
PARALLEL COMPUTATION OF

GAUSSIAN PROCESSES

R. Preuss, U. von Toussaint
Max-Planck-Institute for Plasma Physics

85748 Garching, Germany

April 20, 2017

Abstract

Within the Bayesian framework we utilize Gaussian processes for
parametric studies of long running computer codes. Since the simula-
tions are expensive it is necessary to exploit the computational budget
in the best possible manner. Employing the sum over variances – be-
ing indicators for the quality of the fit – as the utility function we
established an optimized and automated sequential parameter selec-
tion procedure. However, often it is also desirable to utilize the parallel
running capabilities of present computer technology and abandon the
sequential parameter selection for a faster overall turn-around time
(wall-clock time). The paper proposes to achieve this by marginaliz-
ing over the expected outcomes at optimized test points in order to
set up a pool of starting values for batch execution.

Keywords: Parametric studies, Gaussian process, parallelization, batch ex-
ecution
PACS: 02.50.-r, 52.65.-y

1 Introduction

The prediction of optimal simulation input points is of particular interest
for long running computer codes. As in the field of plasma-wall interactions
of fusion plasmas the running time of the simulation codes is in the order
of months, so the input parameter settings should better be chosen well.
Considerable parallelization efforts have been spent to accelerate the code
but the speed up is limited to a certain margin from which on it is futile to

1

utilize more and more processor cores. So, even if more computer power is at
hand, one would still have to wait for a sequential execution of one parameter
setting after the other. The paper overcomes this drawback by proposing
several most promising parameter setups which are obtained by marginalizing
over optimal input points. The pool of such independent starting sets enables
the parallel execution of the original simulation code.

Our approach to the prediction of function values by the Gaussian process
method was already introduced at MaxEnt 2013 [Preuss and von Toussaint(2014)],
which followed in notation and apart from small amendments the book of
Rasmussen & Williams [Rasmussen and Williams(2006)]. Therefore, we re-
strict this introduction only to those formulas needed for the understanding
of the new material presented in the chapters below.

Roughly speaking, the Gaussian process method is nothing but extend-
ing the solution of the Bayesian linear regression problem with Gaussian
distributed noise and a Gaussian prior for the parameters to basically in-
finite number of dimensions with suitable basis functions. Given is matrix
X = (x1,x2, ...,xN) consisting of N input data vectors xi of dimension Ndim.
The target data y = (y1, ..., yN)

T is blurred by Gaussian noise of variance
∆ij = σd

2
i δij. Quantity of interest is the target value f∗ at test input vec-

tor x∗ and generated by a function f(x) which shall satisfy y = f(x) + ǫ,
with 〈ǫ〉 = 0 and 〈ǫ2〉 = σ2

d. This states the regression problem for a non-
trivial function of unknown shape for which we employ the Gaussian process
method. As a statistical process it is fully defined by its covariance function,
which is the place where we incorporate all the properties which we would
like the (hidden) function describing our problem to have. For the functional
form of the covariance we choose a Gaussian type exponent with the negative
squared value of the distance between two input data vectors xp and xq.

k(xp,xq) = σ2
f exp

{

−
1

2

∣

∣

∣

∣

xp − xq

λ

∣

∣

∣

∣

2
}

. (1)

The neighbourhood of the two data vectors should be of relevance for the
smoothness of the result, which is mimicked by a length scale λ in the denom-
inator to represent the long range dependence of the two vectors. Moreover,
since the Gaussian process method defines a distribution over functions the
width of this distribution will have some influence on our result as well. This
shall be comprised by the signal variance σ2

f , however, set to unity if no fur-
ther information is available. To avoid lengthy formulae, we abbreviate the
covariance of the input data as Kij = k(xi,xj) and the vector of covariances
between test input vector and input data as (k∗)i = k(x∗,xi). Finally, in
addition to the above estimation of the variance of a distinct data point σ2

di

2

provided by the experimentalist, we consider an overall noise in the data by
a variance σ2

n.
Summing up the analysis from [Preuss and von Toussaint(2014)] the prob-

ability distribution for a single function value f∗ at test input x∗ is

p(f∗|X,y,x∗) ∝ N
(

f̄∗, var(f∗)
)

, (2)

with mean
f̄∗ = kT

∗

(

K + σ2
n∆

)−1
y , (3)

and variance

var(f∗) = k(x∗,x∗)− kT
∗

(

K + σ2
n∆

)−1
k∗ . (4)

The hyper-parameters θT = (λ, σf , σn) determine the result of the Gaus-
sian process method. Since we do not know a priori which setting is useful,
we marginalize over them numerically by employing the marginal likelihood

log p(y|θ) = const−
1

2
yT

[

K(θ) + σ2
n∆

]−1
y −

1

2
log

∣

∣

∣K(θ) + σ2
n∆

∣

∣

∣ . (5)

The expectation value for the targets f ∗ at test inputs X∗ employs the
marginal likelihood and priors for the hyper-parameters from above

〈f ∗〉 =
∫

dθ f̄ ∗

p(y|θ)p(θ)
∫

dθ′ p(y|θ′)p(θ′)
, (6)

where the fraction term is utilized as the sampling density in Markov chain
Monte Carlo. Rescaling of the input data and whitening of the output is
performed in order to do the analysis not hampered by large scales or biased
from a linear trend. All data has been back-transformed for display.

