
1 
 

Intermediate structural state in Bi1-xPrxFeO3 ceramics at the rhombohedral-
orthorhombic phase boundary 

 

D. V. Karpinsky 1*, I. O. Troyanchuk 1, M. Willinger 2, V. A. Khomchenko 3, A. N. Salak 4, V. Sikolenko 5, M.V. Silibin 6 

1 Scientific-Practical Materials Research Centre of NAS of Belarus, P. Brovka str. 19, 220072 Minsk, Belarus 
2 Fritz-Haber-Institut der Max-Planck-Gesellschaft, Abteilung Anorganische Chemie, Faradayweg 4-6, D-14195 Berlin, 

Germany 
3 CFisUC, Department of Physics, University of Coimbra, P-3004-516 Coimbra, Portugal 
4 Department of Materials and Ceramics Engineering, University of Aveiro, 3810-193 Aveiro, Portugal 
5 Joint Institute for Nuclear Research, 141980 Dubna, Russia 
6National Research University of Electronic Technology “MIET”, 124498 Zelenograd, Moscow, Russia 

 

Abstract 
Crystal structure of the Bi1-xPrxFeO3 ceramics of the compositions corresponding to the threshold 

concentrations separating the polar rhombohedral (R3c) and anti-polar orthorhombic (Pbam) phases has 
been investigated with X-ray diffraction, transmission electron microscopy and differential scanning 
calorimetry measurements performed in a broad temperature range. The structural study specifies the 
peculiarities of the temperature-driven transition into the non-polar orthorhombic (Pnma) phase depending 
on the structural state of the compounds at room temperature. The crystal structure analysis reveals the 
revival of the anti-polar orthorhombic phase upon the temperature-induced transition, thus assuming that it 
can be considered as the bridge phase between the polar rhombohedral and the non-polar orthorhombic 
phases. 
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Introduction 
Solid solutions of bismuth ferrite attract persistent scientific interest due to the multiple 

composition-driven structural transitions which dramatically affect the multiferroic behavior. Near 
the morphotropic phase boundaries, these materials are characterized by the enhanced physical 
properties associated with the specific structural state. It is assumed that the enhanced responses 
are caused by a coexistence of the adjacent-phase structural clusters with a typical size reduced 
down to a nanoscale level. Such structural state is highly defective because of the numerous 
dislocations, inhomogeneous stress distribution, local variations of the chemical composition etc 
[1-5] which reduce its thermodynamic stability and enhance sensitivity to the external stimuli – 
temperature, electric/magnetic field, mechanical stress. 

In BiFeO3, chemical replacement of Bi3+ with the rare-earth elements possessing 
comparable ionic radius (La3+ - Eu3+) causes the concentration-driven structural transition from 
the polar rhombohedral to the nonpolar orthorhombic phase that occurs via the formation of the 
antipolar orthorhombic structure [4, 6-11]. Most promising physical parameters were obtained for 
the lanthanum and praseodymium-doped compounds within the morphotropic phase boundary 
region [3, 8, 12], the phase coexistence range estimated for these compounds is stable over a very 
broad compositional range (Δx~5%) far exceeding those attributed to the compounds doped with 
other rare-earth elements [4, 7]. It should be noted that the wide phase coexistence range facilitates 
the structural analysis of this region. It is known that the phase transition sequence is largely 
dependent on the substituting elements, e.g. chemical substitution by rare-earth elements with 
smaller ionic radii reduces the dopant concentration level triggering the structural transformation, 
while the width of the phase coexistence region shrinks [4, 13-16]. 
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Structural measurements performed for the rare-earth doped BiFeO3 compounds as a 
function of temperature have revealed a complex evolution of the structural phases depending on 
the crystal structure at room temperature [7, 14]. The compounds characterized by the 
rhombohedral lattice at room temperature demonstrate gradual transition into the non-polar 
orthorhombic phase that happens via the formation of a mixed (polar + non-polar) structural state. 
Within the compositional range corresponding to coexistence of the polar and anti-polar phases, a 
gradual reduction of the anti-polar orthorhombic phase (accompanied by the proportional increase 
in the amount of the rhombohedral phase) takes place with increasing temperature. At higher 
temperatures, the anti-polar phase disappears and the new phase with non-polar orthorhombic 
structure emerges. Further temperature increase stabilizes single phase structural state with the 
non-polar orthorhombic structure. Ceramics with the major anti-polar phase or single phase anti-
polar compounds show gradual transition to the non-polar orthorhombic structure through the two-
phase structural state. In the compounds having minority of the rhombohedral phase, anti-polar 
phase vanishes at temperatures below that attributed to the appearance of the non-polar 
orthorhombic phase, so such transition is also characterized by two-phase coexistence region 
without intermediate phases. 

