reversed

path decays as

p(σRt ) ∼ exp
(
−tḢR[σ]

)
. (2.25)
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2.4. PREDICTABILITY OF STOCHASTIC PROCESSES

Since the entropy production rate (2.21) is always positive, the exponential decay of

(2.25) must be faster. In fact the ratio

p(σt)

p(σRt )
∼ exp

(
ḢR[σ]− Ḣ[σ]

)
= exp

(
Ṡi[σ]

)
. (2.26)

grows exponentially with a rate given by the entropy production rate. Therefore we

see that systems under non-equilibrium conditions perform a selection of preferred

paths when evolving into the future. The probability of typical pahts of the system

decay more slowly than for the time-reversed paths. The process σt observed forward

in time turns out to be more ordered than the backward process, since ḢR[σ] ≥ Ḣ[σ]

as imposed by the strictly positive entropy production. From a more information

theoretic viewpoint, we can say that the entropy production measures the informa-

tion cost of describing the temporal evolution in the time-reversed frame of reference.

Nonequilibrium processes generate more dynamical order or information than equili-

birum processes. This is an interesting perspective on the second law of thermody-

namics: Nonequilibrium conditions perform a selection of preferred paths and time

ordering of the trajectories occur as soon as the system is driven out of equilibrium.

Spin-systems such as the Ising-Model are excellent examples to study the connec-

tion of information theoretic quantities to thermodynamic quantities such as the free

energy when approaching the critical point. The author believes that the above in-

troduced theory is a worthwhile new direction to look at the Kibble-Zurek-Mechanism

and the critical slowing down.
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Chapter 3

Entropy rates and interacting
systems

”In this John Wheeler world of information, the laws
of physics would consist of rules for how the
configuration of bits is updated from instant to
instant. Such rules, if correctly constructed, would
allow waves of Os and Xs to propagate across the
lattice of cells and represent light waves.”

Leonard Susskind Black Hole Wars

3.1 Information in interacting systems

The time evolution of a dynamical system may be called non conservative and stochas-

tic if it generates ’hidden information’ at a nonzero entropy rate at different time

scales and spatial resolution. For systems consisting of more than one component

(e.g. spin), each individual component will contribute to the generation of informa-

tion. Interacting systems even exchange information among each other. Especially for

systems comprising a large number of interacting components with an order-disorder

phase transition, one would expect to see information theoretic quantities to diverge

in analogy to the two point correlation function and the free energy.
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3.2. TRANSFER ENTROPY RATES OF TWO INTERACTING SYSTEMS

3.2 Transfer entropy rates of two interacting sys-

tems

Suppose that the the process σt would consist of two seperate sub-processes,

(σt) 7→ (at, bt). (3.1)

In such a situation the meaning of information and the ability to distinguish be-

tween the past and future becomes even more interesting. We can now analyse the

information generated by each sub-process at and bt seperately and investigate the

interactions among each other.

Assume that from the ensemble (2.1) we have extracted all sequences of the sub-

process{at} and one particular sequence of the other sub-process bt. This allows us

to redefine the probability distribution of the sequence at, i.e.

P(at) 7→ P(at|bt) (3.2)

which is the conditional probability1.

Due to this redefinition the entropy also changes:

H[at] 7→ −
∑
{at}

p(at|bt) log p(at|bt) (3.4)

In case we extract all sequences {bt} from the ensemble, we can take the average of

(3.4) and arrive at the conditional entropy

H[at|bt] := −
∑
{bt}

p(bt)

∑
{at}

p(at|bt) log p(at|bt)

 (3.5)

= −
〈

log p(at|bt)
〉
{σt}

, (3.6)

also a very important quantitiy in information theory. We note that since

H[at|bt] = H[σt]−H[bt] (3.7)

H[bt|at] = H[σt]−H[at] (3.8)

1Here we note that

p(at|bt) =
p(σt)

p(bt)
p(bt|at) =

p(σt)

p(at)
(3.3)

are the joint probability p(σt) = p(at, bt) as well as the marginals p(at) =
∑

{bt} p(σt) and p(bt) =∑
{at} p(σt).

22



3.2. TRANSFER ENTROPY RATES OF TWO INTERACTING SYSTEMS

the conditional entropy is a non symmetric measure, i.e.

H[at|bt]−H[bt|at] = H[at]−H[bt]. (3.9)

The conditional entropy measures the reduction of uncertaintiy about the path at or

bt if the additional information of one of the latter is taken into account. In a similar

fashion having observed the ensemble already for a longer time can only decrease the

uncertainty about the future of the path σt on average. From p(σt) 7→ p(σt+dt|σt),
in the stationary regime the conditional entropy is a decreasing funtion of t, i.e.

H[σt+dt|σt] ≤ H[σt|σt−dt] (3.10)

Thus its limit is the entropy rate (2.19) [14, 42]

lim
t→∞

1

t
H[σt+dt|σt] = lim

t→∞

1

t
H[σt] = Ḣ[σ]. (3.11)

Taking this into account, let us now consider the limit [49]

lim
t→∞

1

t
H[at|bt] = lim

t→∞

1

t

(
H[σt]−H[bt]

)
(3.12)

= lim
t→∞

1

t

(
H[σt+dt|σt]−H[bt+dt|bt]

)
(3.13)

= lim
t→∞

1

t

(
H[bt+dt, at+dt|bt,at]−H[bt|bt]

)
(3.14)

= lim
t→∞

1

t

(
H[bt+dt|bt,at]−H[bt+dt|bt]

)
(3.15)

= lim
t→∞

1

t

(
Ta→b

)
, (3.16)

where Ta→b is the so called transfer entropy introduced by Schreiber [52],

Ta→b := H[bt+dt|bt,at]−H[bt+dt|bt] (3.17)

=

〈
log

p(bt+dt|bt,at)
p(bt+dt|bt)

〉
{σt}

, (3.18)

where H[bt+dt|bt] accounts for the average number of bits needed to encode one addi-

tional state bt+dt of the typtical path if all previous states bt are known. H[bt+dt|bt,at]
is the entropy rate capturing the average number of bits required to represent the

system state if additionally the path history at is included. Thus if σt would be a
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3.3. MUTUAL INFORMATION RATES OF TWO INTERACTING SYSTEMS

Markovian process, then Ta→b = 0 only if the coarse grained processes b and a are

Markovian as well, i.e.

p(bt+dt|bt,at) = p(bt+dt|bt), (3.19)

where the past of at has no influence on the transition probabilities of bt. Generally

Ta→b is nonsymmetric since it measures the degree of dependence of the history of at

on the future path of bt and not vice versa, i.e.

Ta→b 6= Tb→a. (3.20)

3.3 Mutual information rates of two interacting

systems

Finally we want to quantify how predictable the time evolution of the sub-system

remains, if we consider both sub-processes at and bt as being absolutely independent

processes. Evidently we could construct binary codes for the paths σt, at and bt

and compare the average code length. From that we can deduce how much entropy

each process generates. If both sub-processes would be independet, we would expect

that H[at] + H[bt] = H[σt]. Thus any interaction amongst the sub-processes can be

captured by the quantitiy

I[bt : at] := H[at] + H[bt]−H[σt]. (3.21)

Equation (3.21) is called the mutual information of the two processes bt and at with

joint probability p(σt). It can be seen as the excess amount of code produced by

erroneously assuming that the two sub-systems are independent, i.e., using

q(σt) := p(bt)p(at) (3.22)

instead of p(σt). Evidently equation (3.21) is simply the Kullback divergence, i.e.

I[bt : at] = DKLD[P(σt) ‖ Q(σt)] (3.23)

=

〈
log

p(σt)

q(σt)

〉
{σt}

(3.24)

=

〈
log

p(σt)

p(bt)p(at)

〉
{σt}
≥ 0. (3.25)

24



3.3. MUTUAL INFORMATION RATES OF TWO INTERACTING SYSTEMS

The mutual information is a suitable measure to quantify the deviation from indepen-

dence of two correlated processes. Note that I[bt : at] = I[at : bt] is symmetric and

therefore does not contain any directional sense as compared to the transfer entropy.

Similarly to section 2.3 we can define a time dependent rate function of the mutual

information, i.e.

İ[b : a]t :=
I[bt+dt : at+dt]− I[bt : at]

dt
. (3.26)

In order to analyze the mutual information transfer betwenn both sub-systems we

can also look at the temporal change of the mutual information if we only aquire new

additional information about one process, i.e.

İa[b : a]t :=
I[bt : at+dt]− I[bt : at]

dt
(3.27)

İb[b : a]t :=
I[bt+dt : at]− I[bt : at]

dt
(3.28)

These quantities are commonly referred to as the information flow or learning rate

[5, 27] since they quantify how much the dynamics of one sub-system reduced the

uncertainty of the others due to their coupling.
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Chapter 4

Markovian dynamics

”What’s so bad about losing a bit of information
inside a black hole? Then it dawned on us. Losing
information is the same as generating entropy. And
generating entropy means generating heat. The
virtual black holes that Stephen had so blithely
postulated would create heat in empty space.”

Leonard Susskind Black Hole Wars

4.1 Probability distributions and their time evo-

lution laws

Above we have introduced the method of coarse graining, in order to simplify the

treatment of complicated, practicably unsolvable deterministic systems. For some

simple systems, such approximations can be rigorously derived from the underlying

deterministic or quantum dynamics when a mapping is introduced [23]. On the level

of of a coarse grainded description it is generally not possible to exactly predict the

future sequence of states. It is only possible to predict the probabilities p(σ, t) of states

of an ensemble of stochastic processes {σt}. The probability p(σ, t) is the frequency

of how often on average an outcome σ will occcur in time in the ensemble {σt}.
This frequency is of course governed by dynamical laws producing the probabilities

of paths σt.
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4.2. CONTINUOUS TIME MARKOVIAN STOCHASTIC PROCESSES

4.2 Continuous time Markovian stochastic processes

For a continous time evolution we consider the so called Master Equation (ME) which

is a balance equation of transitions σ → σ′ and σ′ → σ between states per unit time,

i.e.

d

dt
p(σ, t) =

∑
σ′

Wσσ′p(σ
′, t) (4.1)

or similarly in vector notation

d

dt
pt = Wpt, (4.2)

where pt := (p(σ0, t), p(σ1, t), ..., p(σn, t))
ᵀ is a vector representing the probabilities of

all states of the system. In equation (4.2) the transition rates Wσσ′ are understood

as matrix elements of a so called rate matrix W , where for probability conservation

it is required that Wσσ = −
∑

σ′ 6=σWσ′σ.

The solution pt of the ME describes the stochastic process when the ensemble {σt}
evolves in time. As stated before, it is neither possible to predict the actual sequence

of transitions nor the times at which jumps happen. They are both random variables

characterising the stochastic process {σt}. The only quantitiy that can be predicted

in a stochastic process are probabilities, e.g. p(σ, t) to find the system in state σ at

time t.

4.2.1 Master equation on a graph

The equation for the time evolution of a system dictates the neighboring structure of

prior and posteriour states in time. The jump process introduced here can be seen

as a random walk on a graph GW , with each state σ corresponding to one vertex

σ 7→ v ∈ v of a graph. Similar to σ, all vertices are simply indices, i.e. v ∈ Z.

Whenever the system can jump from one state to another, i.e. if Wσσ′ 6= 0,then v

and v′ are connected by an edge e ∈ e. The set of edges e and vertices v build the

graph GW assoziated to the transition matrix W , i.e.

GW = (v, e). (4.3)

Schnakenberg has shown that many of the fundamental properties of a nonequilibrium

random process can be investigated and understood by carrying out the analysis of

the graph associated with the master equation [51].
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4.2.2 Detailed balance along edge

While the time evolution of the state of the system is a jump process over the network,

the occupation frequency and therefore the probability for the system to be in a state

σ can be interpreted as probability currents flowing along the edges of the network.

In that sense we define the probability current along an edge e as

je[σ]t := Wσσ′p(σ
′, t)−Wσ′σp(σ, t) (4.4)

If the ME describes an equilibrium process then, as the process σ reaches the sta-

tionary conditions, the probability currents vanish, i.e.

lim
t→∞

jeqe [σ]t = 0. ∀e (4.5)

An equivalent condition, known as the Kolmogorov criterion [37] (see book by T.

Tomé, page 177 [61]), can be expressed even without the knowledge of the steady

state. It relies on the notion of closed cyclic sequence c := (σ1, σ2, ...σn, σ1)ᵀ and their

reverse cR. With the definition of W(c) := Wσ1σnWσn−1σn−2 ...Wσ2σ1 the Kolmogorov

criterion, for a Markovian stochastic process to be an equilibrium procces, reads:

∀c ∈ c : ac[σ] := log
W(c)

W(cR)
= 0, (4.6)

where c holds all possible cycles, that can be constructed by the edge set e. ac[σ]

is often referred to as the cycle-affinity. Equation (4.6) is a necessary condition for

statistical time reversal symmetry to hold. If this condition is violated for any cycle,

i.e.

∃c ∈ c : ac[σ] 6= 0, (4.7)

the system is in a NESS characterized by the presence of non vanishing probability

currents (4.4) and non zero entropy production rate as we will se below.

Utilizing the condition (4.10) we can introduce a potential function Ωσ via

peq(σ) =
1

Z
exp(Ωσ), Z :=

∑
σ

exp(Ωσ). (4.8)

We can identify the potential Ωσ with an effective Hamiltonian and Z with the as-

sociated canonical partition function. In this fashion, a stochastic process breaking

the detailed balance condition describes a physical system relaxing towards thermal

equilibrium (4.8). The detailed balance condition can be expressed as

geqe [σ] :=
Wσσ′

Wσ′σ
=
peq(σ)

peq(σ′)
= exp(Ωσ − Ωσ′). (4.9)
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4.2.3 Entropy production and entropy flow along edges

In this section we again start from the perspective that we want to quantify whether

and how much a system, described by a continuous time ME, breaks the statistical

time reversal symmetry. Above we have seen, that this can be investigate by looking

at the probability of typical paths and their reverse of the stochastic process. Statis-

tical time reversal symmetry of a Markovian process described by a ME is broken if

Wσσ′pσ′(t) 6= Wσ′σpσ(t) along any edge, precisely [60]

je[σ]t 6= 0. (4.10)

In that sense and in analogy to above (c.f. equation (2.9)), the breaking of statistical

time reversal symmetry can be quantified by

log je[σ]t = log
Wσσ′pσ′(t)

Wσ′σpσ(t)
, (4.11)

a logarithmic measure the breaking of detailed balance, often called affinity. We note

here that the product of (4.4) and (4.11) is always a non negative quantitiy, i.e.

je[σ]t log je[σ]t = ≥ 0. ∀e ∧ ∀t (4.12)

We can split the time derivative of Shannons entropy as

d

dt
H[σ]t = Ṡsys[σ]t + Ṡenv[σ]t (4.13)

where (see M. Esposito [64] and C. van Boerek [63])

Ṡsys[σ]t :=
∑
e

je[σ]t log je[σ]t ≥ 0 (4.14)

is the entropy production rate of the system and

Ṡenv[σ]t := −
∑
e

je[σ]t log ge[σ]eq (4.15)

the entropy flow between the environment and the system. The entropy production

rate (4.14), as required, is always non-negative and vanishes at equilibirum. If the

ME describes an equilibirum process, then the relaxation of an initial distribution p0

represents an irreversible process which terminates in the limit t→∞, where detailed

balance holds. In this case the entropy production rate vanishes, i.e. Ṡi[σ]∞ = 0,
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but surely
∫∞

0
dtṠi[σ]t ≥ 0. Consequently the entropy production is a measure of the

deviation of a stochastic process from a equilibirum distribution either as a NESS

property or restricted to a finite relaxation time interval. Generally, stochastic pro-

cesses which do not satisfy detailed balance have a non vanishing entropy production.

