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Abstract

Polymer solar cells are a promising, renewable source of electricity, which currently exhibit
low efficiencies. To improve solar cell performance, one needs to understand how micro-
scopic processes are linked to the material’s chemistry, local ordering, and macroscopic
composition. In the following a combination of first-principles calculations, molecular dy-
namics simulations, perturbative energy calculations and, Marcus charge transfer theory
are used for multiscale studies of two polymer systems, Poly[2,6-(4,4-bis-(2-ethylhexyl)-
4H-cyclopenta [2,1-b;3,4-b’] dithiophene)-alt-4,7(2,1,3-benzothiadiazole)] (PCPDTBT) and
Poly[2,5-bis (3-tetradecylthiophen-2-yl) thieno [3,2-b] thiophene] (PBTTT).

In PCPDTBT and its four derivatives, a number of possible crystalline morphologies are
simulated in a bottom-up scheme, starting from the chemical structure. Four polymorphs,
including two π-stacked configurations, are found and verified against experimental data.
Also, the key degrees of freedom, responsible for crystal formation, are identified. In
π-stacked structures, transfer integrals, site energies, and mobilities are calculated. The
calculated energetic disorder is high and comparable to the one in amorphous materials. It
originates from electrostatics of individual donor and acceptor units in the backbone and
from the disordered structure of the side-chains. Chemical substitution increases the disorder,
while the push-pull architecture has no effect on it. Resulting mobilities are hindered by the
large energetic disorder.

For the second polymer, PBTTT, the available NMR data is combined with molecular dynam-
ics simulations and an analytical model to assess its dynamics and macroscopic composition.
The dynamics is addressed via a generalized order parameter. Elevated temperature MD sim-
ulations are used to extrapolate side-chain dynamics to the µs time-scale. The macroscopic
composition is resolved via an analytical model which combines microscopic parameters
obtained from simulations and macroscopic averages extracted from NMR measurements.
The original NMR data suggests a two-mesophase composition with 1 : 1 crystalline to
amorphous mesophase ratio. In combination with the analytical model and simulations,
a three-mesophase model is proposed in which crystalline, intermediate and amorphous
mesophases have 8%, 42% and 50% volume fractions. A formula is derived, which can be
used to interpret the crystalline composition of other semi-crystalline polymers.
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Zusammenfassung
Solarzellen aus Polymeren sind vielversprechende, erneuerbare Energiequellen, die zur Zeit
aber durch ihren geringen Wirkungsgrad limitiert sind. Um die Effizienz zu steigern, muss
der Einfluss der chemischen Zusammensetzung des Materials, der lokalen mesokopischen
Ordnung und des makrospischen Aufbaus auf die mikroskopischen Prozesse geklärt werden.
Im Folgenden wurden Multi-Skalensimulationen verwendet, die eine Kombination aus ab
initio Rechnungen, molekulardynamischen Simulationen, Störungstheorie und Markus-
Theorie benutzen, um diesen Zusammenhang für die zwei Polymere Poly[2,6-(4,4-bis-
(2-ethylhexyl)-4H-cyclopenta [2,1-b;3,4-b’] dithiophene)-alt-4,7(2,1,3- benzothiadiazole)]
(PCPDTBT) und Poly[2,5-bis (3-tetradecylthiophen-2-yl) thieno [3,2-b] thiophene] (PBTTT)
zu untersuchen.

Mit Hilfe eines Bottom-Up Ansatzes wurden ausgehend von der chemischen Struktur
kristalline Morphologien für PCPDTBT und seiner vier Derivate simuliert. Vier polymorphe
Strukturen, darunter zwei π-π-wechselwirkende Konfigurationen, wurden entdeckt und
gegen experimentelle Befunde verifiziert. Ebenso wurden die molekularen Freiheitsgerade,
die verantwortlich für die Kristallisation sind, identifiziert. In den π-π-wechselwirkenden
Strukturen wurden Transferintegrale, Lageenergien einzelner Moleküle und Mobilitäten
berechnet. Die aus den Lageenergien berechnete elektrostatische Unordnung für die kristalli-
nen Strukturen ist hoch und vergleichbar mit Unordnung in amorphen Materialien. Die
hohe elektrostatische Unordung wird durch die unterschiedlich geladenen Donatoren und
Akzeptoren in der Hauptkette und durch die sehr ungeordnete Struktur der Seitenketten
verursacht. Die chemische Substitution einzelner Atome verstärkt diesen Effekt, während
die Push-Pull Architektur keinen Einfluss darauf hat. Durch die hohe elektrostatische Unord-
nung wird die Bewegung der Ladungsträger erschwert und somit die Ladungsträgermobilität
gesenkt.

Für das zweite Polymer PBTTT wurden experimentelle NMR Daten mit molekulardyna-
mischen Simulationen und einem analytischen Modell, zur Beurteilung der Polymerdynamik
und makroskopischen Zusammensetzung, kombiniert. Die Dynamik wird durch den sogenan-
nten generalisierten Ordnungsparameter charakterisiert. Molekulardynamische Simulatio-
nen wurden bei erhöhten Temperaturen durchgeführt um realistische Seitenkettenbewegun-
gen auf der Mikrosekundenskala zu erhalten. Die makroskopische Zusammensetzung wurde
dann durch das analytische Modell ermittelt, welches mikroskopische Parameter aus den
Simulationen und makroskopische Durchschnittswerte aus den NMR Daten kombiniert. Die
ursprünglichen NMR Daten lassen auf zwei Mesophasen, eine kristalline und eine amorphe,
die zu gleichen Anteilen vorliegen, schließen. Die Kombination von analytischen Modell
mit den Simulationen zeigt, dass ein Modell aus drei Mesophasen, in dem kristalline, gemis-
chte und amorphe Mesophasen in Volumenanteilen von 8%, 42% und 50% vorliegen am
wahrscheinlichsten ist. Abschließend wurde eine Gleichung hergeleitet, die es erlaubt, den
Anteil der kristallinen Phase in semi-kristallinen Polymere zu bestimmen.
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1Organic solar cells

Photovoltaic (PV) technology allows one to convert an emitted solar radiation to a direct
electric current. It is a renewable, environmentally friendly and one of the most promising
sources of energy for future energy requirements, which is expected to replace fossil fuels.
Improving the device efficiency and lowering the material costs defines if an emerging
technology, such as PV, will become economically viable and competitive. This requires an
extensive study of new materials and physical processes within these materials.

Research on solar cells began in the 1950s with building the first inorganic, silicon-based
solar cells with a power conversion efficiency (PCE) of 6% for space applications [1, 2]. To
date, this is the most used solar cell type, and its PCE reaches over 25% in single-junction
and 46% in multi-junction devices, according to annual PV progress reports [3, 4]. However,
mono- and poly-crystalline inorganic solar cells have a number of deficiencies, which include
fragility, high specific weight and high manufacturing costs. The latter is a consequence of
high energy consumption and complexity of the manufacturing process. Alternative solar
cell types, based on new materials, were considered over time to overcome these limitations.
At present, the best material alternatives are amorphous silicon [5, 6], small organic
molecules [7, 8], conjugated polymers [9–11], quantum dots [12, 13], perovskites [14–16]
and their combinations. The best conversion efficiencies that were achieved with these
materials reach only up to 12% in laboratory conditions [3]. Improvements are required to
increase these PCE values and match those in inorganic solar cells, or even reach a theoretical
maximum of 30%, which is known as a Shockley-Queisser limit [17].

This work focuses on organic materials, in particular conjugated semi-crystalline polymers.
While polymers are widely used in polymer-based solar cells (PSC) and give highly efficient
PV devices [18–21], the relationship between their complicated nano-scale morphologies,
opto-electronic properties and their in-device performance is not fully understood [20, 22].
It requires further studies in order to reach the full potential of these materials.

Before one goes into details, it is useful to understand the basic working principles of solar
cells, as well as consequences of employing organic materials such as conjugated polymers.

1.1 Characterization of PV devices

A solar cell is a device that converts an incident light to a direct electric current. It is typically
characterized by three parameters: the short-circuit current density Jsc, the open-circuit
voltage Voc and the geometric fill-factor FF (see fig. 1.1). The latter reflects the deviation of
a JV -curve from an ideal, rectangular shape, at which the maximum power Pmax = Jsc ·Voc
is achieved. For a typical solar cell the open-circuit voltage Voc is in the range 0.5−1.0 eV and
the short-circuit current density Jsc is 10− 20 mA/cm2. The corresponding charge-carrier
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Figure 1.1: Typical JV - and a power curves of a solar cell. Here, Jsc is the short-circuit current
density, Voc is the open-circuit voltage, P (d)

max = JmpVmp is the maximum power the device
can produce, Jmp and Vmp are current density and voltage values that correspond to the
maximum power, FF is the fill-factor.

densities in solar cells are low, n = 1016 cm−3 (ca. 10−4 per molecule), as compared to
organic light emitting diodes (OLEDs) or organic thin-film transistors (OTFTs) [23]. The
solar cell is also characterized by the power conversion efficiency (PCE) η, which defines
how much solar radiation a device can convert into an electric current. It is the ratio of the
maximum power P (d)

max, which the device can produce, and the power Pin of the incident
light

η = P
(d)
max

Pin
= Jsc Voc FF

Pin
. (1.1)

Due to the imperfection of the light-to-photocurrent conversion, which is caused by losses,
the theoretical maximum PCE of any single-junction solar cell is less than η = 30% [17].
In order to understand the origin of losses in organic solar cells, one should look at the
microscopic processes that take place in the solar cells.

1.2 Processes in solar cells: microscopic view

At the microscopic level, photon-to-current conversion is a multi-step process (see fig. 1.2).
An incident photon can create an exciton (a bound electron-hole pair) in the active layer, if
the energy of this photon is higher than the band gap of the material, ~ω > Eg. Due to weak
intermolecular forces, the exciton is strongly localized. It is known as Frenkel exciton and
cannot be dissociated into free charges at room temperature. The reason for the stability is a
low relative dielectric constant εr = 2− 4 within organic materials, which results in binding
energies Eb > 0.3 eV. A thermal energy kBT = 0.025 eV and typical for solar cells electric
fields E ≈ 106 V/m are not enough to overcome such high binding energies. Additionally,
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Figure 1.2: Structure and microscopic processes in an organic solar cell. Here, the polymer/PCBM
(i.e. donor/acceptor) active layer is sandwiched between two electrodes: ITO/PEDOT:PSS
anode and Ca/Al cathode. The parameters η are the probabilities of corresponding
microscopic processes, ~ω is the energy of the incident photon, the highest occupied
molecular orbital (HOMO) conducts holes (h), the lowest unoccupied molecular orbital
(LUMO) conducts electrons (e), Voc is the open circuit voltage. Reprinted by permission
from Macmillan Publishers Ltd: Nature Photonics, [11], copyright (2012).

an exciton can recombine due to its finite lifetime. For these reasons, the majority of the
generated excitons decay. This was the reason for an extremely low PCE (η < 0.1%) in the
very first organic solar cells, which had a single-material device architecture (fig. 1.3, a).

As a comparison, this problem does not exist in inorganic, silicon-based solar cells, where
strong covalent bonds and a high relative dielectric constant εr = 12 lead to delocalized
Wannier-Mott excitons with binding energies of the order of kBT . Consequently, in inorganic
solar cells most excitons can be dissociated into free charges.

The problem of exciton recombination can be circumvented by using two materials instead
of one in a bi-layer heterojunction device architecture (fig. 1.3, b), which was first proposed
by Tang [24]. These materials are typically called donor (D) and acceptor (A), and have
different ionization potentials (IP) and electron affinities (EA). If the created exciton diffuses
to the DA interface between the two materials, it can be dissociated into free charges due to
a HOMO/LUMO offset. At the time, this allowed to improve the efficiency of the cell by an
order of magnitude and reach η ≈ 1%.

Because of their finite lifetimes, excitons can diffuse for short distances of 1− 10 nm [25],
and so the charge generation takes place only in a small region around the DA interface.
Further efficiency improvement can be achieved by introducing the bulk heterojunction
architecture (fig. 1.3, c), in which the two materials are intermixed [26]. Matching a typical
domain size with an exciton diffusion length (10 nm) helps to create a large-area interface
in the vicinity of most excitons, allowing the in-bulk charge generation.

Provided that the majority of excitons can be converted into free charges, one needs to
ensure the existence of continuous conducting pathways for both holes and electrons that
lead to their respective electrodes. Otherwise, free charges become trapped and eventually
recombine, giving no contribution to a photo-current. Creating bulk heterojunction mixtures
of donor and acceptor materials with a carefully balanced domain size and connectivity is

1.2 Processes in solar cells: microscopic view 3
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Figure 1.3: Different organic solar cell architectures: (a) single junction, (b) bi-layer heterojunction,
(c) bulk heterojunction, (d) ordered bulk heterojunction. The green and blue domains
correspond to the donor and acceptor materials respectively.

critical for high PCE solar cells, and, if successful, leads to current record efficiencies of 12%
in organic solar cells. This also correlates with an improved exciton dissociation and charge
extraction. One can go one step further and imagine an ideal solar cell architecture (fig. 1.3,
d), which would combine a high-surface interface and good charge conductivity, known as
ordered bulk heterojunction [27, 28].

To recap, in order to convert photons to the photo-current, the following sequence of
successful steps is required (see fig. 1.2): Exciton creation from an absorbed photon (ηA),
exciton diffusion (ηED), charge separation (ηCT ), charge diffusion and extraction (ηCC).
Here, the quantities ηx are the probabilities of the corresponding processes, which are
typically far from ideal (ηx < 1) due to presence of loss mechanisms: Geminate (exciton)
and non-geminate (free charge) recombinations. From this perspective one can define
another important characteristic for solar cells, the external quantum efficiency (EQE) as

EQE(λ) = ηA(λ) · ηED(λ) · ηCT (λ) · ηCC(λ). (1.2)

This quantity shows how many photons in the active layer are converted to charge pairs
and extracted into the external electric circuit. It depends on the energy of the photon. In
high-performing solar cells it exceeds 80%. The EQE includes not only internal but also
optical losses due to other layers having different refractive indexes and absorbed photons
that did not lead to exciton creation. The solar cell parameters can be improved as well as
losses decreased via a proper choice of the donor and acceptor materials.

Mobility plays an important role in organic solar cells. It has been shown that materials with
high charge-carrier mobilities are needed for efficient solar cells [29, 30]. It is a macroscopic
parameter that defines how fast charges can move in the external field and is defined
by microscale electronic properties, energetics and morphology. Though the functional
dependence of carrier mobility on microscopic parameters is unknown, one can track the
effects of mobility on the overall solar cell performance in various models. In one of these
models [31], optimal mobilities up to 1 cm2/Vs and band gap values of 1.3 eV are required
to achieve the highest possible efficiency, η = 14%. Hence, it is important to develop and
study materials with high carrier mobilities and small band gaps.

4 Chapter 1 Organic solar cells



1.3 Polymer materials for solar cells

Among the variety of possible materials one may consider organic molecules as solar cell
ingredients. They are made of abundant elements and are easy to process due to weak
intermolecular interactions [25]. As acceptor molecules, fullerenes and their derivatives,
PCBMs [26, 32], have proven to be highly efficient electron transporting materials due to
their high mobilities of µ = 10−2 − 10−1 cm2/Vs. Also, it has been shown that unbalanced
transport leads to a charge accumulation, which reduces the efficiency of devices. Hence,
one needs organic donor materials that would match the PCBM’s mobility and energies, for
example conjugated polymers.

The fast electron transfer between a conjugated polymer and a fullerene has been shown
already in the 1990s [33, 34], proving that it is possible to use polymers as a donor material
in solar cells [26, 35]. Conjugated polymers exhibit good mechanical and opto-electronic
properties, where the latter includes efficient absorption and high carrier mobilities. They
enable the construction of thin-film (the active layer thickness is on average 80− 200 nm),
low specific weight, flexible solar cells [9–11, 21, 25, 28, 36]. Also, rich chemical synthesis
techniques allow one to tune the relevant parameters, such as bandgap, orbital energies,
structure and solubility of these materials. Last, but not least, a variety of processing
techniques, for example roll-to-roll printing, allows low-cost, large-area production of
polymer/PCBM devices [37, 38]. The well studied polymers for organic solar cells include
MDMO-PPV[39], highly crystalline P3HT [40] and low-bandgap PCPDTBT [41].

Because exciton conversion is often inefficient, one can increase the number of excitons that
are absorbed by decreasing the band gap of a material. This can be easily done through
chemical tuning in a number of ways [42]. For example, it is observed that a HOMO-LUMO
difference (fig. 1.2) decreases with the conjugation length. This can be loosely traced back
to a particle in the box problem, where the difference between energy levels ∆E = C/a

and a is the characteristic width of the box, C is a dimensional prefactor. Hence, extended
conjugated compounds will have lower band gap. Another possibility to effectively modify
the gap is to mix electron-donating (donor) and electron-withdrawing (acceptor) building
blocks. Indeed, upon combining the two blocks (see fig. 1.4) with different HOMO/LUMO
energy levels, one obtains new states with the reduced gap. According to a simple two-state
model, the perturbed energy difference EDA is smaller than the individual gaps of donor
and acceptor molecules, ED and EA. Conjugated polymers successfully combine these
two properties and make it easy to create new donor-acceptor compounds, also known as
push-pull polymers, with even lower band gap values.

Despite numerous advantages, organic materials, and polymers in particular, have a number
of deficiencies. For example, the theoretical efficiency (Shockley-Queisser) limit, is modified
if one takes into account the specific nature of organic materials, such as low carrier mobilities
and energy penalties for charge-carrier generation [9, 43]. For a single-junction OPV device,
the limit remains at the value of 30% in an ideal cell, where EQE= 1.0 and FF= 1.0 (i.e.
ideal absorption and conversion), but reduces to 20% in realistic devices with EQE= 0.9 and
FF= 0.7. The best polymer-based solar cells with similar parameters currently reach only
12% PCE. This is attributed to the drop in the open circuit voltage Voc, resulting from energy
losses during exciton dissociation.

1.3 Polymer materials for solar cells 5
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Figure 1.4: Effect of donor-acceptor architecture on a band gap in conjugated polymers. Blocks D and
A comprise the chain and have band gaps energies ED, EA. Energy EDA is the resulting
band gap of the polymer.

Still, though more efficient materials exist for solar cell applications, organic-based devices
will always be in demand for large area energy collection due to large scale production
techniques, flexibility, low thickness and transparency.

1.4 Further improvements

Up to now only single layer devices were considered. Another way to improve solar cell
efficiency is to use two or more active layers with low and high band gap materials, in
order to utilize the solar spectrum more efficiently. This OPV device structure is known as a
multi-junction or tandem solar cell [11, 44]. However, the corresponding efficiency increase
is not linear since properties of multiple cells are competing and need to be optimized (layer
thickness, mobilities and more). This can be seen from the Shockley-Queisser limit for
tandem OPV devices. In multi-junction cells, for a number of active layers n = 1, 2, 3 the
theoretical efficiency limits become 37%, 50%, 56%, respectively [45].

In addition to low efficiencies, organic solar cells exhibit short lifetimes due to a low
stability. Studies reveal that material’s chemistry and electronic structure are altered by
the presence of oxygen and water molecules, accumulated during production phase or
insufficient isolation. Over time this leads to the creation of additional traps and destruction
of conducting pathways [46, 47]. This effectively translates to a decrease in mobility of
specific carrier types [48].

1.5 Structure of the thesis

Given the basic understanding of polymer-based solar cells, a problem of linking material
chemistry to macroscopic device properties prevails. In particular, in polymers a variety of
local and global packing motives, knows as polymorphs, makes the task especially difficult.
To understand how chemistry gives rise to numerous morphologies, local opto-electronic
properties and overall device efficiency, one can use computer simulations. The rest of this
thesis is focused on applying simulation techniques to derive and study various morphologies
of common semi-crystalline polymers, as well as their electronic and transport properties in
the resulting environments.
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In chapter 2, an overview of simulation techniques is given, including quantum chemistry
methods, notes on force field development, molecular dynamics simulations and a charge
transfer theory. A particular attention is paid to static and dynamic characterization of
morphologies using order parameters. These techniques and methods are then applied to
two polymer systems.

In chapter 3, the chemistry of PCPDTBT polymer is varied in a systematic way through atom
substitution. This results in five derivatives with modified band gap values and in-device
performance. To study the trends via simulations, accurate force fields for five polymers are
developed from quantum chemical calculations. Through molecular dynamics simulations,
various crystalline polymorphs are obtained in a systematic way and verified against the
experimental data. Simulated crystals include π-stacked, side-chain mediated and cross-
hatched constructions. Key degrees of freedom responsible for the crystal structures are
discussed. In π-stacked configurations, hole transport and related quantities, such as site
energies and transfer integrals, are investigated in detail using simulated morphologies,
first-principles calculations, perturbative energy evaluation methods and Marcus charge
transfer theory. As a result, systematic variation of chemistry is linked to observed trends of
microscopic properties, such as transfer integral, site energy distributions and mobilities.

In chapter 4, molecular dynamics simulations are combined with solid-state NMR data to
study dynamics and macroscopic composition of PBTTT chains in a sample. The initial
NMR analysis suggests a two-mesophase composition, with a 1:1 ratio of amorphous and
crystalline mesophases. However, the experimental data is not resolved with respect to these
mesophases. This is done via molecular dynamics simulations. Three morphologies of PBTTT
are simulated using an adapted OPLS force field. The local ordering is verified against the
structural NMR data. In obtained morphologies, dynamics of chains is addressed via the
generalized order parameter. Poor sampling of conformer populations at short simulation
times is recognized and overcome within high temperature simulation runs. Structural and
dynamical simulated data are then combined with the initial NMR mesophase assessment
through an analytical model. With this model, the two-mesophase composition cannot
be achieved within the physical range of parameters. Better results are obtained for a
refined, three-mesophase composition, where the crystalline fraction is no more than 8%. A
simple formula with generic parameters is derived to estimate the crystalline fraction in any
semi-crystalline polymer with a similar structure.
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2Simulation techniques

In soft matter systems, such as polymer semiconductors, thermal fluctuations play an
important role. They emerge from the interplay of a broad range of length- and time-
scales in the system and need to be captured in simulations, in order to predict structure,
dynamics, and physical properties such as charge mobility. A multiscale approach combines
simulations at various levels of theory in order to connect the chemistry of materials to
their macroscopic morphologies and transport properties. These methods include first-
principles (or quantum chemistry) methods, such as Hartree-Fock (HF) method and density
function theory (DFT), which introduce chemistry into the problem. Further, dynamics is
introduced via classical molecular dynamics (MD) simulations in order to generate realistic
morphologies. These morphologies can then be analyzed through available order parameters.
Finally, morphologies are combined with Marcus charge transport theory to simulate charge
transport dynamics. In the following sections, related theories, methods and links between
them are presented.

2.1 First principles methods

Since it was introduced in the 1920s, quantum theory is routinely used in many research
areas, including studies of novel materials for electronics applications. Its goal is to solve the
Schrödinger equation [49], which can be written in a stationary form as

Ĥ |ψα〉 = Eα |ψα〉 . (2.1)

Here the core objects of quantum theory are introduced: the Hamiltonian Ĥ, that defines
the system and its properties and the quantized states |ψα〉 (often called wave functions) in
which the system can be found. Wave functions correspond to an energy spectrum Eα, where
index α represents a set of quantum numbers. The states |ψα〉 form a complete orthonormal
basis set (i.e. 〈ψα|ψβ〉 = δαβ , where δαβ is the Kronecker delta), that can be used to expand
any other state with an arbitrary precision. An important feature of quantum theory is that
the spectrum Eα is bound from below, and has the lowest energy E0 and a corresponding
non-degenerate state |ψ0〉, called the ground state. For a collection of atoms in a molecule
with Ne electrons and Nn nuclei, (without relativistic effects) the Hamiltonian takes the
form

Ĥ =
Nn∑
I=1

P 2
I

2MI
+

Ne∑
i=1

p2
i

2me
+ 1

2
∑
I 6=J

k
ZIZJ

|~RI − ~RJ |
+ 1

2
∑
i 6=j

k
1

|~ri − ~rj |
+
∑
i,I

k
ZI

|~ri − ~RI |
. (2.2)
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The first term is the total kinetic energy of the nuclei I with masses MI , located at positions
~RI and having charges ZI . It is followed by the kinetic energy of electrons, labeled with
indexes i, carrying masses me (identical for all electrons) and located at positions ~ri. The
last three terms cover Coulomb interactions between electrons and nuclei and contain
the Coulomb constant k = e2/4πε0 (here ε0 is the permittivity of free space and e is an
elementary electric charge). A summation in these terms is carried out over all unique pairs
of a given type.

In this form the Schrödinger equation for a molecule is rather complex. Due to correlated
motions of particles, the wave function ψ depends on the positions of these particles (i.e. in
the position space ψ = ψ([~ri], [~RI]) and is many-body in nature. Here, the notation [~ri] is a
short-hand notation for (~r1, . . . , ~rN ). One needs to simplify (eq. 2.1) in order to solve it.

2.1.1 Solving the molecular Schrödinger equation

Several approximations are typically used to reduce the complexity of the Schrödinger
equation (eq. 2.1) of a molecule. First, one applies a Born-Oppenheimer ansatz (also
known as adiabatic approximation) to separate fast and slow degrees of freedom (DOF),
i.e. electrons and nuclei. This is motivated by the separation of relaxation times of these
DOFs, which is justified in most cases and allows to treat nuclei as a static background
during the electron dynamics (or, vice versa, electrons are always found in a particular
state for a given nuclear geometry). One can then write the Schrödinger equation for the
electronic sub-system as Ĥelψα({~RI}) = Eαψα({~RI}), where the Hamiltonian with its states
and energies depends on the nuclear positions parametrically

Ĥel =
Ne∑
i=1

p2
i

2me
+ 1

2
∑
i 6=j

k
1

|~ri − ~rj |
+
∑
i,I

k
ZI

|~ri − ~RI |
. (2.3)

The ground state energies E0([~RI ]), calculated for all nuclear positions ~RI define the
potential energy surface (PES) in which the nuclei are moving. Minima of the PES define
equilibrium geometries for a given molecule.

However, after the adiabatic approximation is employed, equation (eq. 2.3) still cannot
be solved analytically for the vast majority of molecular systems, and should be solved
numerically. To this end, one can project the electronic wave-functions on a complete basis
set of orthonormal, continuous functions φi, so that ψ([~RI ]) =

∑
i Ciφi([~RI ]). Following the

variational principle, this transforms the Schrödinger equation into the eigenvalue problem

HC = CE, (2.4)

which can be solved via numerical eigensolvers. Here, matrix H is the Hamiltonian of
a system in a representation of the basis φi and is known, while C contains expansion
coefficients for eigenstates of the system and E carries the corresponding state energies
(which are found through a diagonalization procedure). One should note that, in practice,
basis sets are neither complete, nor orthogonal. For finite, N -dimensional, non-orthogonal
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basis sets (i.e. 〈φk|φl〉 = Skl 6= δkl, where Skl is the overlap matrix), a generalized eigenvalue
problem emerges

HC = SCE. (2.5)

It can be converted to a regular eigenvalue problem (as in eq. 2.4) by means of unitary
transformation U (for example, U = S−1/2, as was proposed by Löwdin [50]) and then
solved, though at a higher computational cost. The resulting energies and states are the best
approximations to their true values of a system for a given incomplete basis set φi.

