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The low-energy expansion of one-loop amplitudes in type II string theory gen-

erates a series of world-sheet integrals whose integrands can be represented by

world-sheet Feynman diagrams. These integrands are modular invariant and

understanding the structure of the action of the modular Laplacian on them is

important for determining their contribution to string scattering amplitudes.

In this paper we study a particular infinite family of such integrands associated

with three-loop scalar vacuum diagrams of tetrahedral topology and find closed

forms for the action of the Laplacian. We analyse the possible eigenvalues and

degeneracies of the Laplace operator by group- and representation-theoretic

means.
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1 Introduction and summary

Scattering amplitudes are central for understanding the structure of superstring theory. Their

low-energy (α′) expansion exhibits many deep mathematical structures. For instance, the four-

graviton scattering amplitude of type II string theory in 10−d space-time dimensions is expected

to be invariant under the string U-duality group Ed+1(Z) [1] order by order in α′ [2,3]. This can

be used together with supersymmetry to determine the lowest order derivative corrections of the

form D2kR4 arising from the four-graviton scattering amplitude as exact (generalized) automor-

phic forms of the moduli [3–25]. As these automorphic forms are invariant under U-duality, they

contain information about all orders of string perturbation theory and also non-perturbative ef-

fects. However, most results here are restricted to the four-graviton amplitude in type II in

various dimensions and BPS-protected couplings associated with small automorphic represen-

tations. The automorphic forms have led to predictions of higher-genus string amplitudes and

certain non-renormalisation theorems that have been confirmed by direct calculations [26–30].
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In a different direction, superstring amplitudes have been evaluated for many particles at low

orders in string perturbation theory and the systematics of their α′-expansion has been stud-

ied. At string tree level and for the scattering of N open or closed strings, there are amazing

systematics associated with the theory of (single-valued) multiple polylogarithms and (single-

valued) multiple zeta values [31–43]. At string one-loop order, the corresponding generalisation

appears to be that of (single-valued) elliptic polylogarithms and (single-valued) elliptic multi-

ple zeta values that is currently under construction [44–48]. ‘Single-valued’ here indicates a

certain projection on the set of multiple zeta values that has to be applied in the closed super-

string case [40, 49]. Other references on the relations of loop integrals to multiple zeta values

include [50–52] and for other work on the modular structure of string one-loop amplitudes see

for example [53].

In the present paper, we are interested in functions that arise in (or are related to) the

α′-expansion of closed superstring one-loop amplitudes. A one-loop amplitude is given by an

integral over the modulus τ of the world-sheet torus where the integrand is a modular SL(2,Z)-

invariant function that is determined by world-sheet conformal field theory. The integrand

depends on α′ and therefore the α′-expansion of the one-loop amplitude can be studied from an

α′-expansion of the integrand. The separation into analytic and non-analytic terms in α′ can

be effectively implemented by studying the behaviour of the integrand near the boundary of the

torus moduli space (cutting off the τ integration on the SL(2,Z) fundamental domain).

This separation and the structure of this expansion was studied in [54,55] where a formalism

was developed that represented the integrand at a given α′-order by a Feynman diagram of the

world-sheet conformal field theory. This has led to the study of the structure and systematics

of such world-sheet Feynman diagrams and the associated integrands in their own right [56–63].

Understanding the structure of the integrand is necessary for finding the integrated value that

is the actual contribution to the scattering amplitude. We note that for string amplitudes with

more than four external states, the integrands are not necessarily described in terms of scalar

propagators only but there can also be derivatives of propagators appearing in the world-sheet

Feynman diagrams [64, 65]. Restricting to standard scalar Feynman diagrams will therefore

not capture all possible contributions to string scattering. Nevertheless, the scalar Feynman

diagrams exhibit already a rich mathematical structure that is worthwhile to investigate.

The integrand functions determined by the scalar world-sheet Feynman diagrams are now

called modular graph functions [48] and several cases have been studied in great detail. For

world-sheet Feynman diagrams with one and two loops, the complete structure of the connected

Feynman diagrams in terms of their behaviour under the modular Laplacian has been worked

out [56] and this has led to many interesting and unexpected identities among these modular

graph functions [57,60,62] that partially mirror identities of multiple polylogarithms [48]. Beyond

this complete treatment of one and two loops, some special cases of higher loop integrand

functions have been analysed and some of them have been integrated [56–59, 61]. One of the

main tools in the study of these functions are the modular invariant differential equations that

they satisfy. These are typically inhomogeneous Laplace equations that sometimes admit an

explicit integration with boundary conditions from degeneration limits of the toroidal world-

sheet.
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In this paper, we will study an infinite family of modular graph functions at three-loop order

on the world-sheet. We restrict to tetrahedral Feynman diagrams but allow for an arbitrary

number of vertices along the edges of the tetrahedron. In graphical notation, the functions we

are interested in are associated with Feynman diagrams of the form

z1

z2

z3 z4

s
t

p

qw

r

where the labels on the edges indicate the number of consecutive scalar propagators along the

edge, meaning that the corresponding propagator is raised to the power given by the label. The

simplest instance of such a modular graph function, corresponding to the case s = t = p =

q = w = r = 1, was studied in [58] and its contribution to the D12R4 derivative correction was

determined by using the inhomogeneous Laplace equation satisfied by the integrand associated

with this diagram. In general, we will refer to the modular graph functions associated with the

above diagram as tetrahedral modular graph functions. We will call s + t + p + q + w + r the

weight of the modular graph function.

We shall show in this paper that the family of tetrahedral modular graph functions satisfies

an inhomogeneous Laplace equation where the right-hand side contains ‘simpler’ modular graph

functions when the spectrum is diagonalised. This is in complete parallel with [56] where at two

loops the right-hand sides were quadratic polynomials in non-holomorphic Eisenstein series. Our

results contain those of [58] mentioned above as a special case and we employ heavily graphical

methods similar to those of [62]. The tetrahedral graph is symmetric under the action of the

finite permutation group S4 and we will show that the modular Laplace operator is closely

related to the quadratic Casimir operator of sl(3). These two ingredients allow us to use finite

group theory and representation theory to deduce certain properties of the spectrum of the

Laplace operator acting on the family of tetrahedral modular graph functions. As a by-product

we will obtain a simple rederivation of the two-loop results of [56] by the same methods. We

note that the modular Laplacian on tetrahedral modular graph functions closes without the need

to introduce modular graph forms that were recently introduced as a generalisation in [60,63].

Contrary to the cases studied in [63], the eigenvalues of the modular Laplacian that we obtain

are surprisingly not only of the form s(s− 1) for non-negative integers s.

There are many possible generalisations and extensions of our work that are beyond the

scope of the present paper. A point we have not investigated systematically is to use the

inhomogeneous Laplace equations that we find to determine a basis of independent modular

graph functions. This point would be very interesting in particular in connection with (elliptic)

multiple polylogarithms. It would also be relevant for performing the actual world-sheet integrals

over the modular graph functions that we do not attempt here. We note that useful techniques
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for determining the behaviour of the modular graph functions in the degeneration limit of the

world-sheet (τ2 → ∞) can be found in [55]. Finally, it would be interesting to consider extensions

of the tetrahedral modular graph functions to also include derivatives in such a way that one

reconstructs integrands of closed superstring one-loop amplitudes with five and more external

legs. A widely open field is also the extension to higher genus string amplitudes, see [29,30,66–73]

for some relevant work on genus-two Riemann surfaces, in particular in connection with the so-

called Kawazumi–Zhang invariant.

The structure of this article is as follows. We first review in section 2 general facts about

genus-one amplitudes in closed superstring theory in order to motivate the types of Feynman

diagrams and Laplace equations that we analyse. This includes an exposition of the diagrammat-

ical tools for manipulating modular graphs. In section 3, we introduce the tetrahedral modular

graph functions that are the central objects in this paper. We present their Laplace equation in

general and introduce a generating function that makes it possible to connect to the representa-

tion theory of sl(3). We present detailed examples of Laplace equations and spectral properties

up to weight 12 together with some general considerations. These are the main results of this

paper. Appendices contain results on simpler two-loop modular graph functions and technical

details of some of the calculations of section 3.

2 Genus-one amplitudes and modular graph functions

We shall consider genus-one contributions to n-graviton scattering amplitudes in type II string

theory compactified on a torus T d from ten to D = 10 − d space-time dimensions. The moduli

dependence of these contributions appears generically through integrals of the type

IF =

∫

F
dµF (τ̄ , τ) Γ(d,d) . (2.1)

The integration domain F is a fundamental domain of the moduli space, of genus-one Riemann

surface

F =

{

|τ1| ≤
1

2
, |τ | ≥ 1

}

= H/PSL2(Z) , (2.2)

where H = {τ = τ1 + iτ2 ∈ C | τ2 > 0} is the complex upper half plane on which the modular

group PSL(2,Z) acts by the standard fractional linear transformation. The integration measure

dµ is the standard PSL(2,Z) invariant measure

dµ =
dτ1dτ2
τ22

, (2.3)

such that the volume of the fundamental domain is normalised to be
∫

F dµ = π
3 . The function

Γ(d,d) is the Narain genus-one partition function [74] for the self-dual lattice that describes

toroidal compactifications from ten dimensions to 10− d dimensions:

Γ(d,d) = τ
d/2
2

∑

nI∈Z2d

e−πτ2|Z(n)|2eπiτ1n
IηIJn

J

, (2.4)
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in terms of the SO(d, d) invariant metric ηIJ = ( 0 1
1 0 ). The mass squared |Z(n)|2 appearing

in (2.4) is given by

|Z(n)|2 = Za(n)Z
a(n) = nIVaIV

a
Jn

J . (2.5)

Va
I is the coset representative parametrising the symmetric space SO(d, d)/SO(d) × SO(d),

which transforms from the left under the local compact subgroup and from the right under the

global SO(d, d). Local coordinates can be chosen in terms of the metric and B-field on the

torus in the standard fashion [74, 75]. The Narain partition function Γ(d,d) is invariant under

SO(d, d,Z) transformations and modular transformations from PSL(2,Z). The invariance under

SO(d, d,Z) is obvious, PSL(2,Z) invariance can only be seen after using Poisson resummation.