Though everything looks straightforward, computing the entropy production rate via

Eq. (4.14) is often unfeasible for complicated system. First of all the computation

requires that all possible states of σ can be identified, that all rates are available, and

that the steady-state can be computed. Even the simplest of these tasks, identifying

the sets of states, is already a demanding task for a simple 2D-Ising model where the

state space is made up by all different configurations the spin-system can be in.

4.2.4 Relaxation properties

A given initial probability of outcomes p0 := (p(σ0, 0), ..., p(σn, 0))ᵀ evolves as a solu-

tion to the linear differential equation (4.2),

pt = eW tp0. (4.16)

This reflects that (4.2) is a set of coupled first-order linear differential equations with

constant coefficients. Equation (4.16) can be written in a time series expansion,

excplicitly

pt = (1 +W t+
t2

2!
W 2 +

t3

3!
W 3 + ...)p0. (4.17)

If W s is determined for every power s ∈ N, then (4.17) is a solution to the master

equation (4.2). The solution of the master equation can also be obtained from the

eigenvectors and eigenvalues of the rate matrix W [61]. We denote the left and right

eigenvectors by lk and rk and the corresponding eigenvalues by λk, i.e.

Wrk = λk lkW = λk. (4.18)

We assume that the eigenvectors form a complete and orthogonal set. Therefore we

can consider the following expansion

eW t = eW t1 = eW t
∑
k

rklk =
∑
k

eλktrklk. (4.19)

With the use of the steady state solution Wp = 0 we can rewirte (4.16) as

pt = p+
∑
k 6=0

eλktrklkp0, (4.20)
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sinceW fullfills the requirements of the Perron-Frobenius theorem [61]. Therefore the

eigenvalues of the matrix W are negative or zero and it follows that limt→∞ pt = p.

Since there are usually large gaps in the eigenvalue spectrum we can obtain a good

approximation to the long-term behavior by keeping only terms with the smallest

eigenvalues |λk|.
For MEs and in fact any stochastic process generated by a linear map, the time

derivative of the relative entropy of any two initial distributions p0 and p′0 [63, 55],

i.e.

dDKLD[p0 ‖ p′0]

dt
≤ 0, (4.21)

is a decreasing function in time. Thus as time evolves, two initially distingusishable

distributions become indistinguishable. Especially [51]

dDKLD[p0 ‖ p̄]

dt
≤ lim

t→∞

dDKLD[p0 ‖ p̄]

dt
= 0. (4.22)

In that sense information is lost during the relaxation process towards the stationary

state.

4.2.5 Diagrammatic construction of the steady state

In order to obtain a steady state solution of (4.2), one would have to solve the linear

equation

Wp̄ = 0. (4.23)

under the constraint that p̄ is a probability distribution. The existence of such a

solution is guaranteed, since it can explicitly be constructed by graph theoretical

methods [51]. The representation of a ME by its basic graph (4.3) allows for an

elegant and straight forward method to construct the steady state vector p̄ [51]. A

detailed mathematical description of this method can be found in the thesis of M.

Polettini [47]. Formally, the method is based on the definition of a maximal tree

T (G), which is a subgraph of the graph G satisfying the following properties:

• T (G) contains all the vertices of G;

• T (G) is connected;
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3

2

1

Figure 4.1: (1) Example of a graph G. (2) G has 4 maximal trees. (3) G has 16 i-oriented
(i marked blacck) maximal trees

• T (G) contains no circuit, i.e. no cyclic sequence of edges.

For a graph G there are many ways to construct a maximal tree T (G). We label each

element of the complete set of maximal trees by T (µ)(G), with µ = 1, 2, ...M . The

total number M of maximal trees closely depends on the topological structure of G

and on its number of edges. For each of the maximal trees T (µ)(G) we construct all

its i-directed version T
(µ)
i (G) by orienting all edges of T (µ)(G) along the path to the

vertex with label i (see figure 4.1).

With the evaluation function

πi [σ] :=
∑
µ

 ∏
e∈T (µ)

i (G)

Wσσ′

 (4.24)

which multiplies all transition rates for jumps along the orientation of the edges of

the i-oriented maximal tree, and sums over all possible maximal trees µ. Finally the

steady state solution of the ME (4.2 )is given as

p(σ) =
πσ [σ]∑
σ πz [σ]

(4.25)

4.2.6 Independent probability currents at steady state

As introduced in section 4.2.2, equilibrium conditions can be rephrased in terms of

the cyclic paths of the stochastic process with a vanishing cycle-affinity (4.6). J.
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Schnakenberg found that non equilibrium constraints in turn are related to non-zero

affinities of special subsets of the cyclic paths [51]. A graph G usually has a large

number of cyclic paths c. However, not all cyclic paths are independent. They can be

expressed by a linear combination of a smaller subset of cycles, called the fundamental

cycle set cl, which plays the role of a basis in the space of cycles. Here we introduce

the basic methodology to find such a set cl.

All edges of the graph G associated with the transition matrix W are assigned with

an arbitrary reference orientation, here

oe :=

{
+1 σ < σ′

−1 σ > σ′
(4.26)

All edges l ⊂ e not belonging to a maximal tree T (G) (see figure 4.2 (2)) are called

chords. Adding such a chord l to the maximal tree results in a subgraph that contains

exactly one cycle (see figure 4.2 (3)). A circular orientation

ol := +1 (4.27)

is assigned to the edges of the fundamental cycles associated to T (G), defining the

fundamental set of circuits cl. Once the fundamental set is found, we finally need

one more tool to check whether the orientation of edges in the graph G is parallel or

antiparallel to any constructed subgraph f of G. Therefore we define

δe(f) :=


+1 if e and f are parallel, i.e. oeof = +1

−1 if e and f are antiparallel, i.e. oeof = −1

0 if e is not in f

(4.28)

Finally the mean current traversing the edge e can be expressed as [51, 23]

je[σ] =
∑
l

δe(cl)jl [σ], (4.29)

which is the very important result that the probability currents of the system are

dependent and their magnitude is confined to the fundamental set of cycles and given

by the probability current of the chord. This is in close analogy to Kirchhoffs current

law and the probability conservation of the ME.
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1 2 3 4

Figure 4.2: (1) Example of a maximal tree T (G). (2) The chords l associated to T (G). (3)
Adding one of the chords to the maximal tree creates a closed cycle. Edges not belonging
to this cycle are erased (4) The cycle is assigned a cyclic orientation.

4.2.7 Steady state entropy production of fundamental cycles

The above machinery enables us to define the affinities and of an oriented cycle

[51, 23], i.e.

ac[σ] :=
∑
e

δe(c) log je[σ] (4.30)

= log
∏
e

δe(c)
Wσσ′p(σ

′)

Wσ′σp(σ)
(4.31)

= log
∏
e

δe(c)
Wσσ′

Wσ′σ
(4.32)

= log
∏
e

δe(c)ge[σ]eq (4.33)

= log
W (c)

W (cR)
, (4.34)

since indeed the terms log
pσ′
pσ

cancel each other along a closed path. Thanks to the

fundamental cycles, each cycle can now be decomposed. The affinity (4.34) of an

arbitrary cycle c can be expressed as a combination of the fundamental cycles

ac[σ] =
∑
l

δl(c)al[σ], with al[σ] := log
W (cl)

W (cRl )
. (4.35)
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We can now finally express the entropy production rate, at steady state, in terms of

independent currents and affinities along the fundamental cycles sets

Ṡsys[σ] =
∑
e

je[σ] log je[σ] (4.36)

=
(4.13)

∑
e

je[σ] log ge[σ]eq (4.37)

=
(4.29)

∑
l

j
l
[σ]
∑
e

δe(cl) log ge[σ]eq (4.38)

=
(4.34)

∑
l

j
l
[σ] log

W (cl)

W (cRl )
(4.39)

=
(4.35)

∑
l

j
l
[σ]al[σ] ≥ 0 (4.40)

4.2.8 Dynamical randomness and entropy production

Even though the definition of (4.14) as the entropy production rate only generates

none-negative values, we need to show a closer connection to the breaking of statistical

time reversal symmetry, as introduced in the chapters above. It can be shown that

Ṡsys[σ] = ḢR[σ]− Ḣ[σ], (4.41)

holds. The probability that, during a time interval dt, the system undergoes a tran-

sition from state σ′ to state σ is, according to equation (4.16), given by

pdt(σ|σ′) :=
[
eW dt

]
σσ′
. (4.42)

For very short times dt, keeping terms up to the first order is sufficient, i.e.

pdt(σ|σ′) = δσσ′ +Wσσ′dt+O(dt2). (4.43)

With the results shown for discrete time stochasic processes (see Appendix (C.2.2))

we have the result that

ḢR[σ]− Ḣ[σ] = −
∑
σσ′

p(σ)
(
pdt(σ

′|σ) log pdt(σ|σ′)
)

+
∑
σσ′

p(σ)
(
pdt(σ

′|σ) log pdt(σ
′|σ)
)

=
1

2

∑
σσ′

pdt(σ
′|σ)p(σ)− pdt(σ|σ′)p(σ′) log

pdt(σ
′|σ)p(σ)

pdt(σ|σ′)p(σ′)
(4.44)
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=
1

2

∑
σσ′

Wσ′σp(σ)−Wσσ′p(σ
′) log

Wσ′σp(σ)

Wσ′σp(σ′)
+O(dt) (4.45)

=
∑
e

je[σ] log je[σ] +O(dt) (4.46)

= lim
t→∞
Ṡsys[σ]t (4.47)

which proofs equation (4.41) [22]. Lets refer back to equation (2.16), namely〈
s(σt)

〉
{σt}

= DKLD[P(σt) ‖ P(σRt )] ≥ 0, (4.48)

the information theoretic measure of statistical temporal asymmetry, which represents

the expected number of extra bits that are needed to encode the state of the ensemble

{σt} if we use a code based on
{
σRt
}

. With equation (2.23) we now immediately see

an intimate relationship between the information theoretic entropic rate, introduced

above and the entropy prodction of a stationary Markov process, i.e.

lim
t→∞

1

t

〈
s(σt)

〉
{σt}

=
∑
e

je[σ] log je[σ] +O(dt). (4.49)

In a thermodynamic context this information theoretic measure is interpreted as the

dissipation rate of the system which is observed.

4.2.9 Stochatic Thermodynamics

In the canonical ensemble, the physical system described by a Hamiltonian H(σ) is

in contact with a single heat bath, which provides a constant temperature β. The

corresponding steady state is accordingly given by the Boltzmann faktors

peq(σ) =
1

Z(β)
exp (−βH(σ)) (4.50)

Transition rates satisfying detailed balance therfore obey

log
Wσσ′

Wσ′σ
= βH(σ′)− βH(σ) (4.51)

which is often also called the condition of local detailed balance. When transitions

between system states are mediated by thermodynamic reservoirs, the statistical time

irreversibility of the process is a measure of the physical dissipation. For a system cou-

pled to several reservoirs at different temperature detailed balance generally doesn’t
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hold. Such a setup is typically modelled by a ME accounting for all transitions which

can be mediated by these reservoirs as

d

dt
pt =

∑
ν

W (ν)pt, (4.52)

where ν labels the different reservoirs for which the transition matrix satisfies local

detailed balance. The steady state will be characterized by the presence of non van-

ishing probability currents and a positive entropy production.

Since the Markov dynamics do not specifically model the exact state of the thermody-

namic reservoirs, i.e. how much energy and how many particles there are in the baths,

the impact of the reservoirs appears implicitly in the rate matrices W (ν). While the

rates satisfy local detailed balance with the reservoirs this does not imply that the

Markov dynamics obey detailed balance. When coupled to multiple reservoirs with

incompatible equilibrium states, the Markov dynamics break detailed balance, i.e.

Ṡsys[σ]t =
∑
e,ν

j(ν)
e [σ]t log j(ν)

e [σ]t > 0 (4.53)

and the entropy flow relates the rates to the flow of entropy (heat, particles etc.) from

the reservoirs

Ṡe[σ]t = −
∑
e,ν

j(ν)
e [σ]t log g(ν)

e [σ]eq (4.54)

=
∑
e,ν

j(ν)
e [σ]t

(
Ω

(ν)
σ′ − Ω(ν)

σ

)
6= 0. (4.55)

A thermodynamic study of the single molecular enzyme trypthophan synthase will

be presented below in chapter 6. This study goes into details of the thermodynamic

interpretation of Markov processes, where the rates obey local detailed balance and

many reservoirs are involved. A good introductory overview to Stochastic Thermo-

dynamics is also given by M. Esposito [64] and C. van Boerek [63].
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Chapter 5

Interacting Markovian systems

In section 3.1 we saw that in systems consisting of more than one component (e.g.

spin), each individual component will contribute to information production. In fact,

interacting systems even exchange information among each other. In the following

we analyse a stochastic processes σt which consist of two seperate sub-processes,

(σt) 7→ (at, bt). (5.1)

In particular, it is first assumed that the fluctuations in each subsystem are indepen-

dent of each other. A system satisfying this condition is generally called a bipartite

system. For such a system we can quantify the information generated and exchanged

by each sub-process at and bt seperately.

5.1 Information flow between subsystems with bi-

partite coupling

A formalism introduced by Horowitz and Esposito [30] enables us to characterize how

information flow influences the probability currents of a system that evolves according

to a bipartite Markovian master equation,

d

dt
p(a, b, t) =

∑
a′b′

W bb′

aa′p(a
′, b′, t) (5.2)

=
∑
a′

W b
aa′p(a

′, b, t) +
∑
b′

W bb′

a p(a, b′, t) (5.3)

=
∑
a′ 6=a

jbaa′(t) +
∑
b′ 6=b

jbb
′

a (t). (5.4)
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Thus the probability currents of the joint system can be split into seperate currents

of the subsystems. Transition rates W b
aa′ within the subsystem a are affected by the

state of the subsystem b as indicated by the index b and vice versa for subsystem b.

We call transitions affected by the other subsysten feedback-transitions. Equivalently

to the ME (5.4) we can split the entropy production of the joint system as

Ṡsys[σ]t =
∑
a′≥a;b

jbaa′(t) log
jbaa′(t)

jba′a(t)︸ ︷︷ ︸
:=Σa(t)

+
∑
b′≥b;a

jbb
′

a (t) log
jbb
′

a (t)

jb′ba (t)︸ ︷︷ ︸
:=Σb(t)

(5.5)

where Σa(t) and Σb(t) are the contributions to the entropy production based on the

information from the joint probability distribution. We define σa(t) and σb(t) as the

entropy production based on the marginal distributions, i.e.