2.1.2 Hartree-Fock method

The first attempt to solve the many-body Schrödinger equation for molecular systems dates
back to Hartree and Fock, who derived a self-consistent method bearing their names (HF). To
solve the Schrödinger equation, one needs to deal with the many-body wave function ψ(~ri),
which is tedious. In the HF method, the wave function is approximated by the anti-symmetric
product of single-particle states (the Hartree product) in order to decrease the number of
DOFs. As a result, non-interacting, single-particle states are found in an external mean-field
potential, generated by other electrons. The equivalent of the Hamiltonian is a single-particle
Fock operator

f̂HFi = −1
2∇

2
i −

Nn∑
J

ZJ
riJ

+ V HFi (j), (2.6)

which acts on the i-th electron. Here, atomic units are used. In addition to kinetic energy
and electron-nuclear attraction, a HF potential is introduced, which includes the classical
Coulomb Jij and exchange Kij integrals. They are, in general, eight dimensional two-
electron integrals of the form

[ij|kl] =
∫
d~x1d~x2 φi(~x1)∗φj(~x1) 1

r12
φk(~x2)∗φl(~x2), (2.7)

where φi(~xj) are eigenfunctions of the Fock operator (eq. 2.6), often called the spin orbitals.
Because the HF potential depends on single-particle states, the equation should be solved self-
consistently, starting from an initial guess. Though the method allows to solve a molecular
Hamiltonian (eq. 2.3), it is a mean-field approximation with a number of deficiencies.
Despite an exact treatment of the exchange (which stems from the Pauli exclusion principle),
it ignores some correlations. This leads to overestimation of predicted HF values from
experimental results (a classical example is a positive electron affinity energy upon adding
the (N + 1)-st electron). Also the computation time of the HF method scales as O(N4

orb)
with the number of orbitals Norb. This is due to four-center integral calculations (eq. 2.7)
which are proved to be the bottleneck of the method. One can correct for these errors using
post-HF wavefunction-based methods (such as CI [51], MPn [52], CC [53] and more) at a
cost of less favorable scaling O(Nk

orb), where k ≥ 5. At this point it is natural to ask if it is
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possible to derive molecular properties in a simpler way, using a more intuitive object, such
as the total electron density.

2.1.3 Density functional theory

An alternative to wavefunction-based methods is density functional theory (DFT). It operates
not with wave-functions of the Hamiltonian operator, but with a total electron density ρ(~r),
which has only three spatial coordinates and, therefore, is much easier to treat. Its basic
property is that the integral over the electron density gives the total number of electrons in
the system:

∫
ρ(~r)d~r = Ne, where integration is performed over entire space. However, the

electron density ρ(~r) can be also used to calculate other physical properties, for example
energies.

The foundation of the DFT method relies on two theorems proved by Hohenberg and
Kohn [54]. The first, “existence” theorem, says that there is a unique map between the
Hamiltonian of a system Ĥ and its ground-state electron density ρ(~r), though it does not
provide a recipe on how to construct such a map. Further, through the Hamiltonian, the
electron density is linked to the ground and excited properties of a system. The second,
“variational” theorem shows that, similarly to wave-functions, the density obeys the varia-
tional principle. This means that the true electron density of the system ρ(~r) will have the
lowest, ground state energy E0. In this form, the energy of a system E[ρ] is a functional of
the electron density, which needs to be minimized.

One may hope to use electron density only and skip the need to solve the molecular Schrödinger
equation, in order to derive physical properties of a system. Unfortunately, this cannot be re-
alized in practice, since one needs to know the functional dependence on the density ρ(~r) for
observables of interest. This turns out to be problematic already for such a basic observable
as the total energy of a system. Though it is proven that the exact energy functional exists,
its analytical form is unknown. A solution to this problem is to introduce a single-particle
representation [54], i.e ρ(~r) =

∑Ne

i 〈ψi|ψi〉. This results in a single-particle-based energy
functional

EDFT [ρ] = Ts[ρ] + Vne[ρ] + Vee[ρ] + Exc[ρ], (2.8)

where an additional, exchange-correlation energy term Exc was introduced to compensate
for errors due to a single-particle kinetic energy Ts and non-classical corrections to the
electron-electron repulsion energy Vee. One should note that Exc is unknown and is defined
by (eq. 2.8). In practice it is obtained by minimizing the difference between the DFT
and true observables for various systems, which are obtained from experiments or precise,
wavefunction-based calculations. Through the variational principle one derives Kohn-Sham
equations that minimize the energy of the system (i.e. ĥksi ψi = εiψi), where ĥksi is the
Kohn-Sham (KS) one-electron operator

ĥksi = −1
2∇

2
i −

Nn∑
J

ZJ

|~ri − ~RJ |
+
∫

ρ(~r ′)
|~ri − ~r ′|

d~r ′ + Vxc(~ri), (2.9)
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where the exchange-correlation potential is defined as variational derivative Vxc = δExc/δρ.
The KS operator has a structure identical to a Hartree-Fock operator f̂HFi . This allows to
solve (eq. 2.9) using the same techniques as in the HF method, which include the SCF
procedure. The resulting states ψi are the Kohn-Shan orbitals of non-interacting electrons,
with a total electron density, identical to the density of an interacting electron system.

In practice, due to similarities between the HF and KS equations, similar SCF work-flows are
employed. Unlike the HF method, the computation time of the DFT is defined not by the
number of integral evaluations, but by the scaling of the diagonalization routines, which is
close to O(N3

orb). However, to obtain good results from DFT calculations, hybrid exchange-
correlation functionals are often used. They contain terms with the exact exchange energy, as
introduced in the HF method, and require four-center integral evaluations. Consequently, the
O(N4

orb) scaling is re-introduced. Also, the scaling prefactor is higher than for the HF method,
since integrals over some correlation potentials in the KS equations are not analytical and
should be evaluated numerically. But, in the end, DFT provides a much higher accuracy of
the results than the HF method, which makes it more cost-effective.

The key difference between the HF and the DFT theories is that HF is a mean-field approx-
imation and DFT is in principle exact. But, since the functional dependence of the Exc
operator on density ρ(~r) is unknown, it has to be replaced with an adequate approximation.
Once the Exc approximation is adopted, the method can produce energies that are lower
than the true values (though by a small fraction). One should remember that KS and HF
orbitals are not the same. The KS orbitals do not have a phase, as the true wave-functions
do. This reflects the fact that they are merely a mathematical basis for an expansion of the
total electron density of the system. In practice, the KS orbitals are extremely similar to
the HF states [55] and are often used for analysis or further calculations, such as transfer
integral evaluations, Green-function-based calculations and more.

One can judge the complexity of a general Exc[ρ] energy by the number of existing parame-
terizations, which stem from different employed functional forms and reference data. Some
of these functionals perform better than the others and are regularly used for a variety of
molecular systems.

Hybrid functionals

A number of robust functionals is derived using the adiabatic connection method [56] (ACM),
based on the Hellmann-Feynman theorem. In the spirit of Kohn and Sham, if one does not
know the exact Exc energy, one can interpolate it between several known, limiting cases.
This was successfully done by Becke and Stevens in a three-parametric B3LYP functional [57,
58], where the LSDA[59] and the HF exchange energies are mixed and further corrected by
Becke’s GGA exchange, while the LSDA correlation energy is mixed with the pure correlation
LYP functional [60]. It is written as

EB3LY P
xc = (1− a)ELSDAx + aEHFx + b∆EB88

x + (1− c)ELSDAc + cELY Pc . (2.10)
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Here the HF exchange EHFx is calculated using KS orbitals and parameters a, b, c take
values 0.20, 0.72, 0.81, respectively. As suggested by the ACM method, the HF and the DFT
components here are mixed into a hybrid, and so the obtained functionals are referred to
as hybrid functionals. B3LYP is a widely used functional and gives accurate results for a
variety of systems, including organic molecules. Further extensions, which use more fitting
parameters give mild improvements at best and demonstrate the robustness of the derived
B3LYP parameterization.

Basis sets

One introduces basis set functions to allow analytical evaluation of multi-dimensional
integrals. Analytical integrals are then computed rapidly and on the fly. For periodic
systems, such as crystals, plain waves is a typical choice, while for isolated molecules a linear
combination of Gaussian functions is employed. The most common classification of these
basis sets was introduced by John Pople and is known as split-valence basis sets.

As an example, let us consider a at 6-311++g(d,p) basis set. Within this basis set, six
primitive Gaussians represent each core atomic basis function. The remaining valence
orbitals are expanded over three basis functions, containing three, one and one primitive
Gaussian function. Multiple primitive Gaussians combined into one orbital are often called a
contracted Gaussian function. For higher precision calculations one additionally uses diffuse
(++) and polarization (d,p) functions. Some times these functions must be discarded as
they cause convergence problems, when the Hamiltonian is diagonalized.

2.1.4 Limitations of first-principles methods

Already for fixed-geometry single-molecule calculations, both Hartree-Fock and DFT methods
can be computationally demanding. However, in systems like partially disordered polymer
semiconductors, dynamics and ordering play an important role. And, though it is possible to
carry out the first-principles molecular dynamics simulations, these methods become not
feasible for realistic morphology sizes and simulation times. A drastic simplification can be
done, if one assumes that molecules always remain in the ground state and their nuclei are
moving in the averaged field of surrounding electrons (PES). Using appropriate effective
potentials, one can propagate nuclei classically, hence, significantly reduce the computation
time and enable studies of realistic morphologies.

2.2 Molecular dynamics simulations

In order to obtain a meaningful insight into physics of organic semiconductors, large systems
sizes and long simulation runs are needed. Such requirements cannot be fulfilled with the
first-principles methods due to their high computation cost and unfavorable scaling. Hence,
one makes further approximations, which allow to overcome these limitations, and arrives
at the idea of classical molecular dynamics simulations.
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Molecular dynamics (MD) is a simulation technique, which allows one to compute equilib-
rium and transport properties of classical systems [61, 62] (i.e. systems, in which particle
dynamics is governed by classical, Newtonian equations of motion). In fact, a large number
of material properties can be studied within a classical approximation. The first simulations
were performed already in the 1950s [63, 64], and, since then, major hardware and algo-
rithm improvements have been achieved. At present, MD simulations are widely used in
many areas of material science, which include studies of solids, nano-structures, proteins,
small molecules, polymers and more. One distinguishes between two types of MD simula-
tions: ab initio (AIMD) and classical (MD) molecular dynamics. In the ab initio MD (i.e.
Born-Oppenheimer and extended Lagrangian methods, such as Car-Parinello MD [65, 66]),
one treats electrons of each molecule explicitly and solves the corresponding Schrödinger
equation for every time step. The resulting electron densities are then used to calculate
forces, which are used to propagate the nuclei. This approach, in principle, does not rely
on parameterizations, and hence is universally transferable (i.e. the results are valid at
each point of the phase diagram). It is a method of choice to observe quantum-related
processes, like bond cleavage and chemical reactions [67, 68], binding and adsorption [69],
non-adiabatic charge transfer effects and more.

Though it is more precise, AIMD simulations are computationally expensive and not appli-
cable to large systems for sufficiently long times. Luckily, for a broad range of problems,
the nature of chemical bonds is of minor importance, and their explicit quantum treatment
is unnecessary. One can assume that molecules remain in their ground states at all times,
and parametrize their potential energy surface (PES) with a linear combination of analytical
functions. By doing so, one arrives at a concept of classical MD force field.

2.2.1 Force fields

In molecular dynamics, molecules are treated as a collection of N classical particles, often
called atoms, which are centered at the nuclei and interact via classical inter-atomic forces.
One is forced to introduce atom types, as the same chemical element may have different
chemical environments and interactions with other atoms within a molecule. Consequently,
the number of atom types is much larger than the number of chemical elements.

The inter-atomic forces are determined by a position-based potential U(~r1, . . . , ~ri, . . . , ~rN ),
where ~ri is a instantaneous position of the i-th atom. The force acting on atom i is calculated
as

~Fi = −∇~ri
U([~ri]) (2.11)

where ∇~ri
= ∂/∂~ri is the nabla operator and [~ri] stands for a collection of all atom positions

in a compound. The inter-atomic potential U([~ri]) results from interactions between electrons
and nuclei, and is a classical approximation to the first-principles PES, justified by the Born-
Oppenheimer approximation and fitted to ab initio and/or experimental data. A specific
implementation of the potential energy U([~ri]), combined with its fitted parameters, is often
referred to as a force field.
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(a) (b)

(c) (d)

Figure 2.1: Visualization of bonded potentials, used in a force field: (a) bond, (b) angle, (c) improper,
(d) dihedral potentials (the figure is obtained from Pumma MD webpage [70]).

Force fields usually follow an intuitive ball-and-stick picture, which introduces concepts of
bonds, angles, impropers and dihedrals (see fig. 2.1). These potentials are covalent and
short-range in nature, and are often referred to as bonded interactions UB([~ri]), as they
define an internal structure of a molecule. Additionally, one needs non-bonded potentials
UNB([~ri]), which provide inter-molecular interactions. Combined, these two groups of
potentials constitute the force field of a molecule and can be written as

U([~ri]) = UB([~ri]) + UNB([~ri]), (2.12)

where each term will be explained in detail in the following sections.

Bonded interactions

The bonded part of a force field can be represented in the following functional form

UB =
Nb∑
i=1

k
(b)
i

2 (xi−x(0)
i )2 +

Na∑
i=1

k
(a)
i

2 (θi−θ(0)
i )2 +

Ni∑
i=1

k
(i)
i

2 (ψi−ψ(0)
i )2 +

Nd∑
i=1

V (i)(φi) (2.13)

The four terms correspond to interactions due to bonds, angles, impropers and dihedrals,
respectively (see fig. 2.1). Improper dihedrals are often presented as a separate group due
to the presence of out-of-plane bending motions in a molecule [71]. Here, Nb, Na, Nd, Ni
are the numbers of bonds, angles, impropers and dihedrals in a molecule. Spring constants
k

(b)
i , k(a)

i , k(i)
i for bonds, angles and impropers can be unique for each degree of freedom,

though in practice one introduces identical interaction parameters between the same atom
types (for example, between two carbon atoms in the alkyl chain). Each bond is defined by
a pair of values: The instantaneous displacement xi and its equilibrium value x(0)

i . Similarly,
angles and impropers are defined by the pairs (θi, θ(0)

i ) and (ψi, ψ(0)
i ), respectively. While it is

justified to use a harmonic (and therefore non-periodic) approximation for stiff bond, angle
and improper potentials, this is not sufficient for the proper degrees of freedom. Torsional

16 Chapter 2 Simulation techniques



potentials are periodic and, hence, need to be expanded in periodic basis functions, i.e. the
Fourier series, as

V (φ) =
K∑
n=0

Cn cos(nφ− φ(n)
0 ), (2.14)

where Cn, φ(n)
0 are the coefficients of the expansion, upper bound K is a cut-off of the

expansion dictated by a desired precision of the fit, and the total number of fitted parameters
is 2K.

The dihedral potentials are soft, and their profiles are defined by the electronic structure
and local symmetry of molecular fragments. In case of simple molecules, dihedrals are well
represented by a single term potential, which is used in AMBER force field

Vp(φ) = C0 [1 + cos(nφ− φ0)] . (2.15)

This function generates a potential with n minima and contains two parameters: Position of
the first minimum φ0/n and equal barrier height C0/2. For potentials with multiple minima
and barrier heights, the following six-term Ryckaert-Bellemans potential suits better

Vrb(φ) =
5∑

n=0
(−1)nCn cosn(φ). (2.16)

It is symmetric with respect to the origin, φ = 0. For even more complex organic molecules,
typically used in organic electronics devices, a more sophisticated Fourier expansion with a
larger cut-off may be needed to reproduce complex energy profiles, as in (eq. 2.14).

Non-bonded interactions

The non-bonded section of a force field represents long-range interactions between two
molecules and is often factorized into two parts

UNB([~ri]) = Uvdw([~ri]) + UPauli([~ri]) + UCoulomb([~ri]) . (2.17)

Here, the terms are van der Waals, Pauli and Coulomb potentials, respectively. The van
der Waals term, also known as London dispersion forces, is the long-range attraction due
to induced dipole-dipole interactions. It depends on the inter-atomic distance as r−6. The
short-range repulsion part, often called the Pauli repulsion, is due to quantum mechanical
exchange interactions, and is responsible for the excluded volume of molecules. Combined,
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Figure 2.2: Non-bonded potentials, used in molecular dynamics simulations: Lennar-Jones and
Coulomb.

van der Waals and Pauli interactions are often modeled by the Lennard-Jones potential (also
called the 6-12 potential), written as

ULJ(rij) = 1
2
∑
i 6=j

4εij

[(
σij
rij

)6
−
(
σij
rij

)12
]
fij , (2.18)

which includes inter-atomic distances rij = |~ri − ~rj | between atoms i and j and parameters
εij and σij , that define a potential’s unique minimum and its distance from the center of
an atom. While the attractive part is physical, the repulsive part is not. Prefactor fij is a
damping factor, which modifies short-range interactions within a molecule. It is force field
specific and will be defined in the section below. Indices i, j in the sum go through all pairs
of atoms (of all molecules) in a system.

Third term represents electrostatic interactions introduced via atomic partial charges qi,
centered at the atoms’ nuclei. The resulting Coulomb energy is

UCoulomb(rij) = 1
2
∑
i 6=j

k
qiqj
rij

fij (2.19)

where k = 1/4πε0εr is the electrostatic constant, that includes screening effects by means
of relative dielectric constant εr, greater than one. Indices i, j and prefactor fij carry the
same function as in the van der Waals potential. The introduced van der Waals and Coulomb
potentials are shown in fig. 2.2. They are routinely used in molecular dynamics and other
simulations.
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On the final note, combined bonded and non-bonded potentials themselves represent two-,
three- and (partly) four-body contributions of the expansion of a many-body PES, which can
be written as

U([~ri]) =
∑
i,j

U2(~ri, ~rj) +
∑
i,j,k

U3(~ri, ~rj , ~rk) +
∑
i,j,l

U4(~ri, ~rj , ~rk, ~rl) + . . . , (2.20)

where higher order terms are neglected.

OPLS-AA force field specification

OPLS is an all-atom force field for simulations of protein-ligand interactions [72, 73],
including small aromatic heterocycles [74, 75]. Therefore, it is a good starting point for
building force fields for new compounds, such as conjugated, semi-crystalline polymers.

The OPLS force field parameters are transferable, i.e. force fields of larger compounds can
be assembled from smaller building blocks. It aims to reproduce conformational energetics
and liquid-phase properties, while keeping the number of parameters at a minimum. More
importantly, the Lennard-Jones parameters in the force field are found to be highly trans-
ferable (for example, all aromatic carbons have the same parameter values), as opposed to
partial charges, which are often compound specific.

The functional form of the force field follows a general structure, outlined previously (see
eq. 2.12). The OPLS force field does not contain improper dihedrals, since in the original
parametrization scheme the out-of-plane motions were excluded (molecules were restrained
to planar geometries [74]), and torsional potentials are fitted by the Ryckaert-Bellemans
functional form. Values of bonds and angles are obtained from equilibrium geometries,
optimized at the HF level of theory using localized 6-31G* Pople’s split-valence basis set.
The force constants for these potentials are adopted from similar interactions in the AMBER
force field by Kollman and coworkers [76], which in turn are based on experimental data
(i.e. X-ray and vibrational frequencies). Since, originally, geometries of heterocycles were
restrained to a plane, dihedral potentials were not employed as well.

For conjugated molecules, partial charges (and atom types) are difficult to classify due to the
presence of delocalized electron states (π-orbitals), and should be re-calculated individually
for new compounds. In the OPLS force field, partial charges are obtained from fitting the
ground state electron density to the electrostatic potential using CHELPG procedue [77].
Resulting molecular dipole moments are often overestimated due to lack of polarization and
poor performance of point charge in the case of out-of-plane electrostatics in conjugated
molecules. The van der Waals parameters were found to be highly transferable and, therefore,
were adopted from earlier OPLS parametrizations [74] and extended to hetero-interactions
via the ”geometrical“ mixing rules

σij = (σii · σjj)1/2
, εij = (εii · εjj)1/2

, (2.21)
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as oposed to the Lorentz-Bertelot mixing rules

σij = 1
2 (σii + σjj) , εij = (εii · εjj)1/2

, (2.22)

which are used in the above mentioned AMBER force field [76]. Here σii and εii are the
self-interaction van der Waals parameters.

Finally, all non-bonded interactions in the OPLS force field make use of the fudge factor fij
definded as

fij =


0, interactions 1− 2, 1− 3
1
2 , interactions 1− 4

1, interactions 1− n,where n > 4.

(2.23)

This re-scaling is introduced to remove the unphysically high van der Waals repulsion
between the nearest atoms within a molecule, though the 1-4 scaling is arbitrary and force
field specific.

The main focus of the OPLS force field is on interactions between molecules. The intra-
molecular interactions are optimized using single point calculations (at the same level of
theory) using molecule-molecule and molecule-water dimer complexes in vacuum with
lowest energy geometries.

OPLS refinement

It was mentioned previously, that new conjugated compounds require individual force field
development. To this end, one employs the OPLS force field as a reference and follows a
modified parameterization procedure.

The initially used HF method is replaced with a better performing DFT. In it, the B3LYP
density functional is combined with 6-311+G(d,p) basis set to obtain equilibrium geometries
and partial charges. Because CHELPG procedure overestimates charges on heavy atoms, it is
replaced with Merz-Kollman procedure[78], which otherwise produces similar results [79–
81]. Other parameters, like spring constants and transferable van der Waals parameters are
adopted from the original OPLS-AA force field potentials with similar interactions.

Additionally, out-of-plane (improper) and torsional degrees of freedom are re-introduced.
The harmonic approximation is used for stiff improper potentials, as it is done for bond
and angle DOFs. Contrary to impropers, dihedral potentials are sensitive to molecule’s
local electronic structure and symmetry. Especially in conjugated compounds, dihedral
energy profiles may deviate significantly (not only quantitatively, but also qualitatively) from
profiles generated by classical Coulomb and van der Waals interactions. To account for
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this mismatch, one parametrizes the difference between QM and MD potentials along the
reaction coordinate as

∆U(x) = UQM (x)− UMD(x| Ci = 0). (2.24)

Here UQM (x) is the energy profile obtained from ab initio, single point calculations, per-
formed on a relaxed geometry, restrained to the reaction coordinate (x), and UMD(x| Ci = 0)
is a classical potential energy surface under identical conditions in the absence of parametriza-
tion. One example of a reaction coordinate would be a dihedral angle. The remaining
dihedrals, if present, are restrained to one of their equilibrium values. The resulting en-
ergy difference ∆U(x), parametrized in a given functional form, is then added to the MD
potential in order to reproduce the ab initio potential energy surface in MD simulations.
One should note, that some dihedral profiles can be asymmetric and, thus, require a trun-
cated Fourier expansion (eq. 2.14), as compared to simplified and symmetric AMBER and
Ryckaert-Bellemans functional forms.

Force field validation

If parameterized correctly, the force field should reproduce structural and thermodynamic
properties of a system. For example the OPLS force field is capable of producing reasonable
densities and radial distribution functions, as well as heat capacities, free energies of solution
and heats of vaporization of various organic liquids, which are in a good agreement with the
reference experimental data [74, 75]. For proteins, Ramachandran plots of dihedral angles
are used to ensure correct sampling, while in polymer melts, one is interested in the radii of
gyration and persistent lengths.

Though new force fields may not reproduce thermodynamic properties of new compounds
correctly (since parametrization in vacuum excludes solute-solute and solute-solvent effects),
the structural properties, which are dominated by the van der Waals interactions in conju-
gated polymers (i.e. densities, π-stacking and inter-lamellar distances, unit cell parameters
of crystalline polymers), are expected to be well reproduced due to transferability of the
Lennard-Jones parameters of the OPLS force field.

Polarizable force fields

Due to their simplicity, the presented above force fields have two major deficiencies. Local
charge densities are not spherically symmetric, hence, the point charge representation of the
electrostatic potential may not be accurate. Even in cases, where the point charge description
is adequate, the parameterization is valid only in a small region of the phase space, i.e. the
force fields is not transferable. Also, molecule’s electron density is constantly modified by
changes in nuclear degrees of freedom, as well as changes in the environment [82]. The
two issues play an important role in protein-ligand binding [83], charge transfer dynamics
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[84] and more, and can be treated via a number of extensions of the classical point charge
models, though at a cost of higher complexity and longer computational times.

One can introduce the polarization effects to the model through the fluctuating charges,
the Drude oscillators or polarizable multipoles. The first model is the fluctuating charge
model [85, 86], in which partial charges are supplied with masses and treated as additional
degrees of freedom with their own equations of motion. The charges are then allowed
to flow between the molecules until the instantaneous electronegativity is equalized. The
benefit of this approach is that interactions between charges are still described via Coulomb
potentials, which makes it equivalent to the classical force field model. On the other hand,
the model inherits the problem of static charges and cannot treat out-of-plane electrostatics
and polarization.

The second model is the Drude oscillator model [87, 88], where each atom is supplied with
a pair of charges, one of which is fixed at the site. The other charge is attached to the
site with a spring and is mobile, giving rise to induced dipole moments. The two charges
represent a nucleus and a local electron density, their magnitudes remain constant during
simulation runs. The atomic polarizability is then given as α = q2/k, where q is the charge
of a Drude particle and k is the spring constant. The disadvantage of the method comes from
an increased number of coulomb interactions, that need to be evaluated, since evaluation of
non-bonded interactions is the most expensive part of MD simulations.

The third approach involves inducible dipoles added to cites with fixed partial charges [82,
89]. This approach is similar to the Drude model, but interaction types are extended and
include charge-dipole and dipole-dipole interactions, which require additional effort in terms
of implementation and longer computational times.

Another issue is representation of molecules’ permanent electrostatics. The Coulomb interac-
tions between molecules are treated via point charges qi, that are localized at atomic nuclei.
As a result, electrostatics of individual atoms is isotropic. One example, where the models
fails, is force fields of conjugated molecules, with point charges located within the plain
of a molecule and unable to reproduce quadrupole-like electrostatics, originating from the
π-orbitals of these molecules. Other issues include lone pairs, π-clouds and σ-holes [90]. To
introduce a local anisotropy, a better expansion of electron density is required. This can be
achieved, for example, via introducing auxiliary, off-center point charges [91].

A more theoretically robust solution, however, is to employ multipole moments (such as
dipoles and quadrupoles) [82]. Due to lower symmetry, multipoles reproduce all of the
above-mentioned effects and, thus, circumvent the need for auxiliary charges. The AMOEBA
force field [83] is a widely used implementation of this approach and includes static moments
up to quadrupoles and polarizable dipoles, located at atom sites. Further, sites are collected
into groups, which represent molecular fragments. Static moments within the group can
induce moments belonging to other groups, but self-induction is not allowed. In this way,
large molecules can be built from small parametrized fragments, following the force field
modularity principle. Another consequence of the model is capability of atoms to adjust to
their environment, which effectively reduces the number of atom types needed for various
compounds (but does not eliminate them completely). Results, generated with the AMOEBA
force field, are in good agreement with experiments in both gas and liquid phases, including
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binding and solvation energies, static and dynamic properties of small molecules. Such
diversity makes this force field transferable, a result that is impossible for point-charge-based
force fields. The flexibility, as was mentioned previously, comes at a higher computational
cost due to an increased number and complexity of interactions.

The main difference of the method comes from replacement of fixed point charges with
polarizable multipoles up to quadrupole moments, which are parameterized against gas
phase experimental data or high-level quantum chemistry calculations (i.e. electron density
decomposition). The permanent atomic multipoles are described by a vector

Mi =
(
qi, µ

(x)
i , µ

(y)
i , µ

(z)
i , Q

(xx)
i , . . . , Q

(zz)
i , . . .

)
, (2.25)

where qi is a monopole, ~µi is a dipole vector and Q̂i is a quadrupole tensor in cartesian
representation, defined in a local molecular frame at a site i. Tensor Q̂ is traceless: Tr(Q̂) = 0.
The interaction between sites i and j is mediated by the potential U (p)

Coulomb, ij = ~M†i T̂ij
~Mj ,

where label (p) stands for permanent. The T̂ -tensor in this notation is defined as

Tij =


1 ∂xj

∂yj
∂zj

. . .