The integral (2.1) is by construction still a function of the moduli Va
I of the space-time Narain

torus; the dependence on the world-sheet torus parameter τ is being integrated over.

The function F (τ, τ̄ ) appearing in (2.1) encodes the specifics of the scattering process under

consideration. It is required to be invariant under PSL(2,Z) transformations acting by

F (τ, τ̄ ) = F

(

aτ + b

cτ + d
,
aτ̄ + b

cτ̄ + d

)

, ad− bc = 1 , (2.6)

with a, b, c, d ∈ Z. For general processes F (τ, τ̄ ) term will be a complicated function encoding

momentum and Narain moduli dependence. However, for a four-graviton interaction, its form

can be found explicitly as a Koba–Nielsen prefactor [56,76]

F (τ, τ̄ ) =
4
∏

i=1

∫

Σ

d2zi
τ2

eD , (2.7)

where D is a sum over all insertions at local coordinates zi and zj

D =
∑

i<j

sijG(zi − zj|τ) (2.8)

with dimensionless Mandelstam variables

sij = −
1

4
α′(ki + kj)

2 (2.9)

and G(zi − zj |τ) the translation invariant scalar propagator between zi and zj on the world-

sheet torus of modulus τ . We will give an explicit form for the propagator below in (2.19). The

integral in (2.7) is over the world-sheet of the torus Σ that we parametrise in a fixed domain of

volume
∫

Σ d2z = τ2, where d
2z = dz1dz2 in terms of the real and imaginary parts of z = z1+ iz2.

While the formula (2.7) is correct for four-graviton scattering, one will have additional insertions

beyond Koba–Nielsen factors for higher point amplitudes [65, 77] and there can be additional

Narain moduli dependences.

The integral IF in (2.1) is an object of central interest in string theory. However, no closed

formula for it is known. From a low-energy perspective, one can consider the α′-expansion of the

integral, corresponding to an expansion in sij ≪ 1. This generates analytical (in α′) terms in the

scattering amplitude [54, 55]. Sometimes one can then understand the integrand, and possibly
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even the integral, at a fixed order in α′ by studying the differential equations the integrand

satisfies. The integral IF is a function on Narain moduli space SO(d, d)/SO(d)×SO(d) and for

the case when F (τ, τ̄ ) is independent of the Narain moduli one can compute the action of the

SO(d, d) Laplacian by using [8]

[

∆SO(d,d) − 2∆SL(2) +
1

4
d(d − 2)

]

Γ(d,d) = 0 (2.10)

that relates the SO(d, d) action to one of the modular invariant SL(2) Laplace operator acting

on τ . By partial integration the action of the SO(d, d) Laplacian can then be mapped to the

SL(2) Laplacian acting on F (τ, τ̄ ). This action of ∆SL(2), more specifically in an α′ expansion,

is what we shall study in this paper. For genus-one world sheets with metrics parametrised by

τ ∈ F of (2.2) the SL(2) invariant Laplacian on the upper half plane is

∆ ≡ ∆SL(2) = 4τ22 ∂τ∂τ̄ = τ22
(

∂2
τ1 + ∂2

τ2

)

(2.11)

and we shall henceforth drop the subscript SL(2) on the Laplacian as it is the only one we will

use.

2.1 Low-order contributions to the four-graviton amplitude

From the definition of D in (2.8) and the Mandelstam invariants we see that we can perform a

low-energy expansion in the sij corresponding to the α′ expansion of string theory. The result

of expanding the exponential in (2.7) can be represented by a world-sheet Feynman diagram

consisting of four points that are connected by n lines, where n is the order of the expansion in

Mandelstam variables.

The function F (τ, τ̄) controlling the four-graviton amplitude expands for small momenta

sij ≪ 1 (corresponding to a power expansion in α′) as

F (τ, τ̄ ) =
∞
∑

n=0

1

n!

4
∏

i=1

∫

Σ

d2zi
τ2

(

∑

j<k

sjkG(zj − zk|τ)

)n

, (2.12)

where n counts the number of world-sheet propagators between the 4 points zi. By virtue of

the definition (2.9) of the sij this corresponds also to the power of α′. Because of momentum

conservation the sij are not all independent in the massless four-point amplitude. Letting

s = s12 = s34 , t = s13 = s24 , t = s23 = s14 (2.13)

one has

s+ t+ u = 0 . (2.14)

As a consequence, the analytic part of the four-graviton amplitude can be expanded in a double

series in s2+ t2+u2 and s3+ t3+u3, except for the classical Einstein–Hilbert contribution [54].

The low order terms in the expansion of F can be found for example in [55] along with their

integrals contributing to the four-graviton amplitude in the low-energy expansion. We recall that
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the one-loop string theory calculation in ten space-time dimensions gives contributions to R4

and then to every even derivative order starting from D6R4. (In lower dimensions one also has

contributions for D4R4.) The integrated contributions up to D10R4 have been worked out [56].

A further discussion of the low order contributions can be found in [54,55].

2.2 Laplacian on modular graph functions and the Green’s function

For high order in α′ the explicit functional dependence of F on τ is not very well understood.

As in [56], one can consider the function (2.12) that generates the world-sheet diagrams in the

α′-expansion as a prototype of a new class of functions called modular graph functions that are

constructed from world-sheet Feynman diagrams with an arbitrary number of points (not only

four) connected by scalar propagators. These diagrams will not directly correspond to string

processes but can serve as an interesting class of modular functions and certainly are relevant

to the string theory calculation.

In view of the structure of (2.12) that is given by an integral over products Green’s function

connecting different vertices we will follow [48,56] and study the following more general class of

functions where the integrand is given by

I({nkl}, τ, τ̄ ) =
n
∏

i=1

∫

Σ

d2zi
τ2

(

∏

k<l

Gnkl(zk − zl|τ)

)

(2.15)

for some non-negative integer powers nkl and a total of n vertices. Compared to (2.12) we

have removed the Mandelstam variables and allowed for an arbitrary number n of vertices.

Dimensionally, such an integrand would be related to an amplitude with low-energy action of

the form D2wR4, where w =
∑

k<l nkl is the weight of the integrand. However, this is generally

only true dimensionally as it is known that for n > 4 the integrand of the genus one amplitude

is not of this simple form but also involves derivatives of Green’s functions [65].

Functions arising from modular integrals over expressions of the type (2.15) are called mod-

ular graph functions. As we will review below, they can be represented graphically in terms of

Feynman world-sheet diagrams. Modular graph functions are invariant under modular transfor-

mations acting on τ and can appear as constituents of higher derivative corrections. Besides this

physical relevance, they represent an interesting new class of modular functions on the upper

half plane and we will be interested in evaluating the modular Laplacian acting on them.

We shall use a diagrammatic way of computing the Laplacian acting on a modular graph

function, similar to [62]. The basic tool is to first rewrite the modular Laplacian using deforma-

tion theory as [56]

∆ = 4τ22 ∂τ∂τ̄ = δµδ̄µ , (2.16)

where δµ denotes infinitesimal changes in the complex structure while keeping the coordinates

fixed. The advantage of this formalism is that one can work out the deformation of the Green’s

function on general grounds. As shown in [56], the action of the deformation δµ acting on a

single Green’s function connecting two points zi and zj can be replaced by the insertion of an
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additional vertex:

δµG(zi − zj |τ) = −
1

π

∫

Σ
d2z∂zG(z − zi|τ)∂zG(z − zj |τ) . (2.17)

Moreover, the Laplacian with respect to the modular parameter satisfies

∆G(zi − zj|τ) = 0 , (2.18)

since the result becomes a total derivative. Therefore, when evaluating the modular Laplacian

on a product of Green’s functions one has to apply the deformations δµ and δ̄µ to different

factors.

Obviously the function I(τ, τ̄) has in general highly complicated dependence on τ, τ̄ , however

some very simple and elegant answers were found in the past. For the purpose of understanding

these results we can express G through a lattice sum:

G(z|τ) =
∑

(m,n)∈Z2\{(0,0)}

τ2
π|m+ nτ |2

e
π
τ2

(z̄(mτ+n)−z(mτ̄+n))
, (2.19)

where the integers m,n parametrise the discrete momenta on a torus p = m + nτ . The zero

momentum was removed from the lattice sum Z
2. In this representations the modular invariance

of G(z|τ) can be easily seen. The scalar Green’s functions on a world-sheet torus Σ of modulus

τ satisfies the identities

∂z∂z̄G(z|τ) = −πδ(2)(z) +
π

τ2
,

∫

Σ
d2zG(z|τ) = 0 , (2.20)

where the second condition is related to the choice of zero mode. The zero mode does not

contribute to (2.12) by momentum conservation
∑

i<j sij = 0.

