
© koninklijke brill nv, leiden, 2018 | doi: 10.1163/22105832-00801001

Language Dynamics and Change 8 (2018) 1–21

brill.com/ldc

Making genealogical language classifications
available for phylogenetic analysis
Newick trees, unified identifiers, and branch length

Dan Dediu*
Max Planck Institute for Psycholinguistics, Nijmegen

dan.dediu@mpi.nl

Abstract

One of the best-known types of non-independence between languages is caused by
genealogical relationships due to descent froma commonancestor.These canbe repre-
sented by (more or less resolved and controversial) language family trees. In theory, one
can argue that language families should be built through the strict application of the
comparativemethod of historical linguistics, but in practice this is not always the case,
and there are several proposed classifications of languages into language families, each
with its own advantages and disadvantages. A major stumbling block shared by most
of them is that they are relatively difficult to use with computational methods, and
in particular with phylogenetics. This is due to their lack of standardization, coupled
with the general non-availability of branch length information, which encapsulates
the amount of evolution taking place on the family tree. In this paper I introduce a
method (and its implementation in R) that converts the language classifications pro-
vided by four widely-used databases (Ethnologue, WALS, AUTOTYP and Glottolog) into
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the de factoNewick standard generally used in phylogenetics, aligns the fourmost used
conventions for unique identifiers of linguistic entities (ISO 639-3, WALS, AUTOTYP
and Glottocode), and adds branch length information from a variety of sources (the
tree’s own topology, an externally given numeric constant, or a distancematrix). The R
scripts, input data and resulting Newick trees are available under liberal open-source
licenses in a GitHub repository (https://github.com/ddediu/lgfam‑newick), to encour-
age andpromote the use of phylogeneticmethods to investigate linguistic diversity and
its temporal dynamics.
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1 Introduction

Languages are not independent. This is due to historical processes such as lan-
guage contact and descent from a common ancestor, and it is crucial to take
into account the various types of non-independence between languages (e.g.,
Ladd et al., 2015; Roberts andWinters, 2013). Probably themost important type
of non-independence is due to shared ancestry (Campbell andPoser, 2008): the
daughter languages descended from a mother (or proto-)language share char-
acteristics that they inherited from this common ancestor. This type of similar-
ity tends to decrease with the passage of time since separation and is known as
“Galton’s problem” (this applies more generally to cultural phenomena; Mace
and Pagel, 1994). Related languages descending from a shared ancestor form a
language family, usually represented as a tree where the attested, present-day
or recent languages form the leaves (or terminal nodes) and the extinct, mostly
unattested, languages are internal nodes.

The identification of these genetic relationships is a complex problem
(Campbell and Poser, 2008; Bowern and Evans, 2014) where controversies
abound, including on the status of the so-called “macro-families” and on the
composition and internal structure of language families such as Indo-Europe-
an; disagreements concern the languages that belong to the same family, the
internal relationships between them—the tree topology—and the amount of
change that separates nodes in the tree—the branch length.

Using such language classifications with modern quantitative methods
raises a number of major issues, including (i) the fact that there are several
such classifications available, (ii) the fact that these are often presented in a

https://github.com/ddediu/lgfam-newick
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figure 1 Three language families composed of the same four languages (A, B, C and D) but
with different structures (left vs. center) and branch length (center vs. right). Time
flows downwards from the proto-language at the top (P3, P5 and P5 respectively)
towards the attested languages at the bottom. For example, in the leftmost tree,
languages A and B are more closely related than either of them is to language C. In
the rightmost tree, language B has changed the least from its most recent common
ancestor (P4) with languages A and B.

non-standard format, and (iii) the problem that methods requiring not only
the topology but also the amount of change (such as most modern phyloge-
netic approaches) cannot bedirectly appliedbecause, in general, branch length
information is lacking (and for good reason, as we generally do not know how
to estimate it). The work presented here attempts to offer a solution to these
issues by giving the de facto standard Newick tree format (http://evolution
.genetics.washington.edu/phylip/newicktree.html) representation of language
family trees from several classifications, and by adding branch length informa-
tion estimated using several methods. For a few large families (such as Indo-
European, Austronesian, Bantu and Uto-Aztecan), the application of Bayesian
phylogenetic methods to basic vocabulary cognacy data and the use of calibra-
tion points with known dates resulted in the availability of posterior samples
of trees with branch length (e.g. Bouckaert et al., 2012; Dunn et al., 2011), but
there are still debates concerning thesemethods and their results, and the vast
majority of language families did not yet receive this treatment, making an
approach suchas theone introducedherenecessary. In this paper I describe the
data, themethods and the format inwhich these trees are available, everything

http://evolution.genetics.washington.edu/phylip/newicktree.html
http://evolution.genetics.washington.edu/phylip/newicktree.html
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being freely accessible on the GitHub repository https://github.com/ddediu/
lgfam‑newick, including the actual primary data (wherever allowed by their
respective licenses), the R code (R Core Team, 2014), and the language family
trees with branch length in Newick format.