2 Closed loop optimization scheme

With help of the formulas Eqs. (3) and (4) we can ask for an arbitrary
target value and its variance within some region of interest substantiated by
existing data. In order to determine the next best points at which to perform
an expensive experiment or to run a long term computer code we propose
the following autonomous optimization algorithm for sequential parameter
selection [Preuss and von Toussaint(2016)].

Since the variance in Eq. (2) depends only on the input X and not on the
target data we can immediately evaluate the utility of a further datum with-
out the need to marginalize over the (unknown) target outcome. To achieve

3

this, one has to iterate within a region of interest I set by the experimental-
ist over each grid point ξ ∈ I, which is tentatively handled as being part of
the pool of input data vectors. Then for all test inputs x∗ ∈ I the resulting
variances var′ have to be determined according to Eq. (2), but with changed
(N +1)× (N +1) covariance matrix K ′ of the expanded input X ′ = {X, ξ}.
Summing up the variances var′ over all grid points in I provides a measure
for the utility U(ξ) of a target data obtained at input vector ξ:

U(ξ) = −
∑

x∗∈I

var′(f∗) . (7)

The minus sign in Eq. (7) reflects the fact that a smaller sum over the vari-
ances is connected with a higher utility of the additional datum. The goal is
to find ξmax with the largest utility:

ξmax = argmax
{ξ}

U(ξ) . (8)

At the obtained ξmax the next measurement is most informative. If the
target data is produced by a computer code, one can set up an autonomously
running procedure, which invokes the computer code at ξmax to add the
next target outcome to the data pool, with which the search for the next
most informative point is performed. This scheme would be repeated in an
iterative manner, till the increase in information from an additional target
datum drops below some predefined level or becomes insignificant.

3 Marginalizing test points

The above iterative algorithm proposes further input settings for future eval-
uations by an automated, but sequential procedure. For applications with
long running computer codes it would be desirable to exploit the parallel
capabilities of modern multi-processor systems in order to accelerate this
process. We propose to create the different onsets for batch operation by
invoking a marginalization procedure which simply marginalizes successively
over as many test points as batch processors are available. The first processor
would be fed with the original problem with the already obtained Nstart = N
input points. For the second processor we marginalize over the target value
f1 at a first test input vector x̂1 chosen by the estimation criterium of the
previous section, i.e. which test point lowers the variance of the full system
the most according to Eqs. (7) and (8). The optimal input vector xopt = ξmax

found is then identified with the input vector x̂1, for which the target value

4

has to marginalized. Then the probability distribution of the next test point
f1∗ is given by the marginalization rule

p(f1∗|X,y,x1∗) =
∫

df1p(f1∗, f1|X,y,x1∗, x̂1)

=
∫

df1p(f1∗|X,y,x1∗, x̂1, f1)p(f1|X,y, x̂1) , (9)

where
p(f1∗|X,y,x1∗, x̂1, f1) ∝ N

(

f̄1∗, var(f̄1∗)|f1
)

, (10)

p(f1|X,y, x̂1) ∝ N
(

f̄1, var(f̄1)
)

. (11)

We now rewrite Eq. (3) by f̄1∗ = κT
1∗y1, with κT

1∗ = kT
1 (K + σ2

n∆)
−1

and
yT
1 = (yT , f1). For the calculation of Eq. (9) it is expedient to separate

the last entry in the κ-vector: κT
1∗ = (κ̂T

1∗, (κ1∗)N+1). The marginalization
integral has to handle Gaussians only and results readily in the predictive
distribution for the Gaussian process regression for one marginalized test
point f1

p(f1∗|X,y,x1∗) ∝ N
(

κT
1∗ȳ∗, var(f̄1∗)|f1

)

, (12)

with ȳT
1 = (yT , f̄1) and the marginalized variance

var(f̄1∗)|f1 = var(f̄1∗) + (κ1∗)
2
N+1var(f̄1) . (13)

While the vector multiplication for the mean in Eq. (12) is just the result
without marginalization enlarged by the expectation of the marginalized
value, the variance has acquired an additional term in Eq. (13) compared
to the case without marginalization var(f̄1∗). This is reasonable, since the
target data pool has increased by an expectation value f̄1 based on the very
same data pool, so the lack of new information can only result in a larger
variance.