It is very helpful to represent the Green’s functions and their derivatives in a graphical way

in order to simplify the calculations. These are the modular graphs that represent the integrands

of the modular integrals.

A single point is a symbol for the integration of an insertion and lines represent the Green’s

functions between two insertions

i
1
τ2

∫

Σ d2zi =
i

, 1
τ2
2

∫

Σ d2zid
2zj G(zi − zj |τ) =

j
.

(2.21)

Due to reflection invariance in z one does not need to put arrows on the propagators.

In the same way several lines joining at one point z mean that several Green’s functions

connect an insertion point z to various other insertions and all of them are integrated out at the

end

z
1

τn+1

2

∫

Σ d2z
∏n

i=1

∫

Σ d2ziG(z − zi|τ) =

n

n−1
... .

2

1 (2.22)
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We also introduce the action of the derivative in z acting on one of the Green’s functions

i

∂1
τ2
2

∫

Σ d2zid
2zj ∂ziG(zi − zj |τ) =

j

= −
i j

∂ = − 1
τ2
2

∫

Σ d2zid
2zj ∂zjG(zi − zj |τ) .

(2.23)

Here, we have also illustrated the consequence of translation invariance ∂ziG(zi − zj |τ) =

−∂zjG(zi − zj |τ).

Last but not least we are always able to rewrite the action of the deformation δµ into the

action of derivatives on the world-sheet by introducing an additional insertion, such that

i

δµ
δµ

[

1
τ2
2

∫

Σ d2zid
2zjG(zi − zj |τ)

]

=
j
=

i
− τ2

π z
∂ ∂

j
= − 1

πτ2
2

∫

Σ d2zid
2zjd

2z∂zG(z − zi|τ)∂zG(z − zj |τ) .

(2.24)

This rule is due to (2.17). There is a similar formula for the conjugate deformation δ̄µ in terms

of the conjugate world-sheet derivative ∂̄z.

Because of equation (2.20) we see that every diagram with at least one node that has only

one Green’s function connecting to it is vanishing. Therefore for tadpoles diagrams we obtain

i z
∝ 1

τ2

∫

Σ d2zG(zi − z|τ) = 0 .
(2.25)

Additionally, we read out from (2.20) the diagrammatical simplification rule

i

∂

j

∂̄ = π
τ2 i = j

− π
τ2 i j

.

(2.26)

The derivative with respect to world-sheet variables acting on one of the Green’s functions can

be moved on the graph reproducing the integration by parts formula. We obtain for example

i

∂
= −

i

∂
−

i
∂ −

i ∂

.

(2.27)

2.3 Modular graph functions with one and two world-sheet loops

Some subsets of modular functions with a particular geometric structures are well understood.

For example a simple s-polygon of Green’s functions reproduces non-holomorphic Eisenstein
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series with a somewhat unusual, yet for our purpose useful, normalisation [56]:

1 2

3

4

s =
∑

(m,n)∈Z2/{0}

τ s2
π2s|m+ nτ |2s

= Es(τ, τ̄ ) .

(2.28)

This is the simplest non-trivial structure that appears as the modular graph function, with a

single summation over the discretised momentum in the loop and it depends just on a single

value s, that is the number of internal vertex insertions. Eisenstein functions are know to satisfy

a homogeneous Laplace equation

(∆ − s(s− 1))Es(τ, τ̄ ) = 0 . (2.29)

This equations can also be proved diagrammatically using the rules outlined above. For the

particular value of s = 0, we use the normalisation

E0(τ, τ̄) = 1 . (2.30)

The next more complex structure was discussed in detail in [56] and depends on a triplet (s, t, p)

of integer values, that describe the number of vertex insertions on the path connecting points

z1 and z2 on the torus

z1

1

2 s−1

s

1′ 2′ (t−1)′ t′

1′′

2′′ (p−1)′′

p′′

z2 =
∑′

(m1,n1)
(m2,n2)

τs+t+p
2

πs+t+p|m1+n1τ |2s|m2+n2τ |2t|m1+m2+(n1+n2)τ |2p

= C(s,t,p)(τ, τ̄ ) ,

(2.31)

where we sum over discrete momenta p1 and p2 in the loop, excluding zero and have solved

overall momentum conservation. The prime on the sum indicates that we have to exclude all zero

momentum propagators, i.e., (m1, n1) 6= (0, 0), (m2, n2) 6= (0, 0) and (m1+m2, n1+n2) 6= (0, 0).

In string theory only non-negative integer values for s, t and p arise but as argued in [56] the

function C(s,t,p) can be analytically continued to arbitrary complex values of the parameters.

We will often suppress the arguments τ and τ̄ .

Starting now we will use following abbreviations to indicate the number of Green’s functions

that connect two points in a simple manner

1 2 s
= .s

(2.32)

With this notation Eisenstein functions and C(s,t,p) can be written in a more graphical way

z1 s = Es(τ, τ̄ ) , z1 z2

s

t

p

= C s
t
p

(τ, τ̄ ) .

(2.33)
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It is obvious that C(s,t,p) is completely symmetric under permutations of the (s, t, p) triplet.

Furthermore for specific values of (s, t, p) the function C(s,t,p) simplifies to a quadratic polynomial

in Eisenstein series [56]

C s
t
0

= EsEt − Es+t , C s
t
-1

= Es−1Et + EsEt−1 . (2.34)

This simplification can be easily seen from the lattice sum representation. Unfortunately, the

differential equation satisfied by a general C(s,t,p) function is not any more homogeneous and

can be derived to be [56]

(∆ − ω)C s
t
p

= st

(

C s + 1

t− 1
p

+ C s− 1

t + 1
p

+ C s + 1

t + 1

p− 2

− 2C s + 1

t
p− 1

− 2C s
t + 1

p− 1

)

+ the two other pairs of lines , (2.35)

where the eigenvalue ω is given by

ω = s(s− 1) + t(t− 1) + p(p− 1) . (2.36)

The spectrum of the modular Laplacian was studied in great detail in [56]. In appendix A, we

present a simple rederivation of the results of that paper based on an application of Molien’s

theorem combined with some representation theory of sl(2).

3 Tetrahedral family of modular graph functions

In this section, we introduce the family of modular graph functions associated with the tetra-

hedral graph and an arbitrary number of propagators on all edges. We determine the inhomo-

geneous Laplace equation satisfied by such functions and study some degeneration limits. The

spectrum of the Laplace operator on tetrahedral modular graph functions is partially determined

using generating function techniques.

3.1 Inhomogeneous Laplace equation for tetrahedral modular graphs

The next very symmetrical topology with three-valent vertices after the one above is that of a

tetrahedron (or Mercedes graph):

z1

z2

z3 z4

s
t

p

qw

r

=
∑′

pi

τs+t+p+q+w+r
2

πs+t+p+q+w+r|p1|2s|p2|2t|p1+p2|2p|p3|2q|p1+p2+p3|2r |p2+p3|2w
= C

s t p
qw r

(3.1)

11



The restriction on the sum means that the discrete momenta pi = mi+niτ for integers mi, ni ∈ Z

are all non-zero and similarly for all other propagators, i.e., p1 + p2 6= 0, p2 + p3 6= 0 and

p1 + p2 + p3 6= 0. We have already solved momentum conservation in the above expression and

the loop momenta are labelled as

p1 p2 p1 + p2

p3

p1 + p2 + p3

p2 + p3
(3.2)

As is well-known, the tetrahedron has point symmetry group S4 acting on it. An explicit form

of the action of this symmetric group on the graph can be found for example in [21]. For a

tetrahedral modular graph function C s t p
qw r

we will call s + t+ p + q + r + w the weight of the

function. The genuine first non-trivial case arises at weight 6 and was treated already in [58].

We will re-derive it within our more general analysis below.

Without solving momentum conservation the tetrahedral modular graph function C s t p
qw r
can

be expressed in the symmetric way through six lattice sums and four Kronecker deltas preserving

momentum conservation at each vertex zi:

C
1
2
3
46

5

=
∑′

(mi,ni)∈Z2

δzim0δ
zi
n0

6
∏

j=1

τ
sj
2

πsj |mj + njτ |2sj
, (3.3)

where the labels 1, . . . , 6 on the left-hand side stand for the parameters s1, . . . , s6 appearing on

the right-hand side.

Using either graphical methods or the sum representation, we can evaluate the modular

Laplacian on these tetrahedral modular graph functions to be

(

∆− ω
)

C
s t p

qw r

= st

(

C
-1 1

+ C
1
-1

+ C
1
1-2

− 2C
1 -1

− 2C
1-1

)

+ 11 other adjacent pairs of lines

+ sq

(

C
1
-2

1

+ C
1 -2

1

+ C
1

1-2

+ C
1

1-2

+ 2C
1 -1

1-1

+ 2C
1
-1

1-1

− 2C
1 -1

1-1

− 2C
1
-1-1

1

− 2C
1 -1

1-1

− 2C
1

1-1-1

)

+ 2 other opposite pairs of lines (3.4)
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with the ‘eigenvalue’ ω being

ω = s(s− 1) + p(p− 1) + q(q − 1) + r(r − 1) + t(t− 1) + w(w − 1)− 2(wp + qs+ rt) (3.5)

The final mixed term does not arise for the ‘sunset’ functions of [56] and is formed as the sum

over the three sets of non-adjacent (opposite) lines in the diagram. The notation in (3.4) means

that the indices on the corresponding lines of the diagrams are increased or decreased in the

indicated places while maintaining the labels on the left-hand side of the equation. Thus

-1
1

≡ s-1 t p
qw+1r

(3.6)

We present some details on the derivation of (3.4) in appendix C.