2 Data andmethods

2.1 Primary data
The main primary data is represented by the four most widely used language
classifications. For each one I acquired the classification data in a format
dependent on their export capabilities and converted it intoNewick treeswith-
out branch length information, resulting in a set of language tree topologies.
More precisely, eachdatabase needs a uniquely tailored approachbecause they
use particular representations of the hierarchical relationships between lan-
guages, and my solution was to write a set of R (R Core Team, 2014) types and
functionswhich extendR’s own representation of phylogenetic trees (using the
class phylo from package ape; Paradis et al., 2004) and allow the representa-
tion andmanipulation of language family trees. Specifically, for each of the four
language classifications, the data format and procedure were as follows:

– Ethnologue (Lewis et al., 2014), denoted in the following as E: the language
classification data is not directly available for download, but instead the
website provides1 a webpage (http://www.ethnologue.com/browse/
families)with the list of all the language families andhyperlinks to their own
webpages, which were downloaded and automatically parsed to extract the
tree structure of the family, the internal group names, the language names,
and their ISO 639-3 codes.

– World Atlas of Language Structures Online (Dryer and Haspelmath, 2013) or
WALS, denoted as W: the entire database (containing the language names,
codes, geographic coordinates and the values for more than 130 structural
features) is freely available for download at http://wals.info/static/
download/wals‑language.csv.zip under a Creative Commons license (CC BY-
NC-ND 2.0 DE; http://creativecommons.org/licenses/by‑nc‑nd/2.0/de/deed
.en), and I used only the fields containing the WALS, ISO 639-3 and Glottolog

1 As of February 2015, under a set of conditions given in the Terms of Use (www.ethnologue
.com/terms‑use) allowing “portions” of the data to be used for “research or educational pur-
poses.”

https://github.com/ddediu/lgfam-newick
https://github.com/ddediu/lgfam-newick
http://www.ethnologue.com/browse/families
http://www.ethnologue.com/browse/families
http://wals.info/static/download/wals-language.csv.zip
http://wals.info/static/download/wals-language.csv.zip
http://creativecommons.org/licenses/by-nc-nd/2.0/de/deed.en
http://creativecommons.org/licenses/by-nc-nd/2.0/de/deed.en
http://www.ethnologue.com/terms-use
http://www.ethnologue.com/terms-use
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codes, the languages’ names, their “genus” and “family,” as this classification
is flattened into a mostly three- (but sometimes four) level structure.

– AUTOTYP (Nichols et al., 2013), denotedA: the family trees are freely available
for download at http://www.autotyp.uzh.ch/available.html, and can be used
anddistributedprovided that their source is clearlymentioned; the language
families are in a format similar toWALS,with each language being listedwith
its names, theAUTOTYP LID, theGlottolog and the ISO639-3 codes, aswell as
the tree given as the “stock,” “mbranch,” “sbranch,” “ssbranch” and “lsbranch”
names, each being a hierarchical level (with the “stock” being the highest,
the language family), sometimes with missing intermediate levels.

– Glottolog (Hammarström et al., 2014), denoted G: provides the family trees
already in a standardized Newick format at http://glottolog.org/static/trees/
tree‑glottolog‑newick.txt under a Creative Commons license (CC BY-SA 3.0;
http://creativecommons.org/licenses/by‑sa/3.0).

Please note that, while this paper concerns particular versions of these re-
sources, I will try to keep the GitHub repository updated and compatible with
newer versions and releases.

Themethods for inferring branch length implemented here (see below) can
use either the tree topology directly, a numeric constant, or a distance matrix.
While the framework and my actual implementation in R can handle any dis-
tance matrix, for this paper I have used the following 11 distances (which fall
into five types), respectively based on:

1. vocabulary: (1) ASJP16 distance,
2. geography: (2) great-circle distance,
3. WALS: (3) Gower distance and (4) Euclidean distance, without (3a and 4a)

and with (3b and 4b) missing data imputation,
4. AUTOTYP: (5) Gower distance with missing data, using only the variables

with a single datapoint per language (this distance was computed by
Balthasar Bickel), and

5. the tree topology: the “genetic method” of Maurits and Griffiths (2014)
applied to the WALS (6), Ethnologue (7), Glottolog (8) and AUTOTYP (9)
classifications.

