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Abstract

An efficient method for the simulation of packed bed adsorbers is presented. It

is based on equilibrium models and can be applied to any implicit adsorption

isotherm. It uses a method of lines approach, avoids explicit differentiation of

the adsorption isotherm, and exploits standard numerics for the simultaneous

solution of the resulting ordinary differential and implicit algebraic equations.

Application is illustrated for stoichiometric ion exchange, which also admits

an analytical approach using equilibrium theory. Classical theoretical results

from equilibrium theory are summarized, further extended and compared to the

numerical calculations for different scenarios. Focus is on selectivity reversals

and their influence on process operation. It is shown that the selectivity reversal

may introduce multiple solutions.
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1. Introduction

Mathematical modeling of spatially distributed packed bed adsorbers leads

to systems of partial differential equations. An important class of models assume

thermodynamic equilibrium between the fluid and the solid phase [1, 2]. Most

important representatives of this class are the equilibrium dispersive model with5

axial dispersion and the ideal equilibrium model, without axial dispersion. The

equilibrium dispersive model is often used for a more quantitative prediction

of adsorber dynamics. The dispersion lumps together all effects causing band

broadening. An analytical solution is only possible for special cases, i.e. for

linear isotherms or the calculation of single shock profiles [2, 3]. Therefore,10

usually a numerical solution is applied.

In contrast to this, the ideal model without axial dispersion provides more

qualitative insight, but admits an analytical approach using the method of char-

acteristics and builds the basis of the so called equilibrium theory. Equilibrium

theory is a powerful approach to analyze and understand the dynamic behav-15

ior of adsorption processes and is therefore also an important tool for process

design [4]. Classical equilibrium theory is for Langmuir isotherms [2] or ion

exchange with constant separation factors [5]. More recently, extensions were

given to Bi-Langmuir [6, 7], generalized Langmuir [8], generalized Bi-Langmuir

[9], and also to reactive systems with simultaneous phase and reaction equilib-20

rium [10, 11, 12].

Besides explicit adsorption isotherms also implicit formulations are quite

common to describe the adsorption equilibrium. Typical examples are stoichio-

metric ion exchange [13, 14, 5] and the ideal adsorbed (IAS) and real adsorbed

solution (RAS) theory approaches [15]. These are computationally much more25

difficult to treat due to the implicit phase equilibrium. Usually some challeng-

ing implicit analytical or numerical differentiation of the equilibrium relations is

required to calculate the capacity matrix of the model equations [16, 17]. In the

present paper we propose a much easier alternative approach. It uses method of

lines [18] and a reformulation of the underlying adsorber model equations in the30
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form of a differential algebraic equation (DAE) system with differential index 1

[19]. It can be solved with available standard software for DAEs and thereby

avoids explicit differentiation of the adsorption isotherm.

In this paper, application is demonstrated for stoichiometric ion exchange

with mass action equilibria. This is a classical problem, which has been treated35

first by Tondeur et al. [13, 14, 5]. A characteristic feature are possible selectivity

reversals predicted by this model. It also admits an analytical approach. In the

present paper, results are further extended to provide a full picture of possible

transitions.

The outline of the paper is as follows: First the numerical approach is in-40

troduced. Afterwards, a rigorous analysis is given based on equilibrium theory.

Focus is on selectivity reversals and their impact on operability and uniqueness

of solutions. Theoretical findings are validated with numerical simulations.

2. Modeling and simulation

The following is based on the well known equilibrium dispersive model of45

a packed bed adsorber. It assumes isothermal operation, thermodynamic equi-

librium between the adsorbed and the fluid phase, constant interstitial velocity

v of the fluid phase and a constant void fraction ǫ. In dimensionless form the

model reads

∂

∂t
(c+ Fq(c)) +

∂c

∂z
=

1

Pe

∂2c

∂z2
with c,q ∈ RN (1)

with dimensionless time and space coordinates

z = z∗/L, t = t∗v/L

and dimensionless quantities

F = (1− ǫ)/ǫ, Pe = vL/D

The ideal equilibrium model is included for negligible axial dispersion corre-50

sponding to 1/Pe → 0.

