Supporting Information

Contents

XRD-patterns of ATO-compounds	2
Conductivities and specific surface areas of ATO	2
Electron microscopy of MW-ATO	3
XRD of the Ir-loaded compounds	4
Electrochemical testing	5
TEM of MW-Ir/ATO	6
TGMS curves for the decomposition of MW-ATO and MW-Ir/ATO	7
TPR-profiles of MW-ATO and SA-IrO ₂	8
XRD of MW-Ir/ATO after TGMS	9
Temperature-programmed reduction (TPR)	10
Nominal sample composition and oxidation state	10
OER-performance after thermal treatment	12
Time-resolved behavior of Ir_350_O2 under the electron beam	14
TG-analysis of the stepwise calcination of MW-Ir/ATO	15
DRIFTS	16
Advanced electrochemical sample evaluation	17
FHI-database references	17
References	17

XRD-patterns of ATO-compounds

Due to the very similar ionic radii of Sn^{V} , Sb^{II} and Sb^{V} and the broad peaks resulting from small crystalline domains, the obtained XRD-patterns cannot be distinguished from the pure SnO_2 -cassiterite.

Conductivities and specific surface areas of ATO

Table S1. Specific surface area and resistivities of commercial powders and samples prepared in the MW at various temperatures.

Compound	ρ [Ω cm]	S _{BET} (m ² g ⁻¹)
Comm. SnO ₂	1,28.10 ⁴	7
MW-ATO 180°C	1,92.10⁵	
MW-ATO 210°C	1,55.10 ⁴	
MW-ATO 240°C	5,10.10 ⁴	
MW-ATO 270°C	1,71.10 ¹	207
MW-ATO 290°C	1,17.10 ¹	184
Commercial ATO	2,02.10 ¹	41

Electron microscopy of MW-ATO

Figure S2. SEM-EDX of MW-ATO. The image represents a typical location for EDX.EDX-spectra were taken at a primary energy of 20 kV in random areas with a window size of 5 μ m x 5 μ m on different agglomerates (interaction depth: 2 μ m) and confirm a homogeneous Sn:Sb-ratio of 95:5.

Figure S3. TEM-image of MW-ATO.

XRD of the Ir-loaded compounds

Figure S4. XRD of as synthesized MW-Ir/ATO (green line) and of thermal treatment products at 250°C (orange) and 350°C (red) under 100 mln min⁻¹ of 21%-O₂/Ar or 100%-Ar.

Electrochemical testing

TEM of MW-Ir/ATO

Figure S6. HAADF-STEM imaging of MW-Ir/ATO including Fast-Fourier-Tranformation of selected Ir-particles

Figure S7. HAADF-STEM imaging of MW-Ir/ATO including EDX-based elemental mapping of one of the Ir/ATO-clusters found in MW-Ir/ATO

TGMS curves for the decomposition of MW-ATO and MW-Ir/ATO

Figure S8. TG-MS curves for the decomposition of MW-ATO and MW-Ir/ATO under 21%-O₂/Ar (100 mln.min-1).

TPR-profiles of MW-ATO and SA-IrO₂

Figure S9. TPR-profiles of MW-ATO, MW-Ir/ATO and SA-IrO₂. The significant low-temperature reduction feature of MW-Ir/ATO is shown in the inset.

XRD of MW-Ir/ATO after TGMS

Figure S10. XRD the calcination products of the MW-ATO-support and the loaded MW-Ir/ATO after thermogravimetric analysis in oxidative (21%-O₂/Ar) and inert (Ar) gas streams.

Temperature-programmed reduction (TPR)

Figure S11. Time-dependent hydrogen signals detected via the Thermal Conductivity Detector (TCD) during the switch from a 100% Ar to a 5% H2/Ar gas stream (80 mL min⁻¹) before (dark line) and after the TPR (red dashed line) for MW-ATO (Fig. S11.a) and MW-Ir/ATO (Fig. S11.b).

Nominal sample composition and oxidation state

We pose the formal composition (1) of MW-Ir/ATO and Ir_(250/350)_O2/Ar as :

$$(IrO_{x})_{0.33}(Sb_{0.05}Sn_{0.95}O_{2})_{0.67}(H_{2}O)_{z}$$
(1)

 H_2O present in formula (1) correspond to the chemisorbed and physisorbed water present in a sample. The H_2O -content z of the sample is linked to the total water mass fraction $x_{m,H2O}$ via equation (2), where M is the molar mass of the compound.

$$x_{m,H_2O} = \frac{18z}{M}$$
 (2)

 $x_{m,H2O}$ is determined from TGMS by considering that the mass changes observed are mostly related to water removal. For MW_Ir/ATO, $x_{m,H2O}$ is determined from the total mass loss observed during TGMS to 800°C (Fig. 4). For the thermally treated samples, $x_{m,H2O}$ was determined using a stepwise TGMS experiment simulating the thermal treatment of MW-Ir/ATO (Fig. S10). In this experiment, the observed mass loss at the end of each step is assigned to water removal and substracted from $x_{m,H2O}$ in MW-Ir/ATO, yielding the remaining water content in the thermally treated sample.