(1) represents the distances between languages as given byTheAutomated Sim-
ilarity Judgment Program version 16 (ASJP16; Wichmann et al., 2013) and the
ASJP software (version 2.1), freely available under a Creative Commons license
(CC BY 3.0, http://creativecommons.org/licenses/by/3.0) from the authors’
website (http://asjp.clld.org), computed as the normalized Levenshtein dis-

http://www.autotyp.uzh.ch/available.html
http://glottolog.org/static/trees/tree-glottolog-newick.txt
http://glottolog.org/static/trees/tree-glottolog-newick.txt
http://creativecommons.org/licenses/by-sa/3.0
http://creativecommons.org/licenses/by/3.0
http://asjp.clld.org
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tances between standardized short wordlists transcribed with a reduced set
of symbols (Bakker et al., 2009). After processing and conversion (manual
replacement of some non-ASCII characters in the language descriptors and the
26-character language identifiers exported by ASJP v2.1), I exported these as a
3932 × 3932 distance matrix (with no missing data) between languages identi-
fied by their ISO 639-3 codes.

(2) is the geographic (great circle) distances between the languages, com-
puted using R’s function distm() (package geosphere; Hijmans, 2014),
resulting in a 7494 × 7494matrix with no missing data.

(3) and (4) represent distances between languages computed on the feature
values in theWALS typological database, usingR’s functiondaisy() (package
cluster; Maechler et al., 2015), eithermethodgower (3; each feature is stan-
dardized between 0 and 1 by subtracting the feature’s minimum and dividing
by its range; Gower, 1971) or euclidean (4; standard Euclidean distance on
the feature space). However, there is a lot of missing data in the WALS database
(85.1%of the cells), so I have computed thesedistancesusingper variablemode
data imputation, resulting in the following four 2679 × 2679 distancematrices:
Gower (48.9%missing data; 3a), Gower with imputation (nomissing data; 3b),
Euclidean (48.9% missing data; 4a), and Euclidean with imputation (no miss-
ing data; 4b).

(5) is similar to (3) without missing data imputation but using the AUTOTYP
typological database, resulting in a 2928 × 2928 distance matrix with 57.6%
missing data.

Finally, (6) to (9) are distances between languages belonging to the same
family, computed using the family tree topology as described in the “genetic
method” of Maurits and Griffiths (2014):2 languages with n shared intermedi-
ate nodes on their path to the root have a distance d = M − ∑n

i=1 α
i (where

M is the maximum possible distance, and α is fixed at 0.69); I implemented it
in R, and its application to each of the four classifications resulted in four dis-
tance matrices: MG2015 using WALS (2607 × 2607), Ethnologue (7492 × 7492),
Glottolog (15772 × 15772), and AUTOTYP (2926 × 2926).

2.2 Unique identifiers across classifications
The question of allocating unique persistent identifiers to linguistic entities is
essential, and several schemes are currently in wider use. Relevant here are:

2 Thanks to LukeMaurits for his helpwith clarifying the innerworkings of themethod; because
these clarifications happened in an e-mail exchange during 2015, I denote this distance in the
following as MG2015.
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ISO 639-3 codes (three letters, denoted in the following as i; http://www‑01.sil
.org/iso639‑3), WALS codes (three letters, w; http://wals.info), AUTOTYP LIDs
(numeric, a; http://www.autotyp.uzh.ch), and Glottocodes (alphanumeric, four
letters followed by four digits, g; http://glottolog.org/glottolog/
glottologinformation). The mapping between these schemes is not yet stan-
dardized.3 Here I devise a flexible scheme for uniquelymapping linguistic enti-
ties between these four systems. Some databases provide a mapping between
their primary identifier and some others: Ethnologue (primary: i, secondary:
none), WALS (primary:w, secondary: i and g), AUTOTYP (primary: a, secondary:
i and g), and Glottolog (primary: g, secondary: i), allowing the reciprocal map-
ping (not always unique) between these four systems. With this, the coding
scheme (or “UULID,” the Universally Unique Language IDentifier) is standard-
ized as ‘NAME [i-I][w-W][a-A][g-G],’ where the optional NAME represents a
human-readable language name,4 followed by a SPACE and the four unique
codes I (ISO 639-3), W (WALS), A (AUTOTYP) and G (Glottocode), where any or
all of these can be missing (the empty string “ ”) or have multiple values sepa-
rated by “-”. A few examples (taken from the WALS classification of the Indo-
European family) are: ‘German Zurich [i-gsw][w-gzu][a-1305-1306-1307-1308-
1309-1310][g-swis1247],’ ‘Urdu [i-urd][w-urd][a-2671][g-urdu1245],’ ‘Romani Se-
pecides [i-][w-rse][a-][g-],’ and ‘Germanic [i-][w-][a-][g-].’ UULIDs and the
mapping between the four coding schemes and linguistic entity names are
freely available in the GitHub repository.

