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Abstract	
Assessing	and	analysing	individual	differences	in	change	over	time	is	of	central	scientific	importance	to	
developmental	neuroscience.	However,	the	extant	literature	is	based	largely	on	cross-sectional	comparisons,	
which	reflect	a	variety	of	influences	and	cannot	directly	represent	change.	We	advocate	using	latent	change	
score	(LCS)	models	in	longitudinal	samples	as	a	statistical	framework	to	tease	apart	the	complex	processes	
underlying	lifespan	development	in	brain	and	behaviour	using	longitudinal	data.	LCS	models	provide	a	flexible	
framework	that	naturally	accommodates	key	developmental	questions	as	model	parameters	and	can	even	be	
used,	with	some	limitations,	in	cases	with	only	two	measurement	occasions.	We	illustrate	the	use	of	LCS	
models	with	two	empirical	examples.	In	a	lifespan	cognitive	training	study	(COGITO,	N=204,	two	waves)	we	
observe	correlated	change	in	brain	and	behaviour	in	the	context	of	a	high-intensity	training	intervention.	In	an	
adolescent	development	cohort	(NSPN,	N=176,	two	waves)	we	find	greater	variability	in	cortical	thinning	in	
males	than	in	females.	To	facilitate	the	adoption	of	LCS	by	the	developmental	community,	we	provide	analysis	
code	that	can	be	adapted	by	other	researchers	and	basic	primers	in	two	freely	available	SEM	software	
packages	(lavaan	and	Ωnyx).	
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1	Introduction	
When	thinking	about	any	repeated	measures	analysis	it	is	best	to	ask	first,	what	is	your	
model	for	change?	(McArdle,	2009,	p.	579)	
Developmental	cognitive	neuroscience	is	concerned	with	how	cognitive	and	neural	
processes	change	during	development,	and	how	they	interact	to	give	rise	to	a	rich	and	more	
or	less	rapidly	fluctuating	profile	of	cognitive,	emotional	and	behavioural	changes.	Many,	if	
not	all,	central	questions	in	the	field	can	be	conceived	as	temporal	dynamics	of	multivariate	
brain-behaviour	relations.	Theories	in	developmental	cognitive	neuroscience	often	implicitly	
or	explicitly	suggest	causal	hypotheses	about	the	direction	of	the	association	between	
variables	of	interest,	the	temporal	precedence	of	their	emergence,	and	the	likely	
consequences	of	interventions.	For	instance,	the	maturational	viewpoint	(e.g.	Gesell,	1929;	
cf.	Johnson,	2011;	Segalowitz	&	Rose-Krasnor,	1992)	proposes	that	development	of	key	
brain	regions	(e.g.	the	frontal	lobes)	is	a	necessary	precondition	to	acquiring	psychological	
capacities	(e.g.	cognitive	control	or	inhibition).	This	represents	a	clear	causal	pathway,	
where	developmental	change	in	neural	regions	precedes,	and	causes,	changes	in	faculties	
associated	with	those	regions	(also	known	as	developmental	epigenesis).	This	is	contrasted	
with	interactive	specialisation	theory	(Johnson,	2011),	where	probabilistic	epigenesis	posits	
bidirectional	causal	influences	from	mental	function	to	brain	structure	and	function.	These	
competing	theories	make	explicit	claims	about	the	temporal	order	of	development,	as	well	
as	the	causal	interactions	between	explanatory	levels.	Similarly,	developmental	mismatch	
theory	(Ahmed,	Bittencourt-Hewitt,	&	Sebastian,	2015;	Mills,	Goddings,	Clasen,	Giedd,	&	
Blakemore,	2014;	Steinberg,	2008;	van	den	Bos	&	Eppinger,	2016)	suggests	that	a	key	
explanation	of	risk	taking	behaviour	in	adolescence	is	the	delayed	development	of	brain	
regions	associated	with	cognitive	control	(e.g.	the	frontal	lobe)	compared	to	regions	
associated	with	mediating	emotional	responses	(e.g.	the	amygdala).	This	too	posits	a	clear	
brain-behaviour	dynamic,	where	a	mismatch	between	maturation	in	executive	brain	regions	
compared	to	emotion	systems	is	hypothesized	to	affect	the	likelihood	of	certain	
(mal)adaptive	behaviours.	Conversely,	Bengtsson	et	al.	(2005)	found	that	degree	and	
intensity	of	piano	practice	in	childhood	and	adolescence	correlated	with	regionally	specific	
differences	in	white	matter	structure,	and	that	this	effect	was	more	pronounced	in	
developmental	windows	in	which	maturation	was	ongoing.	This	was	interpreted	as	evidence	
of	training-induced	plasticity,	suggesting	that	behavioural	modifications	(i.e.	prolonged	
practice)	preceded,	and	caused,	measurable	changes	in	white	matter	structure1.		

Although	such	questions	are	characterized	by	a	fundamental	interest	in	temporal	
dynamics	and	causality,	much	of	the	literature	is	dominated	by	cross-sectional	(age-
heterogeneous)	data	that	are	ill	equipped	to	resolve	these	questions	(Lindenberger	&	
Poetter,	1998;	Lindenberger,	von	Oertzen,	Ghisletta,	&	Hertzog,	2011;	Salthouse,	2014).	For	

                                                
1			It	is	worth	noting	that	such	hypotheses	of	temporal	precedence	in	measurable	properties	do	not	imply	a	
dualist	perspective	on	mental	and	physical	processes	(cf.	Kievit	et	al.,	2011).	They	do	suggest	scientifically	
relevant	distinctions	can	be	made	with	implications	for	interpretation,	the	likely	consequences	of	interventions	
and	early	detection	of	non-typical	development.	
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instance,	individual	differences	in	brain	structure	may	precede	differential	changes	in	
cognitive	abilities	(e.g.	certain	clinical	conditions),	or	changes	in	cognitive	abilities	may	
trigger	measurable	changes	in	brain	structure	(e.g.	learning-induced	plasticity).	Although	
these	hypotheses	imply	radically	different	causal	pathways	and	(potential)	intervention	
strategies,	they	are	often	indistinguishable	in	cross-sectional	data.	Moreover,	aggregated	
cross-sectional	data	can	be	affected	by	cohort	effects	(i.e.	different	populations)	which	in	
turn	can	lead	to	overestimates	(e.g.	cohort	differences,	Sliwinski,	Hoffman,	&	Hofer,	2010),	
underestimates	(e.g.	selective	attrition,	training	effects;	Willis	&	Schaie,	1986)	and	even	full	
reversals	of	the	direction	of	effects	observed	between	groups	compared	to	within	groups	
(Kievit,	Frankenhuis,	Waldorp,	&	Borsboom,	2013).	Most	crucially,	cross-sectional	
aggregations	do	not	represent	individual	change,	and	individual	differences	therein	(Baltes,	
Reese,	&	Nesselroade,	1977).	Thus,	they	fail	to	directly	address	the	most	fundamental	
questions	of	developmental	science:	How	and	why	do	people	differ	in	the	way	they	
develop?	