3



In this model equations c represents the concentrations of the N adsorbable

components in the fluid phase, and q(c) the corresponding concentrations in

the adsorbed phase, which follow from the adsorption equilibrium. Focus in the

present paper is on implicit adsorption equilibria55

0 = f(q, c) (2)

where q is an implicit function of c. Typical examples are stoichiometric ion

exchange with mass action equilibrium (see e.g.[5]) or the ideal or real adsorbed

solution theory (see e.g. [15]). In the remainder, stoichiometric ion exchange

will be considered as a first application example. However, the solution strategy

can also be applied to the other implicit adsorption equilibria.60

In stoichiometric ion exchange, typically, a constant solution normality ctot =
∑N

i=1
µici and a fixed exchanger capacity qtot =

∑N

i=1
µiqi can be assumed.

Therein, the µ variables represent the valences of the ionic species. This reduces

the degrees of freedom of Eq. (1) by one and normalized concentrations xi =

µici/ctot, yi = µiqi/qtot can be introduced, with
∑N

i=1
xi = 1,

∑N
i=1

yi = 1. In65

normalized concentrations the model equations without physical dispersion read

∂

∂t
(x+ κy(x)) +

∂x

∂z
= 0 (3)

with κ = Fqtot/ctot. Due to the above summation conditions for the x and y

variables only N−1 equations of (3) are required. The equilibrium relations have

to be reformulated accordingly. For stoichiometric ion exchange, for example,

we find70

KiN =

(

yi
xi

)νi (xN

yN

)νN

= const., i = 1, . . . , N − 1. (4)

for any reference component ’N’. Following the notation in [5], the ν variables

are the reciprocal valences of the different ionic species. It is worth noting that

this notation is slightly different from [20, 13, 14] who used valences instead of

reciprocals in their formulation.
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For equal νi = νN = ν for all i = 1, . . . , N − 1 we obtain constant separation75

factors αiN according to

αiN =

(

yi
xi

)(

xN

yN

)

= K
1
ν

iN = const., (5)

and Eqs. (4) can be solved explicitly for

yi =
αiNxi

1 +
∑N−1

k=1
(αkN − 1)xk

. (6)

If the valences of the different species are not equal, the separation factors

are no longer constant and Eqs. (4) represent a set of N − 1 implicit algebraic

equations to calculate the yi’s from the xi’s. These equations can be put to the80

form

0 = fi(y,x) = 1−
1

KiN

.

(

yi
xi

)νi (xN

yN

)νN

, ∀i = 1, . . . , N − 1. (7)

Alternatively, we may reformulate Eqs. (4) as a single implicit equation and

a set of N − 1 explicit equations [20]. However, in view of applicability to other

implicit adsorption equilibria we will use formulation (7) in the remainder.

For an efficient numerical solution of the model equations (3) for the packed85

bed adsorber we introduce the quantity

w = x+ κy(x), (8)

which reflects the joint capacity of the fluid and the adsorbed phase in Eq.

(3). Note, that w could be normalized by division with 1 + κ, which however

has no effect on the general procedure and is therefore not considered here. In

terms of w and x the model equations can now be reformulated as90

∂w

∂t
+

∂x

∂z
= 0, (9)

0 = f

(

x,y =
w − x

κ

)

, (10)
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which are solved simultaneously for w and x using method of lines [18].

For a proof of principle, in the present paper, a simple discretization of the

spatial coordinate using first order backward differences on an equidistant grid

is applied. However, application of our simulation strategy to more economic

discretization formulas using for example high resolution methods [21] is straight95

forward. In all of these cases, method of lines leads to a system of differential

equations and implicit algebraic equations (DAEs) with differential index one

[19], which can be solved with standard software like DASSL [22] or LIMEX

[23] or ODE15s in Matlab[24]. For a discussion of the differential index we refer

to Appendix A.100

One of the main challenges for the solution of DAE systems is the calculation

of consistent starting conditions. In the present case, focus is on so called

Riemann problems with piecewise constant initial and boundary conditions.