3.2 Degeneration limits

Below we will also require some degeneration limits of the tetrahedral graphs when some of the

vertices come together. These are

z1

z2 z3

s t p q

r

=
∑′

pi

τs+t+p+q+r
2

πs+t+p+q+r|p1|2s|p2|2t|p3|2p|p1+p2|2r |p1+p2+p3|2q
= C

s t p q

r

(τ, τ̄ ) ,

(3.7)

z1

z2

s t p q =
∑′

pi

τs+t+p+q
2

πs+t+p+q|p1|2s|p2|2t|p3|2p|p1+p2+p3|2q
= C

s t p q
(τ, τ̄ )

(3.8)

As in (2.34), setting one of the values in C s t p
qw r

to the value 0 or −1 leads to a simplification

in the modular graph functions. Some of simplifications are multi-term identities.

C
s t p

qw
0

= C
s p w q

t

− C s + w
q + p
t

, (3.9a)

C
s t p

qw
-1

+ C
s t p

wq
-1

= C
s-1pw q

t

+ C
s pw-1q

t

+ C
sp-1w q

t

+ C
s pwq-1

t

− C
s p w q

t-1

, (3.9b)

C
s p q r

0

= C
s p q r

− Es+pEq+r , (3.9c)
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C
0 s p q

r

= EsC r
p
q

−C s + r
p
q

, (3.9d)

C
s p q r

-1

+ C
s q p r

-1

+ C
s r p q

-1

= C
s-1p q r

+ C
sp-1q r

+ C
s pq-1r

+ C
s p qr-1

, (3.9e)

C
-1 s p q

r

= Es−1C r
p
q

+ EsC r-1
p
q

, (3.9f)

C
0 s t p

= EsEtEp − C s
t
p

, (3.9g)

C
-1s t p

= Es−1EtEp + EsEt−1Ep + EsEtEp−1 , (3.9h)

C s
t
0

= EsEt − Es+t , (3.9i)

C s
t
-1

= Es−1Et + EsEt−1 . (3.9j)

The last two already appeared in (2.34). The identities above can be derived most easily from

the sum representation of the modular graph functions.

3.3 Laplace equations at low weights

We now evaluate explicitly (3.4) for C s t p
qw r

for low weights s + t+ p + q + r + w starting from

weight 6.

3.3.1 Laplace equation at weight 6

In order to illustrate the use of these equations, we re-derive the Laplace equation for the simplest

non-trivial tetrahedral modular graph function that appears for weight 6. From (3.4) one finds

(∆ + 6)C
1
1
1
11

1

= 12C
-1
1
1
12

2

+ 12C
-1
1
2
12

1

− 24C
0
1
1
12

1

− 24C
0
0
2
12

1

+ 12C
0
1
2
02

1

. (3.10)

We simplify the right hand-side of the equation using equations (3.9):

C
-1
1
1
12

2

+ C
-1
1
2
12

1

= 2E2 C 1

1

2

+ E2
3 − 2C 1

2

3

+ 2C
1 1 1 2

1

− C
1 1 2 2

, (3.11a)

C
0
0
2
12

1

= E2C 1

1

2

− 2C 1

2

3

, (3.11b)

C
0
1
2
02

1

= E6 − 2E2
3 + C

1 1 2 2
, (3.11c)
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C
0
1
1
12

1

= C
1 1 1 2

1

− C 1

2

3

. (3.11d)

Putting the results together we obtain

(∆ + 6)C
1
1
1
11

1

= 48C 1

2

3

− 12E2
3 + 12E6 . (3.12)

This equation was derived in this form first in [58] and is relevant for determining the D12R4

correction at one loop.

3.3.2 Laplace equation at weight 7

At weight 7 there is only a single genuine tetrahedral modular graph function associated with

the diagram

2
1
1
11

1 (3.13)

Plugging this into the equation (3.4), we find in a first instance

(∆ + 6)C
2
1
1
11

1

= 8C
-1
1
1
13

2

+ 8C
-1
1
2
13

1

+ 2C
-1
1
1
22

2

+ 2C
-1
1
2
22

1

+ 8C
-1
1
2
12

2

− 8C
0
0
2
13

1

− 8C
0
0
2
12

2

− 8C
0
0
3
12

1

− 8C
0
1
1
13

1

− 10C
0
1
1
12

2

− 4C
0
1
1
22

1

+ 8C
0
1
2
03

1

+ 4C
0
1
2
02

2

− 6C
0
1
2
12

1

− 4C
0
1
2
11

2

. (3.14)

For the simplifications we use again (3.9) and there are many cancellations. Combining all the

terms together the final Laplace equation at weight 7 is

(∆ + 6)C
2
1
1
11

1

= −2C
1 2 1 2

1

+ 30C 1

2

4

+ 18C 1

3

3

+ 8C 2

2

3

− 12E3E4 + 12E7 . (3.15)

3.4 Generating function, its Laplace equation and sl(3)

For understanding more general properties of the spectrum of the Laplacian on tetrahedral mod-

ular graph functions, it is useful to consider a generating function, similar to the one introduced

in [56]. For the tetrahedral graphs considered here we write it as

W
t1
t2t3
t4t6t5

=

∞
∑

s,t,p,q,w,r=1

ts−1
1 tt−1

2 tp−1
3 tq−1

4 tr−1
5 tw−1

6 C
s t p

qw r

. (3.16)
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In terms of the lattice sum this can be thought of as considering massive propagators between

the vertices zi

W(ti, τ, τ̄ ) =
∑′

(mi,ni)∈Z2

δzim0δ
zi
n0

6
∏

j=1

τ2
π|mj + njτ |2 − trτ2

. (3.17)

We will now determine the action of the Laplace operator on W from the Laplace equa-

tion (3.4). We begin with the ‘eigenvalue’ ω shown in (3.5). The left-hand side of the Poisson

equations can be expressed using the relation

∞
∑

s,t,p,q,w,r=1

ts−1
1 tt−1

2 tp−1
3 tq−1

4 tr−1
5 tw−1

6 s(s− 1)C
s t p

qw r

= t1∂
2
1(t1W

t1
t2t3
t4t6t5

) . (3.18)

Here we use the notation ∂i ≡ ∂/∂ti as a short-hand. This part can be rewritten for all legs as
(

∑6
i=1 ti∂

2
i ti

)

W. The mixed terms in ω of (3.5) can be written in terms of t-derivatives as

∞
∑

s,t,p,q,w,r=1

ts−1
1 tt−1

2 tp−1
3 tq−1

4 tr−1
5 tw−1

6 wpC
s t p

qw r

= ∂3∂6(t3t6W
t1
t2t3
t4t6t5

) . (3.19)

We therefore deduce that

∞
∑

s,t,p,q,w,r=1

ts−1
1 tt−1

2 tp−1
3 tq−1

4 tr−1
5 tw−1

6 ωC
s t p

qw r

=

(

6
∑

i=1

ti∂
2
i ti − 2

3
∑

i=1

∂i∂i+3titi+3

)

W
t1
t2t3
t4t6t5

=



D
2 −D− 6− 2

∑

<i,j>

titj∂i∂j − 4

3
∑

i=1

titi+3∂i∂i+3



W
t1
t2t3
t4t6t5

, (3.20)

where ω on the left-hand side is given by (3.5). We have separated the sum over pairs of edges

into the 12 adjacent pairs < i, j > and the three opposite pairs (i, i + 3) for i = 1, 2, 3. The

differential operator

D =

6
∑

i=1

ti∂i (3.21)

measures the degree of homogeneous polynomials in the ti.

Next we analyse the inhomogeneous terms on the right-hand side of the Laplace equa-

tion (3.4). We will use again the short-hand (3.6) to indicate a number of propagators different

from the standard one in C s t p
qw r
. As a rule of thumb, any shifted index will be associated with

a shifted power on the corresponding variable ti in the generating function. Shifting the sum-

mation back to the standard range will produce ‘boundary terms’ where some of the edges have

the special values that also appear in (3.9). Generally, only the edges with negative shifts will

contribute to these boundary terms; the positive +1 shifts are innocuous as they only appear

for the edges whose power also multiplies the corresponding contribution.
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Let us consider as an example the first term on the right-hand side of (3.4) that contains an

adjacent pair of lines:

∞
∑

s,t,p,q,w,r=1

ts−1
1 tt−1

2 tp−1
3 tq−1

4 tr−1
5 tw−1

6 stC
1
-1

= ∂1∂2











t1t2
∑

p,q,r,w=1
t=0
s=2

ts−2
1 tt2t

p−1
3 tq−1

4 tr−1
5 tw−1

6 C











= ∂1∂2






t22

∑

s,p,q,r,w=1
t=0

ts−1
1 tt−1

2 tp−1
3 tq−1

4 tr−1
5 tw−1

6 C







= ∂1∂2

[

t22W
t1
t2t3
t4t6t5

+ t2W
t1
0 t3
t4t6t5

]

. (3.22)

The last term comes from the t = 0 term in the sum and we have introduced the notation

W
t1
0 t3
t4t6t5

=
∑

s,p,q,r,w=1

ts−1
1 tp−1

3 tq−1
4 tr−1

5 tw−1
6 C

0
= W

1
2
3
46

5

∣

∣

∣

2→0
(3.23)

for the generating function of degenerate tetrahedral graph functions. The function C 0 could

in principle be simplified using (3.9), but it is more compact to leave it in this form. We see

that a term on the right-hand side of (3.4) contributes both to a differential operator acting on

W t1
t2t3
t4t6t5

and to degenerate boundary terms.