σa(t) =
∑
a′≥a

jaa′(t) log
jaa′(t)

ja′a(t)
(5.6)

σb(t) =
∑
b′≥b

jbb′(t) log
jbb′(t)

jb′b(t)
(5.7)

where jaa′(t) := W b
aa′
∑

b p(a
′, b, t) − W b

a′a

∑
b p(a, b, t) and jbb′(t) similarly. In their

paper Horowitz and Esposito show that [30]

Σa(t) = σa(t) + İa(t) (5.8)

Σb(t) = σb(t) + İb(t) (5.9)

where the time derivative of the mutual information has been split as (c.f. (3.27))

d

dt
I[b : a]t =

∑
a′≥a;b

jbaa′(t) log
p(b|a, t)
p(b|a′, t)︸ ︷︷ ︸

:=İa(t)

+
∑
b′≥b;a

jbb
′

a (t) log
p(a|b, t)
p(a|b′, t)︸ ︷︷ ︸

:=İb(t)

. (5.10)

Evidently in the limit of t→∞ the information flow of both sub-systems are required

to cancel each other, i.e.

lim
t→∞

İa(t) + İb(t) = 0 (5.11)
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5.2 Partially non-bipartite interaction

We assume that, besides the bipartite feedback transitions, there are also cross-

transitions where the states of both subsystems change simultaneously, i.e. (a, b) ↔
(a′, b′) with a 6= a′ and b 6= b′ as indicated by a transition rate W bb′

aa′ . O.b.d.A. we

assume t→∞.

For later convenience we define the mutual information i(a, b) for a pair of states (a, b)

as

i(a, b) = ln
p(a, b)

p(a)p(b)
. (5.12)

The average of i(a, b) over all states (a, b) yields the mutual information of the entire

system. The time derivate of the mutual information can be written as

d

dt
I[b : a]t =

∑
a′≥a

ιAa,a′ +
∑
b′≥b

ιBb,b′ +
∑

a′≥a,b′≥b

ιb,b
′

a,a′ (5.13)

where the first two sums are taken over feedback-transitions in subsystems a or b and

the last sum includes all cross-transitions in the considered system. We have

ιaa,a′ =
∑
b

jba,a′ [i(a, b)− i(a′, b)]

=
∑
b

jba,a′ ln
p(b|a)

p(b|a′)
, (5.14)

ιbb,b′ =
∑
a

jb,b
′

a [i(a, b)− i(a, b′)]

=
∑
a

jb,b
′

a ln
p(a|b)
p(a|b′)

, (5.15)

ιb,b
′

a,a′ = jb,b
′

a,a′ [i(a, b)− i(a
′, b′)] . (5.16)

Thus ιaa,a′ yields the contribution to the total rate of change of mutual information

due to the feedback-transition between the states a and a′ that takes place in the

subsystem a and is affected by the subsystem b. A similar interpretation holds for

ιBb,b′ . The term ιb,b
′

a,a′ represents the contribution to the total rate of change of mutual

information due to the cross-transition between (a, b) and (a′, b′), with a 6= a′ and

b 6= b′, that directly connects the two subsystems a and b.

Now we derive the influence of the coupling through regulatory and cross-transitions

on each of the entire subsystems a and b. Therefore, we consider the amount of
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entropy Σa produced per unit time in the transitions that change the state of the a

subsystem.

Σa =
∑
a≥a′;b

jba,a′ log
W b
a,a′p(a

′, b)

W b
a′,ap(a, b)

+
∑

a≥a′,b≥b′
jb,b

′

a,a′ log
W b,b′

a,a′p(a
′, b′)

W b,b′

a,a′p(a, b)
. (5.17)

In a similar way, the amount of entropy Σb produced in the b subsystem can be found

Σb =
∑
b≥b′;a

jb,b
′

a log
W b,b′
a p(a, b′)

W b′,b
a p(a, b)

+
∑

a≥a′,b≥b′
jb,b

′

a,a′ log
W b,b′

a,a′p(a
′, b′)

W b,b′

a,a′p(a, b)
. (5.18)

Suppose now that we observe the subsystem a without the knowledge of the states

of the subsystem b, i.e. we have no access to the joint probability distribution p(a, b)

and use instead of it the probability distribution p(a). Proceeding in this way, the

apparent entropy production σa assigned to the subsystem a is obtained

σa =
∑
a′≥a;b

jba,a′ log
W b
a,a′p(a

′)

W b
a′,ap(a)

+
∑

a≥a′;b≥b′
jb,b

′

a,a′ log
W b,b′

a,a′p(a
′)

W b′,b
a′,ap(a)

. (5.19)

Similarly, we have

σb =
∑
b≥b′;a

jb,b
′

a log
W b,b′
a p(b′)

W b′,b
a p(b)

+
∑

a≥a′,b≥b′
jb,b

′

a,a′ log
W b,b′

a,a′p(b
′)

W b′,b
a′,ap(b)

. (5.20)

The real entropy production rates Σa and Σb are always non-negative, whereas the

apparent entropy production rates σa and σb can also be negative [30]. The influence

on the entropy production of system a (respectively, b) through coupling to the

whole system is then given by the difference between the apparent and total entropy

production. In analogy to (5.9) we define

İa := σA − ΣA (5.21)

İb := σB − ΣB. (5.22)

Which can be expressed as

İa =
∑
a≥a′;b

jba,a′ log
p(b|a)

p(b|a′)
+

∑
a≥a′;b≥b′

jb,b
′

a,a′ log
p(b|a)

p(b′|a′)
, (5.23)

İb =
∑
b≥b′;a

jb,b
′

a log
p(a|b)
p(a|b′)

+
∑

a≥a′;b≥b′
jb,b

′

a,a′ log
p(a|b)
p(a′|b′)

.
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Note that İa and İb have contributions from terms ιAa,a′ and ιBb,b′ defined in equations

(5.14) and (5.15) and used in the splitting of d
dt
I[b : a] in equation (5.13). In addition,

they also include cross-terms originating from non-bipartite transitions. Using İa and

İb, equation (5.13) for the rate of change of mutual information can be written as

d

dt
I[b : a] = İa + İb + İcross (5.24)

where the quantity

İcross :=
∑

a≥a′;b≥b′
jb,b

′

a,a′ log
p(a′, b′)

p(a, b)
. (5.25)

This expression is the rate of Shannon entropy change of the joint system due to the

cross-transitions. Using the non-negativity of Σa and Σb, we arrive at the second

law-like inequalities

Σa = σa − İa ≥ 0, (5.26)

Σb = σb − İb ≥ 0. (5.27)

where FA and FB are related by the change of mutual information and the rate of

Shannon entropy in the cross-transitions according to equation (5.24).

The equations (5.26) and (5.27) are the same as previously derived for completely

bipartite systems where two subsystems were coupled by regulatory transitions, but

no cross-transitions were allowed [30]. In the absence of cross-transitions, the original

framework [30] is recovered. Now, these inequalities have been generally derived

for the systems where both regulatory and cross-transitions directly connecting the

subsystems can take place. Such generalization is only possible if the definitions

(5.21) and (5.22) are employed. Once the inequalities have been established, the

same interpretation as in refs. [30] can be used.
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Chapter 6

Stochastic thermodynamics &
information processing of
biochemical nanomachines

Generally systems may be classified by two different types of behaviour: Either they

evolve towards maximum disorder or they spontaneously develop a high degree of

organisation in space and time. The latter are example of dissipative systems at

nonequilibrioum conditions, ranging from the Benard cell to biological living sys-

tems. living systems grow and develop with a constant supply of energy needed for

reproduction and survival in varying conditions.

It is a number of coupled metabolic reactions and transport processes at the nanoscale

that control the rate and timing of life processes. Biochemical processes maintain the

biological cell in a nonequilibrium state by controlling the inflow of reactants and

the outflow of products. Instead of decaying towards an equilibrium state, living

biological systems increase in size and develop organised structures of high complex-

ity. The core building blocks of cellular functions are the various interactions of

macromolecules composed of proteins. For the synthesis and assembly of proteins

and reproduction in general, cells convert energy in an efficient way for the transport

of substrates across cell membranes and chemical gradients. Adenosine triphosphate

(ATP) is the source of energy for cells, which is produced by oxidative phosphoryla-

tion in the inner membrane of the mitochondria.

One of the major challenges in modern biology is to understand how the molecular

components of a living cell operate in a highly noisy environment.
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1 2

time series

open

closed

Figure 6.1: (1) Internal open and closed states of an ion channel. The time series of the
opened and closed confirmation can be used to determine transition rates to formulate a
Markov process. (2) Structure of the enzyme from Salmonella Typhimurium (PDB code:
2J9X [?]. The allosteric communication is mediated by the loops αL2 and αL6 at the α-site
and the COMM domain at the β-site. The intramolecular tunnel is indicated by the dashed
line.[10]

6.1 Internal and External States of a Biomolecule

Today it is still a big challenges is to understand how the biomolecular components

of a living cell operate and interact in an environment of high thermal fluctuations.

Macromolecules in a cell are subject to strong thermal fluctuations arising from the

continual bombardment by molecules in the surrounding aqueous solution (cytosol).

The magnitude of molecular fluctuations is set by the unit of thermal energy kBT ,

the Boltzmann constant. At the molecular level it is useful to distinguish between

internal configurational states and external states such as position and momentum of

the molecule. The internal degrees of freedom can be represented as discrete states,

e.g. configurational states. Due to the highly noisy environment, the transitions

between these states are random and modelled as a continuous time Markov process

as introduced above. For example a simple two-state continuous Markov process can

be used to model the opening and closing of an ion channel. The transition rates can

for instance be deduced from experiemnts, where the time series has been recorded

(see figure 6.1).
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6.2 The channeling enzyme tryptophan synthase

The enzyme tryptophan synthase (TS) yields a paradigmatic example of a chem-

ical nanomachine. Several reviews devoted to tryptophan synthase are available

[6, 19, 50, 17], with the authors charactering it as an allosteric molecular factory

[6] and a channeling nanomachine [19]. TS is an enzyme that performs synthesis of

the essential amino acid tryptophan from the substrates serine and indole glycerol

phosphate (IGP). IGP is scarce inside the cell and therefore high catalytic efficiency

is required. Furthermore, an intermediate product (indole) of the synthesis reaction is

hydrophobic and can easily escape through the cell membrane. Therefore, its release

into the cytoplasm must be avoided. As single molecule and with 13 different reaction

steps catalyzed over a reaction cycle, TS is a biomolecule with a complex interplay

of allosteric regulation to overcome the above mentioned critical constraints. During

the biosynthesis cycle an intermediate product is channeled from one active center to

another.

TS has been experimentally investigated extensively [35, 3, 66, 18, 11, 45]. Its mech-

anism is completely known, all intermediate chemical states and reaction steps have

been identified and rate constants for practically all transitions have been measured.

The allosteric regulatory interactions have been determined and quantified. More-

over, protein conformations corresponding to different states have been determined

by using X-ray diffraction methods.

6.2.1 Tryptophan synthase as a chemical nanomachine

The molecular structure of tryptophan synthase is shown in Fig. S2. The protein

consists of α and β-subunits, both with their own catalytic sites. The active centers

of the subunits are connected by a 25 Å long intramolecular tunnel for transport

of indole. Each catalytic site has its own gate controlling the release and uptake of

substrates and products. The operation of tryptophan synthase involves a complex

pattern of allosteric cross-regulation controlling the reactions and the configuration

of the gates. It is known that the enzyme adopts two different conformational states:

the catalytically inactive state with open gates (”open conformation”) and the state

with enhanced catalytic activity and closed gates (”closed conformation”) depending

on its chemical state CITES. The switching between the two conformational states is

mediated by the COMM subdomain of the β-subunit.
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Figure 6.2: Schematic operation of tryptophan synthase. Aex2 is the state of the β-subunit
with tryptophan present inside it.

A simplified scheme of the catalytic cycle of tryptophan synthase with several omitted

states is displayed in Fig.. Here, the α-subunit is shown in green and the β-subunit

in blue. The catalytic cycle begins with the enzyme in the state where both sites

are empty and the gates are open. Then, the substrate IGP binds to the α-subunit

and serine to the β-subunit, where it is quickly converted to the serine quinoline

intermediate (Q1). IGP activates the formation of the α-aminoacrylate (A-A) and

the enzyme adopts the closed conformation, as schematically shown in Fig. . In

the state (IGP,A-A) where both gates are closed, A-A activates the cleavage of IGP

to produce G3P and indole. Indole is then channeled to the β-site where it reacts

with A-A to give the tryptophan quinoline intermediate (Q3) that is converted to

tryptophan (Aex2 is the external aldimine of tryptophan in the β-subunit). In the

state (G3P,Aex2) the gates open and the products tryptophan and G3P are released.

Thus the enzyme returns to the initial conformation (emtpy,empty) and is ready to

start the next cycle. The functioning of tryptophan synthase can be also illustrated in

a different way (Fig. 6.3). Each subunit undergoes stochastic transitions that either

represent internal chemical transformations or correspond to binding and release of

substrates and products. Both subunits are coupled to chemical reservoirs where

constant substrate and product concentrations are maintained. These reservoirs can

also be considered as chemostats. Generally, there is a difference of chemical potentials
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Figure 6.3: Allosteric cross-regulation and channeling in tryptophan synthase. Magenta:
transitions blocked in the states A-A, A-A + indole and Q3 of the β-site. Green (light and
dark): blocked in the state empty of the α-site. Light green: enhanced by a factor of 9.7 in
the state IGP of the α-site. Blue (light and dark): blocked in the states empty, Q1, Aex2

of the β-site. Light blue: enhanced by a factor of 27.7 in the state A-A of the β-site. Red:
Channeling instantaneously changes the states of both sites. Numbers represent numerical
notations of the respective chemical states of a subunit. Aex2 is the state of subunit β with
tryptophan inside it.

α-site empty IGP indole+G3P G3P
Variable a 1 2 3 4

β-site empty Q1 A-A indole+A-A Q3 Aex2

Variable b 1 2 3 4 5 6

Table 6.1: Enumeration of chemical states of α- and β-subunits by variables a and b.

between the substrate and the product chemostats. Because of such a difference, the

enzyme is out of equilibrium and can operate as a chemical nanomachine. There

is an extensive pattern of allosteric cross-regulation between the two subunits. The

transitions empty 
 IGP and G3P 
 empty (magenta) in the α-site are blocked

(i.e., the gate in the α-subunit is closed) in the states A-A, A-A + indole and Q3 of

the β-site. The transitions IGP 
 indole+G3P (light and dark blue) in the α-site

are blocked in the states empty, Q1, Aex2 of the β-site. The rate of the transition

IGP → indole+G3P (light blue) in the α-site is enhanced by a factor of 27.7 in the

state A-A of the β-site. The transitions Q1 
 A-A and Q3 
 Aex2 (green) in the

β-site are blocked in the state empty of the α-site. The transition Q1 → A-A (light

green) in the β-site is enhanced by a factor of 9.7 in the state IGP of the α-site.

The changes indole+G3P 
 G3P and A-A 
 indole+A-A (red) corresponding to

indole channeling from the α- to the β-site occur simultaneously and represent a

single stochastic transition.
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Figure 6.4: The kinetic Markov network of tryptophan synthase with numerical values of
all transition rates in units of s−1.

To simplify the notations, the states of both subunits will be enumerated below. The

assignment of integer numerical variables a and b to different states of the α- and

β-subunits is given in Table 6.1 and introduced in Fig. 6.3.