For this case consistent initial conditions are easily calculated with an offline

evaluation of the adsorption equilibrium for given fluid phase composition x in105

the feed and given initial condition y of the bed.

Main advantage of our new solution strategy is that we avoid explicit dif-

ferentiation of the adsorption isotherm in formulation (9), (10) compared to

the standard formulations (1) or (2). Differentiation of adsorption isotherms

is especially difficult in the case of implicit adsorption isotherms considered in110

this paper. Further, the new method can also be useful for complicated explicit

adsorption isotherms if the explicit differentiation is challenging.

3. Equilibrium theory

Equation (3) represents a system of quasilinear partial differential equations

of first order, which can also be solved (semi-) analytically for piecewise constant115

initial and boundary conditions using the method of characteristics. For this

purpose Eq. (3) is rewritten as

∂x

∂t
+

(

IN−1 + κ
∂y

∂x

)

−1
∂x

∂z
= 0, (11)
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where IN−1 is the (N − 1)× (N− 1) identity matrix. In contrast to previous

work [20, 13, 14, 5] so called ’adjusted’ times and velocities are omitted in this

model formulation for the clarity of presentation.120

Solutions of (3) or (11) with Riemann boundary and initial conditions consist

of smooth transitions - also called simple, spreading or dispersive waves, and

shock or self sharpening waves [2, 25]. Further, we will show that any selectivity

reversal with

yk
xk

=
yk+1

xk+1

(12)

is associated with a contact discontinuity which is linearly degenerate and125

therefore neither spreading nor self sharpening [2, 25].

Any concentration of a smooth transition is traveling with characteristic

velocity σk corresponding to the eigenvalues of matrix (IN−1 + κ∂y
∂x

)−1 in Eq.

(11)

σk =
1

1 + κλk

, (13)

where the λ’s are the eigenvalues of ∂y
∂x

.130

From implicit differentiation of Eq. (7) we obtain

∂y

∂x
= −

(

∂f

∂y

)

−1
∂f

∂x
, (14)

with

−
∂f

∂y
= diagN−1

(

νi
yi

)

+ 1N−1

νN
yN

, (15)

∂f

∂x
= diagN−1

(

νi
xi

)

+ 1N−1

νN
xN

, (16)

where diagN−1(zi) stands for the (N − 1) × (N − 1) diagonal matrix with

elements zi, ∀i = 1, . . . , N − 1 and 1N−1 is a (N − 1) × (N − 1) matrix

where all entries are equal to one. With this, the characteristic equation for the135

calculation of the eigenvalues λk can be written as

7



0 = det

(

∂y

∂x
− λkIN−1

)

(17)

= det

(

−
∂f

∂x
− λk

∂f

∂y

)

(18)

= det

(

diagN−1

(

νi
xi

− λk

νi
yi

)

+ 1N−1

(

νN
xN

− λk

νN
yN

))

(19)

For λk 6= yi

xi

the characteristic equation can be expanded into

0 =
N
∑

i=1

1
νi
xi

− λk
νi
yi

, (20)

which has N − 1 real and distinct roots in the intervals

y1
x1

> λ1 >
y2
x2

> ... >
yk
xk

> λk >
yk+1

xk+1

> ... >
yN−1

xN−1

> λN−1 >
yN
xN

. (21)

If the components are ordered in decreasing selectivity for the solid phase.

For λk = yi

xi
we find from Eq. (19) λk = yi

xi
= yN

xN
for any reference compo-140

nent ’N’. If the above ordering of components is applied, this is only possible

between neighboring components undergoing a selectivity reversal with indices

i, N being equal to k, k + 1. In view of Eq. (4) we find that the characteristic

velocity is constant along the selectivity reversal according to

λk =
yk
xk

=
yk+1

xk+1

= K
1

ν
k
−ν

k+1

k,k+1
(22)

giving rise to a contact discontinuity.145

The image of the smooth transitions in the concentration or hodograph space

is given by the corresponding eigenvectors vk. For λk 6= yk

xk

the eigenvectors

follow from

0 =

(

νi
xi

− λk

νi
yi

)

vk,i +

(

νN
xN

− λk

νN
yN

)N−1
∑

m=1

vk,m, ∀i = 1, . . . , N − 1. (23)
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In view of the characteristic equation (20) an obvious choice to satisfy this

equation is150

vk =

[

1
ν1
x1

− λk
ν1
y1

, ...
1

νN−1

xN−1
− λk

νN−1

yN−1

]T

. (24)