Our recent structural study of the Pr-doped compounds [17] within the phase coexistence 
region has revealed an intriguing evolution of the crystal structure with temperature. The structural 
measurements performed for the compounds with dominant rhombohedral phase at room 
temperature show the three-phase coexistent region stable in the narrow temperature range. It was 
considered that this thermodynamically non-equilibrium state is realized during the temperature-
driven transformation of the anti-polar orthorhombic phase into the orthorhombic non-polar phase, 
while the rhombohedral phase remains notable. 

Analysis of the composition- and temperature-driven structural transitions observed in the 
RE-doped BiFeO3 compounds suggests the anti-polar orthorhombic phase to be the intermediate 
one between the more stable polar rhombohedral and non-polar orthorhombic phases. The present 
study focuses on the clarification of the structural evolution of the Pr-doped compounds in the 
vicinity of the phase boundary region. Analysis of the crystal structure of the compounds across 
the phase transitions is crucial to determine the origin of the enhanced physical properties observed 
in these compounds. Declared issue is a complex technological and scientific task as there are 
different factors which hamper the structural analysis (i.e. limited resolution of laboratory 
diffractometers, stress and local defects and vacancies which locally modify crystal structure etc.). 
In order to determine the crystal structure evolution across the phase transitions we have performed 
the combined microscopic (X-ray diffraction) and local scale (transmission electron microscopy) 
structural measurements. 

 
Experimental 
Ceramic samples of Bi1-xPrxFeO3 system with the dopant concentrations 0.1 ≤ x ≤ 0.25 

were prepared by a two-stage solid-state reaction [4]. High-purity oxides taken in a stoichiometric 
ratio were thoroughly mixed using a planetary ball mill (Retsch PM 100). The ceramics were 
synthesized at 930 – 1030°C (synthesis temperature was increased with the praseodymium 
concentration) followed by a fast cooling down to room temperature. X-ray diffraction 
measurements were performed with a PANalytical X’Pert MPD PRO diffractometer (Cu-Kα 
radiation) equipped with a heating stage (Anton Paar, HTK 16N). Diffraction data were analyzed 
by the Rietveld method using the FullProf software package [18]. High-resolution transmission 
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electron microscopy (HRTEM) measurements have been performed using an FEI aberration-
corrected Titan 80–300 microscope operated at 300 kV equipped with an EDX detector. 
Differential thermal analysis and differential scanning calorimetry were carried out with a 
differential scanning calorimeter Setaram (Caluire, France) in a flowing argon atmosphere. 