6.2.2 The Kinetic Markov Network

The stochastic single-molecule operation of tryptophan synthase can be seen as ran-

dom wandering over a Markov network of its internal states. In this network, each

binary internal state (a, b) with a = 1, ..., 4 and b = 1, ..., 6 represents a possible com-

bination of the individual states a and b of the α- and the β-subunits. The network is

shown in Fig. 6.4. The nodes of the network are different chemical states and arrows

indicate the transitions between them. Additionally, ligand binding and release are

displayed. The states within the colored box correspond to the closed conformation

52



6.2. THE CHANNELING ENZYME TRYPTOPHAN SYNTHASE

Table 6.2: Ligand binding rate constants k, ligand concentrations c and the respective
transition rates w = kc under physiological conditions.

Reaction Binding constant k Concentration c Rate w Reference
β-empty + Ser → Q1 7.5 · 10−2 µM−1s−1 c(Ser)=68 µM 5.1 s−1 [40]
β-empty + Trp → Aex2 0.15 µM−1s−1 c(Trp)=12 µM 1.8 s−1 [40]
α-empty + IGP → α-IGP 10 µM−1s−1 c(IGP)=3.5µM 35 s−1 [2, 39]
α-empty + G3P → α-G3P 0.2 µM−1s−1 c(G3P)=49 µM 9.8 s−1 [2]

of the enzyme where the gates are closed and the ligands cannot arrive or be released.

The numbers next to the arrows give the respective transition rates in units of s−1.

Note that the bottom and upper states (1, 1) in Fig. 6.4 are identical; they are shown

separately only for convenience in the displayed network.

The kinetic Markov network for tryptophan synthase has been constructed in the

previous publication [43] where all transition rates have been determined from the

available experimental data. In that publication, we have modeled, however, a typ-

ical experimental situation where product concentrations remain vanishingly small.

Therefore, product binding events were not included into the scheme. Moreover,

the reverse indole channeling transitions were not taken into account, because such

reaction events have never been experimentally observed. Additionally, the reverse

reaction in the beta-subunit was not included. Because of this, the previously con-

structed network has been partially irreversible.

In contrast to this, the network shown in Fig. 6.4 is fully reversible. The enzyme

is now assumed to operate under typical physiological conditions where products are

present in substantial concentrations and product binding events can therefore take

place. Moreover, as shown below, we can use additional experimental data and ther-

modynamic consistency conditions to determine the missing rate of reverse indole

channeling. Additionally, the rate for the reverse reaction Q3 → indole+A-A in the

β-subunit has been taken from [41]. Numerical values of the rate constants of each

transition are shown next to the respective arrows in Fig. 6.4. The rates of the

binding of substrate and product molecules are proportional to substrate and prod-

uct concentrations. The substrate and product concentrations under physiological

conditions were taken from [7]. The respective binding rate constants are given in

Table 6.2.

For the combined states (a, b), time dependent probabilities p(a, b; t) can be intro-
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duced. They satisfy the master equation

d

dt
p(a, b; t) =

4∑
a′=1

6∑
b′=1

[W b,b′

a,a′p(a
′, b′; t)−W b′,b

a′,ap(a, b; t)] (6.1)

where W b,b′

a,a′ denotes the transition rate from a state (a′, b′) to the state (a, b). The

numerical values of the transition rates are shown in Fig. 6.4

As we have already noticed (see, e.g., Fig. 6.2), only the transition representing

indole channeling involves simultaneous changes of the states of both α- and β-sites.

All other transitions change the state of only one subunit although the rates of such

transitions can be controlled by the state of the other subunit. Therefore, the Markov

network of tryptophan synthase has a special structure. It is almost bipartite (see

[28, 30, 16]) and the transition matrix elements can be written as

wb,b
′

a,a′ =



W b,b′
a if a = a′

W b
a,a′ if b = b′

W 4,3
4,3 if (a′, b′) = (3, 3) and (a, b) = (4, 4)

W 3,4
3,4 if (a′, b′) = (4, 4) and (a, b) = (3, 3)

0 else.

(6.2)

The indole channeling couples the two subunits and perturbs the complete bipartite

structure of the Markov network.

It is again convenient to write the master equation as a continuity equation

d

dt
p(a, b; t) =

∑
a′,b′

jb,b
′

a,a′ . (6.3)

Taking into account the special form (6.2) of the transition matrix, the master equa-

tion can also be written as

d

dt
p(a, b; t) =

∑
b′

jb,b
′

a +
∑
a′

jba,b′ + [δ
(3,3)
(a,b) − δ

(4,4)
(a,b) ]j

channel (6.4)

where δyx = 1, if x = y and δyx = 0 otherwise. The currents corresponding to transitions

inside the β-subunit are jb,b
′

a = W b,b′
a p(a, b′; t) −W b′,b

a p(a, b; t) and the currents jba,a′

for the transitions within the α-subunit are defined similarly. The flux corresponding

to channeling is jchannel = W 4,3
4,3 p(3, 3; t)−W 3,4

3,4 p(4, 4; t).
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6.2.3 Energies and Detailed Balance

Thermodynamics implies that all transitions between the states should satisfy the

condition of detailed balance. This condition is that at thermal equilibrium the

net probability flux between any two states is absent. For the considered network it

implies that the ratio of the rates W b′,b
a′,a and W b,b′

a,a′ for forward and backward transitions

between any two states (a, b) and (a′, b′) satisfies the equation

W b,b′

a,a′

W b′,b
a′,a

= exp

(
G(a, b)−G(a′, b′)

kBT

)
(6.5)

where G(a, b) and G(a′, b′) are Gibbs energies of the respective states in the network

at equilibrium, T is the temperature, and kB is the Boltzmann constant.

For transitions between the states (a, b) → (a′, b′) that do not involve binding or

release of ligands, the rates W b,b′

a,a′ coincide with the respective rate constants kb,b
′

a,a′ and

the Gibbs energies G(a, b) are the internal Gibbs energies g(a, b) of the molecular

states. In this case, equation (6.5) takes the form

kb,b
′

a,a′

kb
′,b
a′,a

= exp

(
g(a, b)− g(a′, b′)

kBT

)
. (6.6)

Note that, for macromolecules the Gibbs energies g(a, b) of internal states are different

from the internal energies ε(a, b) of such states because they additionally include
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entropic contributions and solvent effects.

The transitions that involve binding or release of a ligand should be treated separately.

Suppose that a transition from (a, b) to (a′, b′) is accompanied by binding of a ligand

and the ligand is released in the backward transition. Then the forward transition

rate is proportional to the ligand concentration c, i.e. W b′,b
a′,a = kb

′,b
a′,ac, whereas for

the backward transition we have W b,b′

a,a′ = kb,b
′

a,a′ . Moreover, the Gibbs energies in (6.5)

include now contributions from ligand particles, i.e. G(a, b) = g(a, b) + µ, where µ

is the chemical potential of the ligand. For the considered weak solutions, we have

µ = µ0 + kBT ln c. Substitution of these expressions into equation (6.5) yields

kb,b
′

a,a′

kb
′,b
a′,a

= exp

(
g(a, b) + µ0 − g(a′, b′)

kBT

)
. (6.7)

In this equation, the ligand can be either a substrate or a product if reverse binding

of a product molecule takes place.

As shown by Schnakenberg [51], one can derive further identities by considering dif-

ferent pathways in a Markov network. Suppose that the chosen pathway represents

a closed cycle Γ that involves only the internal states of the molecule without the

events of ligand binding or release. Then, by using equation (6.6), one can show that

the identity ∏
Γ

kb,b
′

a,a′

kb
′,b
a′,a

= exp

(∑
Γ

g(a, b)− g(a′, b′)

kBT

)
= 1 (6.8)

holds, with the multiplication on the left side performed over all transitions that

belong to the chosen cycle.

If the pathway Γ involves a conversion of substrate to a product or back, application

of condition (6.7) leads to a modified identity. For tryptophan synthase, it has the

form ∏
Γ

W b,b′

a,a′

W b′,b
a′,a

= exp

(
µ(trp) + µ(G3P)− µ(ser)− µ(IGP)

kBT

)
(6.9)

if the pathway Γ leads from the bottom to the top empty states (1, 1) in the Markov

network in Fig. 6.4, i.e. if it corresponds to conversion of the two substrate molecules

IGP and serine to the two product molecules G3P and tryptophan.

The detailed balance condition (6.5) and the Schnakenberg identities (6.8) and (6.9)

can be used to check the thermodynamic consistency of a Markov network, to find
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missing rate constants of some transitions, and to determine Gibbs energies of dif-

ferent states. Particularly, in the Markov network of tryptophan synthase, there is a

transition from the state (4, 4) to (3, 3) that corresponds to the channeling of indole

from the β- to the α-site. This transition has never been observed experimentally

and its rate constant could not be measured. This rate constant can however be de-

termined, as explained below, by using the identity (6.9) and additional experimental

data.

In each turnover cycle of tryptophan synthase two substrate molecules (IGP and ser-

ine) are converted into two product molecules (G3P and tryptophan) and some energy

∆q is dissipated during this conversion process. In microcalorimetric measurements

under isothermal conditions, it is possible to determine the heat Q released by the

reaction in a given volume per unit time. This heat can be estimated as Q = N∆q/τ

where τ is the mean turnover time and N is the number of enzyme molecules in the

reaction volume. The last two quantities can be determined independently and thus

the amount of heat ∆q in one turnover cycle can be obtained. Such calorimetric

measurements have been performed for tryptophan synthase, under standard concen-

tration conditions c0(IGP) = c0(ser) = c0(G3P) = c0(trp) = 1 M, and they yield

∆q = 20.46 kBT [36].

On the other hand, the released heat ∆q corresponds to the difference of chemical

potentials of substrates and products

∆q = µ(IGP) + µ(ser)− µ(G3P)− µ(trp) (6.10)

where, for example, µ(IGP) = µ0(IGP) + kBT ln c(IGP). Thus, the difference of the

chemical potentials µ0(IGP) + µ0(ser) − µ0(G3P) − µ0(trp) in tryptophan synthase

under standard conditions is equal to 20.46 kBT .

By using the identity (6.9) and the known value of ∆q for tryptophan synthase, reverse

channeling transition rate can be determined as k3,4
3,4 = 4.55 s−1. This is indeed much

smaller than the measured rate k4,3
4,3 = 1000 s−1 of the forward channeling transition.

Therefore, the reverse channeling transitions should be very rare and this is why they

have not been experimentally observed.

Furthermore, the detailed balance conditions (6.5) and (6.9) can be used to determine,

by repeated application, Gibbs energies G(a, b) with respect to the Gibbs energy of

a certain reference state.

Our reference state corresponds to the free enzyme with two products (tryptophan
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and G3P) and its Gibbs energy is chosen as Gfinal = 0. In the initial state, the enzyme

is free, there are two additional substrate molecules (serine and IGP) and the two

product molecules (tryptophan and G3P) are missing. The Gibbs energy of the initial

state is therefore Ginitial = µ(IGP) + µ(ser) − µ(G3P) − µ(trp). It should be noted

that it depends on the involved ligand concentrations c because µ = µ0 + kBT ln c. It

coincides with the amount of heat ∆q released in one turnover cycle. The value above

given ∆q = 20.46 kBT corresponds to the standard conditions c0(IGP) = c0(ser) =

c0(G3P) = c0(trp) = 1 M. Recalculating this under the physiological concentrations

(Table 6.2), we obtain Ginitial = ∆q = 19.56 kBT .

There are also several states where one of the subunits is empty and the other subunit

has a ligand bound to it. For example, the state (IGP, empty) has IGP bound to

the α-subunit and no ligand in the β-subunit. The Gibbs energy of this state is

G(IGP,empty) = g(IGP,empty) − g0 + µ(ser) − µ(G3P) − µ(trp). It includes both

the difference of the chemical potentials, depending on the concentrations, and the

internal Gibbs energies g(IGP,empty) and g0 = g(empty,empty) of the state (IGP,

empty) and the free state of the enzyme.

Finally, there are states where both subunits are occupied. For example, for the state

(IGP, Q1), we have G(IGP,Q1) = g(IGP,Q1) − g0 − µ(G3P) − µ(trp). For the state

(IGP, A-A), we have G(IGP,A-A) = g(IGP,A-A)−g0−µ(G3P)−µ(trp). Note that the

difference G(IGP,Q1)−G(IGP,A-A) = g(IGP,Q1)−g(IGP,A-A) is determined only by

the internal Gibbs energies of the states and is independent of ligand concentrations.

This difference gives the amount of heat dissipated in the respective transition.

Figure 6.5 shows the Gibbs energy landscape of tryptophan synthase along its main

pathway. After the binding of substrates requiring activation energies of 1.74 kBT

for IGP binding and 2.28 kBT for serine binding, all transitions towards product

formation are exergonic. The four catalytically important transitions (IGP,Q1) ↔
(IGP,A-A) ↔ (indole+G3P,A-A) ↔ (G3P,indole+A-A) ↔ (G3P,Q3) in the closed

conformation of the enzyme are highly exergonic and accompanied by heat release

in the range between 5.40 and 2.30 kBT . The release of the products G3P and

tryptophan is accompanied by the heat release of 3.10 and 3.02 kBT , respectively.
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6.2.4 Entropy Production and Flow

The Shannon entropy at time t is given by

H(t) = −
∑
a,b

p(a, b; t) ln p(a, b; t) (6.11)

where p(a, b; t) is the probability to find the enzyme in the state (a, b) at time t. Its

rate of change is
d

dt
H =

1

2

∑
a,a′,b,b′

jb,b
′

a,a′ log
p(a′, b′; t)

p(a, b; t)
(6.12)

This rate of change can be decomposed as

dtH = σ − h (6.13)

into the difference of the entropy production σ inside the enzyme and of the net flow

h of entropy from the enzyme, i.e. of the rate of entropy export by it.

According to equation (6.12), the rate of change of the total entropy of the enzyme

can be also written as a sum of the rates of entropy change sb,b
′

a,a′ in each individual

transition, i.e.

d

dt
H =

1

2

∑
a,a′,b,b′

sb,b
′

a,a′ , with sb,b
′

a,a′ = jb,b
′

a,a′ log
p(a′, b′)

p(a, b)
. (6.14)

The same holds for the total entropy production σ and the rate of entropy export

h. Thus the quantities σb,b
′

a,a′ and hb,b
′

a,a′ corresponding to individual transitions can be

introduced,

h =
1

2

∑
a,a′,b,b′

hb,b
′

a,a′ ; σ =
1

2

∑
a,a′,b,b′

σb,b
′

a,a′ (6.15)

where

hb,b
′

a,a′ = J b,b
′

a,a′ log
wb,b

′

a,a′

wb
′,b
a′,a

, (6.16)

σb,b
′

a,a′ = J b,b
′

a,a′ log
wb,b

′

a,a′p(a
′, b′)

wb
′,b
a′,ap(a, b)

. (6.17)

Note that σb,b
′

a,a′ = σb
′,b
a′,a, h

b,b′

a,a′ = hb
′,b
a′,a and sb,b

′

a,a′ = sb
′,b
a′,a and therefore these quanti-

ties do not depend on the choice of the transition direction, i.e. they are the same
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Figure 6.6: Entropy production in
different transitions in the nonequi-
librium steady-state. The values of
entropy production are given in units
of bit s−1 next to the links between
the states. Additionally, color cod-
ing of the links according to the
corresponding entropy production is
used.