For the selectivity reversal with λk = yk

xk

we find

vk = [0, ...0, vk,k = 1, vk,k+1 = −1, 0, ...0]
T
, ∀k = 1, . . . , N − 1 (25)

corresponding to a straight line along which all concentrations are constant

except for components ’k’ and ’k+1’. In case of a ternary system, the two

possible selectivity reversal lines defined by [1,−1] and [0, 1] are parallel to the

x3 = 1− x1 − x2 = 0-line and the x2-axis, respectively.155

Using the above expressions for λk and vk, it can be proven that the char-

acteristic velocity along the k-th characteristic is changing monotonically for

λk 6= yk

xk

according to

∇λkvk 6= 0. (26)

Similar results were reported by [26] for stoichiometric ion exchange without

selectivity reversals.160

For spreading waves the characteristic velocity is monotonically increasing in

the direction of increasing z, whereas for shock waves the characteristic velocity

is monotonically decreasing in the direction of increasing z. The shock velocity

sk follows from the integral material balances across the shock also known as

the Rankine Hugoniot conditions, which are in similar form to Eq. (13)165

sk =
1

1 + κ∆yi

∆xi

, ∀i = 1, . . . , N − 1. (27)

These equations also define the image of the shock waves in the hodograph

space, similar to the eigenvectors introduced above. In general, eigenvectors and

shock curves are tangent to each other [25]. For νi = νN for all i = 1, . . . , N−1,
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corresponding to the case of constant separation factors, both types of curves are

straight lines and coincide. For νi 6= νN they are curved and therefore different,170

but still close in the cases to be discussed subsequently, so that the following

qualitative discussion will be based on the path grid of the eigenvectors only.

However, existence of the different wave solutions was also checked on a rigorous

basis using entropy conditions [25].

4. Results175

A ternary example, with one selectivity reversal indicated by the dashed line

is shown in Fig. 1. Corresponding parameters are given in Table 1. In region I

component 1 is stronger adsorbed, whereas in region II component 2 is stronger

adsorbed. The red curves were calculated from the eigenvector v1 corresponding

to the eigenvalue λ1, which satisfies λ1 > λ2. Since the characteristic speed in180

equation (13) depends on the reciprocal of the λ’s, the eigenvector v1 represents

the family of slow waves. The arrows are pointing in the direction of increasing

characteristic velocity. The orientation of the red curves is reverted from region

I to region II, whereas the orientation of the blue curves is uniform in the whole

composition space. The characteristic velocity along the selectivity reversal is185

constant as discussed in the previous section. Point W represents a watershed

point where the eigenvalues coincide. According to the above discussion this

can only happen on the boundary of the concentration triangle.

In the remainder different characteristic scenarios are discussed. For all load-

ing and regeneration scenarios, the numerical plateau values in the profiles are190

identical with equilibrium theory solutions in the hodograph. Wave profiles de-

pend on the number of grid points but show very similar behavior as predicted

by the equilibrium theory. First focus is on the loading of an empty bed with

a feed in region I as shown in Fig. 2. Initial and feed composition are repre-

sented by points F and I in Fig. 2a. The solution consists of a shock wave s1195

corresponding to the path F-P1 in Fig. 2a and a shock wave s2 corresponding

to the path P1-I in Fig. 2a. Corresponding simulation results using backward
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differences with 750 equidistant grid points are shown in Fig. 2b. The behav-

ior shown in Fig. 2 is similar to a system with constant separation factors or

a Langmuirian system with component 1 being the stronger adsorbed compo-200

nent. It shows the characteristic intermediate plateau for the weaker adsorbed

component with increased composition compared to the adjacent plateaus of

the feed and the initial conditions.