2.3 Representing language classifications as Newick trees
The de facto standard Newick tree format5 is widely used in evolutionary biol-
ogy, is almost universally imported and exported by software applications and
libraries, and is very flexible, being able to accommodate rooted or unrooted
trees, with our without leaf and internal node names, and with or without
branch length information. In this format, subtrees are enclosed within paren-
theses “()” with the branch length optionally given as a number preceded by “:”

3 However, systems such as BCP47 (https://tools.ietf.org/html/bcp47) coupled with IANA
(https://www.iana.org/assignments/lang‑subtags‑templates/lang‑subtags‑templates.xhtml)
might provide a solution; thanks to Michael Cysouw for bringing this to my attention.

4 Because some ASCII characters have a special meaning in the Newick format, I have substi-
tuted themwith others, as follows: “,” → “.”, “ ’ ” → “ ‘ ”, “(” → “{”, “)” → “}”, TAB → SPACE, “:” → “|”,
“;” → “|”; and characters lost their diacritics (e.g., “á” → “a” and “ã” → “a”).

5 Described in http://evolution.genetics.washington.edu/phylip/newicktree.html and http://
en.wikipedia.org/wiki/Newick_format.

http://www-01.sil.org/iso639-3
http://www-01.sil.org/iso639-3
http://wals.info
http://www.autotyp.uzh.ch
http://glottolog.org/glottolog/glottologinformation
http://glottolog.org/glottolog/glottologinformation
https://tools.ietf.org/html/bcp47
https://www.iana.org/assignments/lang-subtags-templates/lang-subtags-templates.xhtml
http://evolution.genetics.washington.edu/phylip/newicktree.html
http://en.wikipedia.org/wiki/Newick_format
http://en.wikipedia.org/wiki/Newick_format
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immediately after the branch, and the description is terminated by a semicolon
“;”. For example, the leftmost tree in Fig. 2 (where languages are the leaves or
terminal nodes, the proto-languages or groups are the internal nodes, and for
simplicity all branches are taken to have the same length of 1) can be repre-
sented as:

– just the topology (structure): ((,),);
– also showing leaf (terminal nodes) names: ((A,B),C);
– also showing internal node (proto-languages, group) names (e.g., P1 is the

name of the last common ancestor of A and B and immediately follows the
“()” enclosing its descendants): ((A,B)P1,C)P2;

– leaf nodes and branch length (a number separated by “:” from the node
name; e.g. the branch from the last common ancestor of A and B to A has
length 1): ((A:1,B:1),C:1);

– finally, everything (leaf and internal node names, and branch length):
((A:1,B:1)P1:1,C:2)P2;

Here, the Newick trees representing language classifications use UULIDs (see
Section 2.2) as the leaf and internal node names.

2.4 Extracting the topologies of the language classifications
The collection of the language classification from each of the four databases is
met by specific challenges due to the particular representation of the genetic
relationships between languages, and the actual format(s) in which these are
available. I provide a set of R (R Core Team, 2014) classes and functions that
extend the standard representation of phylogenetic trees as objects of class
phylo (package ape; Paradis et al., 2004) and standardize the extraction of
language family tree topologies, their conversion to the common Newick for-
mat, and its export to and import from file.

The extraction of standardized tree topologies from these diverse formats is
based on the maintenance of a forest of partially built language family trees,
which are updated by adding new full paths from the proto-languages to their
daughter languages.More precisely, given a path between an internal node and
a leaf (e.g., “Indo-European → Germanic → North-West Germanic → English”),
the method attempts to identify an already existing partial tree that contains
the origin of the path (here it would match an existing partial Indo-European
tree) and to add the path to the tree, building the whole forest of all language
family trees simultaneously from the ground up (see Fig. 2 for an example).

As a side note, a frequent issue that arises when using language classifica-
tion data with R’s ape package is the mishandling of so-called “single nodes”
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figure 2 Building the family trees by adding new paths, here adding the path P2 → P1 → D to
the left-hand tree, results in the right-hand tree because the algorithm recognizes
that the path P1 → P2 is already present in the partial left-hand tree.

(i.e., internal nodes that have a single descendant in the tree, such as node P1
in the mid (degenerated) tree in Fig. 2). To address it, I have re-implemented
ape’s collapse.nodes() function in such a way that it can correctly han-
dle these cases.