1   2

1   1

2   2

2   1

2   3

3   3

4   4

4   6

1   1

4   1 1   6

4   2 2   6

4   3 2   5

3   5

4   5

-0.62-2.94

-2.34 -1.26

9.63

7.77

10.22

4.36

1.11

1.14 4.60

0.94 4.12

-0.13 -0.34

0.61

0.00

0.00

0.17

0.00

-2.5 0 2.5 5.0 7.5 10.0

Figure 6.7: Rates of entropy export
in individual transitions in trypto-
phan synthase. The same notations
as in Fig. 6.6.

both for (a, b) → (a′, b′) and (a′, b′) → (a, b). The entropy production σb,b
′

a,a′ char-

acterizes dissipation or irreversibility whereas the entropy flow hb,b
′

a,a′ represents the

average heat exchanged per unit time with the environment in a transition. We have

sb,b
′

a,a′ = σb,b
′

a,a′ − h
b,b′

a,a′ .

In the state of thermal equilibrium, all fluxes jb,b
′

a,a′ vanish and therefore according

to equations (6.16) and (6.17) there are no transitions where entropy is produced

or exported. Under physiological conditions, however, the enzyme tryptophan syn-

thase operates far from thermal equilibrium, with the difference of Gibbs energies

of 19.56 kBT for one cycle. Thus, its operation is characterized by nonequilibrium

steady-state. In the respective nonequilibrium steady-state with the stationary prob-

ability distribution p̄(a, b), the fluxes j̄b,b
′

a,a′ do not vanish and therefore the transitions

are accompanied by entropy production and entropy export. Because the entropy H
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is conserved in this state, dtH = σ − h = 0. Hence the total entropy production σ is

counterbalanced by the entropy export h. Note that, although dtH = 0, the rates of

entropy change sb,b
′

a,a′ for individual transitions are not zero even in the nonequilibrium

steady-state.

The stationary probability distribution p̄(a, b) can be found by solving the master

equation (6.1) in the nonequilibrium steady-state. Numerical values of the probabil-

ities p̄(a, b) corresponding to all possible states are given Table S1. Then, by using

equation (??), the fluxes J̄ b,b
′

a,a′ can be determined. According to equations (6.14),

(6.16) and (6.17), the values of σb,b
′

a,a′ , h
b,b′

a,a′ and sb,b
′

a,a′ can be calculated afterwards.

The results are displayed in Figs. 6.6 and 6.7. Here, we show the same network as in

Fig. 6.4, but, for simplicity, retain only numerical notations of the states. Only the

links between the states are shown because the transition directions are not important

(see the comment after equation (6.17)) For each link, the value of the quantities σb,b
′

a,a′

or hb,b
′

a,a′ is indicated. Additionally, color coding is used.

Here and below, all numerical values for entropy and information are given in units

of bits. We have 1 bit = ln 2 = 0.693, because natural logarithms are used in our

definition of the Shannon entropy.

The rates of entropy or information change are given in bits per seconds. Alterna-

tively, they can also be expressed by the respective amounts per a catalytic cycle.

Note that the substrate conversion rate of the enzyme is equal to the probability flux

J channel because each productive cycle includes this transition. The mean catalytic

cycle time is the inverse of the substrate conversion rate. Under physiological concen-

trations, we find that the mean cycle time is 0.75 s. Tryptophan synthase is a slow

molecular machine.

Figure 6.6 shows numerical values of entropy production for all individual transitions

within the enzyme. The entropy is mostly produced along the main catalytic path-

way. The highest entropy production (10.22 bit s−1) is found for the allosterically

activated transition Q1 ↔ A-A in the β-site. In contrast to this, all transitions in-

volving futile states (side branches of the network) have values of entropy production

below 0.01 bit s−1 per second. Ligand binding and release is characterized by entropy

production below 1.78 bit s−1 per second.

The values for entropy export are given in Fig. 6.7. The entropy export takes is

maximal (between 7.77 bit s−1 and 10.22 bit s−1) for the transitions (IGP,Q1) ↔
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(IGP,A-A) ↔ (indole+G3P,A-A) ↔ (G3P,indole+A-A) where most of the heat ex-

change with the environment takes place. All other transitions have absolute values

smaller than 4.61 bit s−1. Note that transition (G3P,Q3) ↔ (G3P,Aex2) has a small

entropy export, but a high entropy production.

Because the rate of entropy change in a transition is given by the difference of entropy

production and export, this rate can be found by subtracting the respective values in

Figs. 6.6 and 6.7. Thus the transition (G3P,Q3)↔ (G3P,Aex2) in the main catalytic

pathway has the largest rate of entropy increase s6,5
4,4 = 4.82 bit s−1. In contrast to

this, channeling and the subsequent transition (G3P,indole+A-A) ↔ (G3P,Q3) are

accompanied by the net export of entropy at the rates s4,4
3,3 = −4.53 bit s−1 and

s5,4
4,4 = −3.55 bit s−1.

Using the computed rates of entropy production and export for individual transitions,

total amounts for the whole enzyme per a turnover cycle can be obtained. We find

that, within a single catalytic cycle of tryptophan synthase, 27.79 bits of entropy are

produced. The same amount of entropy is on the average exported by the enzyme

per one cycle.

6.2.5 Information Exchange between the Subunits

There is a complex pattern of allosteric interactions between the two subunits of tryp-

tophan synthase. Additionally, one transition that corresponds to indole channeling

and affects simultaneously both subunits takes place. The allosteric cross-regulations

and channeling lead to the development of correlations between the internal states

of the subunits. Previously, the presence of correlations has been demonstrated by

computing the Pearson correlation coefficients for all possible pairs of states [43]. In

this section, the concept of mutual information will be employed to further quantify

the effects of allosteric cross-regulation and channeling. Our method is based on the

theory of information exchange between the subsystems [28, 30, 16] which had, how-

ever, to be extended to the situation where transitions involving simultaneously both

subunits can also occur. The stochastic mutual information i(a, b) of a pair of states

(a, b) of the two subunits is defined as

i(a, b) = ln
p(a, b)

pα(a)pβ(b)
(6.18)
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Figure 6.8: Stochastic mutual information i(a, b) in units of bit for different states.

where pα(a) =
∑6

b=1 p(a, b) and pβ(b) =
∑4

a=1 p(a, b) are the probability distributions

for the states of α- and β-subunits. The stochastic mutual information i(a, b) quan-

tifies correlations between the states a of the α-subunit and b of the β-subunit, it

vanishes if these states are statistically independent, i.e. if p(a, b) = pα(a)pβ(b). If

the stochastic mutual information is negative, anti-correlations between the stats are

present.

The values i(a, b) under physiological conditions are shown in Fig. 6.8 for all states

(a, b). We find high positive mutual information (2.39 and 2.20 bits) in the states

(G3P,indole+A-A) and (G3P,Q3) after indole channeling and after the indole reaction

at the β-site in the main pathway. This agrees with the previous analysis using the

Pearson correlation coefficients [43]. As a result of channeling, both subunits simul-

taneously arrive at the state (G3P,indole+A-A) and high positive correlations are

characteristic for it. On the other hand, mutual information is negative (-1.04 bits)

in the state (IGP,A-A) before channeling. This is an effect of allosteric interactions:

when the β-subunit is in the state A-A, the cleavage of IGP into G3P and indole is

blocked when the β-subunit is in the state Q1, but it is possible in the state A-A. The

statistical average of i(a, b) over all pair states (a, b) yields the mutual information I

of the whole system
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I =
4∑

a=1

6∑
b=1

p(a, b) ln
p(a, b)

pα(a)pβ(b)
=

4∑
a=1

6∑
b=1

p(a, b)i(a, b). (6.19)

This property is positive and it characterizes the strength of statistical correlations

between the α- and β-subunits. For tryptophan synthase under physiological condi-

tions we have I = 0.49 bit.

As shown in the Appendix, the rate of mutual information change for the entire

system is

d

dt
I =

1

2

4∑′

a,a′=1

ιαa,a′ +
1

2

6∑′

b,b′=1

ιβb,b′ + ιchannel. (6.20)

Here, the sums exclude the forward and backward channeling transitions and we have

ιαa,a′ =
∑
b

jba,a′ [i(a, b)− i(a′, b)] , (6.21)

ιβb,b′ =
∑
a

jb,b
′

a [i(a, b)− i(a, b′)] , (6.22)

ιchannel = jchannel [i(4, 4)− i(3, 3)] . (6.23)

Note that in a steady state dtI = 0 and therefore the terms (6.21) - (6.23) satisfy

one additional constraint. Moreover, the terms ιαa,a′ and ιβb,b′ do not depend on the

choice of a direction for the transitions between a and a′ or between b and b′. The

quantity ιαa,a′ gives the contribution by the transition between the states a and a′ in

the α-subunit to the rate of change of the total mutual information of the system;

this contribution is averaged over all possible regulatory states of the subunit β. A

similar interpretation holds for the quantity ιβb,b′ .

By solving the master equation under physiological concentrations, we obtain the

steady state probabilities p̄(α, β). Substituting them into the equations (6.21) - (6.23)

yields the values for ιαa,a′ , ι
β
b,b′ and ιchannel. Figure 6.9 shows how the generation (or

loss) of mutual information is distributed over the network. Mutual information

is generated in three transitions in the α-subunit. Its highest generation rate is

3.79 bit s−1 in the transition (IGP ↔ indole+G3P) preceding channeling. The chan-

neling transition itself generates mutual information at a smaller rate (1.04 bit s−1).

All transitions in the β-subunit are accompanied by mutual information loss with the

highest rate (-3.79 bit s−1) achieved in the transition immediately after channeling

(Q3 ↔ Aex2).
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Figure 6.9: Rates of change of mutual information in units of bits per second for the
transitions within α- and β-subunits and for the channeling transition.

Furthermore, information interactions between entire subunits can also be discussed.

To do this, we write the rate of change of mutual information in the form

d

dt
I = İα + İβ + İchannel (6.24)

where

İα =
1

2

∑
a,a′,b

ιαa,a′ + ιαchannel, (6.25)

İβ =
1

2

∑
a,b,b′

ιβb,b′ + ιβchannel. (6.26)

Here, we have divided the rate of generation of mutual information in the channel

ιchannel, given by equation (6.23) into three parts, i.e. ιchannel = İchannel + ιαchannel +

ιβchannel, where

İchannel = jchannel log
p(3, 3)

p(4, 4)
, (6.27)

ιαchannel = jchannel log
pα(3)p(4, 4)

pα(4)p(3, 3)
, (6.28)

ιβchannel = jchannel log
pβ(3)p(4, 4)

pβ(4)p(3, 3)
. (6.29)
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Thus the rates of mutual information change in α- and β-subunits include now con-

tributions ιαchannel and ιβchannel from the channeling transition. The advantage of this

definition is that, as shown in the Appendix, important thermodynamic inequalities

for entropy production in both subunits become then satisfied.

In a steady state, dtI vanishes and we have İα + İβ + F channel = 0. If the channeling

were absent, we would have had İα = −İβ. In this case, the mutual information

generated in one subunit would have been completely consumed in the other subunit,

cf. [?, ?, 16]. Because İchannel 6= 0, this is, however, no longer valid. Some mutual

information for the entire enzyme is additionally generated in the channeling transi-

tion involving simultaneously both subunits.

We have computed the values for İα, İβ and İchannel under physiological concen-

trations. We find that they all have the same order of magnitude. The mutual

information İchannel = −4.53 bit s−1 generated per unit time by the transition corre-

sponding to indole channeling flows to both subunits where is consumed at the rates

of İα = 3.09 bit s−1 and İβ = 1.42 bit s−1. Note that İβ is positive whereas all con-

tributions ιβb,b′ from individual transitions in the β-subunit are negative. This is an

effect of the large contributions from the cross term ιβchannel = 6.43 bit s−1 (whereas

ιαchannel = −0.86 bit s−1).
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Dynamics of coarse grained spin
systems
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Chapter 7

Time dependent Renormalization
Group transformation and the
Kibble Zureck Mechanism

7.1 Critical dynamics and the real space renormal-

ization group

Scaling ideas and the various mathematical formulations of the renormalization group

(RG) were developed in the 1960s and early 1970s [32, 60, 9]. They allow a profound

understanding of critical singularities near continuous phase transitions in thermal

equilibrium. Starting in the mid-1970s, these concepts were subsequently generalized

and applied to dynamic critical phenomena.

But even today our knowledge of the dynamic approach towards the equilibrium of a

system near a second order phase transition is very limited compared to the achiev-

ments in the understanding of static phenomena [32]. In thermal equilibrium the

scaling properties of physical quantities, the static critical exponents and amplitudes

of the singularities appearing in thermodynamic and correlation functions are acces-

sible. These properties are usually characterised by the dimensionality of the system

and the symmetry of its Hamiltonian [26]. The first application of the RG approach

in connection with the ε-expansion to critical dynamics was introduced in 1977 by

Halerpin et al. [29, 32]. The dynamics of the system were captured with a Langevin

equation of motion by considering a continuous spin field combined with conserva-

tions laws. The real space RG was first generalized for the study of critical dynamics

in 1978 by Achiam and Kosterlitz [1] and Kinzel [34].
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Figure 7.1: Snapshots of a 2D-Ising model adiabatically driven through the second order
phase transition from the disordered to the ordered phase.

The application of the RG ideas to calculate time-dependent properties of a system

is very similar to their application to static thermal equilibrium. The RG transfor-

mation scales the characteristic microscopic length of a systen by a factor b

x′ = bx. (7.1)

This transformation is expressed by a new effective Hamiltonian. A meaningful RG

transformation does not alter the physical information in connection with distances

longer than the new effective microscopic length. The appearance of a long range

correlation length close to a second order phase transition is an example of such a

property. The transformation (7.1) can also be applied to the kinetics associated with

the relaxation of the system towards thermal equilibrium. Here the RG transforma-

tion (7.1) changes the effective microscopic time scale

τ ′0 = bzτ0. (7.2)

To ensure scale invariance, this has to be compensated for by a contribution from the

space sacle to the macroscopic time sacle. Close to the critical point the macroscopic

characteristic length is the correlation length ξ. Thus we can relate the scaling of

the functional dependence of the macroscopic time scale to ξ. Then we can generally

conclude that if the dynamics are under the scaling of both space (7.1) and time

(7.2), the characteristic time scale of of the system depends asymptotically on the

correlation length, i.e.

τc ∼ ξz, (7.3)

where z is the dynamic exponent characterizing the divergence of the typical relax-

ation time near criticality.
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In the analysis of static critical phenomena the RG transformation is usually applied

to the equilibrium state probability distribution peq(σ). Therefore all results obtained

are automatically applicable to all other physical quantities which are related to peq.

The natural generalization for the dynamics is to study the RG transformation of the

time-dependent probability distribution p(σ, t) and in particular its associated ME

(4.2).

7.2 Time dependent renormalization group trans-

formation of a spin system master equation

We consider a system with many degrees of freedom, e.g. a set of N � 1 spins

denoted by σ, distributed according to the time dependent Boltzmann weights

p(σ, t) =
1

Z(t)
exp (−H[σ, t]) . (7.4)

For the effective Hamiltonian we use a simplest possible short-range interaction that

involves only neighboring spins.