∂xi
∂xixj

∂xiyj
∂xizj

. . .

∂yi ∂yixj ∂yiyj ∂yizj . . .

∂zi ∂zixj ∂ziyj ∂zizj . . .

. . . . . . . . . . . . . . .


(

1
rij

)
, (2.26)

where ∂xi = ∂
∂xi

is a partial derivative, the total multipole energy is invariant under
permutation of two multipole sites.

Electronic polarizability accounts for a distortion of electron density in the presence of an
external field. Apart from dispersion and repulsion interactions, it is a defining many-body
contribution in clusters and condensed phases. In a polarizable force field, each site can be
supplied with a polarizable multipoles, though in most calculations polarizable dipoles only
are used. The polarization is calculated via the self-consistent Thole’s damped induction
model [92] and employs distributed polarizabilities. In this model, a short-range damping is
applied to avoid a polarization catastrophe due to the usage of unphysical point multipoles,
a known artifact of polarization models. This is done by smearing the interaction moment
with a function

ρ(u) = 3a
4π exp(−au3) (2.27)

where u = rij/(αiαj)1/6, rij is a linear separation, αi is an isotropic atomic polarizability
on site i, a is a dimensionless factor, controls damping strength and is universal (a = 0.39).
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Damping functions for higher multipoles are derived recursively. Finally, the energy due to
induction is given by

U
(i)
Coulomb = −1

2

[
~µ

(i)
d

]†
~E(p) (2.28)

Despite using isotropic atomic polarizabilities, total molecular polarizabilities of small
compounds are normally well reproduced. Yet, larger polarizabilities are used for carbons in
conjugated fragments due to more polarizable π-states, than for carbons in alkyl chains with
much more localized states.

2.2.2 Technical details of MD simulations

Since the purpose of MD simulations is to study dynamics of classical systems, one needs
to know how to propagate such systems, provided various ways to generate such forces
through various force fields. In the following, one reviews such propagation algorithms, as
well as related topics.

Integrators

In MD simulations, time evolution of a system is obtained via integration of N coupled
Newton’s equations of motion of N particles in a simulation box

~Fi = mi
d2~ri
dt2

. (2.29)

Here, ~Fi =
∑
j
~Fij is the force acting on the i-th atom (and calculated from pair-wise

interactions, defined in point-charge force-fields), mi is the mass and ~ri is the instantaneous
position of the i-th atom at time t. Each differential equation requires two initial conditions
at time t = 0: Positions ~r0,i and velocities ~v0,i. For atoms with N > 2, these equations have
no closed analytical solution and must be solved numerically.

To solve equations in this way, they are discretized and propagated with finite-difference
algorithms or integrators. Integrator is an expression that links positions (and velocities)
~ri(t1) of atoms at a time t1 to their values ~ri(t2) at the following time t2, where t2 > t1.
One can obtain a number of integrators using Trotter decomposition, which are stable and
reversible [93]. One of such integrators is the Verlet algorithm [94]. It is one of the oldest
stable integrators, that is regularly used in MD simulations. It can be also obtained from the
Taylor series of the trajectory around two points in time and reads

~ri(t+ ∆t) ≈ 2~ri(t)− ~ri(t−∆t) +
~Fi(t)
mi

∆t2 +O(∆t4). (2.30)
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The last term represents the discretization error of the algorithm. In the case of the Verlet
algorithm it is of the order of ∆t4. Variations of this method include the leapfrog and the
velocity Verlet algorithms, routinely used in MD simulation packages.

The last point should be made about the properties of trajectories, generated with (eq. 2.30)
or similiar schemes. It is known that trajectories generated from MD simulations decorrelate
quickly upon small perturbation of the initial positions (i.e. ~r0,i + δ~ri, ~v0,i + δ~vi ) already
within the first 100 steps of a simulation [61]. This property is known as Lyapunov instability
[95]. However, one is not interested in the trajectories of individual particles, but in the
statistical averages (observables) of the entire system. Because modern integrators are phase
space and energy conserving (or, alternatively, coupled to a thermostat), correct statistics
(i.e. ensemble) and observables can be obtained. In this way, molecular dynamics is a valid
tool for studies of thermodynamic properties of molecular systems.

Constraints

It should be noted that the time-step ∆t defines how far the system can be propagated and
is desired to be as large as possible, as one wishes to have longer trajectories to ensure a
proper sampling. Yet, one cannot set ∆t to an arbitrary large value, as ∆t must capture all
dynamics of the system, including its fastest motions such as bond vibrations occurring on
the femtosecond time-scales. Hence, ∆t must be on the sub-femtosecond scale to reproduce
such motions. In practice, the fastest DOFs typically contribute in an averaged way (see the
time-scale separation of DOFs) and can be constrained to their average values. In the case
of bond vibrations, one typically imposes bond-length restraints, which allow to increase
the time-step by up to one order of magnitude. The LINCS algorithm is often used in MD
simulations for this purpose [96], which solves constrained Newton’s equations of motion

−Md2~r

dt2
+ B†~λ+ ~f = 0, (2.31)

for 3N degrees of freedom, ~r is a generalized positions in the configuration space, M is
the mass matrix, Bij = ∂gi/∂rj is the direction constraint matrix, ~g(~r) = 0 is a set of
rigid constraints, ~λ is the vector of Lagrange multipliers and ~f is the vector of forces. The
algorithm is time reversible and is implemented in a number of MD simulation packages.

Evaluation of non-bonded interactions

Even after shifting the problem from ab initio level to classical mechanics, one still cannot
simulate realistic systems in terms of observed sizes (µm − m) and times (µs - s) due to
limited computational resources. Currently, simulations only begin to approach these scales.
Typical simulated system sizes are, in fact, in nm to µm range, while simulated times are
between ns and µs. Because of this mismatch, one is interested in reliability of simulated
properties, compared to bulk characteristics in real materials. Indeed, interaction at a surface
of the system create finite-size effects, hence the thermodynamic limit is not applicable.
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Also, short simulation times may be insufficient to sample thermodynamic properties and to
observe equilibrium dynamics of a system, so one faces sampling problems as well.

The finite size effects can be substantially reduced via periodic boundary conditions (PBC). In
this approach, the system is surrounded by its replicas. This removes the interface and allows
to simulate properties of an infinite system, that are much closer to real conditions. To ensure
that each particle interacts with other particles only once, a minimal-image convention is
used, which requires to apply cut-off rc < L/2, and L is the smallest box dimension. Even
so, using PBC does not cure the finite-size problem completely. PBC introduces artifacts to
spatial correlations and properties that are related to them, for example those at transition
points. Therefore, one should use sufficiently large box sizes even while using PBC. Another
consequence of this approach is that one needs to evaluate long-range interactions, including
self-interactions between charges and their images.

Because of the pair-wise nature of non-bonded potentials, the evaluation of non-bonded
contributions to the forces scales as O(N2) with number of atoms and is, therefore, the most
time-consuming part of simulations. One applies cut-offs to reduce scaling from quadratic
N2 to linear N . The maximum cut-off value is defined by the half of the smallest box
dimension (minimal image convention), so that no particle can interact with itself. This
works well for the van der Waal interaction, which decays as r−6 and therefore short-ranged.
Electrostatics on the other hand decays as r−1 and noticeable errors come out of truncation.
A proper way to evaluate the electrostatic contributions is to use the Ewald summation
technique.

Ewald summation

To derive the Eewald method [97, 98], one begins with the total interaction energy of a
neutral system with N charged particles

E = 1
4πε0

∑
i>j

qiqj
rij

(2.32)

where qi is the charge of particle i, rij = |~ri − ~rj | is the distance between particles i and j,
1/4πε0 is an electrostatic constant. The computation time of the calculation scales as O(N2)
with the number of particles and is the most expensive part of MD simulations.

The simulation box is described by three vectors ~L1, ~L2 and ~L3, and the volume of the cell
is V =

(
~L1, [~L2 × ~L3]

)
. Therefore, there are infinitely many charges qi located at positions

~rinf, i = ~ri +
∑
α nα~aα, where index α goes through independent directions, α = 1, 2, 3, and

numbers nα are integers. For simplification, one can rewrite vector ~rinf, ij symbolically as
~rinf, ij = ~rij + ~nL, where L is the length of the cubical simulation box. The total Coulomb
energy of an infinite system then takes the form

E = 1
8πε0

∑
~n

N,N∑
i, i 6=j

qiqj
|~rij + ~nL|

, (2.33)
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where self-interactions are excluded only for the central box with ~n = 0. Though this sum is
conditionally convergent, but the rate of convergence depends on a system and a way of
summation. This also results on numerical errors that may lead to different answers. In the
Ewald method, one re-writes the sum in a way, that allows rapid convergence.

The main idea is to split the electrostatic potential of a point charge 1
r into short-range and

long-range components via an error function

erf(x) = 2√
π

∫ x

0
e−t

2
dt (2.34)

and its complementary erfc(x) = 1− erf(x) as

1
r

=
erf( 1

2
√
ηr)

r
+

erfc( 1
2
√
ηr)

r
, (2.35)

and the value of parameter η defines the partition of the space. Within this decomposition,
one can re-write the initial energy expression in three parts

E = EL + ES − Eself . (2.36)

Here EL is the energy due to interactions by means of long-range coulomb potential, ES
is the short-range analogue, which includes the ~n = 0 case, and Eself is a compensating
self-interaction energy, caused by inclusion of ~n = 0 box into the calculation of the ES . This
equality is exact and the three terms are given by

ES = 1
8πε0

∑
~n

N, N∑
i, i 6=j

qiqj
|~rij + ~nL|

erfc
(
|~rij + ~nL|√

2σ

)
(2.37)

EL = 1
2V ε0

∑
~k 6=0

e−σ
2k2/2

k2 |S(~k)|2 (2.38)

Eself = 1
4πε0

1√
2πσ

N∑
i=1

q2
i . (2.39)

Here σ is an adjustable parameter, V is the volume of the system, that is V = L3. Because of
the cut-off function erfc(x), the short-range part of the sum now converges rapidly in the
real space. The long-range part EL, similarly, is summed over the k-vectors of the reciprocal
space, in which this sum converges rapidly as well. Also, a structure factor S(~k) is introduced,
which takes into account the shape of the simulation box. If one considers charged systems
or systems with higher multipoles, additional terms should be included.

2.2 Molecular dynamics simulations 27



The classical Ewald summation method, presented above, with an optimal choice of pa-
rameter σ(N), scales as O(N3/2), which is only a mild improvement in the performance. A
more efficient summation technique is the Particle Mesh Ewald method (PME), where the
reciprocal-space energy contribution is evaluated using discrete Fast-Fourier Transform (FFT)
on a grid. The FFT method, via an appropriate choice grid spacing, allows to reduce the
computational complexity of the Ewald summation from O(N3/2) to a much better N log(N)
scaling. In this form, PME is implemented in various MD packages.

Thermostat and barostat

The propagation of a system using Newton’s equations of motions is equivalent to the NVE
ensemble. However, in reality experiments are performed under conditions of constant
pressure and constant temperature, which correspond to NPT ensemble. For this reason,
equations of motion are coupled to a thermostat and a barostat, in order to reproduce an
intended statistics.

For a thermostat, a velocity rescaling thermostat [99] is often used, which ensures that MD
simulations are performed in a canonical (NVT) ensemble. It is based on the (non-canonical)
Berendsen’s velocity rescaling scheme, which is then corrected by a properly chosen random
variable. In a velocity rescaling scheme, kinetic energy at a new time step is based on its
previous value through

dK = (K̄ −K)dt
τt

+ 2

√
KK̄

Nf

dW
√
τt
, (2.40)

in order to smooth fast fluctuations of K. Here dK is the change of the kinetic energy over
time dt, τt is a time-scale of the thermostat, K̄ is the average kinetic energy at a target
temperature T , Nf is a number of a degrees of freedom in a system and dW is a Wiener
noise. Defined in this way, dynamics of the kinetic energy K leaves a canonical distribution
unchanged and generates a proper NVT ensemble.

Similarly, the pressure is coupled to a system in MD simulations via Berendsen algo-
rithm [100], in which the instantaneous pressure is corrected according to

dP̂ =
( ˆ̄P − P̂

) dt
τp
, (2.41)

where P̂ is a instantaneous pressure value and ˆ̄P is a target reference. In this scheme the
box vectors and particle coordinates are rescaled using a scaling matrix µ̂, defined as

µij = δij −
dt

3τp
βij
(
P̄ij − Pij

)
. (2.42)
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Here β̂ is a diagonal isothermal compressibility tensor of the system (βij = βδij and
β = 4.5 · 10−5 bar−1), τp is a time-scale of the barostat. As it was mentioned earlier, the
resulting ensemble does not exactly reproduce the NPT ensemble, and therefore is only used
during system equilibration or morphology generation runs.

Limitations of molecular dynamics

Regarding computer simulations, there is always a trade-off between the precision and
the system size or the simulation time. An increase of the system size or simulation time
always goes along with a decrease of the accuracy of the model. If further simplifications are
required, one can use coarse-graining (CG), mean field theories and continous models. In
novel simulation techniques, attempts are made to combine simulation methods of varying
accuracy in order to simulate a region of interest at a higher resolution for a longer time,
while treating its enviroment at a lower level of theory [101].

2.3 Static and dynamic characterization of
morphologies

Upon simulation of morphologies with MD, the ordering and the dynamics of a system can
be characterized by a set of order parameters, such as a dynamic order parameter S and a
nematic order parameter Q, which originate from liquid crystal theory [102]. They can be
applied to partially ordered materials, like organic semiconductors, to link their structure
and dynamics to a performance in organic electronics devices. In particular, morphologies
of small molecules [103–106] and polymers (alignment [107, 108] and crystallization
dynamics [106]) can be investigated. In the case of semi-crystalline polymers and molecular
crystals, one can use the paracrystallinity parameter to assess the degree of their ordering in
simulations [107, 108]. These parameters not only reflect the structural properties, but are
also useful to study phase transitions [108]. In the following, these three order parameters
are introduced.

2.3.1 Dynamic order parameter

The dynamic order parameter S reflects a degree of orientational order of molecular frag-
ments in a simulated morphology. For example, one may be interested in the dynamics
of C-H bonds attached to the conjugated core, or C-C bonds in alkyl side-chains. A time
evolution of these bonds is reflected through the parameter S, which is defined as [108]

S =
〈

1
N

N∑
i=1

(
3
2

(
~U (i) · ~u(i)

)2
− 1

2

)〉
. (2.43)

Here, the summation is conducted over N equivalent molecules and represents the ensemble
average, the angular brackets 〈. . . 〉 stand for the time average. The vector ~u(i) is the
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instanteneous orientation of the bond of interest at time t, belonging to the i-th molecule.
It is compared to its time average ~U (i) =

〈
~u(i)〉 via projection. All vectors are typically

measured in the laboratory frame of reference, which is the simulation box, and have to be
normalized, so that |~U (i)| = 1 and |~u(i)| = 1. Time averages are calculated as a sum over the
time frames of the simulated trajectory.

If bonds retain their orientation through time, the instanteneous and the mean orientations
will remain identical: ~U (i) ≈ ~u(i), resulting in the order parameter being close to one,
S ≈ 1. Such a situation is observed in molecular crystals at low temperatures or other
dense self-restrained environments. On the other hand, S = 0 is obtained for uniformly
rotating vectors (in a solid angle 4π), and would be typical for small molecules in the gas
phase. Parameter S is defined in the interval [0, 1] and reflects the time-averaged degree of
orientation order of a system.

It is worth mentioning that S can take negative values as well. This is possible in case of
uniaxial precession for angular values φ > 55◦. Such a motion is typical for CH3 bonds of
the terminal moieties of the alkyl side-chains. This effect has a purely topological origin, and
cannot be observed in case of two-dimensional continuous trajectories.

Often, parameter S is compared to the experimental data obtained from the solid-state NMR
measurements [104]. Though the calculated and measured values are correlated, the two
quantities are not the same. This can be seen from the fact that the experimental value
SNMR can be positive only, while the calculated parameter S can be negative as well. For this
reason a generalized order parameter S is introduced. Physically, it reflects the orientation
decoupling of the two neighboring spins, as it is measured in the NMR experiments. In the
following section, I introduce the generalized order parameter S and show how it can be
calculated from MD trajectories.

2.3.2 Generalized order parameter

In NMR experiments, the spin dynamics is followed through measuring the decoupling of
two precessing spins as a function of time. The result is an autocorrelation function (ACF),
that represents the dynamics of two coupled dipoles, located on two neighboring nuclei, with
a separation comparable to a C-C bond length. The measured generalized order parameter
S is then defined as a long-time limit of the autocorrelation function and is always positive
or zero. The generalized order parameter is sensitive to the local environment and provides
an insight into the dynamics of systems at a semi-atomistic resolution and can be compared
to the atomistic MD simulations. The resolution of NMR measurements decreases, when
several spin pairs have similar environments, and their signals cannot be distinguished. In
this case, the generalized order parameter value becomes a group-averaged quantity.

To extract the generalized order parameter from MD trajectories, we follow the formalism,
developed by Lipari and Szabo [109, 110]. The interaction between a pair of dipoles is
described by the autocorrelation function

C(t) =
〈
D

(2)†
q0 (Ω(τ))D(2)

q0 (Ω(t+ τ))
〉
τ
. (2.44)
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Here, D(2)
nm(Ω) is a Wigner D-matrix, defined for a vector ~u on a unit sphere (|~u| = 1). It

is uniquely defined by its angular coordinate Ω = (θ, φ). The vector ~u is the normalized
displacement vector that connects the two nuclei, ~u = ~rij/|~rij |, measured in the global frame
of reference, i.e. the simulation box. Applying the addition theorem for spherical harmonics,
one can re-write the autocorrelation function in terms of the second Legendre polynomial,
P2(x) = 3/2 · x2 − 1/2:

C(t) = 1
5 〈P2 [~u(τ) · ~u(t+ τ)]〉τ . (2.45)

The scalar product ~u(τ) · ~u(t+ τ) = cos(θt) is the instanteneous orientation of the bond with
respect to a reference time τ . Time averaging 〈. . . 〉τ is conducted over all initial times τ . In
the case of isotropic motions of a molecule as a whole, the total autocorrelation function
rigorously factorizes

C(t) = CW (t) · CI(t). (2.46)

The two factors, CW (t) and CI(t), are the correlation functions of the overall and the internal
molecular motions, respectively. The overall motion of the molecule can be modeled by a
single exponential decay, CW (t) = 1/5 · exp(−t/τW ), where τW is the correlation time of the
global molecular motion. In this case, the internal autocorrelation function simplifies to

CI(t) = 〈P2 [~u(τ) · ~u(t+ τ)]〉τ , (2.47)

which is the expression that is routinely used in MD simulations of biomolecules. The
parameter SLS for an arbitrary bond is then defined as the long-time limit of the derived
autocorrelation function

S2
LS = lim

t→∞
CI(t). (2.48)

The subscript LS stands for Lipari-Szabo method, so one can distinguish it from the dynamic
order parameter S originating from liquid crystal theory, as described previously.

Effect of bond vibrations

In the previous derivations the bond distances were considered to be static. One may wish
to introduce a bond-dependent order parameter SLS ′ defined as

S2
LS
′ =

〈
r−3〉−2 lim

t→∞

〈
P2 [~u(τ) · ~u(τ + t)]
r3(τ) r3(τ + t)

〉
. (2.49)
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Figure 2.3: Vectors used for order parameter calculations: the unit vector ~u along the bond for dynamic
order parameter S, and a norm to the molecule’s conjugated core ~n for calculations of
nematic order parameter Q. Blue circles mark the plain of the conjugated core.

This expression is useful to assess the errors due to bond restraints, which are often used in
MD simulations (such as LINCS algorithm). The effect of the bond vibrations is found to be
insignificant as bonds decorelate fast (fs). These times modify early values of the ACF and
have no significance for the order parameter, calculated as a long-time limit of the ACF. The
original generalized order parameter S2

LS is contained in eq. 2.49 as the limiting case of a
constant distance between the two dipoles.

Practical considerations

In practice, the precision of the autocorrelation function CI(t) is limited by the length of
an MD trajectory. To assess the asymptotic behavior of the data, one can fit a truncated
polynomial or exponential series to the tabulated autocorrelation function as

CI(t) =
N∑
n=0

an exp(−t/τn). (2.50)

In the limit of large times, the generalized order parameter is the zero-order coefficient of
the expansion, that is S2

LS = a0. This approach, however, may result in large numerical
errors due to fluctuations in the plateau region of the autocorrelation function.

An alternative approach is to identify the converged region of the function CI(t) and average
over it. In this way the error bars of calculations are significantly reduced, and the error-
prone fitting can be avoided. The downside of the approach is that long, converged ACFs are
required, which in turn require long production runs. When simulating molecular crystals
the ensemble average leads to an additional error reduction. In cases where the dominant
part of the autocorrelation function is a converged region, one can use the following time
average

S2
LS = 3

2

(〈
u2
x

〉2 +
〈
u2
y

〉2 +
〈
u2
z

〉2 + 2 〈uxuy〉2 + 2 〈uxuz〉2 + 2 〈uyuz〉2
)
− 1

2 . (2.51)
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Here, {ui}, i = 1, 3, are the corresponding projections of the vector ~u onto the simulation
box axes. The results obtained with this expression, are identical to those obtained from tail
averaging, in the case of infinitely long trajectories.

As a general note, it should be pointed out that the simulated dynamic order parameter is
always higher than the value measured in the SS-NMR. The more time passes, the more
conformations are sampled and the lower values of S are observed. Hence, measuring the
order parameter is subjected to sampling problems. It can be seen from (eq. 2.50) that the
value of the order parameter is defined by the largest relaxation times. Due to the finite
size and time of the MD simulations, certain regions of the configuration space are explored
poorly (or not explored at all). Moreover, slow motions are typically associated with larger
molecular fragments, which may be excluded due to the finite size of the simulation box. The
lack of this contribution causes overestimation of the order parameter and underestimation
of the dynamics. To assess the effects of limited simulation times and finite size effects, one
should check the convergence of the autocorrelation function CI(t). In order to do this, a
combination of larger system sizes and longer simulation times must be considered, which is
often not feasible.

Simple models

The generalized order parameter can be interpreted in terms of certain motions. Diffusion of
the vector in a cone with an opening angle θ is a reasonable model for a fast motion of a
C-H bond attached to the backbone or Cn-H bonds grafted on side-chains. In this case the
parameter takes the following functional form

S2
cone =

[
1 + cos(θ)

2 cos(θ)
]2
. (2.52)

For an ideal methyl group with three equivalent C-H bonds, rotating about the stationary
axis, the order parameter for a single CH bond is given by

S2
rot =

[
1
2
(
3 cos(β)2 − 1

)]2
= Srot

2. (2.53)

Here, β is the angle formed by the vector ~u and the symmetry axis. This expression is valid
for any shape of the dihedral potential. Also it is identical to the value obtained from the
liquid crystal order parameter S. For a CH3 group the angle β takes the value of 109.5◦, and
leads to Srot = 0.33.

Another characteristic value is the angle at which the order parameter becomes zero. It is a
well known value in NMR experiments, namely the “magic spinning” angle, β = 54.74◦. If
the axis is diffusing itself, a correction should be made

S2
total = S2

rotS2
axis. (2.54)
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Unfortunately, this factorization is only valid if the two motions are uncorrelated and is
found, for example, in a terminal CH3 group of a side-chain. Due to stiff bonded potentials
between the carbons within the chain, the motions between them are strongly correlated.
The longer the chain becomes, the more complicated motions it exhibits. This can be seen
from a model of a short chain with four repeat units, C1-C2-C3-C4, for which the order
parameter of the terminal bond, C3-C4, is given by

S2
34 = S2

12
[
1− 3

〈
∆ψ2〉 sin2 φ

]
. (2.55)

Its dynamics is influenced by the dynamics of the first bond S2
12 and a stiff dihedral, charac-

terized by the angle ψ with a small angular variance
〈
∆ψ2〉. With a growing complexity of

the analytical models, one has to use the original expressions, such as eq. 2.48, to asses the
order parameter S2. For this reason, the direct interpretation of the motions of the molecular
fragments becomes impossible.

2.3.3 Nematic order parameter

Similarly to the dynamic order parameter, one can define a nematic order parameter Q
which tracks the orientation variation of a molecular ensemble in a simulation box. It is
typically defined as a three-dimensional rank-2 tensor Q̂ with the components

Qαβ =
〈

1
N

N∑
i=1

(
3
2n

(i)
α n

(i)
β −

1
2δαβ

)〉
. (2.56)

Here, ~n is defined as a norm to the plane of the molecule’s conjugated fragment. The value
n

(i)
α is the α-component of the norm vector ~n to the surface of the conjugated fragment.
~n must be a unit vector, |~n| = 1. The symbol δαβ stands for the Kronecker delta and the
angular brackets 〈. . . 〉 denote the time average. A summation is conducted overN equivalent
molecules and gives an ensemble average. Due to time discretization of MD trajectories, a
similar sum is introduced for time-averages as well.

The largest absolute eigenvalue of the matrix Q̂ then defines the scalar nematic order
parameter Q that can take values in the range of [0, 1]. The lowest value Q = 0 depicts the
complete absence of the orientation order at any given time, and Q = 1 represents perfect
alignment of given molecules or their synchronous motion. As a result, intermediate values
of Q correspond to an intermediate degree of orientation disorder in the simulation box.
Since the temperature increase promotes defect formation, the parameter Q decays with
increasing temperature.

Finally, we address the relationship between the two parameters, S and Q. Despite the
observed correlation between two parameters, they are independent. This can be seen from
an example of two toy system trajectories in two dimensions, shown in (fig. 2.4). In the
first case, the molecules are rotating uniformly about their centers of mass. Each molecule
explores all available orientations with time, leading to S = 0. However at any given time
all molecules are all oriented in the same direction, and therefore Q = 1. A completely
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Figure 2.4: Independence of the dynamic and nematic order parameters. The two limiting cases are:
A simultaneous rotation of molecules around their centers of mass, where Q = 1 and
S = 0 (left), and a frozen morphology, in which Q = 0 and S = 1 (right).

opposite situation is observed in the second case, where the morphology is frozen and S = 1.
Yet every molecule has a different direction, and Q = 0 on average. These two examples
are the limiting cases, and intermediate values of Q and S can be adopted independently
as well. The often observed correlation between the two order parameters stems from the
restricted motions due to the local morphological confinement and a similar temperature
dependence.

2.3.4 Paracrystallinity

When working with molecular crystals and semi-crystalline polymers at finite temperature,
one would like to asses the “ideality” of such a crystal. This can be done through the
calculation of a paracrystalline order parameter, ghkl, which is defined as

g2
hkl =

〈
dhkl

2〉
〈dhkl〉2

− 1 (2.57)

Here, indexes (hkl) set the crystallographic direction of interest, dhkl is the distance between
the centers of mass of two molecules or repeat units in polymer chains, projected on the
chosen direction (hkl), the averaging 〈. . . 〉 is a sum over all equivalent molecular pairs in a
neighborlist, and the neighborlist is defined via a cut-off, typically defined to be between
the first two peaks of the distance distribution function p(dhkl). If the first and consecutive
peaks of the p(dhkl) function are not fully separated (i.e. overlapping), the cut-off is applied
at the minimum between the first and the second peak. The typical choice for (hkl) in
semi-crystalline samples of conjugated polymers would be the π-stacking direction, defined
along the direction of the lamellar growth.