The molar mass of the compounds is given according to (1) by (3):

$$M = 16 \times (2 \times 0.67 + 0.33 x) + 0.33 \times 192.22 + 0.67 \times 0.05 \times 121.75 + 0.67 \times 0.95 \times 118.71 + 18 z$$
(3)

The parameter x in M is not known. For this purpose, we use TPR. In TPR, the reduction of Ir-oxide and ATO will proceed respectively via schemes (4) and (5).

$$IrO_{x} + x H_{2} \rightarrow Ir + x H_{2}O$$
⁽⁴⁾

$$(Sn_{0.95}Sb_{0.05})O_2 + 2 H_2 \rightarrow (Sn_{0.95}Sb_{0.05}) + 2 H_2O$$
(5)

As a result, the overall H₂-consumption n_{H2} based on the general formula (1) can be linked to x via equation (6), where m_s is the sample mass used in the TPR-experiment.

$$n_{H_2} = (0.33 \text{ x} + 2 \times 0.67) \times \frac{m_s}{M}$$
 (6)

The combination of equations (2), (3) and (6) yields the analytical solution (7) for x and (8) for z.

$$x = \frac{1.34 \text{ m}_{s} (1 - x_{m,H_{2}0}) - 164.51 \text{ n}_{H_{2}}}{5.28 \text{ n}_{H_{2}} - 0.33 (1 - x_{m,H_{2}0})}$$
(7)

10

$$z = \frac{x_{m,H_20}}{18(1 - x_{m,H_20})} \times \left[164.51 + 5.28 \frac{1.34 \text{ m}_s (1 - x_{m,H_20}) - 164.51 \text{ n}_{H_2}}{5.28 \text{ n}_{H_2} - 0.33(1 - x_{m,H_20})} \right]$$
(8)

Eventually, the average oxidation state of Ir given by 2x can be calculated along with the parameters x, z and M listed in Table S2.

Sample	m₅ (mg)	х _{т,Н2О} (%)	x	z	M (g mol⁻¹)	Avg. oxidation state of Ir
MW-						
Ir/ATO	31.1	5.9	1.64	0.6	183.96934	3.28
Ir_250_0 ₂	19.9	2.2	1.45	0.22	176.03614	2.9
Ir_350_O ₂	18.5	1.1	2.03	0.11	177.20854	4.06
lr_250_Ar	31.6	1.8	1.5	0.18	175.67014	3
lr_350_Ar	17.5	0.8	1.26	0.08	172.60294	2.52

 Table S2. Parameters used to determine sample composition and resulting oxidation states

OER-performance after thermal treatment

Figure S12. LSV-based activity test for three loadings at 20, 50 and 100 μ g_{Ir} cm⁻² a) MW-Ir/ATO b) Ir_250_O₂, c) Ir_350_O₂, d) Ir_250_Ar, e) Ir_350_Ar.

Figure S13. Stability-investigation of MW-Ir/ATO (a)) and its thermally treated products (b) Ir_250_O₂, c) Ir_350_O₂, d) Ir_250_Ar and e) Ir_350_Ar) in a chronopotentiommetric study for 2h at 10 mA cm⁻²

Time-resolved behavior of Ir_350_O2 under the electron beam

In some regions of $Ir_350_{-}O_2$, we detected large portions of bare rutile-type ATO-support, which initially showed no birght spots assigned to metallic Ir-particles. However brighter contrast on the outer shell of ATO-particles, as shown in Fig. S14 suggests that the ATO support is covered with a thin Ir-layer in the same rutile-type structure. This corresponds to IrO_2 rutile. The time-dependent *in-situ* STEM observation of the same spot clearly showed that under beam irradiation, metallic Ir-particles blossomed in a matter of minutes where such brighter contrast could initially be observed. This indicates that the suspected thin IrO_2 -layer is being reduced to Ir^0 . IrO_2 has usually been described as stable under the electron beam. At 350°C, we are probably still in presence of a highly defective, partially hydroxylated IrO_2 -type phase. The transition towards IrO_2 after treatment at 350°C however explains our ability to observe the reduction to Ir^0 under electron irradiation as the Ir-phase in $Ir_350_{-}O_2$ is closer to beam-stable IrO_2 . Due to the difficulty of assigning phases formed or modified by the electron beam, the Ar-treated samples were not studied using STEM.