 
Results and discussion 

Crystal structure evolution across the concentration driven transition 

XRD measurements performed for the Bi1-xPrxFeO3 solid solutions at room temperature 
have determined the concentration regions specific to different structural phases. The structural 
data obtained for the compounds with the dopant concentrations of up to x=0.1 were described by 
the polar rhombohedral phase model (space group R3c) specific to the pristine BiFeO3. In the 
concentration range of 0.11 ≤ x ≤ 0.15, the crystal structure of the compounds is characterized by 
a coexistence of the polar rhombohedral (R-phase) and anti-polar orthorhombic (O2) phases (Fig. 
1). The anti-polar orthorhombic structure has been refined using Pnam space group with a lattice 
metric of √2ap*2√2ap*4ap (where ap is the fundamental perovskite lattice parameter). In the 
orthorhombic lattice, the ions residing at A- and/or B- perovskite positions are shifted along the b-
axis in opposite directions thus forming the anti-polar order similar to that observed in PbZrO3 
[19, 20]. Praseodymium doping leads to the increase of the orthorhombic phase fraction at the 
expense of the rhombohedral one. Quadrupling of the c-axis weakens upon doping and it can 
hardly be determined in the compounds with x > 0.2. The unit cell is characterized by doubled c-
axis (as compared to the ideal perovskite structure) and the crystal structure is described by Pbam 
space group with metric √2ap*2√2ap*2ap. Increase of the dopant concentration leads to a 
stabilization of the single phase anti-polar orthorhombic structure (Pbam), further chemical doping 
leads to a stabilization of the two-phase region followed by the single-phase state with the non-
polar orthorhombic structure (S.G. Pbnm, O1-phase). 

 
Fig.1. The XRD pattern of the Bi0.89Pr0.11FeO3 compound recorded at room temperature. Bragg positions attributed 
to the rhombohedral (upper) and the orthorhombic phases are marked by vertical ticks. The right inset shows 
evolution of the structural peaks, tiny peak attributed to the anti-polar phase is highlighted. The left inset shows 
temperature evolution of the unit cell volume of the structural phases and the DSC dependence. 
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The declared structural data generally correspond to the previously published results [17, 
21]. Some minor differences with the available data can, however, be found for the two-phase 
concentration regions and the doping levels critical for the phase transition between the 
orthorhombic phases. It should be noted that the concentration ranges of the phase stability 
significantly depend on the synthesis conditions and the post-synthesis treatment (quenching, 
annealing in gaseous atmospheres etc.). Depending on the mentioned factors, the phase boundary 
regions can vary within several percents [4, 15, 21, 22]. In the present study we declare ~ 4% width 
of the rhombohedral-orthorhombic two-phase region which is quite narrow as compared to those 
reported so far [21, 23]. 

The anti-polar phase can be considered as the intermediate phase within the structural 
transition from the rhombohedral to the orthorhombic phase driven by chemical substitution for 
compounds doped with large rare-earth ions La-Eu; the structural transition in the compounds with 
smaller dopant ions is associated with direct structural transformation to the non-polar 
orthorhombic phase. It is known that the concentration of the dopants and the width of the two-
phase regions significantly depend on the ionic radius of substituting element. The BiFeO3 
compounds doped with lanthanum ions are characterized by smaller changes in the structural 
parameters upon the chemical doping as compared to those observed in the Pr-doped samples [24], 
thus justifying a larger concentration of the substituents required to induce the structural transitions 
as well as a wider range of the two-phase regions.  

 
Fig.2. The XRD pattern of the Bi0.85Pr0.15FeO3 compound. Bragg positions attributed to the anti-polar orthorhombic 
(upper) and the polar rhombohedral phases are marked by vertical ticks. The right inset shows evolution of the 
structural peaks, the peaks attributed to either anti-polar or non-polar phases are denoted. The left inset shows 
evolution of the unit cell volume of the structural phases as well as the DSC dependence (solid line).  

In contrast, substitution of bismuth ions by rare-earth ions with smaller ionic radii reduces the 
doping level critical for the structural transition and leads to a shrinkage of the two-phase region 
[4, 15]. Thus, the size effect plays crucial role in the structural phase transitions observed for the 
doped BiFeO3 compounds. 
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Chemical doping with praseodymium ions leads to a gradual reduction of the unit cell 
parameters. The unit cell volume drastically changes while passing across the phase transitions, 
viz the rhombohedral-orthorhombic phase transformation is accompanied by ~0.5% change in the 
unit cell volume, the orthorhombic-orthorhombic transition is accompanied with ~1% change in 
the unit cell volume. The diffraction data reveal a significant change in the unit cell parameters 
across the phase transition when the phase ratio evolution testifies a gradual transformation from 
one phase into the other without any intermediate phase. The crystal structure analysis reveals a 
minor amount of the anti-polar orthorhombic phase (about 5%) in the compound with x = 11%. 
The compound with x = 15% is on the other side of the phase boundary and contains about 5% of 
the rhombohedral phase. The crystal structure of the compound with x=13% is characterized by 
nearly equal amount of the rhombohedral and the anti-polar orthorhombic phases. 