If the Gaussian distribution is assumed for the distance distribution (and is indeed often
observed in simulations), one can rewrite the equation simply as

g2
hkl = Var(dhkl)

E(dhkl)2 (2.58)
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where E(dhkl) and Var(dhkl) are the mean and the variance of the first peak of a distance
distribution, thus clearly revealing the meaning of the g2

hkl, which is a mean-normalized
variance of the first peak of a p(dhkl) function. In the case of a perfect crystal at low
temperatures it is close to zero, and increases with temperature due to defect accumulation.

The paracrystalline parameter can be also assessed from peak broadening in scattering experi-
ments, such as XRD. The lower paracrystallinity values, calculated in the MD simulations, are
typically attributed to over-idealized simulated morphologies. In reality, material morpholo-
gies are much more disordered due to polydispersity of polymers, imperfect self-organization,
grain boundaries and more.

2.4 Charge transport simulations

Provided a realistic, compound-specific morphology, one can proceed with simulations of
charge dynamics in it. In the following sections, existing theories and simulation techniques
are presented. A brief overview of charge localization effects is followed by rate-based
approaches to charge dynamics, including Marcus charge transfer theory. The key ingredients
of Marcus theory are discussed, as well as the ways to simulate them. Finally, an equation of
motion for charges, known as Pauli’s Master equation and ways to solve it, such as Kinetic
Monte Carlo, are discussed. The resulting KMC trajectories can then be used to calculate
observables, in particular the mobility µ, which is an important macroscopic parameter for a
solar cell performance.

2.4.1 Role of localization

At the beginning, it is useful to understand the difference between a crystalline (such as
silicon) and an amorphous semiconductor in terms of energy states. Solids are well described
by a model of an ideal crystal at low temperatures. It is characterized by highly delocalized
states, high electronic coupling elements (J > 1 eV), and consequently a coherent transport,
with high transport coefficients, like mobility µ or conductivity σ. This type of transport
is known as band transport and is qualitatively described by the Drude-Lorentz model.
Introducing impurities and phonons (high temperatures) leads to an effective localization
of the states (an effect known as Anderson localization [111, 112]) and a decrease of the
transfer integrals, which in turn decreases the corresponding transport coefficients.

On the other hand, in organic semiconductors energy states are naturally localized. This often
results in rough energy landscapes and small transfer integrals J < 10−1 eV. In systems with
such properties, charges exhibit a hopping-like transport, slowed down by small couplings
and broad energy distributions, with mobilities typically varying in the range 10−9 − 10−2

cm2/Vs. To overcome the problem of small transfer integrals and rough energetics, novel
materials with large conjugated cores are investigated. The notable example is the polymer
semiconductor PCDTPT [113], holding the hole mobility record of 23.7 cm2/Vs for organic
light emitting diode (OLED) devices. In the following, the key ideas of the hopping transport
are presented.
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2.4.2 Time-scale separation in molecular systems

Though the coupling between the electronic and nuclear degrees of freedom is strong in
organic semiconductors, one assumes the following ladder of time-scales, τer << τct << τnr,
according to which the charge transport times τct are much faster than the nuclear relaxation
times τnr, and yet much slower than the polarization time τer of the electronic degrees of
freedom in the environment. For this reason, a frozen morphology approximation is often
used, and the charge dynamics depends only on the electronic density of states and the
probabilities to hop between two molecules in a sample. This set of assumptions is often
used to simulate charge transfer in small molecules [114] and polymer semiconductors [107,
108], and produces simulated mobilities in good agreement with experimental data.

2.4.3 Marcus rates

To obtain the charge dynamics one should solve the time-dependent Schödinger equation.
Though this can be done, this approach is impractical and a simpler, rate-based approach is
adopted. In it, the information about the system is represented by a directed graph and the
transition probabilities between the nodes of this graph. One can impose rates on the basis
of generic physical ideas.

An example is the correlated Gaussian disorder model (CGDM) [115], where site energies
are distributed normally and spatially correlated. An important result is that within the
model, one can correlated the energetic disorder σ to the randomly-oriented dipole moment
of a molecule ~p, i.e.

σ = 2.35 qp
εa2 , (2.59)

where ε is the dielectric constant and q is the electric charge of the charged site. Hence,
compounds with larger dipole moments should exhibit higher energetic disorder. It also
links carrier mobility µ to an external field F as µ ∼ exp(α

√
F ), where α is a dimensional

prefactor. This is known as the Poole-Frenkel behavior and is often observed in organic
semiconductors. If one also considers a finite charge density in the system, (an extended
Gaussian disorder model [116] ), one obtains a dependence of mobility on the energetic
disorder

µ ∼ exp(−Cσ̂2). (2.60)

It states that higher energetic disorder reduces the mobility in the system. However, these are
lattice models and they do not establish a link to the chemical structure. Models’ parameters
must be parameterized from simulations or experiments.

Alternatively, one can derive the Marcus rate, an expression based on the molecule’s atomic
structure, i.e. linked to its electronic structure and environment. Introducing such details,
however, comes at a price of substantially larger simulation times.
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In classical charge transfer theory, one can derive the Marcus rate [117, 118]: The high-
temperature limit where all vibrational modes of molecules are treated classically. To derive
an expression for the rate, one begins with the Fermi’s Golden rule, where a state 0 is
coupled to the manifold of states α. The rate of transition to the manifold is then (for small
couplings)

k = 2π
~
∑
α

|J0,α|2δ(E0 − Eβ). (2.61)

Here, V0,α are interstate couplings and Eα are energy levels. If there are only two levels A
and B, coupled to the classical thermal bath, one can write the rate [119] as

kij = 2π
~

∫
dq f(q)|Jij |2δ(Ui(q)− Uj(q)), (2.62)

where Ui,j(q) is the potential energy surface (PES) of donor/acceptor states, q is a set of
coordinates, f(q) ∼ exp(−Ui(q)) is a distribution of configurations. If there is only one
“reaction” coordinate q and the PES Ui,j(q) are treated as parabolas, one can evaluate the
integral analytically and arrive at the Marcus rate expression

kij = 2π
~

J2
ij√

4πλijkBT
exp

[
− (∆Eij − λij)2

4λijkBT

]
. (2.63)

Here, ωij is a rate (probability per unit time) for a charge to hop from site i to site j,
and a site represents a small molecule or a polymer chain fragment. Parameter Jij is the
electronic coupling between two localized monomer states, λij is the reorganization energy
due to a charge transfer event and ∆Eij is the difference between the charge energies in
the initial and final states, ~ is the reduced Planck constant, kBT is a thermal energy. These
parameters are sensitive to the local and global ordering of organic compounds, and so
atomistic morphology is an important ingredient shaping other parameters considerably.

As a side note, it should be mentioned that in addition to the classical Marcus rates, one can
derive the semi-classical Jortner-Bixon [120, 121] or the quantum-tunneling Weiss-Dorsey
[122–124] rates. The Marcus and Jortner-Bixon rates were compared previously and, though
the two rates have notably different behavior in the inverted region, they produce similar
rates and mobilities, since sufficiently large energy differences are never obtained. The
Weiss-Dorsey rates are expected to deviate from those of Marcus at low temperatures, where
nuclear tunneling is the dominant hopping mechanism. In the following, the Marcus rate
expression will be used for charge transport simulations. Ways to derive its parameters are
discussed in the following sections.
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Figure 2.5: Potential energy surface, corresponding to a donor (a) and acceptor (b) molecules in
charged and neutral states. The charge transfer dynamics takes place on two time scales:
First the charge transfer between the two molecules occurs, and then nuclear degrees
of freedom rearrange in the presence of a new potential. In a classical picture, the total
internal reorganization energy is a sum of the corresponding energies on donor and
acceptor molecules: λij = λ

(cn)
i + λ

(nc)
j . The difference between the minima is the

internal driving force: ∆Eij = ∆Ui −∆Uj . Reprint from VOTCA manual [84, 125].

Reorganization energy

The first parameter required for the Marcus rate is the reorganization energy λ. It represents
a response of the environment and the molecule in both nuclear and electronic degrees of
freedom due to charge transfer. One can assume an additivity of the reorganization energy
and factorize it into the internal and external components. The internal, the intramolecular
reorganization energy, arises from the spatial adjustments of the nuclei and the core electrons
in a dimer, where the charge transfer takes place. In a harmonic approximation, it can be
calculated from four points of monomer geometries and charge states, which can be obtained
for example from DFT calculations of the reaction’s free energy profile as [107, 108, 126]

λ
(int)
ij = λ

(cn)
i + λ

(nc)
j =

(
UnCi − UnNi

)
+
(
U cNj − U cCj

)
. (2.64)

Here, UaAi is the total energy of the i-th molecule in the state a and in the geometry A, λ(cn)

is the discharge energy of the first molecule (donor) and λ(nc) is the charging energy of
the second molecule (acceptor) [115], as shown in fig. 2.5. The variance of the internal
reorganization energies is typically much smaller compared to the energetic disorder and is
often assumed to be constant for all molecules in a sample.

The external reorganization energy is a response of the surrounding molecules to a charge
transfer and includes changes in the nuclear and electronic degrees of freedom. The
electronic response can be accurately described by the polarizable force field applied to
a frozen morphology [127]. The energy contributions due to the polarization effects will
be treated in a separate section 2.4.3. The changes in the nuclear degrees of freedom are
typically neglected due to frozen morphology approximation.
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Figure 2.6: The scans of the transfer integrals |J |2 as a function of rotation angle of the conju-
gated fragment BTZ and its derivatives. Depending on the local mutual orientation in
a morphology, the transfer integrals typically vary on a logarithmic scale (i.e. by orders
of magnitude) due to the nodal structure of the wave function, characteristic for the
conjugated molecules.

Transfer integrals

The second component of the Marcus rate is the square of the transfer integral |J |, which is
also known as an electronic coupling, and is defined as

Jij = 〈φ(i)| Ĥ |φ(j)〉 . (2.65)

Here |φ(i)〉 is a diabatic state localized on a molecule i and Ĥ is the Hamiltonian of a
molecular dimer. In case of a hole transport, the state |φ(i)〉 is the highest occupied molecular
orbital of a monomer (HOMO), while for the electron transport it is the lowest unoccupied
molecular orbital (LUMO) within a frozen-core approximation.

It is characteristic for electronic couplings to depend strongly on the mutual orientation
of two molecules that form a dimer. As an example, Figure 2.6 shows transfer integrals
calculated as a function of angle ψ between two BTZ molecules in co-facial geometry, sepa-
rated by d = 0.37 nm. Depending on the mutual orientation, an order of magnitude changes
in values of |J |2 are observed. Also, small changes in chemistry (fluorination of BTZ once
and twice) notably modify the transfer integral values. For this reason, one must calculate
couplings for each pair individually. Simulated morphologies often contain thousands of
large conjugated molecules in the simulated trajectory. Therefore, the computation cost
of transfer integral evaluation grows linearly with the number of molecules (provided the
cut-off scheme is used to generate the neighbor list), as well as the number of atoms in them.
There are several ways to calculate charge transfer integrals at various levels of theory.
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Semi-empirical methods

Because integral calculations are time consuming, one can use parameterized models to
speed up these calcultaions. These models are ofted referred to as semi-empirical methods.
A common choice for fast integral evaluation is the ZINDO method. ZINDO (Zerner’s
Intermediate Neglect of Differential Overlap) [128, 129] is a variation of the CNDO and
INDO methods developed in a series of papers by Pople et al. [130–134]. It is available
in two variations: ZINDO/1, which was designed to perform geometry optimizations, and
ZINDO/S, designed to study optical transitions. ZINDO/S is parametrized on a series of first
principles calculations and can be used to estimate the overlap integrals in molecular dimers.
Though the method is less accurate, one requires only a single monomer calculation in a
vacuum. The resulting orbitals can be used to obtain overlap integrals for all dimers in the
system by means of unitary transformations [135]. This makes the method extremely fast
and suitable for charge transport simulations in large organic morphologies [107, 108, 136,
137]. On top of the accuracy issues, the method is parametrized only for a limited number
of elements (first and second rows of the periodic table), and becomes inapplicable when
materials contain heavier elements like silicon, germanium or metals, which are often used
for substitution of the lighter atoms in order to vary some properties, like level alignment
and bandgap, while preserving other properties, such as morphology and solubility. To
study these materials, one should use more accurate, but computationally more expensive
methods, such as DFT.

Projection of monomer orbitals

In the absence of well parametrized semi-empirical methods, such as ZINDO, one calculates
the transfer integrals Jij using the DFT method by projecting the monomer frontier orbitals
onto the dimer Hamiltonian [138]. In this method the dimer Hamiltonian Ĥ and the overlap
matrix S take the following form

Jij = ~λ†(i)SDED
†S†~λ(j) (2.66)

Sij = ~λ†(i)SDD
†S†~λ(j) (2.67)

In these matrix equations ~λ(i) is an expansion coefficient of the monomer’s state i in a
given atomic basis set, S is the overlap matrix of the atomic basis functions, D contains the
expansion coefficients of the dimer states, and E is the diagonalized dimer Hamiltonian.
Solving the generalized eigenvalue problem (Ĥ − ÊŜ)~C = 0, using for example the Löwdin
transformation [50], one can obtain the desired transfer integrals in the basis of the localized
monomer states. It should be noted that the method can be used not only with DFT, but
with any wave-function-based method.

In this approach, for each molecular pair one needs to perform two monomer and one dimer
calculation, which are costly. Considering the typical scaling of the DFT method, which is
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O(N3), the computation time of transfer integral evaluations scales as (2 + 23)M ×O(N3),
where N is the number of monomer orbitals, and M is the number of molecular pairs in the
trajectory.

Preserving the generality of the method, one may consider to parametrize a semi-empirical
model, such as ZINDO [129], self-consistent tight-binding method SCC-DFTB [139], or a
heuristic model, such as machine learning (a similar approach for multipoles discussed in
[140]). In this case, only a fraction of the high-level calculations is needed, in order to
generate a training set. Still, each new compound requires an individual parametrization.

Site energy differences

The third component of the Marcus rate is the site energy difference ∆Eij , which drives the
charge transfer reaction. One can evaluate these energies in a perturbative way [141]

∆Eij = ∆E(vac)
ij + ∆E(el)

ij + ∆E(pol)
ij + ∆E(ext)

ij . (2.68)

Here ∆E(vac)
ij is the energy difference of an isolated molecule in the neutral and charged

states (ionization potential I for holes and electron affinity A for electrons), ∆E(el)
ij is the

contribution that originates from the electrostatic interactions between the molecules, and
∆E(pol)

ij is the stabilization energy due to the polarization effects. In case of an applied

electric field, the corresponding term ∆E(ext)
ij must be added. Combined with Ewald sum-

mation techniques, this approach allows to predict correct energetics at the organic/organic
interfaces and, hence, Voc values [127].

Internal energy differences

The internal energy difference of a molecular dimer in a vacuum can be written as

∆E(vac)
ij =

(
U cCi − UnNi

)
−
(
U cCj − UnNj

)
(2.69)

where UaAi is the total energy of the i-th molecule in the state a and in the geometry A, state
cC corresponds to a charged molecule in the charged geometry and the nN to the neutral
molecule in the neutral geometry. For a single-component morphology, this term cancels out,
∆E(vac)

ij = 0, but for multi-component systems it produces a non-zero value.
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Electrostatic interactions

The electrostatic interaction between the two molecules (A and B) can be expressed in
terms of multipoles, located at the nuclei positions, and derived from the calculated electron
density of the molecules. The interaction term becomes

∆E(el)
AB =

A∑
a=1

B∑
b=1

Qapq · T abpqrs ·Qbrs (2.70)

In this expression, Qapq is a spherical multipole moment located on the molecule A, and
T abpqrs is the multipole interaction tensor, that generates interaction for a pair of molecules
A and B. Einstein’s summation is performed over the indexes p, q, r and s. This energy
corresponds to a first-order perturbation to the molecule’s energy. One can obtain the
expansion coefficients Qapq from the distributed multipole analysis (DMA) of electron density
[141]. Alternatively, one can fit molecule’s total electron density to obtain partial charges
only (zero-order multipoles), for example using the Merz-Kollmann method [142, 143].
Though the DMA method as a unique expansion is more robust, the two methods give similar
results, hence, electron density fitting is often preferred for simplicity.

Induction effects

The third term in the site-energy expansion is the effect of the induction in the surrounding
molecules on a molecular dimer, which hosts the charge transfer reaction. The energy
correction due to the induction is always positive (and therefore stabilizes charges), and can
be written in a symmetric form

U
(pol)
AB = 1

2

A∑
a=1

B∑
b=1, b>a

[
∆Qat T abtuQbu + ∆QbtT abtuQau

]
(2.71)

Here Qau is a permanent and ∆Qat is an induced dipole, located on the molecule A and T abtu is
the dipole-mediating interaction tensor. The induced multipole values are obtained through
solving (eq. 2.71) self-consistently with the equation for the induced dipoles

∆Qat = −
A∑
a=1

B∑
b=1

′ αaa
′

tt′ T
ab
tu (Qbu + ∆Qbu). (2.72)

Here αaa
′

tt′ is the polarizability tensor, which is derived from the semi-empirical Thole
model [92, 144] in a local dipole approximation, in which αaa

′

tt′ = αaatt for polarizabilities
located on a molecule A, and zero otherwise. Prime in the second sum implies a 6= b. A direct
implementation of the Thole method, however, leads to so called polarization catastrophe.
This stems from an attempt to reproduce a continuous electron density with a discrete
model, and is resolved by introducing smearing of the charge distributions. Following the
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implementation of the AMOEBA [145] force field, the smearing of the discretized electron
density is done via an exponential prefactor

f(u) = 3a
4π exp(−au3). (2.73)

Here u = R/(αaαb)1/6 is a dimensionless distance between the two polar sites, located on
the nuclei, αa is the isotropic atomic polarizability, and the value a = 0.39 has been shown
to give an optimal performance of the model. In case of strongly anisotropic molecules, such
as oligomers or polymer chains, one needs to rescale the polarizable volume of the molecule,
V ∼ Det|α̂|, to reproduce the corresponding volume from first-principles calculations, where
α̂ is the molecule’s polarizability tensor.

2.4.4 Master equation

The dynamics of a charge can be described by a Master equation [114]. This is a memory-free
approach, meaning that each new hopping event of the charge is independent of its previous
history. The equation is

∂Pα(t)
∂t

=
∑
β

[PβΩβα − PαΩαβ ] . (2.74)

Here Pα(t) is the probability of the system to be in a state α, Ωβα is a transition probability
for a system to arrive to the state α from an a state β, and vice versa. The dynamics of the
states is defined through a competition between transitions to and from each state. The
components Ωαβ form a transition matrix Ω̂.

One can rewrite this equation from state- to site-based picture. This is possible in the case of
a single carrier dynamics, for which states {α} can be replaced with an equivalent occupation
number formalism based on the set of site-based states {i}, since there is a unique map
αi = (0, . . . , 1i, 0, . . . , 0). Within this formalism, one can write the Master equation as

∂pi
∂t

=
∑
j

pjωji −
∑
j

piωij (2.75)

This equation is similar to the initial Master equation, and represents the dynamics of a
single carrier in terms of the site occupation probabilities pi, where i is the site’s index, and
ω̂ is the transition matrix, which defines the hopping rates between the individual sites. In
the case of multiple carriers, one needs to exclude double occupation of the same site due to
the Pauli exclusion principle, which makes the corresponding Master equation non-linear.
The Master equation, as in eq. 2.75, is a first order linear differential equation of the form
~̇p = A~p with an analytical solution

~p(t) = eAt ~p(0). (2.76)
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Here ~p(0) is the initial state of the system at time t = 0. It can be solved using linear
algebra methods. However, there are several limitations to this approach. For systems of
interest, which may contain thousands of molecules, the transition matrix Ω̂ becomes large
and difficult to diagonalize directly. Also, adding more carriers or carrier types leads to a
non-linear equation that does not have a closed form analytical solution.

These issues can be resolved by using the kinetic Monte Carlo (KMC) technique [146–
148]. In it, the hopping between two sites is attempted with a time τ , which is defined as
τ = − ln(r1)/a, here r1 is a random number drawn from the uniform distribution in the unit
interval. The result is simulated trajectory, that converges to a true Master equation solution
for infinitely long times. The method can capture stationary and transient solutions and
allows a straightforward extension to multiple carriers and carrier types. In particular, in the
VOTCA simulation package, a combined variable step size (VSSM) [114] is implemented.

2.4.5 Mobility as an observable

Based on the trajectories obtained from the charge dynamics simulations using the KMC
method, one can evaluate an ensemble average of an observable Â with eigenstates Aα as

〈A〉 (t) = 1
s

∑
α

Aαsα(t). (2.77)

Here sα is the number of Markov states that ended up in a state α after time t, normalized by
the total number of trials, s. The values must be taken after the equilibration time teq, since
before this time charges are in the kinetic regime (also known as a sub-diffusion regime, in
which x(t) ∼ t). Though ergodicity is assumed, it is often not fulfilled in simulations, for
example for ideal π-stacks of conjugated polymers.

It was noted in the introduction that the efficiency of the device strongly depends on the
mobility of the charges in the constituent materials. One can calculate the mobility tensor
directly from the KMC trajectories since 〈~v〉 = µ̂ ~F , where 〈~v〉 = ∆~r/∆t and ∆~r is the charge
displacement vector, which corresponds to the simulation time ∆t. In practice, individual
components of the tensor µ̂ can be calculated by applying an electric field in orthogonal
directions, which is followed by the averaging over S equivalent KMC simulations

µαβ = 1
S

S∑
s=1

v
(i)
α Fβ
F 2 , (2.78)

With this, the list of required methods and techniques is complete. In the following chapters,
the outlined computational methods are used to investigate properties of polymer semicon-
ductors: Quantum calculations are used to introduce molecule’s chemistry, electrostatics. It
is also used to build a classical Hamiltonian of the system, the force field, which is then used
to generate atomistic morphologies of a material. Though morphologies pose interest on
their own, they can also be used to study charge dynamics, when combined with Marcus
charge transfer theory.
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3PCPDTBT derivatives:
morphology and electronic
properties

A number of conjugated semi-crystalline polymers has been successfully used as a hole-
conducting material for solar cell’s active layer, yielding record device efficiencies [10, 19,
21, 149]. This is due to favorable properties of these compounds: Low band gap values
for efficient light absorption and suitable lamellar structures with high hole mobilities.
Combined with flexibility, transparency and large-area production techniques, conjugated
polymers are suitable materials for organic electronics applications. However, a complex
structure of conjugated polymers polymers results in a variety of possible morphologies:
Crystalline and disordered. And because charge transport is strongly influenced by these
morphologies, identifying and controlling local and global packing of polymers is of great
importance for creating efficient OPV devices.

PCPDTBT and its derivatives are such donor-acceptor polymers [150]. In the following, local
packing, electronic and transport properties of PCPDTBT derivatives will be addressed via
multiscale simulations. It will be shown that their crystalline structures go beyond the often
considered π-stacking. Also, more then one π-stack packing is possible for these polymers.
Another feature of PCPDTBT family is the presence of branched ethyl-hexyl side-chains,
which are added to improve polymer’s solubility. The disordered structure of side-chains
and the electrostatics of donor units, however, cause high energetic disorder and prohibit an
efficient hole transport in the lamellae.

3.1 Chemical structures

Poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta [2,1-b;3,4-b‘]dithiophene)-alt-4,7(2,1,3- ben-
zothiadiazole)], (also known as PCPDTBT)[41, 150, 151] are studied (fig. 3.1) is one of
the first donor-acceptor hole-conducting polymers, presented as early as in 2006 by Brabec
et al. It exhibits a low band gap (Eg = 1.46 eV) due to its DA architecture and high
mobilities (up to 2 · 10−2 cm2/Vs) due to ability to form lamellar structures, resulting in
solar cell efficiencies up to 5.5 %. The backbone contains cyclopentadithiophene (CPD) and
2,1,3-Benzothiadiazole (BTZ) units, where CPD unit is functionalized with two branched
2-ethyl-hexyl side-chains (ALK) for solubility (fig. 3.1).

Aiming at further improvements of solar cells, the chemical structure of PCPDTBT was
systematically altered via chemical substitution. As a result, a family of derivatives P−X was
created, where the symbol X defines the substituted atoms (fig. 3.2). In the first series, the
bridging carbon of CDT (donor) unit is replaced by its heavy atom analogues Si and Ge,
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X = C, Si, Ge
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R = 

CPD

BTZ
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Figure 3.1: Chemical structure of P−X repeat unit and introduced residue names.

forming a sequence P−C→ P−Si→ P−Ge, while the BTZ (acceptor) unit is saturated with
hydrogens and is the same for all three polymers. In the second series, one systematically
varies the BTZ unit via fluorinaion in a sequence P−C→ P−1F→ P−2F, while CPD unit is
identical for three compounds, and contains carbon (fig. 3.2). In both derivative families,
an improved solar efficiency is observed (up to 6.5 %), which is attributed to an improved
morphologies [152–166], reduced band gap [21, 150–152, 154, 162, 164, 166–169] and
altered mobilities [21, 41, 150, 152, 154, 156, 164–166, 168, 170, 171].

Within this setup and collected experimental data, I want to use a number of simulation
techniques in a bottom-up scheme to address the following questions: How does the
P−X chemistry give rise to its morphology? What is the charge transport and related
properties in these morphologies? How do the substitution trends manifest themselves
through morphology and charge transport?

In the following sections, accurate MD force fields are re-parameterized from first-principles
calculations. They are verified through simulations of various crystals (polymorphs) of P−X
polymers, which are observed experimentally. As a result, key parameters, contributing to
crystal formation, are identified. The lamellar structures are then used to simulate charge
energetics, couplings and hopping mobilities, which are then compared to experimental
data.
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Figure 3.2: Five variations of PCPDTBT polymer and their labels.
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3.2 Force field parameterization
Before one proceeds with simulations of atomistic morphologies, one needs a force field.
In the case of new compounds such force fields do not exist and need to be developed (i.e.
designed and parameterized). In order to simplify the procedure, one can adopt an existing
force field and re-parameterize only a small number of relevant parameters. Often, they
are partial charges and soft degrees of freedom (DOFs), such as dihedral potentials. In
case of P−X polymers, new force fields are based on OPLS-AA, which provides functional
forms of interactions and parameters for them, tuned to organic liquid simulations. In
the following, the GROMACS 4.6.7 simulation package [172, 173] is used for a force
field re-parameterization, as well as subsequent morphology simulations. First-principles
calculations are performed in the Gaussian G09 simulation package [174].

To develop force fields for P−X polymers, their structure is subdivided into three units (i.e.
residues). The two of them are BTZ and CPD (fig. 3.1), which comprise the backbone.
Each has three variations due to chemical substitutions. Further, each CPD unit is grafted
with two branched 2-ethyl-hexyl side-chains, which are described with a third residue, ALK.
To simplify parameterization, a local mirror symmetry of CPD and BTZ units is employed
via introduced symmetrized atom types (see fig. 3.3, a, fig. 3.4, a). The parameterization
procedure was described previously, in Section 2.2.1.

Atom type Si/Ge Cα S N H F CA HA
σ [nm] 0.4100 0.3550 0.3550 0.3250 0.2420 0.2850 0.3500 0.2500

ε [kJ/mol] 0.5000 0.2929 1.0460 0.7113 0.1255 0.2552 0.2761 0.1255

Table 3.1: Lennard-Jones parameters adopted from OPLS-AA force field: Si - F for conjugated frag-
ments and CA, HA for alkyl chains. Values for Si, Ge are obtained from CCSD calculations
of small molecules.