H[σ, t] := Kβ(t)
∑
〈i,j〉

Ŝ(σ), (7.5)

where Ŝ(σ) is the spin operator and Kβ(t) the time dependent bath coupling. We

are interested in the analysis of a ME that generates configurations that are weighted

according to the distribution in Eq. (7.4). Generally this is achived by a ME of an

immense state space, i.e. with increasing values of N , the number of spin configura-

tions is growing as qN if each spin can be in one of q states. This giant non-Markovian

master equation has the simple form

τ0
d

dt
p(σ, t) =

∑
m

Wσmσ(t)p(σ, t)−Wσσm(t)p(σm, t), (7.6)

where σm ≡ f̂m(σ) denotes a configuration where the m-th spin is flipped by the

spin flip operator f̂m and τ0 sets the bare time scale of the bath coupling.. A central

assumption is, that we limit the analysis to single spin flip dynamics but leave the

explicit form of the rates being only determined by the condition of local detailed
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balance and the time-dependent generalised Hamiltonian (7.5). Then it suffices to

define the rates like

Wσmσ(t) :=

(
p(σm, (t)

p(σ, t)

) 1
2

= exp

(
−1

2
(H[σm, t]−H[σ, t])

)
. (7.7)

Generally it is a very difficult task to determine the transition rates from first prin-

ciples such as the microscoplic equation of motion resulting fron the Hamiltonian

(c.f. chapter 1). Therefor in many cases empirical master equations are used which,

hopefully, describe the physical basis of the dynamics. The most popular empirical

rate is the Glauber model, thanks to its simplicity [25, 32]. This model reflects the

relaxation of an Ising-like system via an interaction with a heat bath. The Glauber

model is equivalent to the model A in the notation of Hohenberg et al. [29, 32].

Renormalization group transformation

A RG transformation (such as decimation or block-spin transformation) on the master

equation (7.6) should produce a new equation of a similar form for a renormalized

probability distribution. Generally a RG transformation T̂b[µ,σ] maps the original

spin configuration σ to a new one µ, with space scaled by b. The application of the

RG transformation to the probability distribution p(σ, t) generates a new distribution

p(µ, t) of a similar spin system, i,e,

p(µ, t) =
∑
σ

T̂b[µ,σ]p(σ, t) (7.8)

where T̂b[µ,σ] has to preserve normality∑
µ

T̂b[µ,σ] = 1, (7.9)

has to be non-negative

T̂b[µ,σ] ≥ 0 (7.10)

and it should not change the symmetry of the lattice. The transformed probability

distribution can similarly be represented by an Hamiltonian with scaled couplings

H[µ, t] = K′β(t)
∑
〈i,j〉

Ŝ(µ). (7.11)
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Thus, the RG transformation T̂b can be considered to be similar to the well known

static transformation R̂b of the parameter space K ′β = R̂bKβ where the fixed point

of this transformation is associated with a critical point of a satic system. The RG

transformation of time is obtained by applying T̂b to the master equation [1, 34]∑
σ

T̂b[µ,σ]
(
τ0

d

dt
p(σ, t)

)
=
∑
σ

T̂b[µ,σ]
(∑

m

Wσmσ(t)p(σ, t)−Wσσm(t)p(σm, t)
)

The RG transformation is time independent and therefore commutes with the time

derivative in (7.12), i.e.∑
σ

T̂b[µ,σ]
( d

dt
p(σ, t)

)
=

d

dt

∑
σ

T̂b[µ,σ]p(σ, t) =
d

dt
p(µ, t), (7.12)

while the transformation of the probability currents is more tedious. Ideally we would

expect a result with transformed transition rates and time scale∑
σ

T̂b[µ,σ]
(∑

m

Wσmσ(t)p(σ, t)−Wσσm(t)p(σm, t)
)

(7.13)

7→ b−z
∑
m

Wµmµ(t)p(µ, t)−Wµµm(t)p(µm, t). (7.14)

When a time dependent RG transformation (7.14) of the ME can be computed,

then the dynamic RG transformation is accompanied by the scaling of the bare bath

coupling time scale

τ ′0 = τ0b
z, (7.15)

in which z is immediately identified as the dynamic exponent.

7.3 Kibble-Zurek Mechanism

The Kibble-Zurek Mechanism (KZM) consinders the dynamics of spontaneous sym-

metry breaking in the course of a phase transition induced by the change of a control

parameter over time, e.g. the temperature T := 1/β [67, 33, 9]. In the limit where

the coupling is close to its critical value Kβ → Kβc , the phenomena of critical slow-

ing down prevents the system from exponentially relaxing into the equilibrium state.

Within the KZM the freeze out of the system depending on the quench rate is inves-

tigated.
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According to the scaling hypothesis of static phase transitions, close to the criti-

cal point the correlation length ξ is scaled by the dimensionless temperature ε :=

|T − Tc|/Tc as

ξ(ε) ∼ ξ0ε
−ν , (7.16)

with a critical exponent ν and the equilibrium relaxation time as

τr(ε) ∼ τ0

(
ξ(ε)

ξ0

)z
∼ τ0ε

−zν , (7.17)

with a critical exponent ∆ = νz. We assume that system is preparded in the high

symmetry phase at t0 = −∞. At t > t0 the temperature is lowerd according to the

linear protocol

T (t) := Tc

(
1− t

τq

)
, (7.18)

with τq the quench rate. The reduced temperature accordingly becomes

ε(t) =
|t|
τq
. (7.19)

Before the temperature reaches Tc, the relaxation time becomes longer than the

remaining time |t| to the critical point and the dynamics are not adiabatic anymore.

The groth of the correlation length stops before the temperature reaches Tc and the

system is approximately frozen due to the divergence of the relaxation time. The

system is unable to adjust to the externally imposed change of the reduced controll

parameter (7.19). The time t̂, when the system freezes, is determined by the equality

between the relaxation time τr and the remaining time to the critical point |t|, i.e.

τr(ε(t̂)) = |t̂|. (7.20)

With eqs. (7.17), (7.19) and ε̂ := ε(t̂) we have

τ0ε̂
−zν ∼ τqε̂, (7.21)

which can equivalently be written as

ε̂ ∼
(
τq
τ0

)−1/(1+zν)

. (7.22)
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1

2

3

Figure 7.2: (1) A system rapidly driven trough the phase transition will quickly fall out
of equilibrium once the critical point is reached. (2) If the system is driven slower, the
adiabatic regime remains for a longer time, but the system will also fall out of equilibrium
due to the diverging relaxation time. (3) Schematic representation of the linear driving
machanism and the timeframe under which the system will be frozen and out of equilibrium.

Finally we can estimate that the correlation length after the quench is scaled by

ξ̂ := ξ(ε̂) ∼ ξ0

(
τq
τ0

)ν/(1+zν)

. (7.23)

At time |t̂| the system freezes and falls out of equilibrium. For the remaining quench

time the system is characterized by

pq(σ, t) :=
1

Z
exp

(
−H[σ, |̂t|]

)
, t ∈ [−t̂, t̂] (7.24)

i.e. d
dt
pq(σ, t) = 0 for t ∈ [−t̂, t̂]. At times |t̂| < t the system should not obey detailed

balance any more, i.e.

Wσmσ(t)pq(σ, t) 6= Wσσm(t)pq(σm, t), |t̂| < t (7.25)

since the thermodynamic constraints change faster than the system can adapt to it.
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Chapter 8

Coarse grained triangular block
spin master equation

The last chapter is a summary of preliminary results obtained to develop a systematic

RG transformation method combining results from the 80s [29, 1, 34] and current

insights from the field of Stochastic Thermodynamics for systems obeying time scale

separation [21]. The aim is to approximately incorporate the interactions of the

block spins in the transition rate matrix for a low dimensional system desctiption

and to obtain a recursion for the transformation of the rate matrix accross scales.

The author has the dream to map the critical dynamics of the lattice system onto a

single spin under feedback control of two adjacent spins, where the feedback enters

into the rates via the perturbative expansion of the block spin intercell interactions

in the Boltzmann weights and ideally is allowed to be time dependent for the KZM

driving. This might yield an alternative approach to the perturbative treatment of

the probability distribution [29, 1, 34] for the computation of the critical exponent z

for larger systems and allow new insights into the analysis of the KZM. The author

is commited to follow up this idea beyond this thesis.

8.1 Coarse grained transition rates

We focus on the block-spin transformation, where spins {σ} are divided in to groups

{µ} which define new coarse grained spins [32, 9]. A spin belonging to a group µ is
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8.1. COARSE GRAINED TRANSITION RATES

1 2 3 4

Figure 8.1: (1) Only single spin flip dynamics are allowed by assumption. In the example
of triangular block spins, the block-spin points up if the majority of micro-spins points up
and down, if the majority of micro-spins points down. (2) The dynamics of the block-spin
are determined by new effective rates. (3) Block-spin transitions are realised by spin flips
of micro-spins. (4) Spin flips not altering the majority of up or down spin states in a block
spin, leave the block spin invarian.

denoted by σµ. Such a RG transformation defines a new probability distribution

p(µ, t) =
∑
σ

T̂b[µ,σ]p(σ, t) (8.1)

=
∑
σµ

p(σ, t). (8.2)

Further on we call spins σ ∈ σ micro-spins and the the coarse grained spins µ ∈ µ
meso-spins or block-spins. Following M. Esposito [21], the time dependent rates for

the coarse grained master equartion of (8.2) are given as

Wµµ′(t) =
∑
σµ,σ′µ′

Wσµσ′µ′
(t)p(σ′|µ′, t). (8.3)
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8.2. COARSE GRAINED ENTROPY PRODUCTION RATE

Figure 8.2: Illustration of the block-spin and micro-spin time series reflecting the different
entropy production rates.

8.2 Coarse grained entropy production rate

In [21] Esposito seperates the time evolution of the entropy into three contributions,

Ḣ[σ] = Ḣ(1)+Ḣ(2)+Ḣ(3). The part Ḣ(2) arises from transitions between configurations

of micro-spins belonging (σµ → σ′µ) within a group µ (see figure 8.2 (2)), Ḣ(3) due to

micro-spin transitions (σµ → σ′µ′) connecting two different block-spin configurations

(see figure 8.2 (3)) and Ḣ(1) due to the effective dynamics of block-spin configurations

(µ → µ′) (see figure 8.2 (4)). The entropy production follows the same seperation

(see Appendix D.1 for derivation)

Ṡsys[σ](t) = Ṡ(1)
sys[σ](t) + Ṡ(2)

sys[σ](t) + Ṡ(3)
sys[σ](t). (8.4)

On the level of the effective block-spin master equation the visible entropy produc-

tion would be Ṡ(1)
sys[σ](t). Thus a coarse grained master equation underestimates the

entropy production by Ṡ(2)
sys[σ](t) and Ṡ(3)

sys[σ](t) [21]. The hidden entropy production

due to the micro-state dynamics, hidden in the meso-states, is Ṡ(2)
sys[σ](t). It is the

entropy production arising from internal transitions within a block-spin µ. The three

contributions read

Ṡ(1)
sys[σ](t) :=

∑
µ,µ′

Wµµ′(t)p(µ
′, t) log

Wµ′µ(t)p(µ, t)

Wµµ′(t)p(µ′, t)
≥ 0 (8.5)

Ṡ(2)
sys[σ](t) :=

∑
µ

p(µ, t)

∑
σµ,σ′µ

Wσµσ′µ(t)p(σ′µ|µ, t) log
Wσ′µσµ(t)p(σµ|µ, t)
Wσµσ′µ(t)p(σ′µ|µ, t)

 ≥ 0

Ṡ(3)
sys[σ](t) :=

∑
µ,µ′

Wµµ′(t)p(µ
′, t)Rµµ′(t) ≥ 0. (8.6)
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The relative entropy

Rµµ′(t) :=
∑
σµ,σ′µ′

p(σµ → σ′µ′ |µ→ µ′, t) log
p(σµ → σ′µ′|µ→ µ′, t)

p(σ′µ′ → σµ|µ′ → µ, t)
, (8.7)

can be interpreted as an entropic force arising from the micro-state dynamical ran-

domness at which transisitons between block-spin-states occur. The conditional prob-

ability that if jumps (µ→ µ′) occur it is due to a micro-state transition (σµ → σ′µ′)

is given by

p(σµ → σ′µ′|µ→ µ′, t) :=
Wσµσ′µ′

(t)p(σ′, t)

Wµµ′(t)p(µ′, t)
. (8.8)

The entropy production rate is scale invariant only if Ṡ(2)
sys[σ](t) and Ṡ(3)

sys[σ](t) vanish.

For the KZM, when the system freezes out, it can be conjectured that this is the

case if the spin transitions inside a blockspin are described by an equilibrium process

obeying detailed balance and therefore Ṡ(2)
sys[σ](t) = 0, but also a high long range

correlation between block-spin and micro-spin transitions resulting in a vanishing of

Rµµ′(t).
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1

2

3

4

5

6

7

8

1

2

3

4

6

7

8

5

1

2 3

8

4

7 6

5
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Figure 8.3: (1) On the left are configurations which by the majority rule give an ↑ configu-
ration of the blockspin. The components are labeled by the indices {1, 2, 3, 4}. On the right,
after flipping the configuration C, are all components {5, 6, 7, 8} making up the ↓ configu-
ration. The graph displays the adjacency matrix of the ME and the micro-spin transitions
traversing the dotted line, i.e. connecting C with −C and flipping the block-spin. (2) The
ME also obeys a bipartite structure thanks to the single spin flip dynamics.

8.3 RG transformation of a block spin ME onto a

single spin ME

As already noted above, the ME rapidly grows with the number of involves spins,

since the number of possible spin configurations and therefore the state space grows

as qN , where q is the number of states the spin can be in and N the number of lattice

points. This renders the computation of the steady state probability distribution to

be a very complicated task.

All possible configurations C of the blockspin which have an inversion complement

−C, i.e. the configurations obtained by flipping the hole lattice are given by

c :=

(
C
−C

)
, C :=


1 1 1
−1 1 1
1 −1 1
1 1 −1

 . (8.9)

Our aim is to formulate the ME in terms of indices representing the configuration of

the lattice. As a next step we need to establish all possible transitions in the ME

which connect rows of c. Single spin flip dynamics are assumed, meaning that only

transitions between configurations involving a single spin flip are allowed. We define

an adjacency matrix M (2) which holds all micro spin transitions of the ME which
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8.3. RG TRANSFORMATION OF A BLOCK SPIN ME ONTO A SINGLE SPIN ME

don’t change the state of the block-spin, i.e.

M (2) :=


1 1 1 1
1 1 0 0
1 0 1 0
1 0 0 1

 = M (2)ᵀ, (8.10)

and an adjacency matrix M (3) which holds all micro spin transitions of the ME which

flip the state of the block-spin, i.e.

M (3) :=


0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0

 = M (2)ᵀ, (8.11)

transitions. Therefore the full adjacency matrix M for the entire graph of the ME of

spin-configurations reads

M :=

(
M (2) M (3)

M (3) M (2)

)
= M ᵀ. (8.12)

The RG is implemented with a vector

t := (

(
1 0
0 0

)
,

(
0 0
0 1

)
)ᵀ, 1 :=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , (8.13)

which transforms the micro-spin configuration probability vector p into the blockspin

probability vector p
(1)
α = tαp, and the ME accordingly

d

dt
p(1)
α =

d

dt
tαp = tαMWp =

∑
α′

∑
iαjα′

Wiαjα′
pjα′ . (8.14)

We note that here in this simple case:∑
iαjα

Wiαjα′
pjα′ = M (2)Wp (8.15)∑

α′ 6=α

∑
iαjα′

Wiαjα′
pjα′ = M (3)Wp (8.16)
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8.3.1 Coarse grained transition rates for the sinle spin

In order to determine the transition rates and equilibrium probability distribution we

start by introducting a coupling matrix for the computation of the nearest neighbor

coupling in the micro-spin Hamiltonian

K0 :=
K

2

0 1 1
1 0 1
1 1 0

 = Kᵀ
0 . (8.17)

With this definition we can compute a matrix, which on its diagonal holds the Hamil-

tonians of all intracell configurations of c, i.e.