The situation is reverted for a loading of an empty bed with feed in region II

as illustrated in Fig. 3. Here, the behavior is similar to a system with constant205

separation factors or a Langmuirian system with component 2 being the stronger

adsorbed component and is therefore some sort of mirror image of the situation

in Fig. 2.

The limiting case with a feed composition on the selectivity reversal is shown

in Fig. 4. Here, the shock velocities for the shocks P1-I and P2-I along the x1 and210

the x2 axis coincide with the constant characteristic velocity along the selectivity

reversal. Hence, both solutions F − P1 − I and F − P2 − I are feasible. It can

be further shown, that any other point on the selectivity reversal is connected

to the origin by a shock wave with the same velocity like the shocks P1-I, and

P2-I leading to a whole spectrum of possible solutions. Similar phenomena were215

reported in [27, 28] for distillation processes. Which one of this solutions is

obtained in simulation depends on the intrinsic stability of the different wave

solutions and on numerical dispersion, which is introduced by discretization. A

simulation example with 200 and 2000 grid points is shown in Fig. 5. A rigorous

mathematical stability analysis of the underlying partial differential equations220

with dispersion is challenging and clearly beyond the scope of this work.

From the practical point of view, Fig. 4 represents a singular situation which

nicely explains the transition between the two different patterns in Figs. 2 and

3 but can not be observed as such in practice due to fluctuations. Classical

existence and uniqueness theorems in the mathematical literature are usually225

confined to local situations where points F and I are sufficiently close (see e.g.

[25], Theorem 17.18) and therefore do not apply here.

Next focus is on chromatographic cycles, which were also not addressed in
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the classical literature [13, 14, 5]. The chromatographic cycle corresponds to a

pulse disturbance, consisting of the loading of an empty bed in the front followed230

by the regeneration of the loaded bed in the rear.

A first scenario with a feed in region I is shown in Figure 6a. The loading in

the front corresponds to Fig. 2. It consists of two shocks, with a band of pure

component 2 in the front, which is the weaker adsorbed component in region I.

The regeneration consists two spreading waves r1 and r2 illustrated in yellow235

in Fig. 6a. Due to the special topology of the path grid r1 coincides with the

x2 axis generating also a band of pure component 2 in the rear. Corresponding

simulation results for the regeneration are shown in Fig. 6b. Together with

the corresponding loading profiles in Fig 2b, the complete cycle can be recon-

structed. After interaction of the different fronts the pattern will be resolved240

in two pure component pulses with pure component 1 in the front and pure

component 2 in the rear as shown in Fig. 7. This is due to the fact that during

wave interactions the selectivity reversal is crossed and the final resolution is

taking place in region II, where component 1 is the weaker adsorbed component.

This is also confirmed with a second scenario with feed in region II, which245

is illustrated in Figure 8. Loading in the front corresponds to the previous

Fig. 3 consisting of two shock waves with a band of pure component 1 in the

front which is the weaker adsorbing component in region II. Regeneration in

the rear consists of two spreading waves r1 and r2 illustrated in yellow in Fig.

8a. Again, simulation results for the regeneration that are shown in Fig. 8b250

can be used to obtain the complete cycle with the loading profiles of Fig. 3b.

The topology of the hodograph in II is simpler than in I and more similar to

a Langmuirian system, leading to a band of pure component 2 in the rear.

After elementary interaction of the different fronts the pattern will be resolved

in two pure component pulses, as shown in Fig. 9, with pure component 1255

in the front and pure component 2 in the rear like in the previous case. This

clearly shows that the influence of the selectivity reversal strongly depends on

the mode of operation. For the step inputs in Figs 2 and 3 qualitatively different

final patterns were obtained, whereas for the pulse inputs only the transients
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were different but those were then resolved in similar final patterns.260

Like in Fig. 4 multiple solutions are also possible for the chromatographic

cycle if the feed composition is located on the selectivity reversal as shown in

Fig. 10. Following the argumentation above both solution will be resolved in

the same final pattern.