2.5 Adding branch length to language classifications
In general, branch length represents the amount of evolutionary change that
took place on a particular branch in the tree and must be interpreted in rel-
ative terms, unless the tree has been dated using absolute calibration points
derived from other sources of data (Felsenstein, 2004; Bouckaert et al., 2012).
I have added branch length information to the given tree topology T of a lan-
guage classification using six methods falling into three broad classes:

1. methods that use the tree topology (and possibly a constant k > 0) to gen-
erate branch lengths: (1) constant, (2) proportional and (3) grafen,

2. a method that uses a distance matrix to generate the tree topology with
branch lengths: (4) nj, and

3. methods that map a distance matrix onto the topology: (5) nnls and (6)
ga.
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Method (1) computes branch lengths such that for every path from the root
to the leaves, the branch lengths add up to a given constant k (i.e., the same
amount of evolution k has happened on all paths from the root to the terminal
nodes) by defining the minimum branch length brlenmin = k/(number of lev-
els in the tree) and allocating to each branch, starting from the root, a length of
brlenmin,making sure that the terminal nodes have a total path length of k (thus,
“telescoping” them if necessary to “accommodate” any remaining path length
longer than brlenmin). For example, the leftmost tree in Fig. 2 with k = 1. 0
becomes ((A:0.667, B:0.667)P1:0.333, C:1)P2;.6

Method (2) simply forces each branch to the same length k (i.e., the amount
of evolution is proportional to the number of splits on the path), resulting in
((A:1,B:1)P1:1,C:1)P2;.

(3) reimplements Grafen’s (1989) method, where each internal node is first
given a “height” defined as the number of leaves in its subtree minus 1 (leaves
get a “height” of 0), and the difference between the heights of the lower and the
upper nodes defines the branch length: ((A:1,B:1)P1:1,C:2)P2;.

Method (4) is the classic “Neighbor-Joining” (or NJ) method (Saitou and Nei,
1987), which iteratively joins taxa into higer groupings. Given a family tree T
and a distance matrix D between (not necessarily all of) the languages in T,
NJ (implemented by R’s function njs() in package ape; Paradis et al., 2004)
constructs the corresponding phylogenetic tree with branch lengths (thus the
actual topology in T is discarded, as only its set of languages is used). For exam-
ple, for the languages in Fig. 2, consider the distance matrix:

A B C
A 0 2.1 3.9

D = B
⎛⎜⎜⎜
⎝

2.1 0 4.2
⎞⎟⎟⎟
⎠C 3.9 4.2 0

which approximates the distances between the three languages in the right-
most tree (assuming method (1) with k = 2. 0), we obtain the NJ tree (C:3,
B:1.2,A:0.9);—it is clear thatNJ doesnot care about the structure (topol-
ogy) of the original tree and might very well produce a very different topol-
ogy.

6 Of course, any tree where (A,P1)=(B,P1) and (A,P2)=(B,P2)=k, such as ((A:0.5,
B:0.5)P1:0.5, C:1)P2;, would be equally good, but the particular implementation
used here considers an extra (hidden) branch leading to the root when computing the num-
ber of levels in the tree (useful for other branch length methods and irrelevant here).
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Methods (5) and (6) make use of both the given tree topology T and the dis-
tance matrix D by estimating branch lengths on T that approximate as closely
as possible the original distances in D, in the sense that the distance matrix
between the languages obtained by recording the minimum path lengths sep-
arating any two languages in the tree, D′, is very similar to D. While these two
methodshave similar goals andproduce very similar results,method (5)maybe
less robust than method (6) especially when the tree topology is complex, but
method (6) is much slower, especially for very large trees, and might produce
non-unique (but similar) solutions.

Specifically,method (5) estimates the branch lengths using the non-negative
least squares (NNLS) approach implemented by R’s function nnls.tree()
(package phangorn; Schliep, 2011). The fundamental idea is that, for a given
distancematrixD and a tree topology Twith n branches, themethod estimates
the set of n branch lengths for T, b1, b2, … bn, such that the resulting patristic
distance matrix7 D′ best approximates the original distances D in the sense of
minimizing the sum of squared errors (SSE), using least squares.8 Here it pro-
duces the tree ((A:1.05, B:1.05)P1:0.975, C:2.02)P2;.

Method (6) is anoriginal proposal that uses a standard genetic algorithm(R’s
function ga() in package GA; Scrucca, 2013) to estimate the branch length.
With the notations above, I defined the “genome” as being composed of n
real-valued “genes” G = (g1, g2, …, gn) representing branch lengths, and the
“fitness function” given by the SSE (sum of squared errors) between the orig-
inal distances D and the current distances D′, computed on topology T with
the branch lengths g1, g2, …, gn: f(T,D,G) = 1

n2 ∑n
i,j=1 (dij − gij)2. The genetic

algorithm searches for the best solution G∗ = (g∗
1 , g∗

2 , …, g∗
n) that minimizes

the fitness function f(T,D,G), using a population of 100 individuals for a max-
imum of 10,000 iterations (the search can stop earlier if the fitness didn’t
change for 100 consecutive iterations). A set of possible “best” trees could be:9
((A:0.9, B:1.2)P1:1.41, C:1.59)P2;, ((A:0.9, B:1.2)P1:
1.75, C:1.25)P2;, or ((A:0.9, B:1.2)P1:1.73, C:1.27)P2;.

7 The matrix of all pairwise distances between the terminal nodes in the tree, where the dis-
tance between a pair of nodes is the sum of the lengths of the branches connecting the two
nodes in the tree.