Equilibrium geometries for P−X tetramers with truncated side-chains (R = C2H5 groups)
are calculated at B3LYP/6-311g(d,p) level of theory and introduced into force fields. In
the OPLS-AA force field, the Ryckaert-Bellemans functional form (eq. 2.16) is employed to
describe torsional potentials. For P−X side-chains, this potential is insufficient for accurate
parameterizations, because not one, but two side-chains are attached to the bridging atom
X (see fig. 3.1). This results in a change of hybridization from SP2 to SP3 and in a shift of
the potential’s symmetry axis away from φ = 0. This problem can be solved in two ways:
Either to introduce the dummy atoms or to change the functional form of the potential to
the one, which allows an arbitrary potential centering and form. Taking into account the
molecules’ structural complexity, the latter approach is adopted. For torsional potentials,
Fourier expansions with an arbitrary cut-off (eq. 2.14) are employed to capture complex
energy landscapes of the polymers.

Bonded potentials are complemented by the non-bonded interactions. One part of the non-
bonded parameters, the Lennard-Jones constants, are adopted from the OPLS-AA force field.
A complete list of van der Waals constants is given in (tab. 3.1) in two groups: Conjugated
atom types (Si - F) and alkyl side-chain atom types (CA - HA), atoms Cα represent all carbons
in a backbone. Further more, the OPLS-AA force field does not contain parameters for atoms
Si and Ge. Their values are fitted from distance-dependent energy profiles, calculated for
small molecules (modified thiophenes) with CCSD/6-311+g(d,p) method in the co-facial
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geometry. One could not fit the Lennard-Jones potential into the energy curves and obtain
the corresponding parameters for Ge. Hence, parameters for Ge are set to Si values. This
is a reasonable assumption, since atoms X in the bridging position exhibit mostly bonded
interactions (with CPD unit and two alkyl side-chains), while the nearest non-bonded site
in the π-stack is more than 0.7 nm away, where the van der Waals interactions are small,
and is a consequence of alternating packing of P−X chains (see the morphology section 3.3).
Electron densities, obtained from geometry optimizations, were used to fit partial charges.
The missing first-shell element radius for Ge is set to 1.6 Å. For alkyl branched side-chains,
bonded and non-bonded parameters are completely adopted from OPLS-AA force field.

3.2.1 Force field refinement

As was stated above, new potentials introduced into the P−X force fields need to be parame-
terized. These include inter-ring improper potentials and residue binding dihedral potentials.
Additionally, DOFs related to substituted atoms X = C, Si, Ge (i.e. angles and impropers) are
also re-parameterized.

Following the original parameterization scheme of OPLS-AA (and to reduce the computa-
tional time) a “divide and conquer” approach is used. In it, potentials are parameterized on
small molecular fragments and then transferred into force fields of polymer chains. However,
some potentials (connections between residues) are defined by the delocalized electron
states. These potentials are optimized directly from whole-chain (tetramer) calculations.

The refinement scheme was described in Section 2.2.1. For the key degrees of freedom,
QM and MD scans are performed, where MD potentials of interest are set to zero. At both
levels of theory, potentials are restrained to a given DOF value, while the rest of the system
is allowed to relax. The difference between two potentials is then fitted with a desired
functional form and is introduced into the MD force field

∆U(q) = UQM (q)− UMD(q|Cα = 0). (3.1)

Here, q is an angle in angular, improper and proper potentials of P−X polymers. Fitting
parameters Cα are defined by the functional form of a potential. In harmonic potentials the
difference is fitted with a parabola ∆U(q) = kq

2 (q − q0)2, where kq is a spring constant and
q0 is an equilibrium value of the DOF. For dihedral potentials, the truncated Fourier series
(eq. 2.14) is used, which contains Cn and φ0,n fitting parameters. The scans are performed on
CPD-X molecules with C2H5 side-chains and BTZ-Y molecules (all saturated with hydrogens;
X = C, Si, Ge; Y = H/H, H/F, F/F). For each molecule a custom force field is prepared to
perform the MD scan, while first-principles scans are performed at B3LYP/6-311+g(d,p)
level of theory. For small molecular fragments, CPD and BTZ, harmonic potentials are shown
in (fig. 3.5) and torsional potentials of side-chains are shown in (fig. 3.6).

Torsional potentials, connecting the residues are scanned on tetramer chains with B3LYP/6-
311g(d,p) and fitted with an truncated Fourier series as well. During the scan, the soft
dihedral potentials at equivalent positions are restrained to their equilibrium values. Ob-
tained potentials are shown in (fig. 3.7). Fitted parameters are listed in (fig. 3.3, fig. 3.4) and
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(a) (b) (c) (d) (e) (f)
n φ0,n Cn φ0,n Cn φ0,n Cn φ0,n Cn φ0,n Cn φ0,n Cn
1 55.64 -3.64 50.87 -1.28 48.98 -1.39 61.83 7.70 61.53 2.91 62.59 2.35
2 131.2 -0.51 109.3 -0.22 101.03 -0.21 126.4 -0.58 106.9 -0.31 118.2 -0.18
3 -13.59 6.57 -26.31 3.46 -390.7 2.21 8.98 3.67 7.43 3.29 6.27 3.25
4 26.10 -0.53 -16.24 -0.03 20.82 0.06 97.36 0.41 13.32 -0.06 31.02 -0.08
5 19.75 0.06 71.62 0.07 72.73 0.06 128.3 -0.40 133.0 0.15 136.3 0.51
6 1.13 0.12 -45.02 0.12 127.9 -0.06 23.32 0.29 14.26 0.21 1.12 0.12

Table 3.2: Fitted parameters for torsional potentials, connecting CPT unit and side-chains: (a) CC-
CB-CA-CA, (b) CC-Si-CA-CA, (c) CC-Ge-CA-CA, (e) CB-CA-CA-CA, (f) Si-CA-CA-CA, (g)
Ge-CA-CA-CA. See complementary plots in (fig. 3.6). Angles φ0,n are given in [deg],
constants Cn in [kJ/mol].

(a) (b) (c) (d) (e)
n φ0,n Cn φ0,n Cn φ0,n Cn φ0,n Cn φ0,n Cn
1 0.03 -10.1 -0.16 -3.43 -0.20 -5.15 -0.05 -10.97 0.08 -11.44
2 0.05 -14.6 -0.17 -11.84 -0.05 -14.91 0.01 -13.69 -0.19 -13.69
3 1.72 -0.73 -5.36 -0.37 -180.9 1.03 0.36 -0.75 -0.19 -0.95
4 -0.15 1.32 -0.11 0.58 -12.16 0.18 -0.77 1.42 -2.37 1.40
5 -0.82 0.09 63.69 -0.04 41.98 -0.11 -9.91 0.07 -0.81 0.17
6 -8.36 -0.16 11.12 -0.12 -19.49 0.03 -15.03 -0.13 -190.2 0.10
7 8.12 -0.20 -37.33 -0.03 25.86 -0.10 -14.83 -0.16 -7.80 -0.16
8 -9.62 0.05 -35.10 0.11 -64.38 0.11 -1.58 0.11 10.33 0.11
9 -76.07 -0.05 -45.31 -0.01 -6.92 -0.03 -27.76 0.04 -24.59 0.04
10 47.80 0.00 -49.29 -0.02 47.77 -0.01 -64.29 -0.02 68.50 -0.04

Table 3.3: Fitted parameters for torsional potentials, connecting CPT and BTZ units: (a) X = C, (b) X
= 1F, (c) X = 2F, (d) X = Si, (e) X = Ge. See complementary plots in (fig. 3.7). Angles
φ0,n are given in [deg], constants Cn in [kJ/mol].

in (tab. 3.2, tab. 3.3). Additionally, impropers are added to connect CPT and BTZ fragments.
The force constants are similar for all five compounds: 450 kJ/mol/deg2 for CQ-CN-CT-CD
and 275 kJ/mol/deg2 for CD-CH-S-CQ improper potentials. Provided the force fields, one
can simulated atomistic morphologies of P−X polymers.

3.3 Morphology simulations: a bottom-up approach

Large elongated molecules, such as conjugated polymers, tend to form smectic phase[175,
176]. From this state, polymers can form morphologies with higher symmetry, such as
crystals, by means of thermal annealing, solvent evaporation and other techniques[155,
177]. One of such morphologies, lamellae, is of particular interest for organic electronics
applications[178–181]. In it, backbones stack on top of each other and form conducting
channels with high charge mobilities. However, other ordered morphologies (i.e. polymorphs
[182, 183]) are also possible. Their formation is strongly influenced by the side-chains [155,
165, 184–186].

After the force field is assembled, atomistic morphologies can be simulated and linked to
charge transport properties[107, 108, 187, 188]. The moprhologies of P−X polymers and
their consequence for charge transport properties were already addressed partially by means
of QM and MM simulations [30, 156, 157, 189]. However, it is possible to go beyond the
(anticipated) lamellar structures and construct morphologies in a systematic way. In the
following, they are derived through analysis of single chain, dimer and tetramer interactions.
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Figure 3.8: Backbone bending imposed by the bridging atom substitution: a) P−C, b) P−Si. Values
are obtained from tetramer geometries, optimized at B3LYP/6-311g(d,p) level of theory.

Based on this information, various polymorphs of P−X polymers are derived and verified
experimentally.

3.3.1 Monomer structure

One begins with monomer structure and interactions. Already at the level of individual
monomers, one can observe the effect of heavy atom substitution. In a Si− and Ge− based
polymers (see fig. 3.8) the X−C bonds are longer (1.53 Å vs 1.89 Å) due to larger size of
the substituted atoms. This also causes an overall backbone bending between CPD and BTZ
units. In C-bridged compounds, the bending angle is 11◦, while in heavy-atom polymers it is
twice as large 19◦. Fluorination does not cause notable changes in polymer geometries.

Further, branched alkyl side-chains of P−X polymers are connected to the main chain via a
bridging atom X and make the polymers soluble. Though conformations of side-chains are
complex and extended, they can be divided into two groups with respect to how they modify
interactions between two planar, co-facially aligned backbones. Such a division follows from
a potential energy landscape of the bridging dihedral, which allows side-chains to rotate and
take different conformations with respect to the backbone.

The energy profiles of bridging dihedrals, obtained from QM calculations and replicated in
MD force fields, have three minima (see fig. 3.9, a). For different bridging atoms (X = C,
Si, Ge), features of potentials remain identical, while heights of the barriers are reduced
for heavier atoms. This is a consequence of elongated bonds and, hence, reduced steric
hindrance between two side-chains and the backbone. The global minimum of the potential
corresponds to side-chains folded onto the conjugated backbone (green side-chains in fig. 3.9,
b), and the other two minima allow side-chains to be extended away from the backbone
(blue side-chains in fig. 3.9, b). Because the two local minima lead to the same side-chain
configurations with respect to the backbone, they are equivalent and treated as one state.
This generates only two possibilities for planar backbones to interact: directly (side-chains
are pushed out) or through alkyl chains (side-chains are crystallized along the chain). Here,
crystallized chains imply that the majority of internal dihedrals are found in a trans state.
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Figure 3.9: Side-chain conformations available in P−X monomers: (a) potential energy of a bridging
dihedral with three minima, (b) monomer structure with two possible side-chain states.
The color-coded diamonds relate side-chain conformations to energy minima.

3.3.2 Dimer interactions

Provided there are two ways for aligned backbones to stack, one can probe the potential
energy of two chains as a function of their mutual position and find the energy minima,
which may correspond to stable configurations.

To obtain such profiles, one considers a following setup. Molecular dimers are build out
of two chains in a co-facial, alternated and aligned geometries, each having one of two
possible side-chain configurations (see fig. 3.10, a, b). Here, alternation eliminates side-chain
overlaps and reduces the number of calculations, as the number of points at which energies
are evaluated is reduced by two. In the following, the dimer in (fig. 3.10, a) will be referred
to as π-stacked dimer and the one in (fig. 3.10, b) as side-chain-mediated (SCM) dimer.
Other geometries are not considered, as they are likely to lead to amorphous morphologies.

The separation (z-axis) as well as the lateral position (xy-plane) of centers of mass of two
chains are varied. For a given dimer geometry in vacuum, an energy minimization and
an SD simulation (for t = 20 ps at T = 0.01 K) are applied, while the backbone atoms
are restrained and side-chains are allowed to relax. The goal of the SD simulations is to
accelerate the equilibration of bulky side-chains and to collect statistics. Upon equilibration,
one measures the non-bonded energy (i.e. Coulomb and Lennard-Jones contributions) of a
dimer, as it defines the morphologies of weakly interacting organic compounds[11, 184].

In case of the π-stacked dimer, z-separation is varied between 0.24 nm and 0.5 nm (step
0.01 nm, xy-shift is 0.0 nm) and lateral shifts in the xy-plane are varied from −0.3 nm
to +0.3 nm (step 0.05 nm, z-separation 0.4 nm) in both directions. Similarly, for the
SCM dimer, z-separation ranges between 0.52 nm and 0.9 nm (step 0.01 nm, xy-shift is
0.0 nm) and lateral shifts range between −0.3 nm and +0.3 nm (step 0.05 nm, z-spacing
0.6 nm ) in both directions. The results of such calculations are two cross-sections of
a 3D interaction landscape and are shown in (fig. 3.10, c, d, e). For both side-chain
configurations, only one minimum is observed. The π-stacked dimer’s equilibrium geometry

58 Chapter 3 PCPDTBT derivatives: morphology and electronic properties



d

-0.2 0 0.2

X-direction [nm]

-0.2

0

0.2

Y
-d

ir
ec

ti
on

 [
n
m

]

0

100

200

E
n
er

gy
 [
k
J
/m

ol
]

e

-0.2 0 0.2

X-direction [nm]

-0.2

0

0.2

Y
-d

ir
ec

ti
on

 [
n
m

]

40

80

120
E

n
er

gy
 [
k
J
/m

ol
]

a b

c

0

40

80

120

0.3 0.5 0.7 0.9

E
n
er

gy
 [
k
J
/m

ol
]

z-distance [nm]

S
C
M

 d
im

e
r

d
im

e
r

-
x

y

z

x
y

z

Figure 3.10: Dimers of P−X: (a) π-stacked dimer, (b) SCM dimer, (c) energy scan along z-axis at
x = y = 0 nm (for two dimers), (d) xy-plane scan of π-stacked dimer at z = 0.4 nm, (e)
xy-plane scan of SCM dimer at z = 0.6 nm. Error bars are much smaller than symbols.

3.3 Morphology simulations: a bottom-up approach 59



is recovered at ~req = (0, 0, 0.3) nm and the SCM dimer’s equilibrium geometry is located
at ~req = (−0.2,−0.05, 0.7) nm. The shift is corrected in further calculations to reproduce
~req = (0.0, 0.0, 0.7) nm equilibrium position.

The z-dependent energy of π-stacked dimer is much more narrow due to direct van der
Waals interactions, while the SCM energy profile is broader due to flexible side-chains. Also,
in all calculations the variation of the electrostatic contributions is small compared to the van
der Waals energy of the system. Hence, in these polymers dimer morphologies are guided by
the van der Waals interactions between two chains.

Equilibrium geometries provide starting conformations for further morphology construction.
Using obtained data, one can build three dimers. The first two are shown in (fig. 3.10, a, b),
where all side-chains are either amorphous (the π-stacked dimer) or fully crystallized (the
SCM dimer). The third possibility is a π-stacked dimer with both crystalline and amorphous
side-chains (the hybrid dimer), shown in (fig. 3.11, a). Because two backbones require
side-chains in the same conformation (i.e. same color) in order to interact, the number of
possible macroscopic, periodic assemblies is limited. The simplest two-dimensional structures
(stacks), one can build, are [ SCM-SCM ]n, [ π-SCM ]n and [ π-π ]n (also known as π-stack),
where n is the number of repeat units in the stack. In the following, two morphologies
containing crystallized side-chains are considered, and then the π-stacks (with disordered
side-chains only) are discussed.

3.3.3 Morphologies with ordered side-chains

The morphologies, made of dimers with fully or partially crystallized side-chains, are
examined in case of P−C polymer. A crystal, based on the SCM dimer (fig. 3.10, b), is
constructed first. While it remains stable at low temperature (SD simulation), it is found
in non-equilibrium state even for short simulation times (300 K, 1 ns). This is due to large
fluctuations of flexible P−X backbones. Better results are obtained with the hybrid dimer
(fig. 3.11, a). In this case, backbones are found in pairs, which are more stable.

a [nm] b [nm] c [nm] c/b
Polymer-X sim. exp. sim. exp. sim. exp. sim. exp.

P−1F 2.40 2.32 2.20 2.06 1.17 1.10 0.53 0.53
P−C 2.46 2.36 2.08 1.93 1.25 1.24 0.60 0.64

Table 3.4: Simulated and experimental parameters of orthorombic unit cells of MSD-based crystals.
Relative error σ/µ ≤ 0.001. Vectors a, b, c correspond to axes x, y, z.

Provided that equilibrium geometries in the π-stack are known from previous dimer calcula-
tions, the relative location of two stacks is not. To find it, similar calculations are done for
two stacks in PBC at 300 K. The high temperature is needed to allow amorphous chains to
adapt. The positions of two stacks are varied in two directions (xz-plane) between −1.2 nm
and +1.2 nm (the length of one P−C repeat unit) and y-separation 1.2 nm. The resulting
non-bonded energies are shown in (fig. 3.11, b). From the profile, one discovers four minima,
symmetrically located around axis z = 0 nm. Because of the symmetry, the minima pairs are
equivalent. The global minimum is found at ~req = (0.2, 1.2, 0.6) nm. The sample geometry is
then equilibrated (1 ns at 300 K, NPT ensemble). The resulting crystal is shown in (fig. 3.11,
c) and labeled No. 1.

60 Chapter 3 PCPDTBT derivatives: morphology and electronic properties



a b

c

b

c

a -1.2 -0.8 -0.4 0 0.4 0.8 1.2

X direction [nm]

-1.2

-0.8

-0.4

0

0.4

0.8

1.2

Y
 d

ir
ec

ti
on

 [
n
m

]

-310

-300

-290

-280

-270

-260

-250

-240

-230

Figure 3.11: SCM-based crystal of P−C (No. 1): (a) unit cell, (b) xz-plane scan at y = 0.6 nm, (c)
snapshot of a crystal with 128 molecules.
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Figure 3.12: SCM-based crystal of P−C (No. 2): (a) unit cell, (b) snapshot of a crystal with 128
molecules.
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The second morphology has more complicated structure due to strong dimer interdigitation
in the unit cell, and cannot be obtained from energy scans, as previously. The unit cell
is guided by the experimental data, where backbone positions were reconstructed from
GIWAXS measurements. The side-chain positions are then set manually to minimize the
volume of the cell. Resulting unit cell and equilibrated crystal are shown in (fig. 3.12, a, b)
and labeled No. 2.

The unit cell parameters from two equilibrated morphologies are listed in (tab. 3.4) and
compared to the experimental data[153, 155]. The simulated intermolecular distances
(hence, unit cell parameters) are systematically larger than those in the experiments, due to
OPLS-AA parameterization of van der Waals constants. The introduced error is of the order
of ε ≤ 7%. To compare with experiment, one compares the ratios of two box dimensions
(c/b). This ratio has an order of magnitude lower error due to an error cancellation. The
simulated crystal (No. 1) was observed for P−1F polymer, which is structurally identical to
P−C. From a good ratio match, one concludes that the unit cell is correct. The simulated
crustal (No. 2) was observed for P−C polymer. The ratio match is not exact, but still is
well reproduced within the 7% error. A failure to reproduce exact packing of side-chains
along the y-axis results in expansion in this direction and larger b value of the unit cell.
A proper packing would decrease the value of b and elevate the ratio to 0.64, measured
experimentally.

Once again, one should note that available scattering data for C-bridged P−X polymers
suggest two morphologies. These two observed peaks, which are often attributed to inter-
lamellar spacing, are more likely to represent the two unit cells, obtained previously. Crystals
No.1 and No.2 are observed individually (depending on solvents used) and converting from
one to another upon annealing [152–160]. In many publications, a unit cell vector that
is greater than ≈ 4 Å is often attributed to inter-lamellar distance in a π-stack. However,
one should be more careful in interpreting the available structural data, as in the case
of C-bridged P−X polymers multiple polymorphs are present. Further improvements of
side-chain packing can be obtained, for example, from biased Monte Carlo simulations to
sample the configuration space of bulky side-chains more effectively [190].

An important observation is that in all experimentally verified and successfully simulated
crystals not a single chain, but a dimer is a building block of the crystals[155]. Each obtained
unit cell contains a pair of (π-stacked) dimers (i.e. four chains), interactions between which
are modified via different side-chain packing.

The above morphology calculations are twofold. They show that polymorphs can be derived
in a systematic way, following a limited number of parameters, such as mutual position and
orientation between the structural blocks, as well as side-chain’s dihedral state. But more
importantly, they prove the capability of derived classical P−X force fields to reproduce a
complex structure of P−X systems. This allows to make the next step and derive lamellae of
P−X, which will be used for charge transport simulations. The SCM-containing structures are
out of the scope of charge transport simulations, as side-chains screen the transfer integrals
in all (two) directions, along which hopping transport is possible.
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Figure 3.13: (Two) π-based crystals of P−X: (a) unit cells, (b) x-axis dimer energy profile at z = 0.4
nm, (c) x-axis tetramer energy profile at z = 0.8 nm. Error bars are estimated from ten
simulation runs and are much smaller than symbols.

3.3.4 Lamellar morphologies

The idea of dimers as building blocks applies to π-stacked morphologies as well. Following
the way of deriving initial conformations from energy scans of non-bonded interactions
between blocks, one recovers that not one, but two π-stack conformations are possible for
each P−X polymer.

To begin, one checks the interactions of two chains in vacuum (π-stacked dimer), following
the protocol of dimer scans, outlined above. In this case one is interested in x-direction, as
interactions in other two dimensions are known. The result is shown in (fig. 3.13, b) and
is a cross-section of previous dimer calculations in (fig. 3.10, d) at y = 0 nm. It reveals a
unique minimum within the repeat unit length (1.2 nm), which in turn corresponds to the
least overlap of side-chains in an alternating dimer geometry. Two characteristic curves are
shown for X = C, 1F, 2F and for X = Si, Ge. Due to larger size of heavy atoms and longer
bonds, side-chains are pushed further away from backbones and allow a broader range of
equilibrium backbone configurations. The region is reduced for C-bridged polymers due to
strong side-chain repulsion.

Of greater interest are interactions between dimers, as they proved to play an important
role in structures of SCM crystals. Similarly to a single dimer calculations, one can look
at interactions of two dimers in a vacuum along the main axis (x-coordinate, separation
z = 0.8 nm ). The result is shown in (fig. 3.13, c) for two representative examples, P−C
and P−Si. The global minimum corresponds to a typical π-stack, obtained from dimer
stacking. However, an additional minimum is revealed for P−Si and a plateau region for
P−C polymers at x = 0.8 nm. The barrier between two peaks is 5 kJ/mol per polymer
chain, which is sufficient to trap the structure for a sufficiently long time. Similarly to SCM
structures, the unit cells of all P−X lamellae contains four chains (i.e. a pair of dimers). The
global minimum configuration has two chains in the unit cell, while the shifted one contains
four. Two unit cells of P−X in π-stack are shown in (fig. 3.13, a).

For further discussions, structure corresponding to the global minimum will be referred to as
G-stack. The other minimum, which permits shifted dimer conformations will be referred
to as S-stack. Both are sketched in (fig. 3.14, a), while a snapshot of the simulation box is
shown in (fig. 3.14, b).
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Figure 3.14: (Two) π-based crystals of P−X: (a) schematic packing of dimers in unit cells, (b) snapshot
of the (G) crystal with 128 molecules. The (S) crystal is similar to (G) crystal and is not
shown.

Global Shifted
Polymer-X a [nm] b [nm] c [nm] a [nm] b [nm] c [nm]

P−2F 1.247 1.577 0.396 1.240 1.669 0.382
P−1F 1.247 1.596 0.392 1.233 1.675 0.380
P−C 1.249 1.603 0.389 1.232 1.667 0.379
P−Si 1.257 1.703 0.375 1.256 1.760 0.366
P−Ge 1.254 1.730 0.374 1.252 1.787 0.366

P−Si (exp) − 1.680 − − 1.680 −
P−Ge (exp) − 1.720 − − 1.720 −
directions repeat unit len. inter-lam. π-π dir.

Table 3.5: Simulated and measured parameters of orthorombic unit cells of five P−X polymers in
two π-stacks: Global (G-stack) and shifted (S-stack) conformations. Relative error is
σ/µ ≤ 0.001. Vectors a, b, c correspond to axis x, y, z. Experimental are taken from [164].

Hence, for five P−X systems one can construct two different π-stacked configurations (i.e.
ten different configurations). Using the initial guess for unit cells of these systems, super
cells of 128 chains are assembled (4 lamellae × 32 molecules), equilibrated at 300 K in NPT
ensemble for 1 ns and used to generate 1 ns production runs (NVT ensemble for 1 ns 300 K).
All equilibrium unit cell parameters are listed in (tab. 3.5).

In conclusion, constructed force fields are structurally accurate and reveal multiple P−X
polymorphs, which include, but are not limited to, π-stacked mesophases. It was shown
that all crystalline morphologies of P−X polymers are built of dimers, as single chains are
too flexible and cannot facilitate the crystallization. Simulated crystals were confirmed
experimentally [164], comparison is given in (tab. 3.5).

These crystallization patterns are traced back to a few key properties of P−X polymers.
Side-chains are found in two states only, which dictate two types of interactions between
backbones. Combined with alignment, it allows to stabilize two chains in a unique π-stacked
dimer, which inherits the binary interactions of single chains. One interaction type leads to
multiple π-stacked morphologies, while the other generates a number of side-chain mediated
polymorphs, none of which are typically assumed for organic electronics applications.

A special remark should be made about assumptions made during the conformational
search in tetramer calculations: Co-facial crystals are often observed experimentally and
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are expected, while a non-cofacial packing is likely to lead to amorphous morphologies in
the absence of backbone/side-chain support. Hence, the search was limited to co-facial
dimer and tetramer geometries. And yet, non-cofacial crystals in P−Si polymers were
observed experimentally [163]. The resulting crystals are known as cross-hatched and form
an overlapping triclinic network, in which backbones of two consecutive layers form an angle
ca. 50◦. Since P−Ge equilibrium geometry is identical to the one of P−Si polymer, it should
be capable to form such networks as well. Within the assumption of co-facial interactions,
such crystals could not be obtained from simulations.

As a next step, one proceeds with charge transport simulations. In the following, only (G)
and (S) π-stacked atomistic morphologies will be used. In simulated crystals No. 1 and No.
2, side-chains screen backbone pairs. Because transfer integrals scale as exp(−αr) with the
distance between two molecules, their values will be extremely low, making hopping charge
transport in these crystals unlikely.

3.4 Charge transport simulations

The charge transport in P−X lamellae is studied within Macrus charge transfer theory, which
introduced previously in Section 2.4.3. Within this approach on needs to evaluate rates of
the charge transfer events as [117, 118]

ωij = 2π
~

J2
ij√

4πλijkBT
exp

[
− (∆Eij − λij)2

4λijkBT

]
, (3.2)

which relies on microscopic parameters, such as reorganization energies λij , transfer inte-
grals Jij , site energy differences Eij . In the following, one calculates and analyzes these
parameter for 10 systems (five P−X polymers in two stacked morphologies ). Simula-
tions are done in the VOTCA simulation toolkit [84, 125], while related quantum-chemical
calculations are performed in the Gaussian G09 simulation package [174].