Additional features can occur in systems with multiple selectivity reversals as265

illustrated with an example in Fig. 11. Parameters are given in Table 2. Like in

the previous case, a selectivity reversal between components 1 and 2 is observed

at the boundary between regions I and II. In addition, a selectivity reversal

between components 2 and 3 occurs at the boundary between regions I and III.

An interesting feature which was also reported by [13, 14] is the occurrence of270

wave patterns with more than N − 1 wave fronts as illustrated in Fig. 11. This

theoretical prediction could also be validated with the new numerical approach

presented in this paper as illustrated in Fig. 11b. For better resolution 1000

equidistant grid points were used in Fig. 11b.

Finally, it should be mentioned that this finding is also consistent with the-275

oretical results. In theory it is stated that the solution of a Riemann problem of

a strictly hyperbolic system, genuinely nonlinear or linearly degenerate system

consists of a maximum number of N − 1 wave transitions (see [25], Theorem

17.18). However, again the Theorem is confined to local situations, where points

F and I are sufficiently close (see e.g. [25]).280

5. Conclusions

An efficient method for the numerical solution of equilibrium models of fixed

bed adsorbers with implicit adsorption isotherms was presented. As a first ap-

plication example, stoichiometric ion exchange with possible selectivity reversals

was considered. The effect of selectivity reversals on process operation was stud-285

ied systematically using a combined numerical, analytical approach. Besides the

validation of the new numerical approach also interesting patterns of behavior

were found complementing previous studies for this particular kind of system.
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Future work will be concerned with an application of the new approach to more

challenging systems described by the IAS or RAS theory.290
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Notation295

1N matrix of ones size N ×N [−]

αiN separation factor of component i and reference component N [−]

ci fluid phase concentration of component i [mol
l
]

ctot solution normality [mol
l
]

D dispersion [m
2

s
]

ǫ void fraction [−]

F phase ratio [−]

IN identity matrix size N ×N [−]

KiN equilibrium constant of component i and reference component N [−]

κ adjusted phase ratio [−]

L length of column [m]

λk k-th eigenvalue [−]

µi valence of component i [−]

N number of components [−]

Nz number of grid points [−]

νi stoichiometric coefficient of component i [−]

Pe Péclet number [−]

qi solid phase concentration of component i [mol
l
]

qtot exchanger capacity [mol
l
]

vk,i i-th entry of k-th eigenvector [−]

rk k-th spreading wave [−]

sk k-th shock velocity [−]

sk k-th shock [−]

σk k-th characteristic velocity [−]

t dimensionless time coordinate [−]

t∗ time coordinate [s]

v interstitial velocity [m
s
]

wi conserved flux variable of component i [−]

xi normalized fluid phase concentration of component i [−]

yi normalized solid phase concentration of component i [−]

z dimensionless space coordinate [−]

z∗ space coordinate [m]
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Appendix A. Differential Index of the DAE System

In the remainder, it is shown that the PDAE system (9), (10), or the cor-

responding DAE system resulting from the discretization of (9), (10) using a

18



method of lines approach, respectively, has differential index 1, whenever the

Jacobian ∂y/∂x has N−1 real, positive eigenvalues λi. For thermodynamic rea-375

sons this should always be the case [29]. Explicit proofs for Langmuir isotherms

were given in [29], for Bi-Langmuir isotherms in [7] and for the IAS theory for a

large class of pure component isotherms in [17], Appendix B. Hence, the result

of this Appendix does not only apply to mass action equilibria but is valid for

any thermodynamically reasonable sorption equilibrium.380

The PDAE system (9), (10) has differential index 1 when the matrix of the

derivatives of the algebraic equations (10) with respect to the algebraic variable

x is nonsingular. From differentiation of Eq. (10) we find

(

∂f

∂x

)

w

=

(

∂f

∂x

)

y

−
1

κ

(

∂f

∂y

)

x

. (A.1)

Therein, the indices at the brackets indicate which variable is constant during

differentiation.385

For the calculation of the Jacobian ∂y/∂x, the equilibrium composition of

the solid phase y is interpreted as a function of the fluid phase composition x.