Manipulations similar to (3.22) can be performed for all the adjacent lines 〈i, j〉 and opposite

lines in (3.4). Summing up all the contributions then gives

(

∆−D
2 +D+ 6

)

W
1
2
3
46

5

=
∑

Vijk

(

t2i + t2j + t2k − 2titj − 2titk − 2tjtk
)

(∂j∂k + ∂i∂j + ∂i∂k)W
1
2
3
46

5

+

3
∑

i=1

((ti+1 − ti+2 + ti+4 − ti+5)
2 − 4titi+3)∂i∂i+3W

1
2
3
46

5

+R ,

(3.24)

where the two sums arise from the adjacent lines 〈i, j〉 coming together at a vertex Vijk and the

three pairs of opposite lines. We have also moved some of the terms in (3.20) to the right. The

term R contains all the contributions from degenerate diagrams and is given explicitly by

R = −

6
∑

i=1

∑

Vpqi

(∂p + ∂q + (2tp + 2tq − ti)∂p∂q)W
1
2
3
46

5

∣

∣

∣

i→0

+

6
∑

i=1

3
∑

p=1
p/∈{i,i+3}

(ti + 2ti+3 − 2tp+1 − 2tp+4) ∂p∂p+3W
1
2
3
46

5

∣

∣

∣

i→0
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+

6
∑

i=1

6
∑

∆ipq 6=∆irs

(∂p + ∂q) (∂r + ∂s)W
1
2
3
46

5

∣

∣

∣

i→−1

+

[

2∂1∂4

(

W
1
0
3
46

0

+W
1
2
0
40

5

−W
1
0
0
46

5

−W
1
0
3
40

5

−W
1
2
0
46

0

−W
1
2
3
40

0

)

+ two other pairs of opposite lines

]

(3.25)

(Indices are to be understood modulo 6.) The four terms are almost simpler to describe in words:

The first term is a sum over the six edges i with p and q joining line i at a vertex; so for i = 1 it

would be the two cases (p, q) ∈ {(2, 3), (5, 6)} because edge 4 is opposite of edge 1. The second

term is also an outer sum over the edges i and the inner sum produces the two pairs of opposite

edges not containing i; for i = 1 it would be (t1+2t4−2t3−2t6)∂2∂5+(t1+2t4−2t2−2t5)∂3∂6 . The

third term is also a sum over all the edges i and the inner sum contains the two triangles that can

be formed containing the edge i; for i = 1 this means (∂3+∂5)(∂2+∂6). The very last term comes

from the three pairs of opposite edges and has two degenerations in the generating function with

sign distributions depending on whether the degenerations are on opposite or adjacent edges.

In the case considered in [56], all boundary terms could be simplified to Eisenstein series or

products thereof by virtue of (2.34); here the source terms are of a more complicated nature but

still simpler compared to the full tetrahedral function. This can be seen in the examples above.

As is shown in appendix B, the Laplace equation (3.24) for the generating function can be

rewritten using the quadratic Casimir of the split real sl(3). Upon inserting the Casimir

C
2 =

4

3
D

2 + 2D +
∑

Vijk

(t2i + t2j + t2k − 2titj − 2tjtk − 2tkti)(∂i∂j + ∂j∂k + ∂k∂i)

+
3
∑

i=1

((ti+1 − ti+2 − ti+4 + ti+5)
2 − 4titi+3)∂i∂i+3 . (3.26)

that is derived in appendix B, we obtain

(

∆− C
2 +

1

3
(D+ 3) (D+ 6)

)

W = R , (3.27)

where we have suppressed all dependence on the variables τ and ti of the generating function W

and the remainder R. Solving the spectral problem means finding the spectrum of the operator

L
2 = C

2 −
1

3
(D+ 3) (D+ 6) . (3.28)

We note that the occurrence of sl(3) is slightly misleading, there is no actual sl(3) symmetry of

the spectrum; what we will be interested in is the number of S4 singlets in representations of

sl(3). This situation is generalisation of the case discussed in appendix A for the sunset graph

underlying the functions C(s,t,p).
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3.5 General spectral considerations

We now try to find a basis of C2-eigenfunctions of homogeneous polynomials in the six ti that

transform underS4 in such a way that the polynomials are invariant. The action ofS4 is induced

from that of sl(3) mentioned above and exhibited in appendix B. That is, we are looking for

functions that satisfy

DWw,p1,p2 = (w − 6)Ww,p1,p2 ,

C
2Ww,p1,p2 =

1

3
(p21 + p1p2 + p22 + 3p1 + 3p2)Ww,p1,p2 ≡ λp1,p2Ww,p1,p2 (3.29)

and areS4-invariant. We here are using the sl(3) quadratic Casimir operator C2 that was defined

in (B.3) that is normalised such that when acting on an sl(3) representation with Dynkin labels

[p1, p2] it has eigenvalue λp1,p2 = 1
3(p

2
1 + p1p2 + p22 + 3p1 + 3p2). We note that the dimension of

the sl(3) representation with labels [p1, p2] is given by

dim [p1, p2] =
(p1 + p2 + 2)(p1 + 1)(p2 + 1)

2
. (3.30)

The eigenvalue k of the scaling operator D is related to the weight w =
∑

i si of C
s1
s2s3
s4s6s5

by

k = w − 6 . (3.31)

The value k corresponds to the degree of the homogeneous polynomial in the ti.

The operators D and C
2 commute and the eigenvalue of the modular Laplacian is then

(

∆− λp1,p2 +
1

3
w(w − 3)

)

Ww,p1,p2 = Rw,p1,p2 (3.32)

according to (3.28). We note that D and C
2 do not form a complete set of commuting semi-

simple operators. There are still degeneracies in the eigenspace labelled by (w, p1, p2). The form

of the right-hand side above depends on which particular eigenfunction in the (w, p1, p2) we are

considering.

Mimicking the analysis of the two-loop sunset graph in appendix A, we need to first identify

the correct representations of sl(3). The representation on six variables ti is the irreducible six-

dimensional representation that we choose as [2, 0] by some labelling convention for the nodes

of the A2 Dynkin diagram. For homogeneous polynomials of degree k we need to form its

symmetric tensor product series. We first compute the total number of S4-invariant functions

for a given degree k = w− 6 of the polynomial. This can be done by applying Molien’s theorem

to the six-dimensional representation of S4 and gives the following generating function

1− q + q2 + q4 + q6 − q7 + q8

(1− q)6(1 + q)2 (1 + q2) (1 + q + q2)2
(3.33)

that is also documented as series A003082 in the OEIS [78]. From this one can construct the

total number of S4 singlets at a given order

k 0 1 2 3 4 5 6 7

S4 singlets in Sk([2, 0]) 1 1 3 6 11 18 32 48
(3.34)
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As w = k + 6, we recognise the single tetrahedral modular graph function at weight 6 and the

single tetrahedral modular graph function at weight 7 discussed above.

In order to separate the total number of eigenfunctions at weight w = k+6 into the Casimir

eigenspaces of the representation [p1, p2] we need to consider the sl(3) representations occurring

in the k-th symmetric tensor power of the six-dimensional representation [2, 0] of the ti variables.

This is given by

Sk([2, 0]) =

⌊k
3
⌋

⊕

i=0

⌊ i
2
⌋

⊕

j=0

[2k − 6i, 6j] ⊕

⌊k−2

3
⌋

⊕

i=0

⌊ i
2
⌋

⊕

j=0

[2k − 6i− 4, 6j + 2]⊕

⌊k−1

3
⌋

⊕

i=0

⌊ i−1

2
⌋

⊕

j=0

[2k − 6i− 2, 6j + 4].

(3.35)

All these representations of sl(3) occur with multiplicity one. The only degeneracies in the

Casimir eigenvalues arise for representations related by the outer automorphism of sl(3), i.e.,

only [p1, p2] and [p2, p1] have the same Casimir eigenvalue, otherwise all Casimir values are

different.