H := diag(cK0c
ᵀ). (8.18)

The Hamiltonian of a particular configuration i is then given by the matrix element

[H ]ii. With the use of these matrix elements we can determine the probability to be

in a configuration represented by row i of c, namely

pi =
1

Z

[
e−H

]
ii
, Z := Tr

{
e−H

}
. (8.19)

Now it is straight forward to compute the transition rates defined by the local detailed

balance conditions, i.e.

Wij :=

(
pj
pi

) 1
2

=
[
e−

1
2
H
]
jj

[
e

1
2
H
]
ii
. (8.20)

Since (8.17) is symmetric the rates are also symmetric. The oarse grained transition

rates for a single blockspins are

W
(1)
α′α =

∑
ij

[
tα
]
ij
MjiWij

pj

p
(1)
n

(8.21)

where p
(1)
α :=

∑
i

[
tα
]
ii
pi. As introduced in section 8.1 with equation (8.3) the block-

spin transition rates are the sum of all possible micro-spin flips resulting in a block-

spin flip, but weighted with the conditional probability pi/p
(1)
α .

8.4 Feedback through intercell coupling

The rates connecting the up and down state of a single block spin are symmetric

since the flip of a spin doesn’t change the energy. This symmetry is broken once the
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block-spin is coupled to another blockspin. The coupling changes the energy barrier

of some spin flips inside a blockspin. This can be interpreted as a mutual feedback

between single spins and the nearest neighbor coupling through the entire spin-lattice.

The idea is to write the feedback rates as

W βγ
α′α := W

(1)
α′α

 exp
(
Uβγ
α

)
exp

(
Uβγ
α′

)
 1

2

Uβγ
α := K(1) (σασβ + σασγ) . (8.22)

where K(1) = e3K+e−K

e3K+3e−K
is the well known renormalized coupling constant [32] and β,

γ label the adjacent block spins to α. Ideally it would be possible to shown that this

form of the rates can be obtained by a perturbative expansion of the interactions in

the rates, in the same way as it is applied to compute the renormalized Hamiltonian

in the static RG transformation.
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Summary
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Information thermodynamics

In this study, methods of stochastic thermodynamics have been applied to characterize

the operation of the channeling enzyme tryptophan synthase.

Using thermodynamic identities related to the detailed balance, the Gibbs energy

landscape of this enzyme along its main catalytic pathway could be reconstructed

from the experimental data. We found that, under in vivo conditions, the cycle

of this enzyme is driven by the Gibbs energy gradient of approximately 19.56 kBT

between its substrates and products. Thus, under physiological substrate and product

concentrations, the enzyme operation is far from thermal equilibrium.

Inside the cycle of tryptophan synthase, only the first substrate binding transitions

are thermally activated, with activation energies about 1 kBT . All other transitions,

including the events of product release, correspond to a decrease in the Gibbs energy.

In particular, channeling is driven by the energy difference of 5.4 kBT and does

therefore not represent a diffusion process.

Because the enzyme operates far from equilibrium, entropy is persistently produced.

We found that 27.79 bits of entropy are produced and the same amount of entropy

is exported, on the average, to the environment within one catalytic cycle. The

distribution of entropy production over the Markov network is largely nonuniform.

Information interactions between the two catalytic subunits of the enzyme have been

analyzed. Both the allosteric interactions between the subunits and the channelling

of an intermediate product from one of them to another contribute to the change of

mutual information. Thus, the previously existing theory [30] had to be generalized to

the situations where, in addition to regulatory interactions between the subsystems,

the transitions simultaneously changing the states of both of them can also take

place. We found that mutual information is generated both in α- and β-subunits

at the rates 3.09 and 1.49 bits per second. This mutual information is consumed in

the channeling transition so that the balance is maintained. Moreover, contributions

from individual allosterically regulated transitions in each of the subunits to the total

mutual information change were determined too.

Thus, we have demonstrated that, through the use of stochastic thermodynamics, a

rich quantitative characterization of the nonequilibrium operation of an enzyme can

be produced. It would be interesting to perform analogous investigations for other

enzymes with several catalytic subunits. Such further investigations can clarify the
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connections between various thermodynamic properties of such nanomachines and

the aspects of the chemical function of the enzymes.

Relaxation of coarse grained spin systems

A method for the RG transformation of the ME rates of a single, non-interacting,

blockspin has been introduced. This methods allows the straight forward recursive

RG transformation of a blockspin. Taking the interactions with adjacent blockspins

into account is a more difficult task, especially if the state-space remain the same.

A possible approach is to try a perturbative expansion of the interaction, similar to

the one in the static RG transformation. Once the feedback-rates are obtain, the

full machinery of Information Thermodynamics can be applied and the influence of

driving (KZM) can be investigated. The author is commited to follow up on this

direction of studies.
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Appendix A

Conversation with a Slow Student

”Before closing this chapter, I want to come back to the thing that troubled Einstein

so deeply. I don’t know for sure, but I suspect that it had to do with the ultimate

meaningless nature of probabilistic statements. I have always been mystified by what

they actually say about the world. As far as I can tell, they don’t say anything

very definite. I once wrote the following very short story, originally included in John

Brockman’s book What We Believe but Cannot Prove, that illustrates the point. The

story, “Conversation with a Slow Student” is about a discussion between a physics

professor and a student who just can’t get the point. When I wrote the story, I was

thinking of myself as the student, not the professor.

Student: Hi Prof. I’ve got a problem. I decided to do a little probability ex-

periment—you know, coin flipping—and check some of the stuff you taught us. But

it didn’t work.

Professor: Well I’m glad to hear that you’re interested. What did you do?

Student: I flipped this coin 1,000 times. You remember, you taught us that the

probability to flip heads is one half. I figured that meant that if I flip 1,000 times I

ought to get 500 heads. But it didn’t work. I got 513. What’s wrong?

Professor: Yeah, but you forgot about the margin of error. If you flip a certain

number of times then the margin of error is about the square root of the number of

flips. For 1,000 flips the margin of error is about 30. So you were within the margin

of error.
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Student: Ah, now I get it. Every time I flip 1,000 times I will always get something

between 470 and 530 heads. Every single time! Wow, now that’s a fact I can count on.

Professor: No, no! What it means is that you will probably get between 470 and 530.

Student: You mean I could get 200 heads? Or 850 heads? Or even all heads?

Professor: Probably not.

Student: Maybe the problem is that I didn’t make enough flips. Should I go home

and try it 1,000,000 times? Will it work better?

Professor: Probably.

Student: Aw come on Prof. Tell me something I can trust. You keep telling me

what probably means by giving me more probablies. Tell me what probability means

without using the word probably.

Professor: Hmmm. Well how about this: It means I would be surprised if the

answer were outside the margin of error.

Student: My god! You mean all that stuff you taught us about statistical me-

chanics and Quantum Mechanics and mathematical probability: all it means is that

you’d personally be surprised if it didn’t work?

Professor: Well, uh . . .“

Excerpt from: Leonard Susskind The Black Hole War: My Battle With Stephen

Hawking to Make the World Safe for Quantum Mechanics.
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Appendix B

Combinatorial origin of Shannon’s
entropy formula

B.1 Entropy of an ensemble of sequences

Stirling’s formula is an approximation for the limit limN→∞ logN ! and can be obtained

by a saddle point approximation of the integral representation of N ! (see Kardar p.49

[32]).

lim
N→∞

logN ! = N logN −N +O(logN) (B.1)

We use this result to approximate our combinatorical number of all possibilities of

realisations {σt} we cannot distinguish from chapter 2.1

logW({σm0 }) (B.2)

= log

(
N !

∏
{σm0 }

1

Nσt !

)
(B.3)

= logN !−
∑
{σt}

logNσt ! (B.4)

=
N→∞

logN !−
∑
{σt}

log
(
p(σt)N

)
! (B.5)

∼ N logN −N −
∑
{σt}

(
p(σt)N log

(
p(σt)N

)
− p(σt)N

)
(B.6)

= N logN −N −N
∑
{σt}

p(σt)
(

log p(σt) + logN
)

+
∑
{σt}

p(σt)N (B.7)

= −N
∑
{σt}

p(σt) log p(σt) (B.8)
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B.2 Units of information

We can change the units by changing the base

logx ξ = logx[y
logy ξ] = logx y logy ξ. (B.9)

Thus different bases for the logarithm result in information measures which are just

constant multiples of each other. Using log2 units we measure in bits and log ≡ loge

are units called nats.

B.3 Kullback-Leibler Divergence

From (2.11) and with the use of (B.1) we obtain

logP({σt}) (B.10)

= log
[
N !
∏
{σt}

p(σRt )Nσt

Nσt !

]
(B.11)

= log
[
W(σt, N)

∏
{σt}

p(σRt )Nσt
]

(B.12)

= logW(σt, N) + log
∏
{σt}

p(σRt )Nσt (B.13)

= logW(σt, N) +
∑
{σt}

Nσt log p(σRt ) (B.14)

=
N→∞

−N
∑
{σt}

p(σt) log p(σt) +
∑
{σt}

Nσt log p(σRt ) (B.15)

= −N
∑
{σt}

p(σt) log p(σt) +N
∑
{σt}

p(σt) log p(σRt ) (B.16)

= −N
∑
{σt}

p(σt) log
p(σt)

p(σRt )
(B.17)
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Appendix C

Properties of time discrete Markov
chains

C.1 Master equation as a linear map

For an discrete time update from time t to time t + ∆t the state σ of the system is

mapped to a new state σ′ with a transition probability Tσσ′ which obeys∑
σ

Tσ′σ = 1 (C.1)

for probability conservation. The time evolution of the states is thus governed by

p(σ)t+∆t =
∑
σ′

Tσσ′pt(σ
′), (C.2)

which can, with the use of (C.1), be equally written as

p(σ)t+∆t − pt(σ) =
∑
σ′

Tσσ′pt(σ
′)− pt(σ)

∑
σ

Tσ′σ. (C.3)

The evolution equation can be writen in a more compact form as a linear map

pt+∆t = Tpt (C.4)

where pt denotes the vector whose entries are the probabilities pt(x). The so-called

Transfer matrix iterates pt forward in time and has matrix elements given by

[
T
]
σσ′
≡

{
1−

∑
σ 6=σ′ Tσσ′ , x = x′

Tσσ′ , x 6= x′
(C.5)
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C.2 Convergence towards the steady state

With V ≡ (v0,v1, ...), a matrix of the the eigenvectors, and D ≡ diag(d0, d1, ...), a

diagonal matrix of the eigenvalues 1 = |d0| > |d1| ≥ |d2| ≥ ... , the transfer matrix

can be decomposed as

T = V DV −1 (C.6)

According to Frobenius Theorem there is a unique steady state vector p which coin-

cides with v0. Any initial probability vector can be decomposed as p0 =
∑

i civi and

a subsequent iteration with the transfer matrix gives

pm∆t = Tmp0 (C.7)

=
[
V DV −1

]m
p0 (C.8)

= V dmV −1p0 (C.9)

=
∑
i

dmi civi (C.10)

∼ dm0

[
c0v0 + c1(

d1

d0

)mv1 + ...
]

(C.11)

Since p = v0, the limit limm→∞ pm∆t approaches the steady state as m goes to

infinity with a speed of the order of d1/d0 exponentially. Since d0 > di for all i > 0,

the relaxation time τr is effectively determined by the second largest eigenvalue d1:

τr ∼ −(log d1)−1 (C.12)

In practice, diagonalizing T is generally a very challenging task, especially for systems

with a big state space.

C.2.1 Entropy production and entropy flow

The entropy of a time discrete Markovian stochastic process is readily given by

H[σ]t := −
∑
σ

pσ(t) log pσ(t). (C.13)

The time variation of (C.13) can be split as [22]

H[σ]t+∆t −H[σ]t = ∆iS[σ] + ∆eS[σ]t (C.14)
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with the entropy production

∆iS[σ]t :=
1

2

∑
σσ′

[Tσ′σpσ(t)− Tσσ′pσ′(t)] log
Tσ′σpσ(t)

Tσσ′pσ′(t)
≥ 0 (C.15)

and the entropy flow

∆eS[σ]t := −
∑
σσ′

Tσ′σpσ(t) log
Tσ′σpσ(t+ ∆t)

Tσσ′pσ(t)
(C.16)
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since

H[σ]t+∆t −H[σ]t (C.17)

= −
∑
x

pt+∆t(x) log pt+∆t(x) +
∑
x

pt(x) log pt(x) (C.18)

=
(C.1,C.2)

−
∑
xx′

Tσσ′pt(σ
′) log pt+∆t(x) +

∑
σσ′

Tσ′σpt(σ) log pt(x)
with the
use of ME

+
∑
xx′

Tσσ′pt(σ
′) log pt(x)−

∑
xx′

Tσσ′pt(σ
′) log pt(x)︸ ︷︷ ︸

=0

(C.19)

= −
∑
σσ′

Tσσ′pt(σ
′) log

pt+∆t(σ)

pt(σ)
(C.20)

+
∑
σσ′

[Tσ′σpt(σ)− Tσσ′pt(σ′)] log pt(x) (C.21)

= −
∑
σσ′

Tσσ′pt(σ
′) log

pt+∆t(σ)

pt(σ)
(C.22)

+
1

2

∑
σσ′

[Tσ′σpt(σ)− Tσσ′pt(σ′)] log pt(x) (C.23)

+
1

2

∑
σσ′

[Tσσ′pt(σ
′)− Tσ′σpt(σ)] log pt(x

′) (C.24)

= −
∑
σσ′

Tσσ′pt(σ
′) log

pt+∆t(σ)

pt(σ)
(C.25)

+
1

2

∑
σσ′

[Tσ′σpt(σ)− Tσσ′pt(σ′)] log pt(x) (C.26)

−1

2

∑
σσ′

[Tσ′σpt(σ)− Tσσ′pt(σ′)] log pt(x
′) (C.27)

= −
∑
σσ′

Tσσ′pt(σ
′) log

pt+∆t(σ)

pt(σ)
+

1

2

∑
σσ′

[Tσ′σpt(σ)− Tσσ′pt(σ′)] log
pt(σ)

pt(σ′)

−
∑
σσ′

Tσσ′pt(σ
′) log

Tσ′σ
Tσσ′

+
∑
σσ′

Tσσ′pt(σ
′) log

Tσ′σ
Tσσ′︸ ︷︷ ︸

=0

(C.28)

= −
∑
σσ′

Tσσ′pt(σ
′) log

Tσ′σpt+∆t(σ)

Tσσ′pt(σ)
(C.29)

1

2

∑
σσ′

[Tσ′σpt(σ)− Tσσ′pt(σ′)] log
Tσ′σpt(σ)

Tσσ′pt(σ′)
(C.30)

= ∆eSt + ∆iSt (C.31)
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C.2. CONVERGENCE TOWARDS THE STEADY STATE

Their thermodynamic interpretation will be covered in the case of continuous time

processes in the next section. Here we limit the discussion to mentioning that

∆iS[σ]t = 0 only if detailed balance holds, i.e.