The	recent	rapid	increase	in	the	study	of	large,	longitudinal,	imaging	cohorts	
(Poldrack	&	Gorgolewski,	2014)	provides	unprecedented	opportunities	to	study	these	key	
questions.	Here	we	introduce	a	class	of	Structural	Equation	Models	called	Latent	Change	
Score	Models	that	are	specifically	tailored	to	overcome	various	weaknesses	of	more	
traditional	approaches,	and	are	well	suited	to	address	hypotheses	about	temporal,	
interactive	dynamics	over	time.	

	

2	Towards	a	model-based	longitudinal	Developmental	Cognitive	Neuroscience	
Structural	equation	modelling	(SEM)	combines	the	strengths	of	path	modelling	and	latent	
variable	modelling	and	has	a	long	tradition	in	the	social	sciences	(Bollen,	1989;	Tomarken	&	
Waller,	2005).	Path	modelling	(an	extension	of	(multiple)	regression)	allows	for	
simultaneous	estimation	of	multiple	hypothesized	relationships,	testing	of	directed	relations	
that	correspond	to	hypothesised	causal	pathways,	and	models	in	which	constructs	may	
function	as	both	dependent	and	independent	variables.	Latent	variable	modelling	allows	
researchers	to	use	observed	(manifest)	variables	to	infer	and	test	theories	about	
unobserved	(latent)	variables.		

In	offering	a	powerful	framework	for	multivariate	analyses	SEM	has	several	key	
strengths	compared	to	other	methods	of	analysis	(Rodgers	&	Lee,	2010).	First,	SEM	forces	
researchers	to	posit	an	explicit	model,	representing	some	hypothesized	explanatory	account	
of	the	data,	which	is	then	compared	to	the	observed	data	(usually	a	covariance	matrix,	or	a	
covariance	matrix	and	a	vector	of	means).	The	extent	to	which	the	hypothesized	model	can	
reproduce	the	observations	is	adduced	as	evidence	in	favour	of,	or	against,	some	proposed	
model	of	the	construct	under	investigation.	Moreover,	SEM	helps	make	researchers	aware	
of	assumptions	that	may	be	hidden	in	other	approaches	(e.g.,	assumptions	of	equal	
variances	across	groups).	Second,	by	using	latent	variables	researchers	can	account	for	
measurement	error	associated	with	using	observed	scores.	This	strategy	not	only	increases	
power	to	detect	true	effects	(van	der	Sluis,	Verhage,	Posthuma,	&	Dolan,	2010),	but	also	
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offers	greater	validity	and	generalizability	in	research	designs	(Little,	Lindenberger,	&	
Nesselroade,	1999).	Specifically,	it	can	be	used	to	test	for	bias	across	subgroups	(e.g.	tests	
functioning	differently	for	different	subgroups,	Wicherts,	Dolan,	&	Hessen,	2005)	and	biased	
estimates	across	developmental	time	(Wicherts	et	al.,	2004),	and	improve	the	use	of	
covariates	(Westfall	&	Yarkoni,	2016).	Finally,	SEM	can	test	predictions	derived	from	causal	
hypotheses	about	the	process	that	generated	the	data.	That	is,	although	SEM	(nor	any	other	
correlation-based	technique)	cannot	directly	demonstrate	causality	or	causal	processes,	it	
can	be	used	as	a	statistical	tool	for	deriving	model-based	predictions	of	causal	hypotheses,	
and	examine	the	extent	to	which	the	data	disconfirms	these	hypotheses	(Bollen	&	
Diamantopoulos,	2015;	Pearl,	2000).		

In	recent	decades,	various	extensions	of	SEM	have	been	developed	for	longitudinal,	
or	repeated	measures,	data	(McArdle,	2009).	More	traditional	techniques	(e.g.	repeated	
measures	ANOVA)	are	rarely	tailored	to	the	complex	error	structure	of	longitudinal	data,	
nor	developed	explicitly	to	test	the	predictions	that	follow	from	causal	hypotheses	across	a	
whole	set	of	variables	simultaneously.	The	longitudinal	SEM	framework,	closely	related	to	
general	linear	mixed	modelling	(Bernal-Rusiel	et	al.,	2013;	Rovine	&	Molenaar,	2001),	is	so	
flexible	that	many	common	statistical	procedures	such	as	t-tests,	regressions,	and	repeated	
measures	(M)ANOVA	can	be	considered	special	cases	of	longitudinal	SEM	models	(Voelkle,	
2007).	Common	procedures	in	developmental	cognitive	(neuro)science	including	cross-
lagged	panel	models	or	simple	regressions	(on	either	raw	or	difference	scores)	can	be	
considered	special	cases	of	LCSM’s,	but	without	various	benefits	associated	with	SEM	such	
as	reduction	of	measurement	error	and	incorporation	of	stable	individual	differences	
(Hamaker,	Kuiper,	&	Grasman,	2015).		

Examples	of	longitudinal	SEM	include	latent	growth	curve	models,	latent	change	
score	models,	growth	mixture	models,	latent	class	growth	curve	modelling	and	continuous	
time	modelling	(Driver,	Oud,	&	Voelkle,	2016;	McArdle,	2009).	In	the	next	section	we	
describe	a	specific	subtype	of	longitudinal	SEM	known	as	the	Latent	Change	Score	Models	
(sometimes	also	called	Latent	Difference	Score	models)	(McArdle	&	Hamagami,	2001;	
McArdle	&	Nesselroade,	1994).	This	particular	class	of	models	is	especially	versatile	and	
useful	for	researchers	in	developmental	cognitive	neuroscience	as	it	can	model	change	at	
the	construct	level,	can	be	used	with	a	relatively	modest	number	of	time	points	(a	minimum	
of	2,	although	more	are	desirable)	and	is	especially	powerful	for	testing	cross-domain	(i.e.	
brain	behaviour)	couplings.	