From implicit differentiation of the equilibrium relation

0 = f(x,y(x)) (A.2)

we find

∂y

∂x
= −

(

∂f

∂y

)

−1

x

(

∂f

∂x

)

y

(A.3)

Since ∂y/∂x has N − 1 positive nonzero eigenvalues λi, it is regular, i.e. its390

determinant is nonzero. Further, due to the product rule for determinants both

matrices on the right hand side of the above equation also have to be regular.

Substitution of Eq. (A.3) into Eq. (A.1) yields

(

∂f

∂x

)

w

= −

(

∂f

∂y

)

x

(

∂y

∂x
+

1

κ
I

)

(A.4)

where I is the (N − 1)× (N − 1) identity. The eigenvalues of
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(

∂y

∂x
+

1

κ
I

)

are equal to λi + 1/κ and are therefore also nonzero and the corresponding395

matrix is regular. Hence, the matrix on the left hand side of Eq. (A.4) is a

product of two regular matrices and therefore also regular, which completes the

proof.

Finally, the DAE system resulting from the discretization of (9), (10) using

a method of lines approach has also differential index 1, if the above is satisfied400

at any spatial position in the reactor. This however, is trivial since the above

results are valid for any concentrations.
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parameter value description

L 15.0 column length

Nz 750 number of grid points

v 1.0 interstitial velocity

ε 0.5 void fraction

ctot 0.18 solution normality

qtot 2.0 exchanger capacity

K13 4.0 equilibrium constant

K23 2.67 equilibrium constant

ν1 2 stoichiometric factor

ν2 1 stoichiometric factor

ν3 1 stoichiometric factor

Table 1: Parameters of the first example system with one selectivity reversal.
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parameter value description

L 20.0 column length

Nz 1000 number of grid points

v 1.0 interstitial velocity

ε 0.5 void fraction

ctot 0.01 solution normality

qtot 2.0 exchanger capacity

K13 100.0 equilibrium constant

K23 14.88 equilibrium constant

ν1 4 stoichiometric factor

ν2 1 stoichiometric factor

ν3 4 stoichiometric factor

Table 2: Parameters of the second example system with two selectivity reversals.
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Figure 1: Hodograph of the first example system with one selectivity reversal.
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Figure 2: (a) Solution in the hodograph space for the loading of an empty bed with F =

[0.1437, 0.8046]T in I. (b) Corresponding spatial profiles xi(z) at different time points with.
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Figure 3: (a) Solution in the hodograph space for the loading of an empty bed with F =

[0.3, 0.1]T in II. (b) Corresponding spatial profiles xi(z) at different time points.
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Figure 4: Two possible solutions in the hodograph space for the loading of an empty bed with

F = [7/30, 7/30]T on the selectivity reversal.
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Figure 5: Numerical simulation with (a) 200 and (b) 2000 grid points for a feed on the

selectivity reversal at F = [7/30, 7/30]T corresponding to Fig. 4
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Figure 6: (a) Chromatographic cycle in the hodograph space for F = [0.1437, 0.8046]T in I.

(b) Corresponding spatial regeneration profiles xi(z) at different time points.
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Figure 7: Spatial profiles at different time points for a pulse injection with plateau at F =

[0.1437, 0.8046]T in I (see also Fig. 6a).
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Figure 8: (a) Chromatographic cycle in the hodograph space for F = [0.3, 0.1]T in II. (b)

Corresponding spatial regeneration profiles xi(z) at different time points.
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Figure 9: Spatial profiles at different time points for a pulse injection with plateau at F =

[0.3, 0.1]T in II (see also Fig. 8a).
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Figure 10: (a) Two possible chromatographic cycles in the hodograph space for F =

[7/30, 7/30]T on the selectivity reversal. (b) Corresponding spatial regeneration profiles xi(z)

at different time points.
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Figure 11: (a) Hodograph of the second example system with two selectivity reversals including

a path from F = [0.05, 0.1]T to I = [0.8, 0.1]T . (b) Corresponding spatial profiles xi(z) at

different time points.
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