8 See for example the blogpost http://blog.phytools.org/2011/03/for‑fun‑least‑squares‑
phylogeny.html, where an initial version of thennls.tree() function is introduced in one
of the comments by Klaus Schliep.

9 Due to the randomness inherent to the genetic algorithm search process, coupled with the
possibility of multiple optima, the “best” solution will most probably vary slightly between
runs.

http://blog.phytools.org/2011/03/for-fun-least-squares-phylogeny.html
http://blog.phytools.org/2011/03/for-fun-least-squares-phylogeny.html
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An important question concerns the robustnessof thesebranch-length infer-
encemethods against violations of the conditions onD for being a truedistance
matrix:

a the diagonal is zero: dii = 0 for all 1 < i < n,
b the off-diagonal is positive: dij ≥ 0 for all 1 < i ≠ j < n,
c the matrix is symmetric: dij = dji for all 1 < i, j < n, and
d the triangle inequality is satisfied: dij ≤ dik + dkj for all 1 < i, j, k < n.

In principle, NJ and NNLS require a true distance matrix, but a closer exam-
ination of their implementation suggests that they might be robust against
violations; by contrast, GA has no such requirements. To test this, I generated a
set of fourmatrices (based on the test distancematrix used here,D) that violate
each of the conditions in turn, as well as one matrix that violates all of them
simultaneously. I then ran the methods NJ, NNLS and GA on them, observing
that none of them crashed, nor did they fail to produce an output tree with
branch length, and these trees do make sense given the violations.

Another question concerns the values of GA’s parameters (population size
N, maximum number of generations Ng, and number of generations without
fitness improvement for premature stopping Nconst

g ), given that they affect the
probability of finding the optimal solution(s), especially for complex trees, but
also the computational costs of this search. Therefore, I compared the “stan-
dard” values N = 10000, Ng = 100, and Nconst

g = 100 with a “thorough” set
N = 50000, Ng = 150, and Nconst

g = 200. When run on a compute cluster using
a dedicated CPU per classification, the first required about 10 “wall clock” days
to complete, while the second had to be stopped after 52 days (when all trees
except one had converged). Despite this difference in computational costs, the
computed branch lengths are very similar (across classifications and families:
median Pearson’s r = 1. 00, median Euclidean distance d = 0. 02), as are the
optimal fitness values (r = 0. 93, p < 2. 2 ⋅ 10−16, paired t-test t(3182) = 1. 52,
p = 0. 13). The number of generations required to stop is highly correlated
(r = 0. 89, p < 2. 2 ⋅ 10−16) but significantly higher for the “thorough” condi-
tion (mean difference 1174.6, paired t-test t(3182) = 20. 14, p = 5. 2 ⋅ 10−85).
Thus, I can conclude that the “normal” GA settings used here strike a good bal-
ance between computational efficiency and probability of converging to the
optimal solution(s).
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table 1 Summaries of the successfully harvested and exported language family tree
topologies (i.e., no branch length information) per database; while the first two rows
refer to the number of trees and leaf nodes in the whole database, the last five rows
refer to the leaf nodes and levels per family tree.

Summary Ethnologue WALS AUTOTYP Glottolog

Number of trees 147 214 403 435
Number of leaf nodes 7492 2607 2926 15772
Mean no. leaf nodes 51.0 12.2 7.3 36.3
Maximum no. leaf nodes 1545 371 340 3254
Minimum no. levels 3 4 3 3
Mean no. levels 4.8 4.0 3.4 4.5
Maximum no. levels 16 4 7 20

3 Results

Table 1 gives some summaries concerning the successfully harvested and ex-
ported language family trees available in the GitHub repository.

As detailed in the methods, for each of the four databases (Ethnologue,
WALS, AUTOTYP and Glottolog) I applied each of the six methods of branch
length estimation (constant, proportional, grafen, nj, nnls, ga). For the last
three, there was a choice of 11 distance matrices (asjp16, great circle, wals
(gower), wals (gower with imputation), wals (euclidean), wals (euclidean with
imputation), autotyp (gower), Maurits and Griffiths (2014)’s “genetic method”
mg2015 (on wals), mg2015 (on ethnologue), mg2015 (on glottolog), andmg2015
(autotyp); the last four being applied only to the corresponding database, i.e.,
there is no mg2015 (wals) applied to the Ethnologue trees), and each of these
trees with branch length informationwas saved in the Newick format as part of
Nexus (Maddison et al., 1997) files. Table 2 gives various summaries about these
trees with branch length; please note that the number of trees differs between
databases and that, within a database, the number of languagesmight differ by
method due to the inherent missing data in the method’s parameters and/or
the incomplete overlap between the data in the method’s parameters and the
languages in the classification.
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table 2 Summaries of the language family tree topologies (as listed in Table 1) with branch
length information successfully added; an asterisk (*) indicates that missing data
mode imputation was used.