	

3.	The	Latent	Change	Score	model	
Latent	Change	Score	models	are	a	powerful	and	flexible	class	of	Structural	Equation	Models	
(McArdle	&	Hamagami,	2001;	McArdle	&	Nesselroade,	1994)	that	offer	ways	to	test	a	wide	
range	of	developmental	hypotheses	with	relative	ease.	LCSM’s	have	been	used	to	
considerable	effect	in	developmental	(cognitive)	psychology	to	show	a	range	of	effects	
including	that	vocabulary	affects	reading	comprehension	but	not	vice	versa	(Quinn,	Wagner,	
Petscher,	&	Lopez,	2015),	that	people	with	dyslexia	show	fewer	intellectual	benefits	from	
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reading	than	controls	(Ferrer,	Shaywitz,	Holahan,	Marchione,	&	Shaywitz,	2010),	that	
positive	transfer	of	cognitive	training	generalizes	beyond	the	item-level	to	cognitive	ability	
(Schmiedek,	Lövdén,	&	Lindenberger,	2010),	that	volume	changes	of	the	hippocampus	and	
prefrontal	white	matter	are	reliably	correlated	in	adulthood	and	old	age	(Raz	et	al.,	2005),	
that	an	age-related	decline	in	white	matter	changes	is	associated	with	declines	in	fluid	
intelligence	(Ritchie	et	al.,	2015)	and	that	basic	cognitive	abilities	such	as	reasoning	and	
vocabulary	show	mutualistic	benefits	over	time	that	may	partially	explain	positive	
correlations	among	cognitive	abilities	(Kievit	et	al.,	in	revision).	One	of	the	first	applications	
of	LCS	in	cognitive	neuroscience	showed	that	ventricle	size	in	an	elderly	population	
predicted	rate	of	decline	on	memory	tests	across	a	seven	year	interval	(McArdle	et	al.,	
2004).	There	are	several	excellent	tutorials	on	longitudinal	SEM	(Ghisletta	&	McArdle,	2012;	
Jajodia	&	Archana,	2012;	McArdle	&	Grimm,	2010;	Petscher,	Quinn,	&	Wagner,	2016;	Snitz	
et	al.,	2015;	Usami,	Hayes,	&	McArdle,	2016;	Zhang,	Hamagami,	Grimm,	&	McArdle,	2015),	
and	the	approach	we	outline	below	builds	heavily	upon	this	previous	work,	where	we	
illustrate	LCS	models	in	the	context	of	examples	aimed	at	researchers	in	Developmental	
Cognitive	Neuroscience.	We	will	start	with	the	simplest	model,	using	one	variable	measured	
on	two	occasions,	and	then	present	four	extensions	of	the	model.		These	will	sequentially	
include	incorporating	latent	variables,	adding	multiple	domains	(cognitive	and	neural	
measures),	multiple	time	waves	(latent	growth-	and	dual	change	score	models)	and	finally	
multiple	groups.	For	each	of	the	five	types	of	models	we	discussed	below,	we	provide	
example	syntax	that	simulates	data	under	a	selected	parametrization	and	fits	the	model	in	
question	to	the	data.	These	scripts	are	freely	available	at	the	Open	Science	Framework2	to	
be	used,	modified	and	extended	by	the	wider	community.			
	
3.1	Univariate	Latent	Change	Score	model		
Imagine	a	researcher	studying	a	psychological	variable	of	interest,	measured	at	two	time	
points	(T1	and	T2)	in	a	population	of	interest.	A	traditional	way	to	examine	whether	a	group	
of	individuals	increased	or	decreased	between	T1	and	T2	is	by	means	of	a	paired	t-test.	
Using	some	simple	modifications,	the	LCS	allows	us	to	go	(well)	beyond	this	traditional	
analysis	framework	even	in	this	simplest	case.	The	basic	steps	of	a	univariate	latent	change	
score	model	are	as	follows.	In	our	examples,	we	will	use	informative	notation	(e.g.	‘COG’	for	
cognitive	measures	and	‘NEU’	for	neural	measures).	First,	we	conceptualize	the	scores	of	an	
individual	i	on	the	construct	of	interest	COG	at	time	t	as	being	a	function	of	an	
autoregressive	component	and	some	residual.	By	regressing	COGT2	perfectly	(i.e.	fixing	the	
regression	weight	to	1)	on	COGT1,	the	autoregressive	equation	simplifies	to	
	

(1) 𝐶𝑂𝐺$,&'	 = 𝐶𝑂𝐺$,&) + 𝛥𝐶𝑂𝐺$,&,)	
	
	

                                                
2	https://osf.io/4bpmq/?view_only=5b07ead0ef5147b4af2261cb864eca32	
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From	this	it	follows	that	the	change	score	is	simply:	
	

(2) 𝛥𝐶𝑂𝐺$,&,)=𝐶𝑂𝐺$,&' − 𝐶𝑂𝐺$,&)	
	
The	powerful	step	in	the	context	of	SEM	is	to	define	a	latent	change	score	factor	ΔCOG1,	
which	is	measured	perfectly	(i.e.	the	factor	loading	is	fixed	to	1)	by	the	measurement	at	the	
second	time	point.	Doing	so	creates	a	latent	factor	that	captures	the	change	between	time	1	
and	time	2.	Finally,	we	can	add	an	autoregressive	parameter	β	to	the	change	score,	which	
allows	us	to	investigate	whether	the	degree	of	change	depends	on	the	scores	at	time	1	as	
follows:	
	

(3) 𝛥𝐶𝑂𝐺$,)=𝛽 ∗ 𝐶𝑂𝐺$,&)	
	
With	this	model	in	place	we	can	address	three	fundamental	questions.	The	first	and	
simplest	question	is	whether	there	is	a	reliable	average	change	from	T1	to	T2?	This	is	
captured	by	the	mean	of	the	latent	change	factor,	μΔCOGT1.	Under	relatively	simple	
assumptions	this	test	is	equivalent	to	a	paired	t-test	(Coman	et	al.,	2013).	However,	even	
this	simplest	implementation	of	
the	latent	change	score	model	
yields	two	additional	
parameters	of	considerable	
interest.	First,	we	can	now	
estimate	the	variance	in	the	
change	factor,	σ2ΔCOG1,	which	
captures	the	extent	to	which	
individuals	differ	in	the	change	
they	manifest	over	time.	
Second,	the	autoregressive	
parameter	β	captures	the	
extent	to	which	change	is	
dependent,	or	proportional,	to	
the	scores	at	time	one	(this	
parameter	can	also	be	specified	as	
a	covariance	if	so	desired).	