3.4.1 Reorganization energies

Reorganization energies and ionization potentials are calculated in a harmonic approximation
from four single point QM calculations for five tetramers in vacuum. Upon geometry
optimization at B3LYP/6-311+g(d,p) level of theory, one calculates four energies (using
the same method), i.e. E0

0 , E1
1 , E1

0 , E0
1 . Here, Ecg is the energy of a molecule in state c,

while its optimized geometry corresponds to state g. Indices c, g can take two values: State
0 (the ground state) and state 1 (the cation state with charge +1). Using these four values,
one calculates relevant parameters for charge transport simulations: ionization potential I,
reorganization energies upon charging λ(ch) and discharging λ(dc). They are obtained as

I = E1
1 − E0

0 , λ(ch) = E1
0 − E0

0 , λ(dc) = E0
1 − E1

1 , (3.3)
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From small molecule simulations, such as AlQ3, it is expected that the distribution of
reorganization energies has much smaller width (0.03 eV) than the energetic disorder (width
of side-energy distributions)[84]. It will be shown that in P−X polymers energetic disorder
is ≥ 0.13 eV. Hence, reorganization energies can be replaced by their mean. In this case it is
approximated by a value, obtained from first-principles calculations. The calculated values
are listed in the table (tab. 3.6).

System P−C P−1F P−2F P−Si P−Ge
I 5.2465 5.3239 5.4672 5.3373 5.3028

λ(dc) 0.0947 0.0941 0.0876 0.1001 0.0996
λ(ch) 0.0886 0.0875 0.0820 0.0947 0.0944

Table 3.6: Ionization energies and reorganization energies, evaluated for P−X polymers. Values are
given in units of [eV].

The calculated reorganization energies are similar for five P−X systems and are close to
0.1 eV. Highest λ values are found in heavy atom polymers P−Si and P−Ge, which is
attributed to the largest changes in their wave functions and geometries upon charging. The
observed values for five systems fall into a general trend, observed for conjugated semi-
crystalline polymers (such as P3HT and PBTTT [107, 108]) with reorganization energies ca.
0.1 eV, which is typically smaller than analogues quantities for small molecules (0.2− 0.4
eV) [191].

3.4.2 Transfer integral distributions

The second component, required by the Marcus rate expression are transfer integrals, also
known as electronic coupling elements. The transfer integrals are calculated using the
dimer projection method [138], described in the Simulations methods chapter. The transfer
integral is calculated as a projection of a dimer Hamiltonian onto two localized monomer
orbitals as

Jij = 〈φ(m)
i |Hd|φ(m)

j 〉 , (3.4)

where Hd is a dimer Hamiltonian and φ
(m)
i is a localized monomer single-particle state.

Hence, for each coupling, one requires two monomer and one dimer calculations. For hole
transport one is interested in couplings between two localized HOMO (highest occupied
molecular orbital) levels. The transfer integral evaluation time scales as O(N) with the
number of molecules in the system. Due to linear packing of polymer chains in a π-stack the
scaling prefactor is unity. Even then, calculations are time consuming since couplings are
sensitive to the local environment and must be calculated for each pair individually, where
each molecule contains hundreds of atoms. Because of the required quantum chemical
calculations, transfer integral evaluation is the bottle neck of the method.

First, one is interested in transfer integral values between two P−X bacbkones as a function
of a relative shift. Results for two polymers are shown in (fig. 3.15), where chains are
planar and optimized at B3LYP/6-311g(d,p) level of theory, while transfer integrals are
calculated with a reduced basis set (B3LYP/6-31g). Couplings of P−1F and P−2F are similar
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Figure 3.15: Transfer integrals as a function of relative shift of two P−X chains in a co-facial geometry
(X = C, Si). Side-chains are replaced with methyl groups. Values for X = 1F, 2F, Ge are
not shown due to similarity.

to P−C values, while couplings of P−Ge are similar to P−Si. For this reason, curves of P−1F,
P−2F, P−Ge are not shown. Similar geometries of backbones result in a similar shpape of
the curves. The maximum coupling value at d = 0.0 nm for the P−C polymer is 0.14 eV,
while for P−Si it is two times smaller (0.07 eV). This decrease is explained by a stronger
bending of P−Si backbone, which increases the distance between CPD units in a dimer and
effectively reduces the wave function overlap. Next, one is interested in how these couplings
are modulated by the polymer morphologies.

As noted before, quantum-chemical calculations are time consuming. In case of P−X
tetramers, one requires ca. 7 hours of computer time on 16 core machines at B3LYP/6-31g
level of theory to obtain a single J value. Assuming that one requires 12 hours to assess
couplings within one snapshot of MD trajectory (i.e. 128 molecules and 128 couplings), it
would take over 7 weeks to evaluate couplings for 10 snapshots within 10 systems. If one
aims at quick pre-screening of compounds for various applications, such long simulation
times are prohibitive. A common choice to speed up coupling evaluation would be to use
semi-empirical methods, such as ZINDO [128]. However, the method is parameterized for a
limited number of elements, which does not include Si, Ge, F. As a result, it cannot be used
for four out of five P−X systems. Implementing and parameterizing these methods for new
elements and compounds would be of great use [192, 193] and should be considered in the
future work.

A compromise can be found at the border between a computationally demanding dimer
projection approach and semi-empirical methods, like ZINDO. A success of semi-empirical
methods holds on a number of approximations, one of which states that

Jij = βi + βj
2 Sij = βijSij , (3.5)

where Jij is the transfer integral between states i and j localized on two different sites,
Sij is the overlap matrix and βij is the system specific constant, often called the resonance
integral[130]. According to this expression, the distance and orientation dependence of
couplings can, to a certain extent, be approximated by the overlap matrix Sij . As a follow up,
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coupling trends obtained from two different methods should be reproduced up to a scaling
constant α as

|Jh|2 = |Jl|2/α. (3.6)

Here, Jh and Jl are couplings calculated within more accurate (higher) and more rapid
(lower) levels of theory. The squares are introduced to eliminate the mismatch of phases,
often observed for different methods. This expression is well reproduced for small molecules
[194, 195] for both electron and hole transfer reactions. In the following, it will be shown
that the equation still holds for extended conjugated systems, such as conjugated polymers.

Here, I use rescaling to reduce the cost of transfer integral calculations. For each system,
11 snapshots are extracted from 1 ns production trajectories (i.e. 100 ns apart). The first
snapshot is then used to calculate couplings using two methods: A chosen reference B3LYP/6-
31g calculation and a much faster HF/3-21g (here, HF stands for closed shell Hartree Fock)
method. Using the HF method in a lower basis set reduces the calculation time by more than
a factor of 7. The resulting two sets of couplings are then used to deduce the scaling factor
α via a linear fit of the correlation data. As mentioned in Section 2.1, because of the sign
problem and because Marcus rates depend on |Jij |2, the square values are used to conduct
the fits. The result of such re-scaling is shown in (fig. 3.16) for two sample distributions
of P−C in G-stack and S-stack. Deviations at low coupling values can be attributed to a
small basis set size and imprecise mapping, provided by the overlap matrix S. Even then,
the rescaling captures trends in electronic couplings well and can be used to speed up the
coupling element evaluation. A complete list of scaling constants α is given in (tab. 3.7). The
quantum-chemical calculations are done in Gaussian09 simulation package, while couplings
are evaluated using a DIPRO module of the VOTCA simulation package.

Parameters α have similar values for five polymers, which are larger than one, hence,
rescaled couplings are always lower than those from HF calculations. For the remaining 10

68 Chapter 3 PCPDTBT derivatives: morphology and electronic properties



-7

-6.8

-6.6

-6.4

-6.2

-6

-5.8

-5.6

2F 1F C Si Ge

M
ea

n
, 
m

 [
r.

u
.]

System

S-stack

G-stack

45

50

55

60

65

70

2F 1F C Si Ge

S
ec

on
d
 m

om
en

t,
 k

 [
r.

u
.]

System

S-stack

G-stack

c d

Couplings [ log(|J|2/eV2) ]

-12 -10 -8 -6 -4 -2 0

0.3

0.4

0

0.1

0.2

0.5

P
ro

b
ab

il
it
y
 [
n
or

m
.]

2F
1F

C

Si

Ge

G-stack

-12 -10 -8 -6 -4 -2 0

Couplings [ log(|J|2/eV2) ]

0.1

0.2

0.3

0.4

0.5

0

P
ro

b
ab

il
it
y
 [
n
or

m
.]

2F
1F

C

Si

Ge

S-stack

a b

Figure 3.17: Distribution of integrals for P−X polymers in S-stack (a) and G-stack (b). Statistical
properties of the distributions: Means (c) and second moments (d). See text for details.

3.4 Charge transport simulations 69



System P−C P−1F P−2F P−Si P−Ge
αG 1.7892 1.5991 1.6435 1.8732 1.7422
αS 1.9337 1.7285 1.6012 1.8210 1.7129

Table 3.7: Rescaling constants between J2 values obtained from B3LYP/6-31g and HF/3-21g methods,
subscripts G and S refer to respective π-stacked morphologies.

snapshots, transfer integrals are evaluated only at a lower level of the theory and re-scaled
with established constants. The resulting coupling distributions are built for five polymers in
two π-stacked morphologies and are shown in (fig. 3.17, a, b). All calculated distributions
are noisy due to relatively small statistics (i.e. 1280 points from 10 snapshots per trajectory).
In terms of the distributions, the introduced scaling factors result in a relative shift, while
the shapes are preserved.

One compares distributions through their unique moments. In case of coupling distributions,
the mean m and the second moment k are calculated as

m =
∫ 0

−∞
xf(x)dx (3.7)

k =
∫ 0

−∞
(x−m)2f(x)dx, (3.8)

where f(x) is the probability distribution function, defined on the semi-infinite interval
(−∞ : 0]. The evaluated means and second moments are shown in (fig. 3.17, c, d). In real
distributions, −∞ is never reached due to finite sampling and is replaced by the lowest value
in a set Rmin. Parameter k is a measure of localization (width) of the distribution.

As expected, transfer integrals in morphologies exhibit different trends as compared to ideal
dimer calculations (fig. 3.15). Because of smaller inter-molecular (π-stacking) distances
in the S-stacks, couplings are systematically higher than those in the G-stack (fig. 3.17, c).
Also, distributions are more narrow in case of S-stack, as can be seen from second moments’
data, presented in (fig. 3.17, d). From two plots one concludes that in the G-stack, couplings
follow patters 1F→ 2F→ C and Ge→ Si→ C (with the highest couplings in P−1F). In the
S-stack the two sequences are 2F→ 1F→ C and Ge→ Si→ C (where the highest couplings
are found in P−2F polymer).

3.4.3 Site energy distributions

Site-energies of holes in P−X systems are calculated in a perturbative scheme

E(i) = I(i) + E
(i)
el + E

(i)
pol, (3.9)

where E(i) is the total energy of the charge on a site i, I(i) is the ionization potential of a
chain in vacuum, E(i)

el and E
(i)
pol are electrostatics and polarization corrections due to the
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Figure 3.18: Energy disorder as a function of polarization (a) and electrostatic (b) cut-offs. Calcula-
tions are done for P−Si, assembled in a G-stack morphology. The insets show the value
of second radius, which was held constant during calculations.

presence of environment (i.e. morphology). The polarization contribution is evaluated
with the Thole model. Fitted partial charges are obtained as described in the force field
development Section 3.2. Partial charges for the remaining side-chains are adopted from
OPLS-AA force field for alkanes. At the linking point where carbon atom of the chain is
replaced with a hydrogen, a sum of OPLS-AA and QM charges is used.

Isotropic polarizabilities α for elements C, N, S, H are adopted from the AMOEBA polarizable
force field [83]. The missing polarizabilities for atoms F, Si are calculated from isolated
atom B3LYP/6-311+g(2d,2p) single point calculations, while polarizability of Ge is set
to Si value due to similar electronic structure. Additionally, a dummy atom type X with
zero polarizability is introduced in VOTCA package for side-chain atoms, as their partial
charges already include the polarization effects. A complete set of polarizabilities is given in
(tab. 3.8). Finally, the universal damping factor of 0.39 is used in the Thole model.

Because electrostatic interactions are pair-wise, the energy calculation time scales as O(N2),
where N is the number of charged sites in a system. The scaling is reduced to linear if two
cut-offs for electrostatics and polarization (re and rp) are introduced.

E C N S H F Si Ge
α× 10−3 1.334 1.073 2.926 0.496 0.440 3.962 3.962

Table 3.8: List of polarizabilities α used for energy calculations in P−X systems, values are given in
units [nm3].

The two cut-off values are determined from the cut-off dependent energy calculations of
P−Si polymer in the G-stack morphology (see fig. 3.18). Because site-energies in organic
materials are Gaussian distributed, cut-offs are determined from regions where the site-
energy statistics does not change. Because Marcus charge transfer rates depend only on
site energy differences, in single component systems the mean energy is redundant. Hence,
cut-offs are determined from regions of a constant width of energy distributions (i.e. constant
energetic disorder). In case of P−Si, the energetic disorder saturates after re = 2.5 nm and
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rc = 3.0 nm. For the following calculations higher values of re = 3.0 nm and rc = 4.0 nm
are chosen.

Site energies are calculated for five P−X polymer systems (X = 2F, 1F, C, Si, Ge) in two
morphologies (G-stack and S-stack). For each system, ten snapshots are extracted from 1 ns
production run trajectories (100 ns apart), resulting in 1280 energy point per system. To
refine the statistics, energy differences are calculated and plotted in (fig. 3.19, a, b). As
anticipated, energies are Gaussian distributed.

Energy disorder values (i.e. the widths of energy distributions) are extracted from corre-
sponding Gaussian fits. In accordance with the addition law of Gaussian distributed variables,
the resulting widths gain a factor of

√
2. Rescaled accordingly, energy disorder values in all

systems are plotted in (fig. 3.19, c).

In organic electronics, one is interested in materials with low energetic disorder, which is
necessary for high carrier mobilities. In case of P−X polymers, morphologies with the shifted
π-stack have systematically lower energetic disorder. In both S- and G- stacks, the original
P−C polymer has the lowest energetic disorder values (0.14 eV and 0.15 eV). Further, the
substitution trends are clearly reflected in the energetics of P−X systems. In both cases
(heavy atom substitution in CPD and fluorination of BTZ), the energetic disorder is increased
upon substitution. However, the effect of heavy atom substitution is more pronounced,
leading to values of 0.18 eV and 0.19 eV (up to 25%), as compared to fluorination, which
generates a mild increase in the energy disorder (0.16 eV and 0.15 eV, i.e. up to 7%).

It is surprising, however, that the energetic disorder in these polymers is more than three
times higher than the values observed with the same method in other semi-crystalline
polymers, such as P3HT and PBTTT [107, 108]. For the two, an identical value of σ = 0.05 eV
was recovered. In fact, the energy disorder of P−X polymers is close to the one of amorphous
AlQ3 (0.17 eV) [114]. The difference between these polymers and the P−X family lies in
the presence of amorphous side-chains and DA-like electrostatics. Hence, it is interesting to
assess the effect of these two quantities on the energetics of P−X polymers.

3.4.4 Origins of energetic disorder

From energy distributions obtained for P−X systems, energetic disorder is more than 0.14 eV.
This value is three times larger than values obtained for P3HT and PBTTT crystals (0.05 eV).
Because the high energetic disorder will manifest itself in low mobilities, one is interested in
the origins of the energetic disorder in P−X polymers.

Energetic disorder stems from molecules’ orientations, electrostatics (i.e. partial charges)
and polarizabilities. Effects of polarization on energetic disorder are known and of no
interest: It provides a small reduction of energetic disorder due to screening. Next, while
positions of molecules in a morphology also cannot be changed, one can continuously modify
partial charges on backbones and side-chains to trace the effect on charge energetics in the
system.

In the following, the P−Si polymer in a G-stack will be investigated. To decompose the
energetic disorder with respect to polymer chain components, one follows the scheme,
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shown in (fig. 3.20). In it, two structural parts are considered: Side-chains and backbones.
On side-chains’ charges are strongly localized, while on a backbone charges are delocalized,
i.e. there are charge transfers and non-zero dipole moments present. Hence, the electrostatic
contribution of the backbone is separated into additional steps, which include charge transfer
due to DA architecture and charge transfer due to polymer conjugation (i.e. along the entire
chain).

In the first step (see fig. 3.20), no charge transfer between donor and acceptor units is
considered. The hole is assumed to be delocalized over the backbone, hence, each residue
holds 1/8 of a charge in the excited state (and zero in the ground state). This is done
via a linear transformation of charge values, which satisfy the restraint. Partial charges of
side-chains are set to zero. Then, partial charges on backbones are continuously switched on
via a scaling factor λ as qi(λ) = qiλ, where λ = 1 recovers the electrostatics of individual
backbone fragments. The result is shown as a green curve in (fig. 3.20, Step 1).

The used scheme has a defect: When the charges are switched off, the excited state rep-
resented by the electrostatics with the total charge +1 cannot exist. This discrepancy is
attributed to the step-like behavior of the energetic disorder. A better way is to restrain
the total charge in the excited state to +1 for each value of λ. As a result one obtains a
continuous, almost linear behavior of energetic disorder on the scaling parameter λ.

In the absence of side-chains’ electrostatics as well as charge transfer due to DA architecture
and other charge transfer effects, one can see that the internal electronic structure of donor
and acceptor units are responsible for up to 0.1 eV of energetic disorder. This is already twice
as much, compared to values observed in P3HT and PBTTT polymers. This can be linked to
the fact that on the bridging atom (where side-chains are connected to a backbone) more
than +1 [e] of charge is localized, while in the other two polymers such high charge values
are never reached.

In the second step, the charge transfer within the DA repeat unit will be introduced and
continuously switched on in a scheme, similar to the previous ones. The result is shown
in (fig. 3.20, Step 2): A mild decrease of the energetic disorder. Further, in step three (see
fig. 3.20, Step 3), the initial charge distribution of the backbone is re-introduced, where
non-nearest neighbors charge transfer is present. This leads to no changes in terms of
energetic disorder.

One concludes that, in π-stacked P−X the local electronic structure of backbones’ repeat units
is responsible for half of the energetic disorder in the system. Dipole moments, stemming
from local and global charge transfers in the system, seem to play a minor role for the
energetic disorder in P−X systems.

The final, fourth step turns on the side-chain interactions (fig. 3.20, Step 4, orange curve).
This causes a second increase in the energetic disorder up to 0.17 eV, which is four times
larger than the values in PBTTT and P3HT crystals. In these calculations, the dependence of
disorder on the scaling parameter λ is close to quadratic. The origin of such increase is a
disordered structure of side-chains which generate random local electric fields. The effect
was observed previously: Introduced thermal and regioregularity defects in P3HT crystals
cause increase of energetic disorder from 0.05 eV to 0.08 eV [107].
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More insight can be obtained if charges of side-chains are not modified simultaneously, but
in a sequential way. In these calculations interactions of the charged groups are modified
along the side-chain growth direction (fig. 3.20, step 4, yellow curve). For a given n, first n
side-chains moieties have proper charges, while the remaining moieties have no charges. No
side-chains correspond to the case n = 1, while fully grown chains are n = 6. Within such a
growth scheme, energetic disorder exhibits a jump after n = 3 of introduced moieties. This
jump can be attributed to the local structure of side-chain components: The first three CHn

groups are well ordered with respect to backbones, while the remaining in-bulk parts are
disordered.

The above conclusions are only qualitative. The data are collected from 10 snapshots along
1 ns production run. This time is not enough to fully sample bulky side-chains, hence
sampling and contribution to the energetic disorder is incomplete. A set of energy disorders
with and without side-chains is shown in (fig. 3.21), which is the last ingredient needed for
charge transport simulations.

3.4.5 Mobilities

Because of broad distribution of available experimental data [21, 41, 150, 152, 154, 156,
164–166, 168, 170, 171], mobilities are calculated with and without energetic disorder,
which emulates different carrier concentrations in a system. For each snapshot 128 KMC runs
are conducted, and mobilities are calculated as averages over 1280 runs in ten snapshots for
any given system. The external field is in these calculations is set to 106 V/m, which matches
typical fields in organic solar cells. The results of calculations are shown in (fig. 3.22).

In the no-disorder case, mobilities are similar for all systems (ca. 1 · 10−1 cm2/Vs) and
correlate with experimental data in OFET devices. This is because they are defined by
transfer integral distributions, which are very similar in five systems. Trends in coupling
distributions can be tracked in values of mobilities. The S-stack mobilities are systematically
higher than those in G-stack due to higher couplings. Within the G-stack, highest mobilities
are in P−1F and P−Ge, while in the S-stack the best mobilities are observed in P−2F and

76 Chapter 3 PCPDTBT derivatives: morphology and electronic properties



1e-07

1e-06

1e-05

1e-04

0.001

0.01

0.1

1

2F 1F C Si Ge

M
ob

il
it
y
 [
cm

2 /
V

s]

None

BB only

SGED

Figure 3.22: Simulated mobilities in five P−X polymers: values obtained without energetic disorder
(blue) and with backbone energetic disorder (red). Simulations were performed in
G-stack (G) and S-stack (S) morphologies. Horizontal line (green) marks an estimate for
mobilities with backbone and side-chain contributions to energetic disorder. ED stands
for energetic disorder, BB for backbone.

P−Si. In both geometries P−C polymers generates the lowest mobility values due to low
transfer integrals, as compared to all other compounds.

Unfortunately, because of large energetic disorder, KMC simulations require long simula-
tion times to converge. For this reasons, the mobility calculations are done for backbone
electrostatics only, while side-chains are excluded. In the presence of disorder, mobilities
are defined by charge energetics. In both G- and S- stacks, the highest mobility is found
in the P−2F polymer. The lowest values are in P−Si and P−Ge polymers, for which the
combined effect of backbone and side-chains electrostatics leads to the most unfavorable
charge transport conditions. The deviation of P−Ge mobility in the S-stack can result from
too short simulation times in KMC runs.

Because energetic disorder in P−X polymers with side-chains is comparable to those in
amorphous compounds, KMC simulations give only an upper limit on mobility values in
these polymers, which is 1 · 10−6 cm2/Vs.

Experimentally, mobility values range between 1 · 10−5 cm2/Vs and 1 · 10−1 cm2/Vs [21,
41, 150, 152, 154, 156, 164–166, 168, 170, 171]. Though measurements agree with
simulations, without morphology measurements it is difficult to judge on a relative quality
of P−X polymers for solar applications. Interestingly, in the experiment one observes same
mobilities in π-stacked and SCM-based crystals, i.e. charge transport is equally effective in
both crystalline morphologies. In the SCM-based crystals, it is likely that the transport is
happening along the chain, while in the π-stack the dominant mechanism is hopping. In
this sense, one cannot compare mobilities in various P−X systems due to their different
origins.
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3.5 Conclusions

In this chapter, properties of five PCPDTBT derivatives (P−X: X=C, Si, Ge, 1F, 2F) with
branched 2-ethylhexyl side-chains were investigated. Upon atom substitution, observed
electronic properties of the polymers are modified: band gap, mobility and overall solar cell
performance. A combination of MD simulations, first-principles calculations and the Marcus
charge transfer theory was used to address the relationship between the polymer chemistry,
electronic properties, underlying morphologies of the polymers and mobilities, as a function
of atom substitution.

An accurate molecular force field was based on the OPLS-AA and derived from first-principles
calculations. A proper dihedral parametrization was shown to be crucial for proper morphol-
ogy simulations, including the role of chiral symmetry of bridged side-chains.

Atom substitutions P−C→ P−1F→ P−2F do not cause significant changes in the molecular
geometry. In systems P−Si and P−Ge, large atoms cause bond elongation between backbone
and side-chains. This enhances the bending within the backbone and pushes the side-chains
away from the conjugated core.

Through analysis of inter-molecular interactions, multiple crystalline morphologies were
obtained in a systematic way. At the level of individual molecules, the two-state bridging
dihedral was linked to two unique interactions mechansims: Direct backbone-backbone
and side-chain mediated. This allows a construction of two unique dimers. These dimers
are found to be the building blocks of all P−X crystalline morphlogies, as single chains are
too flexible and cannot facilitate the crystallization. The key points of P−X crystallization
are (in order of morphology formation): presence of two-state bridging dihedrals, chain
dimerization and second-to-nearest neighbor (i.e. dimer-dimer) interactions.

From side-chain based dimer interaction, one arrives at two crystal structures. Each contains
two dimers in a unit cell, i.e. four molecules. The backbone-based interactions allow two
π-stacked morphologies, whose unit cell contains one and two dimers. All four polymorphs
were verified against the experiment and are in excellent agreement with available data.
The fifth, cross-hatched polymorph of P−X could not be obtained due to restricted setup of
the search protocol.

Interactions between molecules, dimers, tetramers and higher-level structures were probed
through finite temperature energy scans, which provided good initial guess for the following
level of morphology building.

Though all P−X polymers are capable of derived crystalline morphologies, experimentally
polymers P−C, P−1F, P−2F are mostly found in side-chain mediated crystals, while P−Si
and P−Ge for π-stacks only. This can addressed to the effects of the bridging atom: C-based
polymers exhibit high steric hindrance between side-chains, which prevents the formations
of structures higher than the dimer. On the other hand, ideal side-chain length allows
them to crystallize along the backbone and form the above mentioned side-chain based
morphologies. In the heavy substituted compounds, a combination of broad backbones and
low barriers in a dihedral favors the lamellar structures.
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In order to study charge transport, transfer integrals and energy differences were calculated
for P−X polymer in two π-stack morphologies. One stack promotes high couplings in P−1F
and P−Ge polymers, while the other in P−2F and P−Ge.

The energy distributions are calculated for all polymers and correspond to high energy
disorder values, σ > 0.14 eV. This is much higher than in typical semi-crystalline polymers,
such as P3HT and PBTTT, and is comparable to values in amorphous compounds such as
AlQ3. Such high disorder originates the electrostatics of CPD-BTZ repeat units, as well
as disordered structure of side-chains. Further atom substitution leads to energy disorder
increase. Bridging atom substitution amplifies the electric field fluctuations, with P−Ge
producing the highest possible disorder of 0.19 eV. Fluorination leads to a mild increase of
the energetic disorder with P−2F polymer reaching 0.16 eV.

As a result of high energy disorder, overall mobilities of P−X compounds are estimated at
1 · 10−6 cm2/Vs. Such low value is a direct concequence of the high energetic disorder in
the systems. In the absence of side-chains, where energetic disorder is decreased, highest
mobilities are obtained in fluorinated compounds and lowest in P−Si and P−Ge, which is a
direct consequence of their energetics. In the absence of disorder, one finds similar mobilities
in all five compounds µ = 1 · 10−1 cm2/Vs due to similar coupling distributions.

Though simulated mobilities fall within the observed experimental values, one should note
that the origin of mobilities can be different. In π-stacks of P−Si and P−Ge it is due to
inter-chain charge hopping. In compounds P−C, P−1F, P−2F, where side-chain mediated
crystals are more likely, charge transport takes place either along the chains or is defect
assisted.
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4PBTTT: dynamics and
macroscopic composition

Though conjugated polymers, such as PBTTT, are routinely used in organic electronics
devices [196], their morphologies are still not fully understood. Though these materials
are comprised of crystalline, amorphous and other mesophases, only the crystalline part
is often considered, when studying transport properties of PBTTT for organic electronics
applications [108, 197–200]. A detailed study and analysis are required to understand,
control and improve morphologies of polymers in order to achieve better device properties.
In the following, I simulate and analyze three morphologies of PBTTT. The simulated data
are then combined with a derived analytical model and the solid-state NMR measurements
to assess the macroscopic composition of the PBTTT-C16 semi-crystalline polymer.