The mentioned compounds represent the doping-driven structural transition from the polar 
rhombohedral to the anti-polar orthorhombic phase that happens without formation of any 
intermediate phase. The temperature-driven evolution of the crystal structure resembles that 
caused by the chemical substitution, while the route of the phase transformation is doubtful and 
strongly dependent on the initial structural state [14, 24]. The question about the phase coexistence 
in these compounds upon the temperature increase as well as the possibility of stabilization of the 
intermediate phase is still under discussion, so the thermal behavior of the compounds within the 
phase boundary region is worthy to be studied in details. 

Temperature driven evolution of the crystal structure 

The substitution-driven structural evolution described for the Bi1-xRExFeO3 compounds is 
quite similar to that observed for them upon the temperature increase. The crystal structure of the 
Bi1-xRExFeO3 perovskites transforms into the non-polar orthorhombic one upon the temperature 
increase regardless the initial structural state stable at room temperature. For the pristine BiFeO3, 
the rhombohedral-orthorhombic transition occurs at T ~ 830 °C and is accompanied by drastic 
(~1.5%) decrease in the unit cell volume [25]. The BiFeO3-based compounds doped with different 
rare-earth ions also show transformation into the non-polar orthorhombic state, while the route of 
the structural evolution varies for the dopant ions and strongly depends on the structural state at 
room temperature. 

Among the BiFeO3-based materials doped with rare-earth elements, solid solutions with 
praseodymium ions show the most intriguing evolution of the crystal structure as a function of 
temperature. For instance, the existence of the three-phase region has been declared for the Pr-
doped compounds at temperatures about 380 °C Ref [10], and the authors have justified it in terms 
of thermodynamically non-equilibrium state. The obtained structural data specify a number of 
structural transitions occurred in a narrow temperature range as well as the phase coexistence 
regions. To clarify the percularities of the temperature-driven structural transitions we have 
thoroughly studied the compounds within the rhombohedral-orthorhombic phase boundary. It 
should be noted that, in contrast to the La-doped compounds, Pr-containing solid solutions do not 
show any structural relaxation, thus allowing an accurate study of evolution of their crystal 
structure. 

The detailed structural investigations have been performed for the samples with x=0.11 
and x=0.15. The compounds represent nearly entire range of the phase boundary region having 
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respectively the rhombohedral and the orthorhombic dominant structure at room temperature. The 
structural data obtained for the former compound demonstrate a fast reduction in the amount of 
the minor orthorhombic phase and the diffraction peaks attributed to this phase completely 
disappear at temperatures above 100 °C (Figure 1). The unit cell parameters of the rhombohedral 
phase show a gradual expansion with increasing temperature up to the temperature of the structural 
transition into the non-polar orthorhombic phase (T ~ 450 °C). Above this temperature, the unit 
cell volume remains nearly constant up to the temperature of about 520 °C, where the 
rhombohedral phase disappears. The unit cell volume calculated for the non-polar orthorhombic 
phase gradually increases with temperature. The compound is characterized by two-phase 
coexistence region of about 100 °C. At the temperatures about 450 °C, one can distinguish the 
traces of the non-polar orthorhombic phase and the crystal structure of the compound becomes 
single-phase orthorhombic at temperature of about 520 °C; quite narrow temperature region of the 
two-phase structural state (about 80 °C) testifies the high structural homogeneity of the material. 