Unfortunately, compared to the two-loop case of appendix A, we do not have a direct descrip-

tion of all [p1, p2] as symmetric powers of some simple representation. A notable exception is

again given by the symmetric powers of the fundamental (and anti-fundamental) representation:

Sp([1, 0]) = [p, 0] (Sp([0, 1]) = [0, p]) . (3.36)

As a representation of S4 the three-dimensional fundamental representation of sl(3) is the stan-

dard representation and one can choose as generators for example the matrices







0 0 1

0 1 0

−1 1 0






,







0 0 −1

0 −1 0

−1 0 0






,







0 0 1

1 −1 1

1 0 0






. (3.37)

Molien’s theorem gives the number of S4 invariants in such representations as being gener-

ated by

1− q3 + q6

(1− q)3(1 + q)2(1 + q2)(1 + q + q2)
. (3.38)

For low p one has for the number of S4 singlets in [p, 0] (or equivalently [0, p])

p 0 1 2 3 4 5 6

S4 singlets in [p, 0] 1 0 1 0 2 0 3
(3.39)

(The series starts to be non-zero for odd p soon after this.) At even p this series agrees with

1

(1− q2)3(1 + 2q2 + 2q4 + q6)
=

1

(1− q2)(1− q4)(1 − q6)
(3.40)

as can be checked using a double extension of S4. The even p values are the only ones of interest

to us, so we might as well work with this simpler series that is identical to the two-loop case.
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Table 1: Number of S4 singlets in various representations of sl(3) together with their Casimir

eigenvalues and the weight of the tetrahedral modular graph function for which they arise first.

The list is ordered by the dimension of the representation and complete up to dimension 162.

sl(3) first occurrence Casimir dim [p1, p2] Number of

representation at weight w = k + 6 value C
2

S4 singlets

[0, 0] 6 0 1 1

[2, 0] 7 10
3 6 1

[4, 0] 8 28
3 15 2

[2, 2] 9 8 27 2

[6, 0] 9 18 28 3

[8, 0] 10 88
3 45 4

[4, 2] 10 46
3 60 4

[10, 0] 11 130
3 66 5

[12, 0] 12 60 91 7

[6, 2] 11 106
3 105 6

[4, 4] 12 24 125 7

[8, 2] 12 38 162 9

For more general [p1, p2] it is not quite clear how to get the right generating series. In table 1,

we present the number of S4 invariants for small even p1 ≥ p2. This inequality is sufficient due

to the outer automorphism of sl(3) and only even values of the pi can arise in (3.35).

The eigenvalue of the modular Laplacian at a given weight w then has to be calculated

using (3.32).

3.6 Eigenfunctions and Laplace equations at low weight

In this section, we give some more examples of eigenvalues and eigenfunctions of the modular

Laplacian acting on tetrahedral modular graph functions. We stress that we are using the terms

‘eigenvalues’ and ‘eigenfunctions’ loosely as the corresponding Laplace equations are typically

inhomogeneous but the right-hand side source is of lower complexity.

The explicit eigenfunctions of the modular Laplacian at low weights can be constructed using

a basis of S4-invariant homogeneous polynomials of degree k. We list as examples the linear

and quadratic invariant homogeneous polynomials:

k = 1 : p1(t) = t1 + t2 + t3 + t4 + t5 + t6 ,

k = 2 : p
(1)
2 (t) = t21 + t22 + t23 + t24 + t25 + t26 ,

p
(2)
2 (t) = t1t2 + t1t3 + t2t3 + t2t4 + t3t4 + t1t5 + t2t5 + t4t5 + t1t6 + t3t6 + t4t6 + t5t6 ,

p
(3)
2 (t) = t1t4 + t3t5 + t2t6 . (3.41)

Similar bases of S4 invariant homogeneous polynomials can be generated at any degree easily.

The procedure for finding explicit eigenfunctions of L2 is then to first diagonalise the action
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of the sl(3) Casimir C
2 on the polynomials and then convert this to inhomogeneous Laplace

equations for combinations of tetrahedral modular graph functions.

3.6.1 Weight 7

The linear polynomial p1 is an eigenfunction of the sl(3) Casimir C2 given in (B.3) according to

(

C
2 −

10

3

)

p1 = 0 . (3.42)

The corresponding tetrahedral modular graph function is C 2
1
1
11

1

with Laplace equation given

already in (3.12).

3.6.2 Weight 8

For k = 2 the following are explicit eigenfunctions of the Casimir operator (B.3) in the normal-

isation given there:
(

C
2 −

10

3

)

(

p
(1)
2 − p

(2)
2

)

= 0 , (3.43a)

(

C
2 −

28

3

)

p
(1)
2 = 0 , (3.43b)

(

C
2 −

28

3

)

(

p
(2)
2 − 3p

(3)
2

)

= 0 . (3.43c)

This is the first time a degeneracy arises in the spectrum and we have chosen some particular

simple basis. These S4 invariant eigenfunctions (3.43) of the sl(3) Casimir C2 can be translated

into combinations of tetrahedral modular graph functions as follows

(∆ + 4)C
2
1
1
21

1

= −16C
−13 3

11
1

+ 32C
1 2 1 3

1

− 24C
1 2 2 2

1

+ 8C
1 2 1 2

2

+ 2C
2 2 2 2

− 8C
1 2 2 3

+ 88C 1

3

4

− 12C 2

2

4

− 4C 2

3

3

+ 8E3C 1

2

2

− 14E2
4 + 20E8 , (3.44a)

(∆ + 4)

(

C
3
1
1
11

1

+ C
2
2
1
11

1

)

= 4C
−13 3

11
1

− 16C
1 2 1 3

1

+ 2C
1 2 2 2

1

− 2C
1 2 1 2

2

−
1

2
C

2 2 2 2

+ 2C
1 2 2 3

+ 60C 1

2

5

+ 40C 1

3

4

+ 18C 2

2

4

+ 16C 2

3

3

− 2E3C 1

2

2

−
11

2
E2

4 − 20E3E5 + 24E8 , (3.44b)
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(∆ + 10)

(

C
2
1
1
21

1

+ 3C
2
2
1
11

1

)

= −4C
−13 3

11
1

+ 8C
1 2 1 3

1

− 6C
1 2 2 2

1

− 4C
1 2 1 2

2

+
1

2
C

2 2 2 2

− 2C
1 2 2 3

+ 36C 1

2

5

+ 124C 1

3

4

+ 42C 2

2

4

+ 32C 2

3

3

+ 2E3C 1

2

2

−
61

2
E2

4 − 12E3E5 + 44E8 . (3.44c)

As can be seen, all right-hand sides contain the function C −13 3
11

1

. This function cannot be

reduced by means of the simplification rules given in (3.9). However, we expect there to be an

additional simplification rule that we have not been able to derive and that would simplify this

function.

3.6.3 Weight 9

For k = 3 one has in total six eigenfunctions according to (3.34). These separate into the L
2

eigenvalues −18, −10 and 0 with degeneracies 1, 2 and 3, respectively. For L
2 = −18 the

eigenfunction is given by

L
2 = −18 : C

2
2
1
12

1

+ 3C
2
2
1
21

1

. (3.45)

For L2 = −10 one has the following basis of two eigenfunctions

L
2 = −10 : C

2
2
1
12

1

+ 2C
2
2
1
21

1

+ 2C
3
1
1
21

1

,

C
2
2
2
11

1

+ C
2
2
1
12

1

+ 3C
2
2
1
21

1

+ 4C
3
2
1
11

1

+ 2C
3
1
1
21

1

. (3.46)

For L2 = 0 one has the follow three independent eigenfunctions

L
2 = −10 : C

2
2
2
11

1

+ C
2
2
1
21

1

+ 4C
3
2
1
11

1

+ 5C
4
1
1
11

1

,

− C
2
2
1
12

1

+ 3C
2
2
1
21

1

+ 3C
3
1
1
21

1

,

3C
2
2
2
11

1

− 2C
2
2
1
12

1

− 6C
2
2
1
21

1

− 18C
3
2
1
11

1

− 9C
3
1
1
21

1

. (3.47)

We do not spell out the right-hand sides of the inhomogeneous Laplace equations as they are

rather involved but note that, similar to (3.44) they can involve tetrahedral modular graph

functions on the right-hand side with where one edge has value −1. Such terms possibly simplify.
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Table 2: Eigenvalues and degeneracies of the modular Laplacian acting on tetrahedral modular

graph functions of weights 10, 11 and 12.

weight L
2 eigenvalue sl(3) rep. S4 singlets

10 −20 [2, 0] 1

−14 [0, 4] 2

−8 [8, 0] 4

6 [4, 2] 4

11 −26 [0, 2] 1

−20 [4, 0] 2

−14 [2, 4] 4

−4 [10, 0] 5

14 [6, 2] 6

12 −36 [0, 0] 1

−28 [2, 2] 2

−18 [6, 0] ⊕ [0, 6] 6

−12 [4, 4] 7

2 [8, 2] 9

24 [12, 0] 7

3.6.4 Weights 10, 11 and 12

For weights 10, 11 and 12 we only present table 2 of the degeneracies of the eigenvalues of L2

and do not list the explicit eigenfunctions as they become rather involved.

The numbers in table 2 can also be derived from (3.35), (3.28) and table 1. We have

additionally determined the corresponding eigenfunctions and checked that their inhomogeneous

Laplace equations contain only less complex modular graph functions or tetrahedral modular

graph functions that have one edge with value −1.

3.6.5 More Laplace equations

In this section we present some additional Laplace equations, where the Laplacian is not diago-

nalised as in the previous examples but instead the combinations are chosen such that there are

no functions with a value −1 on any edge remaining on the right-hand side. These together with

the previous ones could be useful for finding the integrated versions of the corresponding ampli-

tudes. In general, there remain tetrahedral modular graph functions with a similar complexity

on the right-hand side.