Classification Method Param./dist. mat. No. trees No. languages

Ethnologue constant k = 1. 0 147 749
Ethnologue proportional k=1.0 147 749
Ethnologue grafen 147 749
Ethnologue nj asjp16 147 3810
Ethnologue nj geo 147 7124
Ethnologue nj wals(gower) 147 1611
Ethnologue nj wals(euclid) 147 1611
Ethnologue nj wals(gower*) 147 2231
Ethnologue nj wals(euclid*) 147 2231
Ethnologue nj autotyp 147 365
Ethnologue nj mg2015(ethn) 147 7419
Ethnologue nnls asjp16 147 3846
Ethnologue nnls geo 147 7184
Ethnologue nnls wals(gower) 147 1017
Ethnologue nnls wals(euclid) 147 1017
Ethnologue nnls wals(gower*) 147 2273
Ethnologue nnls wals(euclidean*) 147 2273
Ethnologue nnls autotyp 147 858
Ethnologue nnls mg2015(ethn) 147 7479
Ethnologue ga asjp16 147 3846
Ethnologue ga geo 147 7184
Ethnologue ga wals(gower) 147 998
Ethnologue ga wals(euclid) 147 998
Ethnologue ga wals(gower*) 147 2273
Ethnologue ga wals(euclid*) 147 2273
Ethnologue ga autotyp 147 835
Ethnologue ga mg2015(ethn) 147 7479

WALS constant k = 1. 0 214 2607
WALS proportional k=1.0 214 2607
WALS grafen 214 2607
WALS nj asjp16 214 1973
WALS nj geo 214 2425
WALS nj wals(gower) 214 1807



making genealogical language classifications available 15

Language Dynamics and Change 8 (2018) 1–21

Classification Method Param./dist. mat. No. trees No. languages

WALS nj wals(euclid) 214 1807
WALS nj wals(gower*) 214 2442
WALS nj wals(euclid*) 214 2442
WALS nj autotyp 214 462
WALS nj mg2015(wals) 214 2442
WALS nnls asjp16 214 2015
WALS nnls geo 214 2483
WALS nnls wals(gower) 214 1329
WALS nnls wals(euclid) 214 1329
WALS nnls wals(gower*) 214 2502
WALS nnls wals(euclid*) 214 2502
WALS nnls autotyp 214 884
WALS nnls mg2015(wals) 214 2502
WALS ga asjp16 214 1999
WALS ga geo 214 2481
WALS ga wals(gower) 214 1290
WALS ga wals(euclid) 214 1290
WALS ga wals(gower*) 214 2502
WALS ga wals(euclid*) 214 2502
WALS ga autotyp 214 832
WALS ga mg2015(wals) 214 2502

AUTOTYP constant k = 1. 0 403 2926
AUTOTYP proportional k=1.0 403 2926
AUTOTYP grafen 403 2926
AUTOTYP nj asjp16 403 2035
AUTOTYP nj geo 403 2547
AUTOTYP nj wals(gower) 403 1577
AUTOTYP nj wals(euclid) 403 1577
AUTOTYP nj wals(gower*) 403 2229
AUTOTYP nj wals(euclid*) 403 2229
AUTOTYP nj autotyp 403 559
AUTOTYP nj mg2015(autotyp) 403 2605
AUTOTYP nnls asjp16 403 2107
AUTOTYP nnls geo 403 2635
AUTOTYP nnls wals(gower) 403 1130
AUTOTYP nnls wals(euclid) 403 1130
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Table 2 Summaries of the language family tree topologies (cont.)

Classification Method Param./dist. mat. No. trees No. languages

AUTOTYP nnls wals(gower*) 403 2319
AUTOTYP nnls wals(euclid*) 403 2319
AUTOTYP nnls autotyp 403 703
AUTOTYP nnls mg2015(autotyp) 403 2697
AUTOTYP ga asjp16 403 2091
AUTOTYP ga geo 403 2619
AUTOTYP ga wals(gower) 403 1065
AUTOTYP ga wals(euclid) 403 1065
AUTOTYP ga wals(gower*) 403 2299
AUTOTYP ga wals(euclid*) 403 2299
AUTOTYP ga autotyp 403 646
AUTOTYP ga mg2015(autotyp) 403 2697