The compound with x=0.15 is characterized by single-phase anti-polar orthorhombic 
structure above 100 °C. The additional diffraction peaks observed in the XRD pattern at 375 °C 
belong to the new structural phase with the non-polar orthorhombic structure (Figure 2, inset). 
Within the two-phase region, the structural parameters ascribed to the both phases gradually 
increase and above 430 °C the compound becomes single-phase with the non-polar orthorhombic 
structure (Figure 2). It should be noted that the variation in the unit cell volume calculated for the 
compound with x=0.11 is nearly double as compared to that observed for the x=0.15 sample and 
for the pristine BiFeO3 [25]. The results of differential thermal analysis testify quite small amount 
of enthalpy associated with this structural transition as compared to those obtained for the pristine 
compound and for the 15% doped one (Figure 2, inset).  

The obtained results indicate a quite complex nature of the structural transition to the non-
polar orthorhombic state observed for the compound with x=0.11. Careful analysis of the 
diffraction patterns at the temperature prior to the formation of the non-polar orthorhombic phase 
(~ 450°C) allowed the authors to reveal tiny peaks attributed to the anti-polar orthorhombic phase 
(inset to the Fig. 1, pattern recorded at 425°C for 2theta region about 33 deg.); above this 
temperature the structure can be successfully refined using the centrosymmetric space group 
Pnma. In order to clarify the observed structural peculiarities, the authors have performed the high 
resolution transmission electron microscopy measurements (HRTEM).  

The HRTEM investigations have been performed in the temperature range 20 – 700°C. 
The HRTEM images shown in Figure 3 were obtained on a single crystal grain with a size of 
approximately 100 nm. The FFT images calculated for this region at temperatures above room 
temperature testify the pattern specific to the rhombohedral phase described by R3c space group 
with (001) zone axis orientation. The FFT image calculated for the temperature of 450°C reveals 
the appearance of new pair of spots corresponding the plane distances d ≈ 3.9 A in real space and 
can be associated with (002) reflection attributed to the anti-polar orthorhombic phase (for the 
compound with x=0.15, the related reflections can be observed at 2theta ≈ 22.7, Figure 2). The 
FFT performed for the temperature of about ~ 475°C testifies the appearance of new two 
maximums at d ~ 2.8 (Figure 3), that correspond to (200) reflection which can be observed on the 
diffraction pattern at 31.7 deg. (Figure 2). The appearance of the non-polar orthorhombic phase 
detected by HRTEM data explicitly confirms the results of the conventional X-ray diffraction 
measurements. The spots attributed to the anti-polar orthorhombic structure is observed at 
temperatures up to 500 °C, further temperature increase leads to a stabilization of the non-polar 
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orthorhombic structure (the FFT image 
calculated for the T = 700°C can be 
successfully simulated using the 
orthorhombic lattice described by Pbnm 
space group with (010) zone axis 
orientation). It should be noted that the X-
ray diffraction pattern recorded at 
T=500 °C has been already refined 
assuming the singe-phase structural state 
within the non-polar orthorhombic phase 
(Pbnm space group). The variations in the 
temperature ranges estimated for the 
mentioned structural phase can be 
explained by a difference in the evolution 
of the crystal structure estimated by 
microscopic and local scale 
measurements. 

Conclusions 
The temperature- and composition- driven structural transitions in the Bi1-xPrxFeO3 

ceramics of the compositions within the phase coexistence region have been studied with X-ray 
diffraction and transmission electron microscopy measurements. The structural analysis have 
clarified the morphotropic phase boundary region existed in the range of 0.11 ≤ x ≤ 0.15 at room 
temperature. The obtained data have also specified the temperature-driven structural transition into 
the non-polar orthorhombic phase depending on the initial structural state of the compounds. The 
structural peculiarities have been followed depending on the phase ratio at room temperature. The 
structural data have determined a revival of the anti-polar orthorhombic phase with increasing temperature 
prior to the formation of the non-polar orthorhombic phase. Specific role of the anti-polar phase acting as 
a mediator between the polar rhombohedral and the non-polar orthorhombic phases across the temperature- 
and composition driven phase transition has thus been considered. 
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