Figure S14. In-situ STEM observation of $Ir_350_0^2$ over 210s showing the evolution of sample morphology under the electron beam. The ADF-STEM imaging allows to relate contrast changes to heavier (brighter) Ir- or lighter (darker) Sn-atoms. Time-resolved imaging reveals the morphological changes of the Ir-phase under the beam.

TG-analysis of the stepwise calcination of MW-Ir/ATO

Figure S15. Thermogravimatric analysis of the stepwise annealing of MW-Ir/ATO in Ar and $21\%O_2/Ar$ (100 mL min⁻¹) at 250°C and 350°C for 1h.

DRIFTS

Figure S16. DRIFTS study of MW-ATO during stepwise treatment at various temperatures in 21%O2/Ar, 100 mln.min-1. Kubelka-Munck transformation of the reflectance spectra (left) and corresponding difference spectra between said temperature and 100°C (right).

In Figure S16, the feature located at approx. 1450cm⁻¹ and disappearing at 125°C might be attributed to a unidentate carbonate species adsorbed on MW-ATO during the synthesis and originating from atmospheric CO₂ dissolved during the synthesis. Features at 1250 and 974 cm⁻¹ can in turn be assigned to the vibration of hydroxyl-tin bonds according to the literature^[1]. The diminution of these features at 250 and 350°C is in agreement with the hydroxyl decomposition profile observed in TGMS. Weak peaks in the 3650-32500 cm⁻¹-region can be assigned to more or less H-bonded hydroxyl groups. Additional broad feature around 2958 cm⁻¹ might be assigned to C-H stretching frequencies from carbon impurities adsorbed on the surface of the sample. The strong contribution between 760 and 778 cm⁻¹ is assigned to O-(Sn/Sb)-O, (Sn/Sb)-O-(Sn/Sb) and other lattice vibrations. In the literature these features are usually being observed at lower wavenumbers in the 600-660 cm⁻¹-range.^[1-2] The important difference can be explained by varying tin doping levels as well as important differences in particle-sizes and -shapes, which have significant influence on peak positions.^[3] Most FTIR-studies are being performed on ATO-films, in contrast to our 5 nm-particles. The observed increasing intensity of lattice features in the DRIFTS-spectra of MW-ATO is in line with an increasing crystallinity of the ATO upon calcination.

Figure S17. DRIFTS study of MW-Ir/ATO (Kubelka-Munck transformation of the reflectance spectra) during stepwise treatment at various temperatures in 21%O2/Ar, 100 mL min⁻¹.

Advanced electrochemical sample evaluation

MW-Ir/ATO and Ir_250/350_Ar/O₂ were subjected to a thorough screening procedure designed to yield a series of key performance indicators representative of OER-performance. The uncompensated ohmic resistance was determined via electronic impedance spectroscopy (EIS) using a high-frequency impedance measurement at open circuit potential (E_{oc}) (4 measurements, 100kHz, 20mV amplitude) and used by the EC-Lab software to automatically compensate for the ohmic drop in all following measurements. The electrode potential was first ramped to 1V vs. RHE (5 mV s⁻¹). The subsequent step assesses the initial OER-activity and consists of linear sweep voltammetry (LSV) from 1 to 1.8 V vs. RHE and back to 1 V vs. RHE (5 mV s⁻¹). In order to account for possible changes in the electrolyte, the uncompensated ohmic resistance is then measured again via EIS at E_{oc} . The following step is designed to test catalyst stability under relevant OER-conditions using a chronopotentiommetric (CP) measurement of the anode potential required to maintain constant current densities of 10 mA cm⁻². The target current density is reached via a galvanodynamic ramp of 10 μ A cm⁻². After the CP-measurement, another LSV-measurement was performed in order to assess loss in activity over the 2h-CP-scan. This procedure is repeated for each compound with three different loadings (20, 50 and 100 μ g/_{Ir} cm⁻²) in order to ensure some statistical certainty on the results with the additional advantage of providing information if the catalyst operates under kinetic control or whether mass-transfer/utilization effects come into play.

FHI-database references

Table S2. FHI-database ID-# of the samples reported in the present paper

Sample	FHI-database ID-#
MW-ATO	18966
MW-Ir/ATO	19527
Ir_250_O ₂	22132
Ir_350_ O ₂	22133
lr_250_Ar	22134
lr_350_Ar	22135
SA-IrO ₂	20288
AA-IrO _x	20233

References

[1] J. Zhang, L. Gao, J. Solid State Chem. 2004, 177, 1425.

[2] R. Scipioni, D. Gazzoli, F. Teocoli, O. Palumbo, A. Paolone, N. Ibris, S. Brutti, M. A. Navarra, *Membranes* **2014**, *4*, 123.

[3] M. Ocaña, C. J. Serna, *Spectrochimica Acta Part A: Molecular Spectroscopy* **1991**, *47*, 765.