Glottolog constant k = 1. 0 435 15772
Glottolog proportional k=1.0 435 15772
Glottolog grafen 435 15772
Glottolog nj asjp16 435 1926
Glottolog nj geo 435 4501
Glottolog nj wals(gower) 435 691
Glottolog nj wals(euclid) 435 676
Glottolog nj wals(gower*) 435 945
Glottolog nj wals(euclid*) 435 945
Glottolog nj autotyp 435 211
Glottolog nj mg2015(gott) 435 15507
Glottolog nnls asjp16 435 2000
Glottolog nnls geo 435 4605
Glottolog nnls wals(gower) 435 486
Glottolog nnls wals(euclid) 435 486
Glottolog nnls wals(gower*) 435 1019
Glottolog nnls wals(euclid*) 435 1019
Glottolog nnls autotyp 435 452
Glottolog nnls mg2015(glott) 435 15611
Glottolog ga asjp16 435 2000
Glottolog ga geo 435 4605
Glottolog ga wals(gower) 435 447
Glottolog ga wals(euclid) 435 447
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Classification Method Param./dist. mat. No. trees No. languages

Glottolog ga wals(gower*) 435 1012
Glottolog ga wals(euclid*) 435 1012
Glottolog ga autotyp 435 412
Glottolog ga mg2015(glott) 435 15611

4 Discussion and conclusions

While I personally trust the Glottolog (Hammarström et al., 2014) classifica-
tions and use them primarily in my own latest work, the existence of alterna-
tive (and obviously not fully independent) classifications must be taken into
account when dealing with “Galton’s problem” (Mace and Pagel, 1994) by at
least ensuring that the results are robust across classifications (e.g., Dediu, 2011;
Dediu and Levinson, 2012). However, a prerequisite is the wide availability,
free of charge, of such classifications in an as-standard-as-possible, machine-
readable format that minimizes the amount of pre-processing prior to the
actual computational and statistical analyses. An extra requirement, emerg-
ing from the recent explosion in the application of advanced phylogenetic
methods to language, is that, besides the structure (topology) of the language
family trees, one also needs branch length information encoding estimates of
the amount of evolution that has taken place on the tree (Felsenstein, 2004).
While reliable information of this type is very rarely available in linguistics
(with the possible exception of the Bayesian posterior trees generated from
basic vocabulary data for a few large families;10 e.g., Dunn et al., 2011; Bouck-
aert et al., 2012; Gray et al., 2009), there are various methods for estimating
it, based on the topology of the tree itself or on external information such as
a distance matrix between pairs of languages. Because such estimates are, of
course, highly contentious, one possibility is to conduct a robustness analy-

10 And even in these cases, it is unclear if the branch lengths derived from cognacy judg-
ments on the basic vocabulary also encode evolutionary change transferable to other
aspects of language, such as the wider lexicon or various classes of typological structures,
or even beyond language to cultural features such as post-marital residence patterns (Jor-
dan et al., 2009).



18 dediu

Language Dynamics and Change 8 (2018) 1–21

sis to test whether the results remain similar enough across language classi-
fications (tree topologies) and estimates of the amount of evolution (branch
lengths).

For many languages, data is simply not available or very restricted, often
resulting in distance matrices with a very high proportion of missing data.
While in some cases one may arguably use some form of data imputation, in
others this is not warranted, as there are no good models available and/or the
missing data patterns are non-random. However, even in such cases, a sub-
set of families containing only a subset of languages may allow better infer-
ences than the use of only a few large families of unknown representative-
ness.

The work presented in this paper is intended as an answer to these desider-
ata. It provides a collection of language families as phylogenetic trees in the
de facto standard Newick format, free of charge and directly importable into
the majority of modern phylogenetic software. Additional optional features
are branch length information derived from a multitude of sources including
the tree’s own topology and inter-language distancematrices derived fromvari-
ous typological databases.Moreover, I also provide, under a liberal open source
license, the actual R code (R Core Team, 2014) that loads, adds branch length
information and exports the trees. This allows thus the user to consider new
sources of information on the amount of evolution (e.g., from human genetic
data, actual road distance, or linguistic typological databases) or new ways to
map such external sources of information onto language family trees.

I hope that the method described here, the associated computer code, and
the resulting language family trees will help promote quantitative approaches
to problems in linguistic typology, language history and evolution, and even in
the wider field of cultural evolution.

5 Supplementary material

The complete R code for extracting the language family tree topologies from
these four databases, converting them to the Newick/Nexus format using the
cross-database Universally Unique Language Identifiers (UULIDs), and for ex-
porting and importing this format from file, as well as for computing the dis-
tancematrices described here, is freely available under a GPLv2 license (http://
www.gnu.org/licenses/old‑licenses/gpl‑2.0.en.html) in the GitHub repository
https://github.com/ddediu/lgfam‑newick, also containing the resulting lan-
guage family trees with the various branch length estimates. This repository
contains more information about the data, the various license terms, as well

http://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html
http://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html
https://github.com/ddediu/lgfam-newick
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as details about the results. Their use is encouraged, and bug reports and sug-
gestions are welcome using the GitHub repository’s ticketingmechanism or by
directly e-mailing the author.
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