The PBTTT polymer (fig. 4.1) is comprised of a conjugated backbone and linear alkyl side-
chains. The backbone contains two thiophene (TH) and a thienothiopehene (TT) units. The
C16 linear alkyl side-chains are attached to thiophene rings in a regular fashion. Such an
attachment [201] allows PBTTT chains to form fully crystalline lamellar structures, in which
backbones are forming π-stacks, while side-chains are interdigitated and crystallized in the
inter-lamellar space. High PBTTT crystallinity, and good π-stacking in particular, are often
linked to high hole mobilities in this polymer and its high performance in organic electronics
devices. This also extends to other polymers, as they are observed to perform better upon
improved crystallization [167, 202–204].
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Figure 4.1: Chemical structure of PBTTT-C16 repeat unit, which contains two thiophenes (TH),
a thienothiopehene (TT) and two C16 linear alkyl side-chains. Angle φ is a torsional
angle between TT and TH units. Side-chain’s color coding is introduced to interpret the
experimental data.
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4.1 Experimental data

The NMR methods are sensitive to the local environment of molecules and allow to deduce
information about structure, dynamics and mesophase composition of soft matter materials.
These methods are useful as they provide short range information about the system, in
addition to routinely used scattering techniques, such as X-ray and GIWAXS [197–200],
which provide long-range ordering data. Also, NMR can give additional information about
amorphous regions, which is not available through scattering techniques. Here, I recap the
experimental data that were obtained from the solid-state NMR (SS-NMR) measurements
of PBTTT-C16 sample, and data from simulated NICS maps, used to interpret the data.
Figure 4.2 shows the resulting spectrum for PBTTT side-chains and assignment of peaks to
individual atoms in a chain.

4.1.1 Local packing

Because spin-spin couplings are distance dependent [205] (and decay as r−3), they are used
to deduce local intermolecular distances in a material. One finds that the d-spacing in the
crystalline PBTTT-C16 (shortest distance between two backbones in a π-stack) is 0.352 nm.
Combining the NMR data with calculated NICS maps for main chains reveals that the torsion
angle φ between TT and TH units (see fig. 4.1) is less than 25◦ in a crystal. Also, due to high
crystallinity and strong interdigitation of side-chains, the terminal CH3 groups are in a direct
contact with backbones of neighboring stacks. The measured distance between hydrogens of
a backbone and terminal CH3 group is 0.34 nm. This data is useful for verification of force
fields used for MD simulations.

4.1.2 Dynamics

Further, NMR deals directly with spin decoupling as a function of time [206, 207]. This
allows to probe dynamics of molecular fragments with atomistic resolution. In case of similar
environments, the resolution becomes more coarse. Dynamics in NMR is represented by an
order parameter, S. It is routinely calculated for C-H bonds [208] as a ratio

S = D(e)

D(i) . (4.1)

Here, D(e) is the coupling of the bond measured in the NMR experiment and D(i) is the
theoretical maximum calculated for an idealized case of static C-H bond [208], in particular
D(i) = 21.0 kHz. Upon this definition of a dynamic order parameter, one finds that 0 ≤ S ≤ 1,
where S = 0 refers to isotropic rotation (un-restrained bond dynamics), S = 1 corresponds
to a static bond, while intermediate values correlate with a partial mobility of C-H bonds,
modified by the local environment.

In crystalline regions of PBTTT-C16, backbones exhibit highly constrained dynamics with
measured S = 0.9 for TT and TH units. In side-chains, SS-NMR provides only partially re-
solved data for atoms C2−C13, C14, C15, C16, which are 0.71, 0.65, 0.49 and 0.39, respectively.
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Figure 4.2: Decomposition of the NMR spectrum into trans/gauche conformer contributions, crys-
talline/amorphous mesophases, assignment to individual atoms in a side-chain and
extraction of dynamic order parameters.

Because of morphological constraints and an attachment to the immobile backbones, a large
portion of side-chains remains close to static, while the last three carbons at the free end of
a side-chain gain more mobility.

In the disordered mesophase, the measurements are less resolved, i.e. less peaks are observed
and the signal-to-noise ratio is smaller. The dynamic order parameters for disordered
backbones could not be extracted due to insufficient signal intensity. As for the disordered
side-chains, order parameters for C2−C13, C15, C16 are 0.34, 0.32 and < 0.4. Such low values
signalize a dramatic increase of mobility in amorphous side-chains, as compared to the
crystallized ones.

4.1.3 Macroscopic composition

Finally, because various (i.e. ordered and disordered) environments produce signals at
different frequencies, one can decompose the NMR spectrum and estimate the ratios of the
integrated signal intensities and relate them to macroscopic properties of a material.
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Figure 4.3: Local side-chain conformers (left): Trans (t) and gauche (g); conformers measured in
the SS-NMR experiments (right): Doubly-trans (tt), trans-gauche (tg) and doubly-gauche
(gg). The (tt) conformer is attributed to ordered side-chains, while the other two are
associated with disordered chains in the sample.

In the case of backbones, the change in a signal frequency results from different backbone
environments. PBTTT in solution produces signal at 7.1 ppm, while in bulk it generates
two signals at 6.9 ppm and 6.1 ppm. The first value is close to the value in a solution and
is attributed to disordered backbones. The second, much lower value is generated by ring
currents of conjugated fragments [209] and arises from π-stacked morphologies. From the
area ratio of these two signals, one can deduce the fraction of chains in a π-stack.

In case of side-chains, the change in spectrum comes from the γ-gauche effect. In it, different
frequencies are associated with trans and gauche conformers (see fig. 4.3, left). This allows
one to decompose the spectrum and assess conformer concentrations quantitatively [210].
The trans conformers (t) are found in highly crystalline polymer samples, for example PBTTT
or P3HT crystallites. The gauche conformers (g) correspond to defects that appear in ideal
side-chains. In NMR, these conformers are detected in pairs, in particular from a carbon
in the γ-position to a given atom (see fig. 4.3, right). The (tt) conformer is linked to the
crystalline side-chains, while (tg) and (gg) conformers represent disordered regions.

For the PBTTT-C16 sample the signal decomposition reveals that 50% of backbones are
π-stacked and 50% are disordered. In the side-chains, one finds that 55% of chains are in
the crystalline and 45% are in the amorphous state.

Taking into account this correlation between backbone and side-chain values, one concludes
that roughly 50% of the material is fully crystalline, and 50% is amorphous. The small
discrepancy between the two mesophases can be attributed to a small fraction of the third,
intermediate mesophase (possibly an interface between the other two). This result is
remarkable on its own, as PBTTT is thought to be a highly crystalline polymer, and its high
performance in organic-based devices is often linked to this property.

One should note that the observed spectrum is measured from a single sample. Moreover,
side-chain and backbone related signals are obtained independently, i.e. without correla-
tions to each other and to the respective mesophases. In this sense, the decomposition is
incomplete.
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In the following, MD simulations and a derived model are used to gain more insight into
the PBTTT morphology: its local packing, dynamics and macroscopic composition, resolved
with respect to individual mesophases.

4.2 Molecular dynamics of PBTTT mesophases

Molecular dynamics simulations are used to simulate atomistic morphologies of PBTTT. In
order to run MD simulations of a material, one requires a reliable force field. I adopted the
OPLS-based [73] force field of PBTTT-C14, developed earlier [108]. It is re-parameterized
from DFT calculations using B3LYP functional and 6-311g(d,p) basis set and reproduces
unit cell parameters and the melting temperature of side-chains in the crystalline PBTTT-
C14 sample. This force field is extended to PBTTT-C16 and is used in the following MD
simulations. Here, C14 and C16 refer to the number of carbon atoms in linear alkyl chains,
i.e. fourteen and sixteen carbons per side-chain.

The initial super cell is constructed using an extended PBTTT-C16 force field and available
unit cell parameters for the PBTTT-C14 polymer [108]. The super cell is built such that it
contains 4 lamellae × 16 tetramers (64 chains and 512 side-chains in total). It is equilibrated
at 300 K in the NPT ensemble (1 atm.) for 1 ns using velocity resclaing thermostat [99],
Berendsen barostat [100], 1 ps time step, Ewald summation for electrostatics and 1.2 nm
cut-off for van der Waals interactions. Simulations are performed using the GROMACS
4.6.7 simulation package [172, 173]. This setup is used in all following simulations. The
equilibrium box values are a = 2.223 nm, b = 0.460 nm, c = 1.386 nm and α = 129◦,
β = 90◦, γ = 90◦. These numbers are close to those of PBTTT-C14 unit cell, apart from
longer inter-lamelar distance a, which reflects an elongation of side-chains. The resulting
unit cell is shown in (fig. 4.4, a′).

The equilibrated box with crystalline PBTTT-C16 chains is then used to generate the other
two morphologies: intermediate and amorphous mesophases. The intermediate mesophase
is comprised of crystallized (π-stacked) backbones combined with disordered side-chains.
To obtain these two phases, the initial crystalline mesophase is annealed between 300
K and 700 K at the rate 0.25 K/ps in the NPT ensemble for 3.4 ns. Additional steps of
constant temperature are added to improve equilibration at auxiliary temperatures (every
50 K). The side-chain melting is observed at 425 ± 25 K, while the backbone packing is
destroyed at 575 ± 25 K. The side-chain melting temperature is higher than observed in
PBTTT-C14 [108] and can be explained by longer, more restrained chains, which require
higher temperatures to alter the packing. The amorphous sample was extracted from 700 K
simulation and exposed to an additional equilibration at 2000 K for 2 ns to remove residual
anisotropy of chain orientations in the sample. The intermediate mesophase could not be
obtained from simulated annealing and was prepared separately using positional restraints
of backbone atoms. Inability to extract the intermediate mesophase is due to a direct contact
of side-chains with backbones of neighboring lamellae. Because of this, side-chains provide
additional stabilization to the π-stack. They also provide additional source of disorder during
annealing, which induces backbone melting. After side-chain equilibration restraints are
removed, the prepared morphology remains stable.
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d = 0.357 [nm] 
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Figure 4.5: Separations in MD simulations and NMR measurements of PBTTT crystals: ~d is the d-
spacing vector, ~b is the unit cell vector, and α is an angle between the two vectors. Here,
BB stands for backbone.

Resulting three mesophases are quenched to 300 K (1 ns, NPT), simulated for 2 ns in NPT
and for 2 ns in NVT ensembles. A production trajectory in the latter run is used for further
analysis. Snapshots of all three mesophases are presented in (fig. 4.4, a, b, c). The resulting
production trajectories are used to calculate observables of interest. Also, from now on,
one will refer to PBTTT-C16 polymer simply as PBTTT. For the sake of completeness, one
should mention that more morphologies of PBTTT have been observed, for example π-stacks
with partially melted side-chains [108]. In the following, only three mesophases, presented
above, will be investigated.

4.3 Local structure of backbones and side-chains

As a first step, one is interested in validity of three simulated morphologies. To do this, one
can compare the local packing (i.e. distances and angles between residues) obtained from
MD simulations to those recovered from the SS-NMR measurements, as outlined in Section
4.1.1. Two separate data sets are available for backbones and side-chains.

Ordered backbones form π-stacked structures and can be found in crystalline and interme-
diate mesophases. One can calculate the d-spacing as the smallest distance between two
polymer backbones. The visual representation of the d-spacing in given in (fig. 4.5). Its
value can be obtained as d = b cos(α), where b is a length of the unit cell vector along the
π-stacking direction and α is the angle between vectors ~d and ~b. In simulated crystalline
and intermediate mesophases the d-spacings are d = 0.357 nm and d = 0.347 nm. The two
numbers are in excellent agreement with the experimental value of 0.352 nm and suggest
a 1:1 ratio between two mesophases, since the measured value is a linear combination of
two distances, weighted by the respective mesophase concentrations. However, taking into
account small difference between the two simulated values, as well as errors in non-bonded
inter-atomic potentials of a force field, any ratio of two mesophases can be realized in the
macroscopic sample.

One moves on to torsional angles between PBTTT backbone residues. The simulated mean
torsional angles φ between TT and TH units of the backbone (see fig. 4.1) have similar
values of 12◦ and 11◦ in the crystalline and intermediate mesophases. These angles fall into
the angle range of φ ≤ 25◦ measured in the SS-NMR experiments and reproduce values in
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Mesoph. d-spac. d-spac. tors. ang. tors. ang. SC-BB SC-BB S S
(sim) (exp) (sim) (exp) (sim) (exp) (sim) (exp)

cry. 0.347 0.352 12 ≤ 25 0.345 0.34 0.95 0.90
inter. 0.357 0.352 11 ≤ 25 - - 0.90 0.90
amor. − > 0.4 − > 25 - - 0.83 −

Table 4.1: Local structure within three PBTTT mesophases: Simulated/experimental d-spacing values
(d-spac., [nm]), mean torsional angles between TT and TH units of backbones (tors. ang.,
[◦]), distances between side-chain’s CH3 groups and backbone’s C-H bonds (SC-BB, [nm]).
Additionally, order parameters for C-H bonds of main chains are listed (S, [r.u.]).

earlier simulations of PBTTT crystals [198]. Such broad angle range in the experiment stems
from imprecise NICS maps (Nucleus Independent Chemical Shift [209]) that were used to
interpret the NMR data. In simulations, angle means are obtained from angle distributions,
that are extracted from production trajectories, and fitted with Gaussian functions. A flat
angle distribution in the amorphous mesophase reflects the disordered state of backbones.

The last analyzed property is the distance between side-chain’s terminal CH3 groups and
backbone’s hydrogens of adjacent lamellae. In the crystalline mesophase its value 0.345
nm, which is in a good agreement with the experimental value 0.34 nm. Separations are
larger in case of amorphous side-chains (i.e. in intermediate and amorphous mesophases),
since introduced defects effectively reduce the side-chain’s length in the direction of interest.
Exact mean values could not be extracted for the same reason as in the case of amorphous
backbones.

The above mentioned simulated distances and angles are summarized in (tab. 4.1) together
with the available experimental data. Overall, these calculations prove that the adopted
force field is suitable for simulations of three PBTTT mesophases and reproduces the local
ordering of chains in them.

4.4 Dynamics of PBTTT

From static properties one continues to studies of PBTTT dynamics in terms of the generalized
order parameter (GOP) [145, 211–222]. It can be evaluated from molecular dynamics
simulations in a number of ways [223–229] (as outlined in Section 2.3.2). Here, I follow the
original definition, outlined by Liapari, Szabo and others [109, 110, 206, 207] and calculate
the generalized order parameter directly from the angle auto-correlation function (ACF)
as

C(τ) = 〈P2 [~u(t+ τ)~u(t)]〉t,e . (4.2)

Here 〈. . . 〉t,e is a combined time and ensemble average. The ACF is non-negative (i.e.
C(t) ≥ 0) and the order parameter S is calculated as a long-time limit

S = [ C(∞) ]1/2 (4.3)
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In practice, an ACF converges at a finite time τc, and one can calculate S as an average over
its plateau region

S = [ 〈C(τ > τc)〉τ ]1/2
. (4.4)

In dense polymer systems, such as PBTTT morphologies, after ensemble, time and plateau
averages, the relative errors of calculated order parameters are drastically reduced. In case
of PBTTT simulations, the largest relative GOP error is less than 10−3.

Following this protocol, parameters S are calculated for conjugated C-H bonds in backbones
and C-H bonds in alkyl chains. These values are then compared to NMR observables,
presented in Section 4.1.2. Both simulated and experimental data are summarized in
tables (tab. 4.1, backbones) and (tab. 4.2, side-chains). In alkyl chains, parameters S are
averaged over atoms C2−C13 in order to match the resolution of NMR data. Examples
of auto-correlations functions, calculated for side-chains in three mesophases at normal
conditions, are shown in (fig. 4.7). For PBTTT tc = 1.5 ns, i.e. last 500 ps of the auto-
correlation functions are used to calculated the order parameters. In case of not converged
autocorrelation functions, the resulting order parameter is an upper limit of its true value.

For backbones, simulated order parameters are in a good agreements with available NMR
data (S ≈ 0.9). In side-chains, all simulated order parameters are systematically higher than
those recovered from NMR measurements in all three mesophases. Still, the data are in
good qualitative agreement with experiment and reproduce the observed trend of gaining
mobility while approaching the free end of a side-chain.

Yet, simulated dynamics is much slower and more restrained, as compared to the experiment.
This discrepancy is explained by short simulation times and, hence, insufficient sampling
[230]. This was observed in simulations of proteins, where the generalized order parameter
S is linked to the configurational entropy of side-chains E via an empirical expression
E = a + b · S2 (where a, b > 0), i.e. side-chains with lower S have lower entropy and
vice versa [227, 231–233]. Extending this concept further, at short measurement times
(be it in experiment or in simulation) side-chains explore only a small portion of available
configuration space, resulting in lower entropy and higher order parameter numbers. This is
the case, as the simulation times (1 ns) are much shorter than the averaging times (130 µs)
of the NMR experiments.

Another hint is gained from the exponential time-series of the ACF. Typically, one considers
only one or two terms of the expansion [109, 110], but in general an arbitrary number of
exponents can be used

C(t) =
N∑
i=0

aie
−t/τi , (4.5)

where τi are the characteristic transition times of processes in the system, and in particular
a0 is the generalized order parameter, a0 = S2 for τ0 =∞. One can link longer transition
times τi to higher energy barriers that need to be crossed. Therefore, during short simulation
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Mesoph. C1 C2−C13 C14 C15 C16
(sim) (exp) (sim) (exp) (sim) (exp) (sim) (exp) (sim) (exp)

cryst. 0.96 − 0.91 0.71 0.80 0.65 0.80 0.49 0.25 0.39
int./am. 0.77 − 0.53 0.34 0.34 − 0.34 0.32 0.12 <0.40

Table 4.2: Partially resolved values of generalized order parameters S for side-chains extracted from
MD simulations and SS-NMR experiments in three mesophases.

times, the system remains confined to a small region of a configuration space, thus effectively
truncating the series and yielding higher values of S. This suggests that in our case one
needs more than five orders of magnitude longer simulations in order to observe such low
order parameters as in experiment, which is not feasible.

Interestingly, S values for the disordered side-chains in the intermediate and amorphous
mesophases have similar values. This shows that side-chain’s dynamic properties have small
dependence on the state of the attached backbones (rigid π-stacks or mobile disordered
chains). For this reason, these data are listed as a single entry in (tab. 4.2).

4.5 Dynamics extrapolation

It was shown that the reason for a mismatch between measured and simulated GOP values
(the S parameter) comes from different times, at which side-chain dynamics is observed. To
reproduce experimental values, one has a number of possibilities. The brute force approach
to run long simulations (even for a small system) is not feasible as one needs to increase the
simulation time by at least five orders of magnitude (from 1 ns to 130 µs). Alternatively one
can tune the Hamiltonian such that it reproduces the desired values of GOP [234], which is
tedious to implement.

Here, one follows an ad-hoc approach, often used for simulations of polymer melts. It is
motivated by a property of polymer melts: the dynamics of chains at higher temperatures
can be rescaled to dynamics at normal conditions at a larger time. It is known as time-
temperature superposition principle. For example, from MD simulations of polyethylene
[235, 236] it was shown that Vogel–Fulcher equation holds

− ln τ = A− B

T − T0
, (4.6)

that is one can build a smooth map between a given relaxation time τ in a system and a
temperature T . Here, T0 is reference temperature, A, B are the fitting parameters.

Because disordered side-chains exhibit the largest mismatch compared to experimental data
and because their dynamics is weakly coupled to the backbone state, one can try to use high
temperature MD runs to extrapolate the dynamics of PBTTT side-chains [237].

To do this, three equilibrated mesophases are simulated in the NVT ensemble at various
temperatures (between 300 K and 500 K, step 50 K). The constant volume simulations ensure
that the available configuration space of side-chains is not changed and extra temperature
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Figure 4.6: Dynamic order parameter (a), nematic order parameter (b), paracrystallinity (c) and
backbone’s torsional angles (d) calculated in three mesophases in the temperature range
300 K to 500 K.
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only affects the transitions between the barriers and accelerates the side-chain diffusion.
Because one aims at the slowest processes, bond-angle vibrations and other fast degrees of
freedom are of small concern. To check that the backbone structure is not changed during
the run (i.e. phase transitions did not take place), the dynamic, nematic and paracrystalline
order parameters are calculated in three mesophases.

Order parameters are calculated as presented in Section 2.3. Dynamic order parameter
reflects on orientation of molecules in a system through time. It takes values between 0 and
1, where lower values correspond to a frozen morphology and higher values are obtained for
freely rotating molecules. Nematic order parameter characterizes spatial order in the system.
If it takes values close to zero, the morphology is disordered in each moment of time, while
values close to one reflect high degree of backbone alignment in a simulation box. Also, the
paracrystallinity parameter is used to assess the ideality of a crystal in a given direction: The
lower the value, the more disorder is present in the sample. These three order parameters as
well as torsional angles between TT and TH units are shown in (fig. 4.6).

The dynamic and nematic order parameters of backbone’s C-H bonds in the crystalline and
intermediate mesophases remain constant at all temperatures (see fig. 4.6, a, b). This shows
that in two mesophases beckbones are well aligned in the simulation box and maintain this
orientation through time. This is additionally supported by the angle distributions of the
TT-TH dihedrals (fig. 4.6, d) and paracrystallinity values (fig. 4.6, c), calculated along the
z-axis (i.e. the unit cell’s vector b). An introduced side-chain disorder in the intermediate
mesophase results in a systematic lowering of the dynamic and nematic order parameters,
while paracrystallinity and mean torsion angle values are increased.

One should note, that a factor of three increase of the paracrystaline parameter in the
intermediate mesophase is an artifact, as it is based on a distance distributions with multiple
peaks, which effectively have larger width, hence, larger paracrystalinity values. In fact,
paracrystallinity is only meaningful within one crystalline mesophase and is not suitable for
a cross-comparison of periodic structures.

As opposed to partially ordered mesophases, the amorphous system is characterized by a
decreased dynamic order parameter. This is a direct consequence of a larger volume of the
simulation box. The nematic order parameter is close to zero, reflecting a homogeneous
distribution of backbone orientations. As a result of homogeneity, parameters, such as
paracrystallinity and backbone torsional angles, cannot be evaluated for the amorphous
mesophase.

Upon confirming that backbone structure is not changed in the course of high temperature
simulations, one looks into the side-chain dynamics. At elevated temperatures, side-chains
diffuse more efficiently. They explore larger regions of an available configuration space
and show lower GOP values. To estimate the temperature, at which simulated dynamics
of disordered side-chains corresponds to the observed dynamics with t = 130 µs, one can
match the corresponding generalized order parameters. One calculates GOP values in
three systems as a function of temperature and compares them to the experimental values.
The result is shown in (fig. 4.7). Once again, the dynamics of disordered side-chains in
intermediate and amorphous mesophases is very similar and does not depend on a state of
the backbones. In the crystalline mesophase, the experimental GOP values are well clustered
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Mesoph. cry. int. amo.
T [K] 475± 25 425± 25 375± 25

Table 4.3: Rescaling temperatures, which re-map ns, high temperature dynamics to µs dynamics at
300 K. These temperatures are obtained from matching S parameters in simulations and
NMR experiments.

around T = 425± 25 K. In the other two mesophases containing disordered side-chains, the
GOP values are more scattered. The reason for this is a uniform energy distribution along
side-chain moieties due to high temperature dynamics. The temperatures are chosen by
matching the GOP of in-bulk C2-C13 atoms. They are T = 475± 25 K and T = 375± 25 K,
respectively, and are summarized in (tab. 4.3).

To summarize, high temperature MD runs allow to assess the side-chain dynamics of three
PBTTT mesophases. Simulated order parameters are compared to the SS-NMR values in
order to estimate the temperature at which side-chain’s diffusion is equivalent to the one
in experiment. As a result, simulated ns dynamics can be effectively treated as the one at
µs timescale. Though high temperature runs and characteristic temperatures could not be
directly compared to the experiment, they will play an important role when assessing the
macroscopic composition of the PBTTT sample.

4.6 Macroscopic composition

The third set of observables, obtained from the SS-NMR experiments is of the most interest
and addresses the macroscopic composition of PBTTT (see Section 4.1.3). From the ratio
of NMR integral signals produced by backbones, one can deduce the fraction of disordered
chains in the sample, which is 50%. The γ-gauche effect provides an estimate the concen-
tration of side-chains in a crystalline state: It is 55% for PBTTT. Combining the two data
sets, one concludes that 50% of the PBTTT sample is crystalline and 50% is amorphous.
In the following, I will link MD simulations of three PBTTT mesophases to their macro-
scopic concentrations in a sample via a derived model and verify the proposed material
composition.

4.6.1 Balance equations for side-chain conformers

Similarly to the NMR decomposition, one can link side-chain defects to the macroscopic
composition of a sample by means of an analytical model. Let one assume a macroscopic
sample that is comprised of N identical polymer chains, grafted with alkyl side-chains. The
total number of states, in which the side-chains can be found, is s. In this case it is sufficient
to use the coarse-grained representations, i.e. follow the local minima in the free energy
curve. Those minima correspond to local trans/gauche conformers. Because polymer chains
are identical, the number of conformers per molecule is the same and is equal to S. Then,
the total number of conformers in the system is proportional to the number of molecules, i.e.
s = NS.
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One of possible ways to track conformers is via dihedral minima of side-chains. An example
of dihedral distribution H(φ) is shown in (fig. 4.8), which is calculated for a short alkyl
chain (7 repeat units) in vacuum using Langevin thermostat at T = 300 K for 100 ns. From
it, one can see three conformers that a dihedral can visit. Additionally, a potential energy
curve is calculated from this distribution via the Boltzmann inversion as

U(φ)− U(180) = −kBT · log [H(φ)] , (4.7)

and is shown in (fig. 4.8), where kB is the Boltzmann constant and U(180) is an energy
offset. The global minimum of the potential (t) corresponds to trans conformer of a dihedral,
while two (g) minima correspond to gauche conformers.

Alternatively, these conformers can be represented through unique minima pairs: Doubly-
trans (dd), trans-gauche (tg) and doubly-gauche (gg). The total numbers of conformers
within a molecule are T , G and D. This representation matches the signal interpretation in
the NMR experiment. And so, one can write a microscopic balance equation

T +G+D = S (4.8)

From the macroscopic perspective, out of the total N molecules in the sample, Nc are found
in the crystalline regions, Ni in the intermediate, and Na in the amorphous. Naturally, the
total number of molecules in the system is conserved

Na +Ni +Nc = N. (4.9)

In each of these regions, the number of conformers T , G and D in the side-chains is
different due to local environment within each mesophase. Consequently, one can introduce
mesophase-specific parameters Tα, Gα and Dα, where index α can take values c, i and a
(referring to the crystalline, intermediate and amorphous mesophases). The equation for all
available conformers (eq. 4.8) can then be re-written as

SN = S

c,i,a∑
α

Nα =
∑
α

(Tα +Gα +Dα)Nα. (4.10)

Summation over three mesophases α = c, i, a is assumed from now on. Next, one introduces
the relative fractions, such as a fraction of molecules within the α-th mesophase (i.e.
nα = Nα/N) and relative conformer fractions in this mesophase (i.e. tα = Tα/S, other
fractions are introduced in a similar fashion).

As a result, equations (4.8, 4.9, 4.10) become a set of normalization conditions

t+ g + d = 1, (4.11)
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Figure 4.8: The distribution of dihedral in a isolated chain (purple) and the corresponding Boltzmann-
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tα + gα + dα = 1, (4.12)

nc + ni + na = 1, (4.13)

where t, g and d are sample-averaged conformer fractions, defined as

∑
α

nαtα = t, (4.14)

∑
α

nαgα = g, (4.15)

∑
α

nαdα = d. (4.16)

These variables, as fractions, are naturally non-negative and restrained

0 ≤ nα ≤ 1, 0 ≤ tα ≤ 1, 0 ≤ gα ≤ 1, 0 ≤ dα ≤ 1. (4.17)

At this point, one has a set of fifteen unknown parameters (local concentrations of side-
chain conformers tα, gα, dα, their averages t, g, d, and global mesophase concentrations
nα). Only six variables are independent, while the remaining nine parameters have to
be provided. In the following sections, macroscopic parameters t, g, d will be taken from
the SS-NMR measurements and microscopic parameters tα, gα, dα will be extracted from
MD simulations of three PBTTT mesophases, which were conducted previously. This is
sufficient to decouple equations and solve them with respect to variables nα, i.e. obtain the
macroscopic composition of the PBTTT sample.
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4.6.2 Introducing the NMR data

A number of simplification can be made, when NMR data are incorporated. First, the ratio
of NMR signals can be used. In terms of the above equations, these fractions are exactly
the introduced parameters t, g and d. One can use sample-averaged data derived from the
experiment to decouple equations and solve them independently.