The whole marginalization procedure is extended easily for obtaining the
successive points f2 to fNmarg

to be marginalized over. As we intend to use the
marginalization procedure for creating a pool of parameter setups to start
a long running simulation code in parallel – but for ”most valuable” setups
only – the order of the successively created setups is of importance.

var(f̄2∗)|f1,f2 = var(f̄2∗) + (κ2∗)
2
N+1var(f̄2)|f1 ,

...

var(f̄Nmarg∗)|f1,...,fNmarg
= var(f̄Nmarg∗) + (κNmarg∗)

2
N+1var(f̄(Nmarg−1)∗)|f1,...,fNmarg−1

.(14)

Once the variances are calculated, the largest utility can be obtained by using
Eqs. (7) and (8).

5

4 Validation in one dimension

In order to examine the dependence of the result on the marginalized points
we simulate a one-dimensional test case, which is analytically accessible. For
an input data set consisting of a single point at x1 with target value y1 the
expectation value at test point x∗ is

f̄∗ =
σ2
f

σ2
f + σ2

nσ
2
d1

exp

{

−
1

2

∣

∣

∣

∣

x1 − x∗

λ

∣

∣

∣

∣

2
}

y1 . (15)

with variance

var(f̄∗) = σ2
f −

σ2
f

σ2
f + σ2

nσ
2
d1

exp

{

−
∣

∣

∣

∣

x1 − x∗

λ

∣

∣

∣

∣

2
}

y1 . (16)

This is plotted in Fig. 1a with x1 = 0. The y-value is taken from the si-
nusoidal model shown (a cos-function with decreasing amplitude), however
subjected to whitening, which results in this simple case of one point to the
assignment of a zero value. The back-transformation to the scale of the input
target value leads to the horizontal line titled ”Prediction” (marked by small
white circles). As can be seen from Eq. (16), the variance increases with the
distance from the data point. The utility according to Eq. (7) was scaled
and normalized to fit within the range [−2 : −3] of each graph. It produces
the result of xopt = 0.775 for the next best point to measure at. Without
marginalization this would be the input datum returning the results of Fig.
1b for our simple one dimensional model. After ten iterations the prediction
is – within the gray uncertainty region – almost pinned down to the model
generating function (see Fig. 1c).

To run the whole process on a second processor one would take the first
optimal point at x̂1 = 0.775 for the marginalization step, i.e. its target value
f1 does not enter the data base. The prediction can be done analytically as
well to give

f̄1∗ =
σ2
f

σ2
f + σ2

nσ
2
d1

exp

{

−
1

2

∣

∣

∣

∣

x1 − x1∗

λ

∣

∣

∣

∣

2
}

y1+
σ2
f

σ2
f + σ2

nvar(f̄∗)
exp

{

−
1

2

∣

∣

∣

∣

x∗ − x1∗

λ

∣

∣

∣

∣

2
}

f̄∗ ,

(17)
with variance

var(f̄1∗) = σ2
f−

[

(

σ2
f + σ2

nvar(f̄∗)
)

exp

{

−
∣

∣

∣

∣

x1 − x1∗

λ

∣

∣

∣

∣

2
}

− 2σ2
f exp

{

−
(x∗ − x1∗)

2 + (x1 − x∗)
2 + (x1 − x1∗)

2

2λ2

}

6

−1 −0.5 0 0.5 1
−3

−2

−1

0

1

2

3

4

5

6

7
Model
Prediction
Nstart =1
Utility
Umax(xopt=0.775)

(a)

−1 −0.5 0 0.5 1
−3

−2

−1

0

1

2

3

4

5

6

7
Model
Prediction
Nstart =1
Nmarg=1
Utility
Umax(xopt=−0.8)

(d)

−1 −0.5 0 0.5 1
−3

−2

−1

0

1

2

3

4

5

6

7
Model
Prediction
Nstart =1
Nopt=1
Utility
Umax(xopt=−0.7)

(b)

−1 −0.5 0 0.5 1
−3

−2

−1

0

1

2

3

4

5

6

7
Model
Prediction
Nstart =1
Nmarg=1
Nopt=1
Utility
Umax(xopt=0.7)

(e)

7

7

 0.01

 0.1

 1

 10

1 2 3 4 6 8 10 20 30

de
vi

at
io

n

optimized points

w/o marg.
w marg.

y=2/x

Figure 2: Deviation of the two batch runs with and without one marginalized
input value from the exact model.