SEM’s	are	often	illustrated	using	path	models.	Such	representations	go	back	to	
(Wright,	1920),	and	allow	researchers	to	represent	complex	causal	patterns	using	simple	
visual	representations.	Figure	1	shows	the	commonly	employed	symbols,	meaning	and	
notation.	The	simplest	representation	of	the	univariate	latent	change	model	is	shown	in	
Figure	2,	and	can	be	fit	to	data	measured	on	two	occasions.	As	the	autoregressive	
parameter	between	COGT2	and	COGT1	is	fixed	to	unity,	we	implicitly	assume	that	the	
intervals	are	equidistant	across	individuals	–	modest	deviations	from	this	assumption	can	be	

Figure	1:	Basic	path	model	notation	

Observed	variable

Constant	(e.g.	mean,	
intercept)

Latent	variable

Directed	relationship	
(e.g.	factor	loadings,	regressions)

Undirected	relationship	(e.g.	
(co)variance,	error)

x,	y

η,	ξ

μ

λ ,β,γ

ε,δ,ζ,Ψ,φ

Path	symbol Description Commonly	used	notation
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dealt	with	by	rescaling	scores	(Ferrer	&	McArdle,	2004,	p.	941).	The	model	shown	in	Figure	2	
is	just	identified,	that	is,	there	are	as	many	unique	pieces	of	information	that	enter	the	
model	(two	variances,	two	means	and	a	covariance)	as	parameters	to	be	estimated	(1	
observed	variance,	one	latent	variance,	one	observed	mean	score,	one	latent	mean	score	
and	one	regression	parameter).	This	means	that	although	we	can	estimate	this	model,	we	
cannot	interpret	model	fit	in	isolation	unless	additional	data	(multiple	waves,	covariates	or	
multiple	indicators)	are	included.	However,	we	can	make	use	of	parameter	constraints,	
namely	fixing	certain	parameters	to	0	and	employ	likelihood	ratio	testing	of	hypotheses	
about	specific	parameters.	For	instance,	one	can	fit	a	similar	model	twice:	once	with	the	
latent	change	variance	parameter	freely	estimated,	and	once	with	the	variance	constrained	
to	0	(implying	no	differences	in	change).	
The	difference	in	model	fit	will	be	chi-
square	distributed	with	N	degrees	of	
freedom,	where	N	is	the	number	of	
parameters	constrained	to	equality	(Neale,	
2000).	If	fixing	this	parameter	to	0	leads	to	
a	significant	drop	in	model	fit,	it	would	
suggest	that	individuals	change	
heterogeneously.	Similar	procedures	can	
be	employed	for	any	other	parameter	of	
interest.	The	likelihood	ratio	test	is	
especially	suitable	for	parameters	such	as	
variances,	as	the	distributional	
assumptions	of	parameter	significance	
tests	such	as	the	often-used	Wald	test	may	
not	hold	(i.e.	a	variance	cannot	be	
negative).	Next,	we	examine	how	to	extend	
the	LCS	model	to	include	latent	variables.		
	
3.2	Multiple	Indicator	Univariate	Latent	Change	Score	model	
The	above	example	uses	a	single	observed	variable,	which	was	assumed	to	be	measured	
without	error.	We	can	easily	extend	this	model	by	replacing	the	observed	score	with	a	latent	
variable,	measured	by	a	set	of	observed	variables.	We	refer	to	this	representation	as	a	
multiple	indicator	latent	change	score	model,	as	our	aim	is	to	model	change	in	the	latent	
score	rather	than	observed	scores.	To	do	so,	we	model	a	latent	variable	in	the	manner	of	a	
traditional	confirmatory	factor	analysis,	by	expressing	the	strength	of	the	association	
between	the	latent	variable	COG	in	individuals	i	(i=1,..N)	measured	at	times	t	(t=1,…t)	and	
the	observed	scores	X	(j=1,…j)	with	factor	loadings	l	and	error	terms	d	as	follows:	
	

(4) 𝑋$1& = 𝜆1&𝐶𝑂𝐺$& + d$1&	

Figure	2:	Univariate	Latent	Change	Score	Model	
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A	simple	multiple	indicator	latent	change	score	model	is	shown	in	Figure	3.	We	model	the	
mean,	variance	and	autoregressive	changes	in	COG	as	before,	but	now	add	a	set	of	three	
(X1-X3)	observed	measurements	on	two	occasions	that	are	each	reflections	of	the	
underlying	cognitive	construct	of	interest.	A	key	step	in	longitudinal	SEM	is	to	provide	
evidence	for	measurement	invariance,	that	is	to	determine	that	the	same	latent	construct	
(e.g.	working	memory)	is	measured	in	the	same	manner	across	time	(Meredith,	1993).	In	
other	words,	we	want	the	relationship	between	levels	of	the	latent	variables	and	the	
observed	scores	to	be	equal	across	time,	even	when	latent	scores	themselves	are	increasing	
or	decreasing.	Conventionally,	this	is	done	by	establishing	equality	constraints	over	time,	by	
equation	the	factor	loadings	(𝜆1&) = 𝜆1&'),	error	terms	(𝛿1&) = 𝛿1&')	and	intercepts	(not	
shown)	over	time.	Failing	to	do	so	can	lead	to	incorrect	conclusions	about	latent	variables,	
their	growth	over	time	and	their	relations	to	other	variables	(Ferrer,	Balluerka,	&	Widaman,	
2008).	In	longitudinal	SEM,	a	series	of	increasingly	strict	tests	(Widaman,	Ferrer,	&	Conger,	
2010)	can	be	applied	to	ensure	
measurement	invariance.	In	Figure	3,	these	
equality	constraints	are	shown	by	using	the	
same	colour	for	the	factor	loadings	and	
estimating	only	a	single	factor	loading	(e.g.	
λ1)	at	both	time	points.	Additionally,	we	
allow	for	residual	covariance	of	error	terms	
across	time	points	for	each	observed	score	
with	itself,	represented	as	double-headed	
arrows.	This	model	is	similar	to	the	
univariate	latent	change	score	model	in	
terms	of	the	key	questions	it	can	address	
(rate	of	change	μΔCOGT1,	variance	in	
change	σ2ΔCOG1,	and	the	relation	between	
COG1	and	ΔCOG1	captured	by	β),	but	adds	
the	benefits	of	removing	measurement	error	
and	establishing	measurement	invariance	
over	time	and	(if	necessary)	across	groups,	
improving	inferences.		
	