For weight w = 8 one has

∆

(

C
2
1
1
21

1

+ 4C
2
2
1
11

1

)

= −12C
2
1
1
21

1

− 40C
2
2
1
11

1

+ 48C 1

2

5

+ 136C 1

3

4

+ 60C 2

2

4
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+ 44C 2

3

3

− 8C
1 2 1 2

2

− 36E2
4 − 16E3E5 + 52E8 . (3.48)

The Laplacian acting on the function C 3
1
1
11

1

does not produce any −1 values either.

For weight w = 9, there are four combinations that do not produce any −1 edges after

application of the Laplace operator. Besides the functions C 4
1
1
11

1

and C 2
2
2
11

1

they are

(∆ + 18)

(

C
1
1
1
22

2

+ 3C
1
1
2
12

2

)

= 72C 1

3

5

+ 45C 1

4

4

+ 36C 2

2

5

+ 72C 2

3

4

− 36E4E5 + 36E9

(3.49)

and

∆

(

4C
1
1
1
12

3

+ C
1
1
2
13

1

)

= −4C
1
1
2
21

2

+ 14C
1
1
2
12

2

− 16C
1
1
1
12

3

+ 6C
1
1
1
22

2

− 16C
3 1 3 1

1

− 16C
3 1 2 2

1

− 16C
2 1 2 3

1

− 4C
2 2 2 2

1

− 4C
2 1 1 2

3

(3.50)

− 12E4C 1

2

2

+ 12E4C 1

2

4

+ 84C 1

2

6

+ 128C 1

3

5

+ 96C 1

4

4

+ 48C 2

2

5

+ 34C 2

3

4

+ 22C 3

3

3

− 48E4E5 − 20E3E6 + 68E9 .

For weight w = 10, there are seven combinations that do not produce any −1. For weight

w = 11 there are 11 and for weight w = 12 there are 19 such combinations.
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A Spectrum of the Laplacian on C(s,t,p)

We shall be interested in spectrum of the modular Laplacian on the function C(s,t,p) defined

in (2.31). As in [56] we will introduce a generating function defined by

W(t1, t2, t3|τ) =
∞
∑

s,t,p=1

ts−1
1 tt−1

2 tp−1
3 C(s,t,p)(τ) . (A.1)

It follows from (2.35) that the generating satisfies the equation

(

∆− L
2
)

W = R , (A.2)

with (using ∂i ≡ ∂ti)

L
2 = D

2 +D+ (t21 + t22 + t23 − 2t1t2 − 2t2t3 − 2t3t1)(∂1∂2 + ∂2∂3 + ∂3∂1) , (A.3)

D =

3
∑

i=1

ti∂i , (A.4)

and

R =

∞
∑

s,t=0

(

ts1t
t
2 + ts2t

t
3 + ts3t

t
1

)

R0
st +

∞
∑

s,t=0

(

ts1t
t
2t3 + ts2t

t
3t1 + ts3t

t
1t2
)

R1
st , (A.5)

R0
st = 3s(t+ 1)Es+1Et+2 + 3(s+ 1)tEs+2Et+1 + (2− s− t− 4st)Es+t+3 ,

R1
st = st (Es+2Et+2 − Es+t+4) .

The ‘remainder’ R is of lower complexity and represents some power series in the ti multi-

plying Eisenstein series or products of Eisenstein series. The spectral problem concerns the

diagonalisation of the operator L2 in (A.3).

Everything in equation (A.2) is symmetric under the action of S3, the symmetric group

on three letters, acting on the ti in the fundamental representation.1 Moreover, everything

commutes with the weight operator D of (A.4) that measures the degree of homogeneous poly-

nomials in the ti. Since W is symmetric in the ti, only symmetric polynomials appear in the

expansion on the right-hand side of (A.1).

A.1 SL(2) Casimir in dual Schwinger space

The following is a heuristic derivation of an exact rewriting of the differential operator L2. The

vacuum two-loop diagram in cubic scalar field theory (a.k.a. sunset or melon graph) has the

form (for unequal masses)

∫

dDp1d
Dp2

1

p21 +m2
1

1

p22 +m2
2

1

(p1 + p2)2 +m2
3

. (A.6)

1Strictly speaking, the action of S3 is originally on the Schwinger parameters Li in the fundamental represen-

tation and dually on the ti. In this case, the two actions are the same.
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Using Schwinger parameters it can be related to2

3
∏

i=1

∫ ∞

0
dLi (detΩ)

−D/2 e−(L1m2
1
+L2m2

2
+L3m2

3
) , (A.7)

where

Ω =

(

L1 + L3 L3

L3 L2 + L3

)

. (A.8)

This matrix of Schwinger parameters carries a natural action of M ∈ PSL(2,R) by Ω →

MΩMT . One can even allow elements M with determinant minus one here. This will happen

for reflections below.

In order for the vacuum amplitude to be invariant under PSL(2,R) one has to act corre-

spondingly on the masses. We first rewrite this by defining ti = −m2
i and then

−(L1m
2
1 + L2m

2
2 + L3m

2
3) =

3
∑

i=1

Liti = TrΩT (A.9)

with

T =

(

t1
1
2 (t3 − t1 − t2)

1
2 (t3 − t1 − t2) t2

)

. (A.10)

The action of M ∈ PSL(2,R) on this matrix is given by T → (M−1)TTM−1. From this one can

work out the following form of the infinitesimal generators of PSL(2,R) in a Chevalley basis3

e = (t1 + t2 − t3)∂1 + (t1 − t2 − t3)∂3, (A.11a)

f = (t1 + t2 − t3)∂2 + (t2 − t1 − t3)∂3, (A.11b)

h = −2t1∂1 + 2t2∂2 − 2(t1 − t2)∂3. (A.11c)

The quadratic Casimir is then seen to agree with (A.3)

C
2 =

1

2
ef +

1

2
fe+

1

4
h2 (A.12)

= (ti∂i)
2 + ti∂i + (t21 + t22 + t23 − 2t1t2 − 2t2t3 − 2t3t1)(∂1∂2 + ∂2∂3 + ∂3∂1) .

Since C2 preserves by construction the degree of a polynomial, we can simultaneously diagonalise

C
2 and D, while preserving the invariance under the symmetric group S3. The S3 invariant

eigenfunctions of D are symmetric homogeneous polynomials. We note that even though the

operator C
2 is the Casimir of sl(2), the individual operators (A.11) do not act on the space of

homogeneous symmetric polynomials even though they act on homogeneous polynomials. This

can be seen for example already for linear polynomials

h(t1 + t2 + t3) = 4(t2 − t1) , (A.13)

which is not symmetric. Therefore the common S3 invariant eigenspaces of D are not represen-

tations of sl(2).

2In this heuristic derivation, we are systematically ignoring factors of 2π etc.
3This means that [e, f ] = h, [h, e] = 2e and [h, f ] = −2f .

27



A.2 Spectrum using Molien’s theorem

We will nevertheless be able to exploit the representation theory of sl(2) to characterise the

spectrum of C2. The reason for this is that the quadratic Casimir C
2 preserves the space of

symmetric polynomials as it is symmetric itself. Its possible eigenvalues are the ones inherited

from the action on arbitrary homogeneous polynomials (that are a representation of sl(2)).

Denoting the sl(2) representation of dimension p+ 1 by the standard Dynkin label [p], one has

that on the irreducible representation [p] the Casimir has the eigenvalue C2 = 1
4p(p+2) = s(s−1)

for s = p
2 + 1.

The space of linear homogeneous polynomials is the three-dimensional representation [2] with

basis {ti | i = 1, 2, 3}. The eigenvalue of L2 on this space is 2, corresponding to s = 2. Similarly,

the homogeneous polynomials of degree k are in the representation Sk([2]) of sl(2), where Sk

denotes the kth symmetric tensor power. (The symmetry is simply due to the fact that the ti
commute.) The representation of sl(2) tells us that

Sk([2]) = [2k]⊕ [2k − 4]⊕ . . .⊕ [0/2] , (A.14)

where the last term is meant to indicate [0] or [2] depending on whether k is even or odd. This

means that the spectrum of eigenvalues of L2 for degree k are given by

s(s− 1) with s = k + 1, k − 1, . . . , 1/2 , (A.15)

corresponding to all possible (bosonic) representations of dimensions equal to 2s − 1. The last

term 1 or 2 again depends on the parity of k.

Having established the possible eigenvalues of L2, a harder question is to fix the degenera-

cies/multiplicities. For this we need to find the number of S3 singlets in a given representation

[p] of sl(2). A similar mathematical problem arose in a different context in [79]. We here employ

a different method based on Molien series.

Molien’s theorem gives the number of invariants of a finite group (like S3) of fixed degree

k acting in a finite-dimensional representation of the group. We note that the standard rep-

resentation of S3 is two-dimensional. In terms of Schwinger parameters it can be represented

as

L1 ↔ L2 M =

(

0 1

1 0

)

,

L2 ↔ L3 M =

(

1 −1

0 −1

)

, (A.16)

L1 ↔ L3 M =

(

−1 0

−1 1

)

.

and this embeds in the two-dimensional representation [1] of PGL(2,Z) ⊂ PGL(2,R). The

representation theory of sl(2) then allows us to determine

Sp([1]) = [p] (A.17)
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such that this symmetric tensor product yields only a single representation. Therefore, the S3

singlets in the representation [p] of sl(2) is the same as the degree p invariants in the standard

representation of S3. Molien’s theorem then directly gives the generating function of the number

singlets nS3
p in the representation [p] as the coefficient of qp in

∞
∑

p=0

nS3

p qp =
1

(1− q2)(1− q3)
= 1 + q2 + q3 + q4 + . . . . (A.18)

One can deduce the following closed formula for nS3

2k from this Molien series by expanding the

geometric series:

nS3

2k =

⌊

k + 3

3

⌋

. (A.19)

We have restricted to even p = 2k since these are the only values that arise in the spectrum of

C
2 in view of (A.14).