Tσσ′pσ′(t) = Tσ′σpσ(t) ∀σ ∈ σ (C.32)

C.2.2 Dynamical randomness and entropy production at steady
state

As a consequence of the Markov property, the probability of a path σm at steady

state is given by

p(σm) = Tσmσm−1 ...Tσ1σ0p(σ0) (C.33)

It is interesting to see, that for a steady state probability vector the entropy produc-

tion is equal to the forward and reversed entropy rates of the same process

∆iS[σ] = ḢR[σ]− Ḣ[σ] (C.34)

= −
∑
σσ′

pσ(Tσ′σ log Tσσ′) +
∑
σσ′

pσ(Tσ′σ log Tσ′σ) (C.35)

=
1

2

∑
σσ′

(Tσ′σpσ − Tσσ′pσ′) log
Tσ′σpσ
Tσσ′pσ′

≥ 0 (C.36)

which has been shown by Gaspard [22]. The result that

Ḣ[σ] =
∑
σ

p(σ)
[
−
∑
σ′

Tσ′σ log Tσ′σ

]
(C.37)

is in depth carried out on pages 64–65 in the book of Cover and Thomas [14]. There

it is shown that Ḣ[σ] = limm→∞H[xm|σ0:m−1] and that from the Markov property

and steady state condition

lim
m→∞

H[xm|σ0:m−1] = H[xm|xm−1] (C.38)

=
∑
σ

p(σ)
[
−
∑
σ′

Tσ′σ log Tσ′σ

]
. (C.39)
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C.2. CONVERGENCE TOWARDS THE STEADY STATE

With this result we can imideately see that

∆iS(σ) = ḢR[σ]− Ḣ[σ] (C.40)

= −
∑
σσ′

p(σ)Tσ′σ log Tσσ′ +
∑
σσ′

p(σ)Tσ′σ log Tσ′σ (C.41)

=
∑
σσ′

p(σ)Tσ′σ log
Tσ′σ
Tσσ′

(C.42)

=
1

2

∑
σσ′

p(σ)Tσ′σ log
Tσ′σ
Tσσ′

+
1

2

∑
σσ′

p(σ′)Tσσ′ log
Tσσ′

Tσ′σ

=
1

2

∑
σσ′

[Tσ′σp(σ)− Tσσ′p(σ′)] log
Tσ′σ
Tσσ′

(C.43)

+
1

2

∑
σσ′

[Tσ′σp(σ)− Tσσ′p(σ′)] log
p(σ)

p(σ′)︸ ︷︷ ︸
=0

(C.44)

=
1

2

∑
σσ′

[Tσ′σp(σ)− Tσσ′p(σ′)] log
Tσ′σp(σ)

Tσσ′p(σ′)
(C.45)
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Appendix D

Coarse grained entropy production
rate

D.1 The spliting of the entropy production rate

To limit the notational complexity, we omit the time dependence in the following,

Ṡsys[σ] (D.1)

=
∑
k,k′

∑
σk,σ

′
k′

Φxkx
′
k′

log
Φσkσ

′
k′

Φσ′
k′σk

(D.2)

=
∑
k,k′ 6=k

∑
σk,σ

′
k′

Φσkσ
′
k′

log
Φσkσ

′
k′

Φσ′
k′σk

+
∑
k

∑
σk,σ

′
k

Φσkσ
′
k

log
Φσkσ

′
k′

Φσ′
k′σk

(D.3)

=
∑
k,k′ 6=k

∑
σk,σ

′
k′

Φσkσ
′
k′

log
Φσkσ

′
k′

Φkk′Φk′k

Φσ′
k′σk

Φkk′Φk′k
+
∑
k

∑
σk,σ

′
k

Φσkσ
′
k

log
Φσkσ

′
k′

Φσ′
k′σk

(D.4)

=
∑
k,k′ 6=k

∑
σk,σ

′
k′

Φσkσk′
log

Φkk′

Φkk′
+
∑
k,k′ 6=k

∑
σk,σ

′
k′

Φσkσ
′
k′

log
Φσkσ

′
k′

Φk′k

Φσ′
k′σk

Φ
k,k′

+
∑
k

∑
σk,σ

′
k

Φσkσ
′
k

log
Φσkσ

′
k′

Φσ′
k′σk

=
∑
k,k′

Φkk′ log
Φkk′

Φkk′︸ ︷︷ ︸
Ṡ(1)sys

+
∑
k,k′ 6=k

∑
σk,σ

′
k′

Φσkσ
′
k′

log
Φσkσ

′
k′

Φk′k

Φσ′
k′σk

Φ
k,k′︸ ︷︷ ︸

Ṡ(3)sys

+
∑
k

∑
σk,σ

′
k

Φσkσ
′
k

log
Φσkσ

′
k′

Φσ′
k′σk︸ ︷︷ ︸

Ṡ(2)sys

(D.5)
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D.1. THE SPLITING OF THE ENTROPY PRODUCTION RATE

In particular Ṡ(2)
i [σ] can be writte as

Ṡ(2)
sys[σ] =

∑
k

∑
σk,σ

′
k

Φσkσ
′
k

log
Φσ′kσk

Φσkσ
′
k

(D.6)

=
∑
k

p(k)
∑
σk,σ

′
k

Wσkσ
′
k

p(σ′k)

p(k)
log

Wσ′kxk
p(xk)p(k)

Wσkσ
′
k
p(σ′k)p(k)

(D.7)

=
∑
k

p(k)

∑
σk,σ

′
k

Wσkσ
′
k
p(σ′k|k) log

Wx′kxk
p(σk|k)

Wσkσ
′
k
p(σ′k|k)

 ≥ 0 (D.8)

In oder to better understand the remaining contribution Ṡ(3)
sys[σ] we define a condi-

tional probability for that if jumps (k → k′) occur it is due to a micro-state transition

(xk → x′k′).

p((xk → x′k′)|(k → k′)) :=
Wxkx

′
k′
p(x′|k′, t)
Wkk′

=
Φxkx

′
k′

Φkk′
(D.9)

With these probabilities at hand we rewrite

Ṡ(3)
sys[σ] =

∑
k,k′ 6=k

∑
σk,σ

′
k′

Φσkσ
′
k′

log
Φσkσ

′
k′

Φk′k

Φσ′
k′σk

Φkk′
(D.10)

=
∑
k,k′ 6=k

Φkk′

∑
σk,σ

′
k′

Φσkσ
′
k′

Φkk′
log

Φσkσ
′
k′

Φkk′

Φk′k

Φσ′
k′σk

=
∑
k,k′ 6=k

Φkk′Rkk′ , (D.11)

which is the result from [21]. At this point we have introduced the relative entropy

Rkk′ :=
∑
σk,σ

′
k′

Φσkσ
′
k′

Φkk′
log

Φσkσ
′
k′

Φkk′

Φk′k

Φσ′
k′σk

(D.12)

=
∑
σk,σ

′
k′

p((σk → σ′k′)|(k → k′)) log
p((σk → σ′k′)|(k → k′))

p((σ′k′ → σk)|(k′ → k))
(D.13)
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[11] PS Brzović, Yoshihiro Sawa, C Craig Hyde, Edith W Miles, and Michael F

Dunn. Evidence that mutations in a loop region of the alpha-subunit inhibit

the transition from an open to a closed conformation in the tryptophan synthase

bienzyme complex. Journal of Biological Chemistry, 267(18):13028–13038, 1992.

[12] Patrizia Castiglione, Massimo Falcioni, Annick Lesne, and Angelo Vulpiani.

Chaos and coarse graining in statistical mechanics. Cambridge University Press

Cambridge, 2008.

[13] Isaac P Cornfeld, Sergej V Fomin, and Yakov Grigorevic Sinai. Ergodic theory,

volume 245. Springer Science & Business Media, 2012.

[14] Thomas M Cover and Joy A Thomas. Elements of information theory. John

Wiley & Sons, 2012.

[15] James P Crutchfield, Christopher J Ellison, Ryan G James, and John R Ma-

honey. Synchronization and control in intrinsic and designed computation: an

information-theoretic analysis of competing models of stochastic computation.

Chaos: An Interdisciplinary Journal of Nonlinear Science, 20(3):037105, 2010.

[16] Giovanni Diana and Massimiliano Esposito. J. Stat. Mech., 2014(4):P04010,

2014.

[17] Michael F Dunn. Allosteric regulation of substrate channeling and catalysis

in the tryptophan synthase bienzyme complex. Archives of biochemistry and

biophysics, 519(2):154–166, 2012.

[18] Michael F Dunn, Valentin Aguilar, Peter Brzovic, William F Drewe Jr, Karl F

Houben, Catherine A Leja, and Melinda Roy. The tryptophan synthase bienzyme

complex transfers indole between the. alpha.-and. beta.-sites via a 25-30. ang.

long tunnel. Biochemistry, 29(37):8598–8607, 1990.

[19] Michael F Dunn, Dimitri Niks, Huu Ngo, Thomas RM Barends, and Ilme

Schlichting. Tryptophan synthase: the workings of a channeling nanomachine.

Trends in biochemical sciences, 33(6):254–264, 2008.

[20] J-P Eckmann and David Ruelle. Ergodic theory of chaos and strange attractors.

Reviews of modern physics, 57(3):617, 1985.

106



BIBLIOGRAPHY

[21] Massimiliano Esposito. Stochastic thermodynamics under coarse graining. Phys.

Rev. E 85, 041125, 2012.

[22] Pierre Gaspard. Time-reversed dynamical entropy and irreversibility in marko-

vian random processes. Journal of statistical physics, 117(3-4):599–615, 2004.

[23] Pierre Gaspard. Hamiltonian dynamics, nanosystems, and nonequilibrium

statistical mechanics. Physica A: Statistical Mechanics and its Applications,

369(1):201–246, 2006.

[24] Pierre Gaspard and Xiao-Jing Wang. Noise, chaos, and (ε, τ)-entropy per unit

time. Physics Reports, 235(6):291–343, 1993.

[25] Roy J Glauber. Time-dependent statistics of the ising model. Journal of math-

ematical physics, 4(2):294–307, 1963.

[26] Nigel Goldenfeld. Lectures on phase transitions and the renormalization group.

1992.

[27] David Hartich, Andre C Barato, and Udo Seifert. Sensory capacity: An infor-

mation theoretical measure of the performance of a sensor. Physical Review E,

93(2):022116, 2016.

[28] U Seifert Hartich, Barato. Stochastic thermodynamics of bipartite systems:

transfer entropy inequalities and a maxwell’s demon interpretation. J. Stat.

Mech., 2014.

[29] Pierre C Hohenberg and Bertrand I Halperin. Theory of dynamic critical phe-

nomena. Reviews of Modern Physics, 49(3):435, 1977.

[30] Esposito Horowitz. Thermodynamics with continuous information flow. Phys.

Rev. X, 2014.

[31] Edwin T Jaynes. Probability theory: the logic of science. Cambridge university

press, 2003.

[32] Mehran Kardar. Statistical physics of particles. Cambridge University Press,

2007.

107



BIBLIOGRAPHY

[33] Thomas WB Kibble. Topology of cosmic domains and strings. Journal of Physics

A: Mathematical and General, 9(8):1387, 1976.

[34] W Kinzel. Critical dynamics by real-space renormalisation group. Zeitschrift für

Physik B Condensed Matter, 29(4):361–362, 1978.

[35] Kasper KIRSCHNER, Robert L WISKOCIL, Martha FOEHN, and Laurel

REZEAU. The tryptophan synthase from escherichia coli. European Journal

of Biochemistry, 60(2):513–523, 1975.

[36] N Kishore, Y B Tewari, D L Akers, R N Goldberg, and E W Miles. Biophys.

Chem., 73(3):265, 1998.

[37] Andrei Kolmogoroff. Zur theorie der markoffschen ketten. Mathematische An-

nalen, 112(1):155–160, 1936.

[38] Andrei Nikolaevitch Kolmogorov. Entropy per unit time as a metric invariant of

automorphisms. In Dokl. Akad. Nauk SSSR, volume 124, pages 754–755, 1959.

[39] A. N. Lane and K. Kirschner. Biochemistry, 30(2):479, January 1991.

[40] Andrew N. Lane and Kasper Kirschner. Eur. J. Biochem., 129(3):571, March

2005.

[41] Catherine A Leja, Eilika U Woehl, and Michael F Dunn. Allosteric link-

ages between. beta.-site covalent transformations and. alpha.-site activation

and deactivation in the tryptophan synthase bienzyme complex. Biochemistry,

34(19):6552–6561, 1995.

[42] Joseph T Lizier, Mikhail Prokopenko, and Albert Y Zomaya. Local informa-

tion transfer as a spatiotemporal filter for complex systems. Physical Review E,

77(2):026110, 2008.

[43] Dimitri Loutchko, Didier Gonze, and Alexander S. Mikhailov. J. Phys. Chem.

B, 120(9):2179, March 2016.

[44] Alexander Mikhailov and Alexander Yu Loskutov. Foundations of synergetics

II: chaos and noise, volume 52. Springer Science & Business Media, 2013.

108



BIBLIOGRAPHY

[45] Huu Ngo, Novelle Kimmich, Rodney Harris, Dimitri Niks, Lars Blumenstein,

Victor Kulik, Thomas Reinier Barends, Ilme Schlichting, and Michael F Dunn.

Allosteric regulation of substrate channeling in tryptophan synthase: modulation

of the l-serine reaction in stage i of the β-reaction by α-site ligands. Biochemistry,

46(26):7740–7753, 2007.

[46] Robert K Niven. Combinatorial entropies and statistics. The European Physical

Journal B, 70(1):49–63, 2009.

[47] Matteo Polettini. Geometric and combinatorial aspects of nonequilibrium sta-

tistical mechanics. 2012.

[48] Amilcare Porporato, JR Rigby, and Edoardo Daly. Irreversibility and fluctuation

theorem in stationary time series. Physical review letters, 98(9):094101, 2007.

[49] Mikhail Prokopenko, Joseph T Lizier, and Don C Price. On thermodynamic

interpretation of transfer entropy. Entropy, 15(2):524–543, 2013.

[50] Samanta Raboni, Stefano Bettati, and Andrea Mozzarelli. Tryptophan synthase:

a mine for enzymologists. Cellular and molecular life sciences, 66(14):2391–2403,

2009.

[51] Jürgen Schnakenberg. Network theory of microscopic and macroscopic behavior

of master equation systems. Review of Modern Physics, 1976.

[52] Thomas Schreiber. Measuring information transfer. Physical review letters,

85(2):461, 2000.

[53] Benjamin Schumacher and Michael Westmoreland. Quantum processes systems,

and information. Cambridge University Press, 2010.

[54] Ya Ge Sinai. On the concept of entropy of a dynamical system. In Dokl. Akad.

Nauk. SSSR, volume 124, pages 768–771, 1959.

[55] Philipp Strasberg. Thermodynamics and information processing at the

nanoscale. 2016.

[56] Steven H Strogatz. Nonlinear dynamics and chaos: with applications to physics,

biology, chemistry, and engineering. Westview press, 2014.

109



BIBLIOGRAPHY

[57] Leonard Susskind and Art Friedman. Quantum mechanics: the theoretical min-

imum, volume 2. Basic Books, 2015.

[58] Leonard Susskind and George Hrabovsky. The theoretical minimum: what you

need to know to start doing physics. Basic Books, 2014.

[59] Leonard Susskind and James Lindesay. An introduction to black holes, infor-

mation and the string theory revolution. World Scientific, Singapore, 10(5):10,

2005.
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