3.3	Bivariate	Latent	Change	Score	model	
A	simple	but	powerful	extension	of	the	latent	change	score	model	is	to	include	a	second	(or	
third,	fourth)	domain	of	interest.	For	convenience	in	notation	and	graphical	representation	
we	will	revert	back	to	using	only	observed	scores,	but	all	extensions	can	and	where	possible	
should	be	modelled	using	latent	(multiple	indicator)	factors.	We	can	assume	the	second	
domain	is	some	neural	measure	of	interest	(e.g.	grey	matter	volume	in	a	region	of	interest),	
measured	on	the	same	number	of	occasions	as	the	cognitive	variable	(or	variables).	This	

Figure	3:	Multiple	indicator	univariate	latent	change	score	model	
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allows	for	the	investigation	of	a	powerful	concept	known	as	cross-domain	coupling	(Figure	
4),	that	captures	the	extent	to	which	change	in	one	domain	(e.g.	𝛥𝐶𝑂𝐺)	is	a	function	of	the	
starting	level	in	the	other	(i.e.	NEU).	For	instance,	we	can	quantify	the	extent	to	which	
cognitive	changes	between	T1	and	T2	are	a	function	of	brain	structure	(𝛾2)	and	cognition	
(𝛽1)	at	T1	as	follows:		

(5) 𝛥𝐶𝑂𝐺$,)=𝛽1 ∗ 𝐶𝑂𝐺$,&)+	𝛾2 ∗ 	𝑁𝐸𝑈$,&)	

The	implications	for	testing	theories	in	developmental	cognitive	neuroscience	should	be	
immediately	clear:	these	dynamic	parameters,	shown	in	red	and	blue	in	Figure	4,	capture	
the	extent	to	which	changes	in	cognition	are	a	function	of	initial	condition	of	brain	
measures,	vice	versa	or	both.	Likelihood	ratio	tests	or	Wald	tests	of	these	dynamic	
parameter	(brain	measures	affecting	rates	of	change	in	cognition,	or	cognitive	abilities	
affecting	neural	changes)	furnish	evidence	for,	or	against,	models	that	represent	uni-	or	
bidirectional	hypothesized	causal	influences.	As	is	clear	from	Figure	4,	the	bivariate	latent	
change	score	model	can	capture	at	least	four	different	brain-behaviour	relations	of	interest.	
First,	we	have	brain-behaviour	covariance	at	baseline	(shown	in	purple),	the	main	focus	in	
traditional	(developmental)	cognitive	neuroscience.	Second,	we	have	cognition	to	brain	
coupling	(shown	in	blue,	labelled	g1),	where	T1	scores	in	cognition	predict	the	rate,	or	
degree,	of	change	in	brain	structure.	For	instance,	the	degree	of	childhood	piano	practice	
affected	white	matter	structure	(ΔNEU1)	would	predict	a	substantial	cognition-to-neural	
coupling	parameter	g1	(Bengtsson	et	al.,	2005).	Third,	we	have	brain	structure	predicting	
rate,	or	degree,	of	cognitive	change	(shown	
in	blue,	labelled	g2).	For	example,	McArdle	
et	al.	(2004)	showed	that	ventricle	size	in	an	
older	population	predicted	rate	of	memory	
decline	across	an	interval	of	7	years.	Finally,	
we	have	an	estimate	of	correlated	change	
(shown	in	yellow),	reflecting	the	degree	to	
which	brain	and	behaviour	changes	co-occur	
after	taking	into	account	the	coupling	
pathways.	For	instance,	Gorbach	et	al.	
(2016)	observed	correlated	change	between	
hippocampal	atrophy	and	episodic	memory	
decline	in	older	adults.	More	generally,	
correlated	change	may	reflect	a	third,	
underlying	variable	influencing	both	
domains.	The	bivariate	latent	change	score	
provides	a	powerful	analytic	framework	for	
testing	a	wide	range	of	hypotheses	in	
developmental	cognitive	neuroscience	in	a	
principled	and	rigorous	manner.	 Figure	4:	Bivariate	Latent	Change	Score	Model	
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3.4	Bivariate	Dual	Change	Score	model	
So	far,	we	focused	on	the	simplest	instance	of	longitudinal	data,	namely	where	data	is	
measured	on	two	occasions.	The	framework	of	LCS	models	makes	it	easy	to	add	additional	
time	points	to	capture	more	fine-grained	dynamic	processes	within	and	across	domains.	
Doing	so	allows	one	to	fit	what	is	known	as	a	dual	change	score	model	(Ghisletta	&	
Lindenberger,	2003).	In	this	model,	we	specify	an	additional	latent	variable,	S	(for	slope),	
that	captures	the	global	increase	or	decrease	across	all	time	points.	This	latent	variable	is	
measured	by	the	successive	change	scores	ΔCOGt,	by	specifying	factor	loadings	(α)	to	
capture	a	range	of	dynamic	shapes	such	as	linear	increase	or	decrease.	The	factor	loadings	
of	the	slope	factor	on	the	constant	change	parameter	can	be	fixed	to	a	priori	values	to	
capture	a	range	of	growth	processes	including	linear	(all	1)	or	accelerating	change	(e.g.	
1,2,3).	

The	‘dual’	aspect	of	this	model	enters	by	separating	the	global	process	of	change	
captured	by	the	slope	from	the	more	local,	time	point-to-time	point	deviations	from	this	
trajectory	denoted	by	the	self-feedback	(β,	red	pathways	in	Figure	5)	and	cross-domain	
coupling	(𝛾,	blue	pathways	in	Figure	5)	parameters.	When	modelled	together	with	a	neural	
variable	the	bivariate	dual	change	score,	shown	graphically	in	Figure	5,	can	be	expressed	as	
follows		
	