+
(

σ2
f + σ2

nσ
2
d1

)

exp

{

−
∣

∣

∣

∣

x∗ − x1∗

λ

∣

∣

∣

∣

2
}]

/

[

(

σ2
f + σ2

nσ
2
d1

) (

σ2
f + σ2

nvar(f̄∗)
)

/σ4
f − exp

{

−
∣

∣

∣

∣

x∗ − x1

λ

∣

∣

∣

∣

2
}]

.(18)

As can be seen in Fig. 1d the marginalized target point does not affect the
prediction much (both y1 and f̄∗ are zero after whitening and yield a zero line
according to Eq. (17)). Moreover, the standard deviation of the marginalized

point,
√

var(f̄1∗) = 0.3895 is nearly four times higher than the inputted
measurement uncertainty of σd1 = 0.1, which emphasizes the fact that the
marginalized point is of less importance. The utility in Fig. 1d gives rise for
the next best point for a measurement at xopt,1 = −0.8, but after obtaining
the target value, already the next utility in Fig. 1e has its maximum at
xopt,2 = 0.7 close to the position of the marginalized point xmarg = 0.775.
This, together with further points obtained by the optimization procedure,
eventually concludes to a close similarity of the predicted curve with the
model (see Fig. 1f). The marginalized point is of no importance, as should
be the case,

That the marginalization procedure does not affect the result based on
the increasing input data pool is supported by Fig. 2 depicting the deviation
of the prediction from the model as a function of the number of optimized
points in the input data. Both batch runs – with and without marginalization
– show the same descent.

8

5 Algorithm for computer simulation

Eventually, we briefly describe an algorithm for a computer simulation em-
ploying the batch approach introduced. The field of application will be the
prediction of particle transport and plasma-wall interaction in the scrape-off
layer in fusion plasma experiments. The usual running time for obtaining the
outcome for one set of parameters is in the order of months, so the particular
setups have to be chosen well. Up to now a data base with the outcome for
about 1500 parameter settings has been established [Coster(2014)].

1. Compose input data vector from data base

2. Set up batch run with Nproc processors

3. Processor #1: code running without any marginalized point
Processor #(i+ 1): code running for i marginalized points

4. Return outcome, i.e. Nproc most promising parameter settings for the
long running simulation code ready for batch execution.

6 Conclusion

A marginalization procedure was proposed to obtain different starting con-
ditions for batch execution of Gaussian processes in order to exploit parallel
computing power. By investigating a one-dimensional test case the imple-
mentation of the procedure (algorithm, computer program, MCMC results)
was validated with analytic calculations. The marginalized input point was
shown to become insignificant for the final result.

7 Acknowledgement

This work has been carried out within the framework of the EUROfusion
Consortium and has received funding from the Euratom research and training
programme 2014-2018 under grant agreement No 633053. The views and
opinions expressed herein do not necessarily reflect those of the European
Commission.

9

References

[Preuss and von Toussaint(2014)] R. Preuss, and U. von Toussaint, “Predic-
tion of Plasma Simulation Data with the Gaussian Process Method,” in
Bayesian Inference and Maximum Entropy Methods in Science and En-

gineering, edited by R. Niven, AIP Publishing, Melville, NY, 2014, vol.
1636, p. 118.

[Rasmussen and Williams(2006)] C. Rasmussen, and C. Williams, Gaussian

Processes for Machine Learning, MIT Press, Cambridge, 2006.

[Preuss and von Toussaint(2016)] R. Preuss, and U. von Toussaint, Fusion
Sci. Tech. 69, 605–610 (2016).

[Coster(2014)] D. Coster (2014), private communication.

10

8 Appendix

Notation table

N number of input data vectors
Ndim number of elements in the input data vector
Nmarg number of marginalized test data
x∗ test input vector
x̂1 first test input vector, for which the target value is marginalized
xopt test input vector found by the utility criterium
x1∗ test input vector after first marginalized test input vector was found
xi = (xi1, ..., xiNdim

) i-th input data vector
X = (x1,x2, ...,xN) N ×Ndim matrix with input data vectors as columns
X ′ = {X, ξ} matrix of the input data vectors expanded by the vector of grid points
ξ vector of grid points within region of interest I
ξmax grid point with largest utility
f∗ target value at test input vector x∗

f(x) function of input data to describe target data
f1 first target value, to be marginalized
f1∗ target value at test point, obtained after marginalization of a first target
y = (y1, ..., yN)

T vector of the N target data
ǫ uncertainty of the target data
σd

2
i variance of the i-th target data

∆ij = σd
2
i δij ij-th element of the N ×N matrix of the variances of target data

λ length scale to set up the notion of distance between input data vectors
σ2
f signal variance of the distribution over functions f

σ2
n overall noise in the data

θ = (λ, σf , σn) vector of the hyperparameters
k(xp,xq) covariance of two input data vectors
(k∗)i = k(x∗,xi) short notation for the i-th element of the vector of covariances between

input vector and input data vector
Kpq = k(xp,xq) pq-th element of the N ×N covariance matrix of the input data vectors
K ′ (N + 1)× (N + 1) covariance matrix of the expanded input X ′

I region of interest to run Gaussian processes
U(ξ) utility of a target data obtained at input vector ξ

11