Combining this with (A.15), we deduce that on symmetric homogeneous polynomials of

degree k one has the following spectrum for C
2: The eigenvalue s(s − 1) with multiplicity

⌊(s+2)/3⌋ for the values s = k+1, k−1, . . . , 1/2. This is in complete agreement with Theorem 1

of [56] but without the need to explicitly diagonalise the operator.

If one is interested in finding an explicit set of eigenfunctions of C2 for a given eigenvalue and

degree k, one can work in arbitrary basis of homogeneous symmetric polynomials, e.g. Schur

polynomials. Since the eigenspaces can be degenerate, one could introduce an addition operator

that commutes with C
2 and D and that resolves the multiplicity. This is the approach taken

in [56]. Alternatively, one could just introduce a random labelling of the various eigenfunctions

in a given eigenspace since finding such an operator is not always obvious. Implementing the

explicit diagonalisation at low degrees k is straight-forward to implement on a computer and

has been treated in detail in [56].

B Heuristic for the sl(3) Casimir and the tetrahedral graph

We can use a similar heuristic to show that the differential operator appearing in (3.24) is closely

related to the quadratic Casimir of SL(3,R). For this we consider a cubic scalar vacuum diagram

with tetrahedral topology shown in figure 1.

One obtains an expression similar to (A.7) in terms of

6
∏

i=1

∫ ∞

0
dLi(detΩ)

−D/2eTrΩT (B.1)

where now

Ω =







L1 + L3 + L5 L3 + L5 L5

L3 + L5 L2 + L3 + L5 + L6 L5 + L6

L5 L5 + L6 L4 + L5 + L6






,
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p1 p2 p1 + p2

p3

p1 + p2 + p3

p2 + p3

t1 t2 t3

t4

t5

t6

Figure 1: The tetrahedral graph with labelling of momenta and parameters of the generating

function.

T =







t1
1
2(t3 − t1 − t2)

1
2(t2 − t3 − t5 − t6)

1
2 (t3 − t1 − t2) t2

1
2(t6 − t2 − t4)

1
2(t2 − t3 − t5 − t6)

1
2(t6 − t2 − t4) t4






. (B.2)

The action is now by SL(3,R). The quadratic Casimir in the ti variables becomes

C
2 =

4

3
D

2 + 2D +
∑

Vijk

(t2i + t2j + t2k − 2titj − 2tjtk − 2tkti)(∂i∂j + ∂j∂k + ∂k∂i)

+

3
∑

i=1

((ti+1 − ti+2 − ti+4 + ti+5)
2 − 4titi+3)∂i∂i+3 . (B.3)

The meaning of the various terms here is as follows. The scaling operator

D =
6
∑

i=1

ti∂i (B.4)

measures the degree of homogeneous polynomials in the ti. The first sum is over the four vertices

Vijk of the tetrahedral graph, so (ijk) ∈ {123, 135, 156, 246}, and the sum contains all second

derivatives of adjacent edges. The last term contains mixed second derivatives over opposite

(non-adjacent) edges and there are three such pairs. If an index exceeds 6 it is to be read modulo

6. Up to D terms in (B.3), we recognise the same differential operator as the one appearing

in (3.24).

C Graphical derivation of tetrahedral Laplace equation

In order to evaluate the modular Laplacian on the function C s t p
qr w
we work with the deformation

calculus of (2.16). This means that we have to distribute the deformation differentials δµ and

δ̄µ on the lines of the tetrahedral diagram. In this appendix we draw the tetrahedral graph as

a Mercedes diagram in order to unclutter some of the equations. The reference graph is

≡
s t p

qw

r

(C.1)
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and in all following equations we will only put changes relative to the values s, t, p, q, r and w

on the diagram.

There are a number of different possibilities when placing δµ and δ̄µ on the diagram. They

can be placed either (i) on the same line, (ii) on adjacent lines or (iii) on opposite lines.

Case (i) is simplest:

s(s− 1)
δµδ̄µ

= s(s− 1) , (C.2)

where we have included the relevant combinatorial factor for putting δµ and δ̄µ on two different

of the s many propagators of this line. Expanding first δµ and δ̄µ into additional propagators and

partial world-sheet derivatives ∂ and ∂̄ according to (2.24) and then contracting adjacent ∂ and

∂̄ using (2.26) immediately gives back the original diagram. (The second term in the contraction

rule (2.26) never contributes in the considerations of this appendix as it always gives tadpole

diagrams that vanish thanks to (2.25).) Thus this part of the action of ∆ = δµδ̄µ contributes to

the ‘eigenvalue’ part of the differential equation. There are naturally similar terms for all the

other five lines.

Case (ii) is slightly more involved. There are 12 pairs of adjacent lines (three per vertex)

and they all have similar contributions. We consider the

st















δµ δ̄µ
+ c.c.















, (C.3)

where we have noted that one always has to add the complex conjugate with δµ and δ̄µ inter-

changed. The diagram shown can be manipulated as follows4

δµ δ̄µ
=

+1 +1

∂
∂

∂

∂ =
+1

∂

∂ −
+1 +1

∂
∂

∂

∂

=
+1

∂

∂ −
+1 +1 −1

∂

∂ +
+1

∂

∂ (C.4)

4In this and the following equations we do not write out the factors of π and τ2 as they cancel in the final

expression.
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In this equation we have shown in blue in each step the derivatives that are integrated by parts

at the trivalent vertices. At this point we can apply Lemma 1 below to all three diagrams to get

δµ δ̄µ
+ c.c. =

+1 −1

+
−1 +1

+
+1 +1 −2

− 2
+1 −1

− 2
+1 −1

(C.5)

This kind of manipulation is sufficient to find the Laplace equation for C
s
t
p

and concludes

case (ii).

For case (iii) we have to put the differentials on opposite lines, for example

sq















δµ

δ̄µ

+ c.c.















. (C.6)

We start manipulating the diagram with the aim of reducing it to diagrams with one holomorphic

and one anti-holomorphic world-sheet derivatives. All such diagrams can be simplified using the

lemmas below.

δµ

δ̄µ

=
+1

+1

∂

∂
∂

∂
=

+1

+1

∂

∂

∂
∂

+
+1

+1

∂

∂
∂∂

= −
+1 −1

+1∂
∂

+
+1

+1

∂ ∂

∂
∂

−
+1

+1−1

∂

∂
+

+1

+1∂

∂

∂∂
(C.7)

The two terms with the minus sign can be treated with Lemma 2 below. The other two terms

both have vertices with three derivative sitting on them after moving the blue ones to the other

end of the line. Integrating by parts then the derivatives in blue reduces them to terms to which

one can also apply the lemmas below and one requires both. Writing out all terms gives some
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cancellations and the total for case (iii) becomes finally:

δµ

δ̄µ

+ c.c. = −2 + 2
+1 −1

+1−1

+ 2
+1 −1

+1

−1

+
+1 −2

+1

+
+1 −2

+1

+
+1

+1

−2

+
+1

+1−2

− 2
+1

+1−1

−1

− 2
+1 −1

+1−1

− 2
+1 −1

+1

−1

− 2
+1 −1 −1

+1

.

(C.8)

One sees that there is a contribution to the eigenvalue from case (iii); the remaining terms have

been grouped according to whether they use opposite or adjacent lines in addition to the lines

with the differentials. This concludes case (iii).

Putting all the cases together gives (3.4).

C.1 Two lemmas on first derivative graphs

We give two simple lemmas for tetrahedral diagrams that have one derivative ∂ and one derivative

∂ on them.

Lemma 1 (Adjacent lines lemma). If the derivatives are on adjacent lines one has

∂
∂

+ c.c. =
−1

+
−1

−
−1

, (C.9)

such that the lines with the derivatives appear with the same sign and the last line at the vertex

with an opposite sign.

Proof. The proof is by direct calculation:

∂
∂

=
−1

−

∂ ∂
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=
−1

−
−1

+

∂
∂

=
−1

−
−1

+
−1

−

∂
∂

. (C.10)

As the last term in the last line is the complex conjugate of the original diagram, the assertion

follows.

Lemma 2 (Opposite lines lemma). If the derivatives are on opposite (non-adjacent) lines one

has

∂

∂

+ c.c. =
−1

+
−1

−
−1

−

−1

,

(C.11)

such that all lines without derivatives are affected; opposite lines appear with the same sign.

Proof. We calculate

∂

∂

+ c.c. =

∂ ∂

+

∂

∂

+ c.c. (C.12)

Both diagrams are now such that the derivatives are on adjacent lines and one can apply Lemma 1

to each of the two diagrams, leading to six diagrams out of which two cancel. The remaining

four are the asserted ones.
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