(6) 𝛥𝐶𝑂𝐺$,&=a<=> ∗ 𝑠𝐶𝑂𝐺$ + 𝛽1 ∗ 𝐶𝑂𝐺$,&+	𝛾2 ∗ 𝑁𝐸𝑈$,&	

	This	(bivariate)	dual	change	score	model	is	a	general	approach	that	can	capture	both	
general	trends	and	more	fine-grained	temporal	dynamics.	This	can	be	especially	useful	
when	trying	to	separate	a	known,	more	stable	change	occurring	during	development	(e.g.	
global	cortical	thinning)	from	more	high-frequency	fluctuations.	The	dual	change	score	
model	has	been	used	in	a	behaviour	only	context	to	show	that	(a)	vocabulary	influences	
changes	in	reading	ability	(but	not	vice	versa)	(Quinn	et	al.,	2015);	(b)	and	to	show	bivariate	
dynamic	coupling	between	subjective	and	objective	memory	problems	in	an	ageing	
population	(Snitz	et	al.,	2015);	(c)	within-person	trial-to-trial	RT	variability	predicts	cognitive	
decline	in	old	and	very	old	age	(Lövdén,	Li,	Shing,	&	Lindenberger,	2007);	(d)	perceptual	
speed	decline	in	old	age	predicts	decline	in	crystallized	intelligence	to	a	greater	extent	than	
vice	versa	(Ghisletta	&	Lindenberger,	2003).	
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3.5	Multigroup	Latent	Change	Score	models:	Manifest	groups,	mixtures	and	intervention	studies	
The	LCSM	provides	a	comprehensive	framework	to	model	both	within-person	change	across	
time	and	between-person	variability	in	change.	A	final,	powerful	extension	that	can	be	
applied	to	any	latent	change	score	(or	SEM)	model	is	the	possibility	for	multigroup	
comparisons.	Parameter	estimates	of	a	LCSM	are	valid	under	the	assumption	that	there	is	
no	model	misspecification	and	the	sample	is	drawn	from	a	single,	homogeneous	population.	
In	practice,	however,	our	samples	may	be	a	mixture	of	participants	from	different	
populations	(e.g.,	children	and	older	adults;	men	and	women,	low	vs.	high	SES).	There	are	
several	ways	to	address	sample	heterogeneity	depending	on	the	assumptions	we	are	willing	
to	make	and	the	strength	of	our	theoretical	reasoning	concerning	sample	heterogeneity.	
First	and	foremost,	approaches	to	model	heterogeneity	can	be	classified	by	whether	
heterogeneity	is	assumed	to	be	observed	or	unobserved.		

When	heterogeneity	is	observed	in	a	confirmatory	modelling	approach,	hypothesis	
testing	is	concerned	with	finding	statistical	evidence	for	difference	in	the	key	parameters	of	

Figure	5:	Bivariate	Dual	Change	Score	Model.	This	more	complex	latent	change	score	model	captures	both	the	
stable	change	over	time	in	the	form	of	slopes	(sCOG	and	sNEU),	as	well	as	more	fine-grained	residual	changes.	
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the	LCSM.	Cross-sectional	analyses	often	use	traditional	methods	such	as	(M)ANOVA’s	to	
focus	on	simple	parameters	of	interest,	such	as	the	mean	scores	on	some	outcome	of	
interest.	In	a	SEM	context,	it	is	relatively	easy	to	compare	any	parameter	of	interest	in	a	
(dynamic)	model	across	groups.	To	do	so,	one	simply	imposes	equality	constraints	on	the	
parameter	of	interest	and	compares	the	model	where	the	parameter	of	interest	is	freely	
estimated	to	a	constrained	model	as	described	above.	This	relatively	straightforward	
Likelihood	ratio	test	can	be	used	in	a	variety	of	ways,	including	to	establish	measurement	
invariance	(e.g.	the	latent	variable	intelligence	may	be	measured	differently	across	cohorts,	
Wicherts	et	al.,	2004),	to	compare	regression	coefficients	(e.g.	the	negative	effect	of	
relational	bullying	on	friendships	is	stronger	in	boys	than	in	girls,	van	Harmelen	et	al.,	2016),	
or	to	compare	dynamic	growth	components	(e.g.	boys	and	girls	show	differential	response	
dynamics	following	divorce,	Malone	et	al.,	2004).	Relatively	sophisticated	questions	about	
changing	relations	between	constructs,	developmental	dynamics	and	group	differences	can	
be	addressed	with	this	simple	yet	powerful	test	(see	Section	5.2	for	an	empirical	example).	
In	cases	where	a	large	number	of	covariates	are	potentially	relevant	but	we	have	no	strong	
theories	to	guide	us,	more	exploratory	techniques	such	as	SEM	trees	(Brandmaier,	von	
Oertzen,	McArdle,	&	Lindenberger,	2013)	and	SEM	forests	(Brandmaier,	Prindle,	McArdle,	&	
Lindenberger,	in	press)	allows	researchers	to	hierarchically	split	empirical	data	into	
homogeneous	groups	sharing	similar	data	patterns,	by	recursively	selecting	optimal	
predictors	of	these	differences	from	a	potentially	large	set	of	candidates.	The	resulting	tree	
structure	reflects	set	of	subgroup	with	distinct	model	parameters,	where	the	groups	are	
derived	in	a	data-driven	way.		

An	often	overlooked	application	of	LCS	and	SEM	models	is	in	intervention	studies	
(McArdle,	1994).	We	can	treat	grouping	of	participants	into	treatment	and	control	groups	in	
precisely	the	same	way	as	traditional	grouping	variables	such	as	gender	or	education,	and	
compare	all	model	parameter	using	likelihood	ratio	tests.	For	instance,	Raz	et	al.	(2013)	
showed	less	cerebellar	shrinkage	in	a	cognitive	training	intervention	group	than	in	controls,	
and	Maass	et	al.,	(2015)	using	SEM	to	demonstrate	correlated	change	in	between	fitness	
improvement	and	memory.	By	modelling	time	by	group	interaction	in	a	SEM	context,	one	
can	use	multiple	indicator	latent	change	score	models	to	derive	error-free	effect	sizes	of	the	
treatment	effect,	by	subtracting	average	latent	change	in	control	group	from	average	latent	
change	in	the	treatment	group	for	latent	constructs	(e.g.	Schmiedek	et	al.,	2010;	Schmiedek,	
Lövdén,	&	Lindenberger,	2014).	

Group	divisions	are	sometimes	based	in	observed	variables,	but	can	also	be	
estimated.	However,	if	heterogeneity	is	assumed	to	be	unobserved,	researchers	may	turn	to	
latent	mixture	models	(McLachlan	&	Peel,	2005,	but	see	Bauer	(2007)	for	a	cautionary	note).	
In	mixture	models,	observations	are	assumed	to	come	from	a	mixture	of	two	or	more	
distributions	(usually	Gaussian	mixtures	of	individuals	from	different	populations).	
Modelling	proceeds	by	fixing	a	number	of	groups	(‘classes’)	and	then	modelling	a	
probabilistic	assignment	of	observations	to	latent	classes	each	represented	by	a	different	
parameter	set	for	the	original	model.	Post	hoc,	participants	can	be	assigned	each	to	their	
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most	likely	group	(‘class’)	and	measures	of	group	(‘class’)	coherence	may	be	used	to	
evaluate	the	plausibility	of	the	retrieved	cluster	structure.	As	an	extension	of	between-
person	mixture	models,	Chow,	Grimm,	Filteau,	Dolan,	&	McArdle	(2013)	have	proposed	a	
variant	of	mixture	LCSM,	in	which	participants	are	allowed	to	switch	between	multiple	
regimes,	each	are	characterized	by	a	unique	parameter	set	of	a	LCSM.		