Second, in the SS-NMR spectra, doubly-gauche conformers are not observed in the PBTTT
sample. This is taken into account by setting the sample-averaged parameter d to zero. As a
result, parameters dα = 0 and equations (4.11 − 4.17) simplify to

∑
α

nαtα = t, (4.18)

∑
α

nαgα = g, (4.19)

tα + gα = 1, (4.20)

nc + ni + na = 1, (4.21)

0 ≤ nα ≤ 1, 0 ≤ tα ≤ 1, 0 ≤ gα ≤ 1, (4.22)

Here, t, g are now parameters, given by the experiment. Because parameters tα and gα are
linked by the normalization (eq. 4.20), only two equations need to be solved. They are

tcnc + tini + tana = t, (4.23)

nc + ni + na = 1, (4.24)

0 ≤ nα ≤ 1, 0 ≤ tα ≤ 1, (4.25)

Such decoupling reduces the number of independent parameters to four (i.e. six unknowns
tα, nα with two equations, t is an empirical parameter). Further, parameters tα are mi-
croscopic and can be extracted from MD simulations, so there is only one independent
variable.

The last simplification relies on observations concerning disordered side-chains. It was shown
that in simulations side-chains’ structure and dynamics have similar properties. Hence, it is
useful to introduce an averaged disordered conformer density τ = (ta + tc)/2. Upon such
definition the two concentrations become ta = τ+∆t and ti = τ−∆t, where ∆t = (ti−ta)/2
is the difference between two concentrations. For any PBTTT sample, this difference is no

4.6 Macroscopic composition 97



Backbone

Side-chain

disorderorder

order disorder

(a)

disorderorder

order disorder

(b)

Figure 4.9: Two possible cases of PBTTT composition: (a) two-mesophase composition, suggested
in NMR, (b) a proposed three-mesophase composition. Parameters tα are fractions of
side-chains in “trans” conformation, nα are concentrations of mesophases, indeces c, a, i
represent three mesophases.

more than 0.02 and is much smaller than any of three concentrations or differences between
them

∆t� tc − ta, tc, ta (4.26)

This small parameter will allow further simplifications of equations.

Two cases of composition

Because the generic equations are under-defined and contain free parameters, one needs
to introduce more information to solve them. In the following, two cases of morphology
composition will be considered.

From the experiment, it is suggested that the PBTTT sample is half crystalline and half
amorphous. This is observed for both backbones and side-chains. Possibly, the third
mesophase is present in small quantities. This suggests that nc ≈ na ≈ 0.5 and ni ≈ 0, as
well as tc ≈ 1 and ti ≈ ti ≈ 0. This composition is schematically shown in (fig. 4.9, a).
However, it will be shown that the assessment of parameters tα in NMR is incorrect. To
demonstrate this, one can write a more general model that includes this result. For example,
nc = 0.5− x, na = 0.5− x and ni = 2x, where x should be small. Here, the normalization
for nα is satisfied by construction and the original assumption is recovered for x = 0. Then
the fraction of the intermediate mesophase is

ni = 2x = tc + ta − 2t
tc + ta − 2ti

. (4.27)

After employing the similarity between side-chains in the intermediate and amorphous
mesophases, i.e. introducing the averaged quantity τ , one can rewrite this expression as

ni = tc + τ − 2t
tc − τ

. (4.28)

It will be shown that this mesophase composition cannot be realized since parameters tα
are, in fact, far from NMR estimates. In the model, the case ni = 0 can never be achieved
within the range of possible values for tα.
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A more generic model is required, which includes all three mesophases and allows their
arbitrary concentrations. In particular, the third, intermediate mesophase contributes to the
conformer fractions of ordered backbones and disordered side-chains (see fig. 4.9, b). To
begin with, the generic expression (eq. 4.23) for convenience can be transformed to

nc = t− ti
tc − ti

+ na
ti − ta
tc − ti

(4.29)

It was mentioned that the equation is under-defined and nc explicitly depends on the other
macroscopic variable na. If the small parameter ∆t is introduced

nc = t− τ
tc − τ

+ 1
2

∆t
tc − τ

(2na − 1) + 1
2

∆t
tc − τ

nc. (4.30)

The main contribution comes from the first term, while the last two are proportional to ∆t
and can be neglected. Hence, with good accuracy

nc = t− τ
tc − τ

. (4.31)

This is a remarkable result: The fraction of the crystalline mesophase in the sample can be
determined from the ratio of two integral NMR peaks t and the simulated local side-chain
configuration densities tα.

Though the small parameter ∆t allows to decouple macroscopic variables nc from the other
two, it prevents such decoupling for variables ni and na. Hence, additional information
needs to be provided to obtain the two concentrations. One can use the available SS-NMR
data for backbone concentrations (i.e. nc + ni ≈ na ≈ 0.5) and obtain the intermediate
mesophase concentration ni from the normalization condition

ni = 1− nc − na = 0.5− nc. (4.32)

The error that was introduced in (eq. 4.30) by neglecting the two terms is small. The middle
term is exactly zero for the PBTTT sample as na = 0.5 (though it remains small for the cases
na 6= 0 as well). The largest error last term can produce does not exceed 2.5%. For the
mesophase concentrations of PBTTT that will be obtained later, this error is 0.3%.

To summarize, concentration nc of the crystalline mesophase can be obtained from the
model. Parameters of the model are derived from microscopic MD simulations and taken
from NMR measurements of side-chains. The NMR data for backbones provide a value of the
amorphous mesophase concentration na. As a result, concentration ni can be assessed.

The proposed model resolves a composition of a three-mesophase mixture. To extend the
model and include more mesophases, one needs to introduce additional equations and
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parameters. Consequently, more experimental data as well as morphology simulations are
required.

4.6.3 Analysis of the model

Before I estimate any numbers from MD simulations, it is useful to analyze the derived
expressions. The two composition cases behave similarly, hence only the second case
(eq. 4.30) is analyzed. The crystalline fraction is completely defined through microscopic
variables as

nc = t− τ
tc − τ

(4.33)

Here, one recovers an intuitive result: Concentration of the crystalline mesophase is propor-
tional to the total trans-trans signal t generated by the sample. Also, this equation shows
limits, in which the total signal t can be varied in this model, that is τ ≤ t ≤ tc. Otherwise the
molecule’s concentration becomes unphysical. Note that without knowing the microscopic
parameters tα, one can have any concentration nc between 0 and 1. Next, one uses the
validity ranges for nc, tc and τ . They are

0 ≤ nα ≤ 1, 0 ≤ tα ≤ 1, 0 ≤ τ ≤ 1. (4.34)
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Figure 4.10: A 2D map of possible nc concentrations in the semi-crystalline PBTTT sample as a
function of (tt) conformer concentrations in amorphous / intermediate mesophases (τ)
and crystalline mesophase (tc). The colored areas are a graphical representation of the
derived restraints on nc: True values of nc are shown in green and range between 0
and 0.5; physically impossible areas are shown in purple and white. The two areas are
separated by a line tc = τ . Empirical parameter t is set to its experimental value 0.55.
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In particular, 0 ≤ nc ≤ 0.5, since na ≈ 0.5 and is known. These are combined with a
constraint

τ ≤ tc . (4.35)

The last inequality reflects a physical fact that side-chains in the crystalline mesophase are
more ordered than in the amorphous ones, hence should contain more (tt) conformers.
Applying these limits to the parametric solution (eq. 4.33), one obtains

τ ≤ t ≤ tc, (4.36)

2t ≤ tc + τ (4.37)

where the two inequalities should be fulfilled simultaneously to ensure meaningful conformer
fractions. Without physically intuitive limitation τ ≤ tc, one arrives at the second option for
parameter ranges

τ ≥ t ≥ tc, (4.38)

2t ≥ tc + τ, (4.39)

which is separated from a physical region by a line tc = τ , on which the concentration of the
crystalline mesophase nc is infinite. The two regions, defined by the inequalities, are shown
in (fig. 4.10). In it, simulated parameters tα and resulting nc values should fall within the
green area.

4.6.4 Trans-gauche effects in MD simulations

After the model analysis, one returns to the molecular dynamics simulations, in order
to assess the missing parameters tα. Following the NMR definition, one requires cross-
correlation plots of P (φi, φi+3) dihedral angles (as defined in fig. 4.12, e), to assess conformer
fractions directly. Here, i is the bond index. The corresponding distribution are shown
in (fig. 4.12, a-d) for ordered and disordered side-chains at 300 K and 500 K. Data in the
amorphous and intermediate mesophases are similar, hence the latter is not shown.

The global minimum in the potential energy surface of the C-C-C-C dihedral is the trans
conformer, and is found at 180◦ in the OPLS force field (fig. 4.12), while the remaining local
minima correspond to less favorable gauche conformers of the chains and are found on a
grid at 180 ± 70◦. Apart from the expected thermal broadening, one can clearly see that
the dominant side-chain conformer state is “trans”, even in the melted side-chains at 500 K.
This means that a significant portion of the “ordered” NMR signal comes from disordered
side-chains, and not only from the crystalline part.

The 2D dihedral angle maps are then used to calculate (tt), (tg) and (gg) conformer fractions
in related samples. Numerical values of these fraction are shown in (fig. 4.13) as a function
of temperature. As expected, the highest fraction of (tt) conformers is observed in the
crystalline mesophase at all temperatures. It is followed by the intermediate and amorphous
samples, which have almost identical trends. The opposite picture is seen for (tg) and (gg)
conformers, as they represent defects. The (gg) fraction is the smallest in all three samples
and is close to zero in the crystalline mesophase. One should note that, though small, the
contribution of (gg) conformers is notable in a total statistics.
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Figure 4.11: Distributions of transitions in alkyl side-chains at T = 300 K, T = 400 K, T = 500 K in
intermediate (full symbols) and amorphous (empty symbols) mesophases.

Additionally, statistics is calculated for a short alkyl chain in vacuum, simulated in SD at
300 K for 1 µs. The corresponding cross-correlation plot is shown in (fig. 4.12, f). The
analysis of its trajectory gives the distribution of (tt), (tg) and (gg) conformers as 0.45, 0.45,
0.1. This parameter set is very close to values obtained for melted side-chains at 500 K. One
may suggest that at this temperature, the resulting numbers represent a fully equilibrated
system, i.e. t =∞. Another times scale is defined by the side-chain diffusion, which obtained
from matching the order parameter in simulations and an experiment. In this way one
defines three simulation times: 1 ns, 130 µs and infinitely long runs. The last two times are
extrapolated from high temperature simulations. The respective values of local side-chain
conformer concentrations are extracted for these times are presented in (tab. 4.4).

From the analysis of MD simulation of PBTTT mesophases, one observes that correlated
dihedral angle distributions P (φi, φi+3) can be factorized, with good accuracy, into a product
of two individual dihedral angle distributions p(φ), i.e. P (φi, φi+3) ≈ p(φi)p(φi+3) = p(φ)2,
where φ is the dihedral angle. One consequence of such factorization is that one can
estimate the number of (tt) conformers as xtt = x2

t . Here, xtt is the fraction of doubly-trans
conformers and xt is the fraction of individual trans conformers in disordered side-chains. In
current notation tc = xtt. This result was observed in earlier simulations of bulk polyethylene
(PE) melt [235, 236], in which conformer transitions (i, i± 3) are almost independent of
each other, since the corresponding conditional probability P (i ± j|j = i + 3) ≤ 0.05 at
T = 300 K and decreases further at higher temperatures, where i, j are relative positions of
dihedrals along an alkyl chain.

This simplification allows to estimate (tt) conformer fractions from other simulations of PE
melts, in which trans/gauche conformer population was calculated. In MD simulations of
bulk PE at T = 413 K (above the melting point) [238], the observed concentration of trans
conformers is xt = 0.6, hence, xtt = 0.36. Same result is obtained from MD simulations of
united atom PE in bulk [239]: xt = 0.6 (xtt = 0.36) at T = 450 K, and from MD/Monte
Carlo simulations of PE at T = 450 K on a graphene substrate [240], where xt = 0.63
(xtt = 0.37). Also, almost no pressure dependence was observed. Finally, a direct evaluation
of trans/gauche conformers was done with the solid-state NMR measurements [241] in
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Figure 4.12: Angle distributions of dihedrals in γ-positions in ordered (a,b) and disordered (c,d)
side-chains at 300 K (a,c) and 500 K (b,d). The same plot for a single chain in vacuum at
300 K is shown in figure (f), while chain fragment used for the calculation is shown in
figure (e).
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Figure 4.13: Concentrations of (tt), (tg) and (gg) side-chain conformers in three PBTTT samples as a
function of temperature. Vertical marks are the values obtained from GOP-temperature
rescaling. Horizontal dashed line marks the condition τ = t

semi-crystalline PE at T = 300 K. From the analysis of chemical shifts, the value of xt = 0.6
(xtt = 0.36) is extracted, which is in good agreement with previous simulation results.

Simulated trans/gauche populations in PBTTT, presented in this chapter, are notably different
(xtt ≈ 0.5 at T = 450 K). One possibility for this discrepancy is poor equilibration of side-
chains due to short simulation times. To check this, one can calculate the number of
transitions between conformers (see fig. 4.11) in intermediate and amorphous mesophases
at various temperatures. Even at T = 300 K, more than half of side-chains have more than
25 transitions between trans and gauche conformers, which should be sufficient to reach
an equilibrium. Further, though two mesophase are prepared independently, the observed
dynamics is identical. This shows that disordered side-chains have similar properties in two
mesophases and are equilibrated. This is additionally supported by previous simulations of
PE, [235, 242], where the characteristic transition time between two conformers was found
to be of the order of τ = 0.1 ns. This relaxation time is much smaller than the simulation
time of PBTTT mesophases (2 ns).

Another possibility is that the OPLS-AA force field parameterization does not reproduce
the conformer statistics, hence, it is not suitable for such side-chains simulations. In fact,
recently, a new OPLS parameterization for dihedral potentials of long hydrocarbons was
obtained [243], which focuses on reproducing the energy barriers between conformer states,
and may give better trans/gauche populations. Simulations with new dihedral parameters
are left for future investigation. Even in this case, the protocol employed in Section 4.5 is
valid, as it partially corrects the population of trans/gauche conformers, since in equilibrium
the Boltzmann factor holds: xt/xg ≈ exp (−∆E/kBT ). Here, ∆E is the difference between
two energy levels, kB is the Boltzmann constant and T is the temperature.

Even so, it is clear now, how solid-state NMR overestimates the crystalline mesophase
concentration. One can equate disordered “gauche” signals with the amorphous side-chains
in the sample, yet one cannot judge about the ordered chains only from the ordered part of
the NMR spectrum. From (tab. 4.4) one can see that (tt) conformers are dominant in all
three mesophases, including the two with disordered side-chains. As a reminder, in NMR the
following values were assumed: tc ≈ 1 and ta ≈ ti ≈ 0. However, judging from simulations,
these values are never met. The observed crystalline peak in the NMR spectrum is unresolved
as it contains contributions from all three mesophases. Also, it does not take into account
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Time [ns] 1.0 1.3× 105 t→∞
Conformers tt tg gg tt tg gg tt tg gg

cryst. 0.992 0.008 0.000 0.955 0.045 0.000 0.944 0.055 0.001
inter. 0.640 0.314 0.046 0.513 0.406 0.081 0.474 0.430 0.096

amorph. 0.597 0.336 0.067 0.503 0.407 0.090 0.454 0.438 0.108

Table 4.4: Conformers populations, calculated for three timescales of side-chain dynamics in three
mesophases. Two timescales are extrapolated from high temperature re-mapped dynamics.

the connection of main chains and side-chains within those mesophases. The initial 1:1
crystalline/amorphous mesophase composition is only one possible interpretation of the
NMR data where τ = 0. Yet, according to simulations (tab. 4.4) and further analysis, this
scenario is unrealistic. Here, MD simulations provide the missing link, and the conformer
analysis plays a key role in resolving the composition problem.

4.6.5 Qualitative estimates of the composition

Finally, it is interesting to look at the numerical quantities of mesophase fractions, that come
out of two proposed models, provided the missing parameters tα.

The first case follows the lead of the NMR experiment and suggests that there are only
two mesophases (crystalline and amorphous), mixed in a proportion, close to 1:1. In terms
of the model, this translates to concentrations of crystalline and amorphous mesophases
as nc = na = 0.5 − x while ni = 2x and is expected to be small. Within this setup, the
concentration of the intermediate mesophase takes the form

ni = tc + τ − 2t
tc − τ

, (4.40)

where tα (α = c, i, a) are side-chain (tt) conformer probabilities, estimated from MD.
Concentration nc is then calculated as nc = 0.5− ni/2 for three simulation times: short runs
(1 ns), runs with experiment-like dynamics (130 µs) and fully equilibrated runs (t → ∞).
Each simulated timescale provides useful information about the system. The results are
summarized in (tab. 4.5).

At short simulation times (t = 1 ns), calculated concentrations of the crystalline and
amorphous mesophases are nc = na = −29.1% (i.e. nc < 0). This was already demonstrated
in Section 4.6.3: Since τ > t, the negative values of nc are expected. The origin of the
problem has a number of sources.

Rescaled µs runs recover a positive value nc = na = 8.5%. This is a result of a controlled high
temperature dynamics, which allows side-chains to diffuse and approach their equilibrium
distributions. Yet, there is still a number of concerns. The small values of nc and na are in
direct contradiction with the initial assumption about mesophase composition: 83% of the
sample is occupied by the intermediate mesophase (and not the other two). Additionally,
because material composition is an equilibrium property, it is possible that one still has not
reached the equilibrium.
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Previously, one suggested that the equilibrium values are recovered from 500 K runs and
generate the highest possible number of defects. This is directly linked to the highest possible
value of the crystalline and amorphous mesophases, nc = na = 16.9%. Consequently, the
smallest portion of the intermediate mesophase, which is consistent with the model and
experimental measurements, is ni = 66.2% and cannot be further reduced to zero. Even
when the equilibration problem is resolved, still, the two-mesophase picture is inappropriate.
The expected composition value ni ≈ 0% cannot be reached within the physical range
of available parameters of the model. The next step is to introduce mesophases without
restraints.

The model is revised to allow arbitrary fractions of mesophases, which still satisfy the
experimental observations. This is achieved through a set of constraints: nc + ni = 0.5 and
na = 0.5. As a results, the crystalline mesophase fraction is given by

nc = t− τ
tc − τ

, (4.41)

It is then calculated for three simulation times. The short simulations yield negative proba-
bilities for some mesophases due to bad equilibration. The rescaled µs run provides a better
value nc = 9.5% and the fully equilibrated run gives nc = 18.3%.

The final adjustment comes from another NMR observation: The (gg) conformers are not
observed in the experiments. This effect was already taken into account when the model
was derived, but parameter distributions, used until now, were not adjusted. Such rescaling
systematically reduces equilibrium concentrations by more then a factor of two down to
6.4% and 8.0% in two scenarios (see tab. 4.5 for a complete set of changes).

As a side note, it was shown in Section 4.6.4 that side-chain conformer populations may not
be well reproduced in current PBTTT mesophase simulations. Using the estimates from PE
melt simulations, one arrives at higher number of 30%. Further simulations and analysis are
required to check this result.

This leads to the conclusion, that within the proposed model and conducted MD simulations,
simulated microscopic parameters and experimental data, the highest possible concentration
of a crystalline mesophase is limited by 8%. The final distribution for crystalline, intermediate
and amorphous mesophases is 8%, 42% and 50%. Not only PBTTT is far from crystalline, but
also the fraction of crystallites in the sample is not enough to form the percolation network
(around 50%) required for an efficient charge transport via hopping. Further more, from the
organic electronics perspective, one needs to consider other mesophases and suitable charge
transfer mechanisms to explain high efficiencies of PBTTT-based devices.

As a consequence of this finding, it is useful to decompose the NMR signal with respect to its
mesophase origin. Taking into account the calculated defect fractions of side-chains, one
obtains that out of total 55% (tt) conformers contained in the sample, only 7.5% come from
fully crystalline mesophase, while 22% are located in intermediate mesophase and 25.5%
are in amorphous mesophase (majority). This shows that each portion of a sample possesses
a relevant amount of (tt) conformers (not only crystallites). In the case of PBTTT, similar
fractions of crystallized backbones (50%) and “crystallized” side-chains (55%) is merely
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time case 1 case 2
Statistics Full Reduced Full Reduced
t = 1 ns −29.1% −41.7% −19.5% −32.9%

t = 1.3× 105 ns +8.6% −2.0% +9.5% −1.4%
t =∞ ns +16.9% +6.4% +18.3% +8.0%

Table 4.5: Fraction of the crystalline mesophase nc obtained for two scenarios: Case 1 with the
two-mesophase composition, and Case 2 with the three-mesophase composition. Results
for full and reduced statistics are included.

a coincidence. Consequently, (tt) to (tg) ratio of side-chain conformer cannot be directly
converted to the ordered/disordered mesophase ratio. The derived expression (eq. 4.41),
however, partially resolves this issue and provides an estimate for the crystalline mesophase
in the sample. This approach could work for other polymers with similar structure, since
simulated microscopic parameters are local in nature, hence, should be transferable. Further
investigation of the above statements is left fors the future work.

4.7 Conclusions

In this chapter, a number of properties of the semi-crystalline PBTTT-C16 polymer are studied,
such as local packing, backbone and side-chain dynamics, and macroscopic composition.
These properties are investigated using NMR measurements and MD simulations.

The simulated local packing in three mesophases is in good agreement with partially re-
solved NMR data and includes unit cell parameters, d-spacing between polymers, methyl-to-
backbone distances and mean torsion angles of backbones. The absence of experimental data
in amorphous regions is mirrored by observed flat distributions of parameters in simulated
disordered morphologies.

Dynamics of PBTTT mesophases is revealed through Lipari-Szabo generalized order parame-
ters via both NMR experiments and MD simulations. While simulated chain dynamics agrees
with experimental data qualitatively, the dynamics of side-chains is slowed down by a factor
of two. To enhance sampling, the PBTTT dynamics is extrapolated from short (ns) high
temperature production runs. Matching generalized order parameters from SS-NMR and
simulations, allows to reproduce the side-chains dynamics, which corresponds to the µs-long
averages. In particular, elevated temperatures induce diffusion in a controlled fashion due
to a more effective barrier crossing and defect formation.

In the macroscopic PBTTT sample, two mesophases are observed experimentally: Crystalline
and amorphous. In these mesophases, side-chain defects and backbone disorder are related
to macroscopic properties of the sample. Fitting of the resolved NMR spectrum suggests the
1 : 1 ratio of these two mesophases.

An investigation through MD simulations revealed that three mesophases can be simulated:
Crystalline, intermediate and amorphous. The intermediate mesophase is comprised of
π-stacked backbones and disordered side-chains. It was shown that the two-mesophase com-
position, proposed in NMR, is inconsistent within the derived model. The three-mesophase
model combined with the NMR-based macroscopic parameters and microscopic parameters
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from MD simulations leads to significant changes in the initial concentration assessment:
50% of material is amorphous, 42% is intermediate and 8% is crystallized.

A simple analytical formula is derived to assess the crystalline fraction in a sample. Because
simulated microscopic parameters are independent of the backbone packing, the derived
model and its microscopic parameters can be used to estimate the crystalline fraction in
other semi-crystalline polymers with a similar structure.

High temperature MD simulations, used for controlled equilibration of amorphous side-
chains in two mesophases, play an important role in macroscopic composition assessment.
Short simulation times (1 ns vs 130 µs) lead not only to a restrained dynamics, but also to
unbalanced defect concentrations, which can result in an unphysical mesophase fractions.
Alternatively, incomplete force field parameterization could be responsible for an incorrect
conformer statistics.

Even in well equilibrated systems, MD simulations reveal that the majority of trans-signals,
measured in the sample, come from disordered chains. Out of total 55%, attributed to the
crystalline peak, only 7% originates from side-chains in the crystalline mesophase, while
the remaining 48% (i.e. 22% + 26%) arise from disordered chains in the intermediate and
amorphous mesophases.
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5Summary and outlook

Polymer solar cells have the potential to become an economically viable, environmentally
friendly alternative to fossil fuels. Multiple solar cell types are spawned by a vast choice of
materials that can be used in the active layer of photovoltaic devices. One possibility is to
use conjugated polymers. They combine good light absorption, high mobilities, chemical
flexibility, low specific weight, transparency, large-scale printing techniques and, potentially,
low production costs.

Current efficient polymers, however, have complex chemistry and structure. This results
in a large number of degrees of freedom, which lead to multiple ordered (crystalline) and
disordered (melts) packing motifs. Local packing has a strong influence on the electronic and
transport properties of a polymer. In order to improve the solar cell efficiency, one needs to
understand the effect of morphology, as well as be able to control morphology formation.

In this thesis, I used a number of simulation techniques to study the morphology effects
in two conjugated polymers. Since the processes of interest are microscopic in nature,
a multiscale approach was used to link the local properties to a macroscopic observable,
that is mobility. These techniques include first-principles calculations, molecular dynamics
simulations, perturbative energy calculations, and Marcus charge transfer theory. With these
simulation methods, two polymers, PCPDTBT and PBTTT, were investigated.

In PCPDTBT, it was shown that the possible morphologies of the polymer go beyond the
two typical motives: amorphous and π-stacked. In fact, four crystalline polymorphs have
been observed. In this work, I attempted to use molecular dynamics simulations to derive
these polymorphs systematically in a bottom-up approach, through analysis of monomer,
dimer, and tetramer interactions. Not one, but two π-stacked structures were discovered in
PCPDTBT. Two more crystals are side-chain mediated, i.e. their side-chains are folded on
the backbones. Such side-chain packing results in different charge transport pathways in
the system. Furthermore, charge transport was investigated using Marcus charge transfer
theory. It was shown that the energetics of charges is generated by the electrostatics of
the donor unit CPD, as well as a disordered structure of side-chains. Large variation of
site energies results in low mobilities. Moreover, atom substitution was considered: Heavy
atom substitution (Si, Ge) of the bridging atom in the donor unit, as well as fluorination
of the acceptor unit. Both substitution patterns favor higher energetic disorder and reduce
mobilities.

A number of improvements can be proposed. In this work, in order to find possible crystal
structures, the total energy was used. However, the morphology formation is driven by the
free energy of the system. It would be interesting to perform free energy calculations and
compare the results of two approaches. Additionally, one should check if these calculations
would be able to predict metastable conformations of other complex conjugated polymers.
Also, it was demonstrated that the transfer integral evaluation is the bottleneck of the charge
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transport simulations, which is a consequence of time-consuming DFT calculations. One
could attempt to re-parameterize semi-empirical quantum chemistry methods in order to
reduce the computation time.

PBTTT is a typical donor material for organic solar cells due its high crystallinity, hence, good
charge transport. As a result, often only the crystalline part is considered when its properties
are investigated. However, the solid-state NMR measurements show that half of the PBTTT
sample is, in fact, amorphous. This result is not resolved with respect to its mesophases, so I
combined microscopic molecular dynamics simulations of PBTTT with the available NMR
data to resolve the composition. A simple equation was derived, which allows one to assess
the fraction of crystalline domains. It contains microscopic concentrations of side-chain trans
conformers, obtained from simulations, and the macroscopic average of the same quantity,
measured in the solid-state NMR. For a given PBTTT sample, a three-mesophase composition
results in the crystalline domain concentration of 8%, i.e. the disordered mesophase and the
interface are dominant. Hence, disordered regions define the physical properties of PBTTT
sample. This result should be further investigated for other polymer systems with similar
structure, such as P3HT, and compared to other methods.
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