	
3.6	Assessing	model	fit	

The	standard	approach	to	parameter	estimation	in	SEM	is	maximum	likelihood,	
under	the	assumption	of	multivariate	normality.	The	extent	to	which	this	assumption	is	
violated	this	can	bias	results,	although	adjusted	model	fit	indices	have	been	developed	to	
account	for	deviations	from	normality	(e.g.	Satorra-Bentler	or	Yuan-Bentler	scaled	test	
statistics	(Rosseel,	2012).	Alternatively,	other	estimation	strategies	can	be	used	to	estimate	
non-continuous	or	non-normal	outcomes	(e.g.,	threshold	models	or	weighted-least-squares	
estimators	for	ordinal	data)	but	this	is	beyond	the	scope	of	this	tutorial.	Missing	data	poses	
no	problem	for	modern	SEM	programs,	as	long	as	missing	data	is	either	Missing	Completely	
At	Random	(MCAR)	or	Missing	At	Random	(MAR),	which	means	the	missing	data	can	only	be	
dependent	on	variables	also	measured	within	the	same	dataset	(e.g.	if	differences	in	drop	
out	are	gender	specific,	and	gender	is	assessed).	

A	wide	range	of	model	fit	indices	are	available	to	assess	model	fit.	Generally,	these	
metrics	quantify	the	deviation	between	the	observed	and	implied	covariance.	Model	fit	
metrics	include	a	simple	test	of	deviation	to	perfect	model	fit	(the	chi	square	test),	indices	
that	compare	the	degree	to	which	the	proposed	model	explains	the	data	(e.g.	the	CFI	and	
TLI)	better	compared	to	some	baseline	model	(which	typically	is	a	model	in	which	there	are	
no	correlations	between	measurements;	and	good	fit	represents	the	degree	to	which	
covariation	in	the	empirical	data	is	reliably	modelled),	and	measures	that	quantify	some	
standardized	measures	of	the	deviation	between	the	observed	and	implied	covariance	
matrices	(e.g.	SRMR	or	the	RMSEA)	(Kline,	2011;	Schermelleh-engel	et	al.,	2003).	Competing	
models	can	be	tested	used	a	likelihood	ratio	test	if	models	are	nested	(Neale,	2000),	or	
information	based	metrics	such	as	the	AIC	and	BIC	(e.g.	Wagenmakers	&	Farrell,	2004).	
	

4.	Fitting	Latent	Change	Score	models	using	open	source	software	
A	wide	array	of	tools	exist	to	fit	longitudinal	SEM	models,	ranging	from	modules	within	
popular	statistical	tools	(AMOS	within	SPSS,	Arbuckle,	2010)	to	dedicated	SEM	software	
(Mplus,	Muthén	&	Muthén,	2005).	We	focus	on	two	tools:	The	package	lavaan	(Rosseel,	
2012)	within	R	and	a	standalone,	GUI-based	tool	Ωnyx	(von	Oertzen,	Brandmaier,	&	Tsang,	
2015).	Both	are	open	source,	freely	available	and	relatively	easy	to	use.	
	
4.1	Lavaan	

R	(R	Development	Core	Team,	2016)	is	a	powerful	and	rapidly	growing	programming	
language	dedicated	to	data	analysis	and	visualisation.	Several	excellent	interactive	
introductions	to	R	exist,	including	http://tryr.codeschool.com/	or	the	http://swirlstats.com/.	
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The	core	strength	of	R	is	the	wide	range	of	packages	dedicated	to	addressing	specific	
challenges	(more	than	10,000	as	of	February	2017),	implementing	statistical	techniques,	
visualisation	and	more.	Several	packages	dedicated	to	SEM	exist,	including	OpenMX	(Boker	
et	al.,	2011)	which	allows	for	a	high	degree	of	model	specification	flexibility,	but	relatively	
complex	syntax),	the	sem	package	(Fox,	2006),	Bayesian	SEM	(blavaan,	Merkle	&	Rosseel,	
2015),	regularized	SEM	for	complex	models	(regsem,	Jacobucci,	Grimm,	&	McArdle,	2016)	
and	even	a	new	package	dedicated	specifically	to	specific	subtypes	of	longitudinal	SEM	
(RAMpath,	Zhang	et	al.,	2015).		

We	will	focus	on	Lavaan	(Rosseel,	2012),	as	this	is	a	highly	popular	and	versatile	tool	
for	modelling	various	structural	equation	models,	including	longitudinal	models	(Rosseel,	
2013).	Lavaan	syntax	consists	of	multiple	lines	specifying	relations	among	variables	using	
different	operators	for	e.g.	factor	loadings	(‘=~’),	regressions	(‘~’),	(co)variances	(‘~~’),	and	
means	or	intercepts	(‘~1’).	In	the	syntax	below	we	specify	a	simple,	univariate	latent	change	
score	model,	estimating	five	key	parameters	(in	bold).		

	
#Fit	the	Univariate	Latent	Change	Score	model	in	lavaan	to	simulated	data	
LCS<-'		 	 	 #	Specify	the	model	name	
COG2	~	1*COG1					 #	This	parameter	regresses	COG2	perfectly	on	COG1	
dCOG1	=~	1*COG2		 #	This	defines	the	latent	change	score	factor	as	measured	perfectly	by	COG2	
dCOG1	~1	 	 #	This	estimates	the	intercept	of	the	change	score		
COG1	~	1	 	 #	This	estimates	the	mean	of	COG1		
COG2	~	0*1						 	 #	This	constrains	the	intercept	of	COG2	to	0	
dCOG1	~~	dCOG1			 #	This	estimates	the	variance	of	the	change	scores		
COG1	~~		COG1					 #	This	estimates	the	variance	of	the	COG1		
COG2	~~	0*COG2			 #	This	fixes	the	variance	of	the	COG1	to	0		
dCOG1~COG1					 	 #	This	estimates	the	self-feedback	parameter		
'	
fitLCS	<-	lavaan(LCS,	data=simdatLCS,	estimator='mlr',fixed.x=FALSE,missing='fiml')		 #	this	fits	the	model	
summary(fitLCS,	fit.measures=TRUE,	standardized=TRUE,	rsquare=TRUE)	 	 #	this	reports	model	fit	

	

The	lavaan	syntax	and	simulated	data	for	all	five	model	types	discussed	above	is	
available	online3.	These	scripts	install	and	load	the	relevant	packages	if	needed,	simulate	
data	according	to	given	set	of	parameter	values,	visualize	raw	data	and	fit	the	model.	For	a	
simulated	data	object	called	‘simdatLCS’,	the	syntax	above	fits	a	simple	Univariate	Latent	
Change	Score	model	with	a	Yuan-Bentler	correction	for	non-normality	(‘estimator=’mlr’),	
and	full	information	maximum	likelihood	to	deal	with	missing	data	(‘missing=’fiml’’).	In	
Appendix	A	we	provide	a	step-by-step	instruction	to	fit	models	using	R	or	Ωnyx	(see	below).	

	
4.2	Ωnyx	
Although	syntax-centred	methods	for	SEM	are	most	common,	new	users	may	prefer	a	more	
visual,	path	model	based	approach	(e.g.	AMOS,	Arbuckle,	2010).	One	powerful	tool	is	Ωnyx	
(von	 Oertzen	 et	 al.,	 2015)	 freely	 available	 graphical	 modelling	 software	 for	 creating	 and	
                                                
3	https://osf.io/4bpmq/?view_only=5b07ead0ef5147b4af2261cb864eca32	
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estimating	 various	 structural	 equation	models.	 At	 the	 time	 of	writing,	 we	 used	 the	most	
recent	 public	 version	 (Ωnyx	 1.0-937),	 available	 from	 http://onyx.brandmaier.de/.	 Ωnyx	
provides	 a	 purely	 graphical	modelling	 environment	without	 a	model	 syntax	 level,	 that	 is,	
models	are	simply	drawn	as	path	diagrams.	As	soon	as	datasets	are	loaded	within	a	model,	
estimation	 starts	 on-the-fly	 and	 parameter	 estimates	will	 be	 directly	 shown	 in	 the	model	
diagram.	In	addition	to	its	easy-to-use	interface,	a	particular	strength	of	Ωnyx	is	its	capability	
of	 generating	model	 syntax	 for	 other	 programs,	 such	 as	 lavaan	 (Rosseel,	 2012),	 OpenMx	
(Boker	et	al.,	2011),	or	Mplus	(Muthén	&	Muthén,	2005).	The	focus	on	the	graphical	interface	
makes	Ωnyx	especially	useful	for	beginners	who	want	to	get	a	basic	comprehension	of	SEM,	
but	also	for	more	advanced	users	who	either	want	to	transition	to	other	SEM	programs	or	
need	to	produce	diagrams	for	presentations	or	manuscripts.	Finally,	Ωnyx	provides	template	
models	 for	commonly	used	models,	reducing	time	needed	to	set	up	standard	models	to	a	
minimum.	Here,	we	will	give	a	brief	introduction	on	how	the	Ωnyx	graphical	user	interface	
works	(also	see	and,	specifically,	how	LCSMs	can	be	set	up	and	estimated.		 	

The	Ωnyx	philosophy	is	a	little	different	to	typical	editors.	The	main	menu	is	virtually	
empty	(with	the	exception	of	basic	load	and	save	functions)	and	there	is	neither	a	tool	
ribbon	(e.g.,	as	in	Microsoft	Word)	or	a	toolbox	(e.g.,	as	in	Adobe	Photoshop)	to	access	
functions.	Instead,	Ωnyx	relies	heavily	on	context-menus	that	are	accessible	with	right	
mouse-clicks.	A	double-click	performs	a	context-specific	default	action.	For	example,	when	
Ωnyx	is	started,	the	empty	Ωnyx	desktop	is	shown.	A	right-click	on	the	desktop	opens	a	new	
model	frame,	which	is	a	container	for	a	SEM.	Alternatively,	a	double-click	on	the	desktop	
creates	a	model	frame	(see	Figure	6	for	an	example	of	the	interface).	In	Appendix	A,	we	
provide	a	step	by	step	guide	to	fitting	an	existing	model	to	data	within	Ωnyx,	as	well	as	a	
step-by-step	explanation	how	to	specify	a	new	model	from	scratch.	

Figure	6:	Ωnyx	interface	
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4.3	Developing	intuitions	about	change	using	an	interactive	Shiny	app	
Above	we	explained	the	basics	of	LCS	models,	including	graphical	representations.	

Although	these	examples	are	relatively	easy	to	understand,	one	challenge	with	complex	
dynamic	models	is	that	it	can	be	hard	to	intuit	what	the	consequences	of	changes	in	various	
parameters	might	be.	To	ameliorate	this	problem,	we	have	built	an	interactive	online	tool	
using	the	R	package	Shiny	(Chang,	Cheng,	&	Allaire,	2016).	This	tool	allows	researchers	to	
modify	the	key	parameters	of	interest	for	three	key	models	(univariate	latent	change	score,	
bivariate	latent	change	score,	and	bivariate	dual	change	score)	in	an	interactive	fashion	and	
examine	the	consequences	for	the	observed	scores.	Figure	9	illustrates	our	shiny	interface,	
which	can	be	found	at	http://brandmaier.de/shiny/sample-apps/SimLCS_app/4.	The	drop-down	
menu	at	the	top	can	be	used	to	select	one	of	three	models,	and	the	sliders	can	be	used	to	
tweak	individual	parameters.	Changing	the	key	parameters	causes	the	underlying	simulation	
to	be	modified	on	the	fly,	and	the	panels	at	the	bottom	visualize	the	raw	data	simulated.	
The	underlying	code	can	easily	be	accessed	and	modified,	such	that	researchers	can	tailor	
our	code	to	their	specific	research	design.	Our	hope	is	that	this	tool	will	prove	useful	in	
developing	intuitions	about	dynamic	co-occurring	processes	of	development	and	change.		

                                                
4	Note:	some	firewalls	block	the	app.	A	zipped	folder	that	contains	all	scripts	and	can	be	run	locally	is	available	
on	http://brandmaier.de/shiny/sample-apps/SimLCS_app/	

Figure	7:	Shiny	interface.	At	the	top	users	can	select	from	three	different	latent	change	score	models	(Univariate,	
bivariate	or	dual).	At	the	left,	users	can	modify	key	parameters	and	select	‘generate	data’	to	simulate	data	with	a	
given	parametrisation.	On	the	right,	the	raw	data	as	well	as	the	path	model	will	shown.	This	allows	users	to	form	an	
intuition	of	the	effect	of	dynamic	coupling.	For	instance,	it	can	illustrate	that	even	in	the	absence	of	significant	
changes	within	a	domain,	a	coupling	parameter	from	another	domain	can	cause	significant	increases	or	decreases	
over	time.	
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5.	Examples	
Below	we	illustrate	the	flexibility	of	Latent	Change	Score	modelling	by	describing	two	
empirical	examples.	First,	we	describe	cognitive	(processing	speed)	and	neural	(white	
matter	fractional	anisotropy)	changes	from	a	training	intervention	study	in	younger	and	
older	adults.	Second,	we	describe	group	differences	in	structural	changes	(i.e.	cortical	
thinning)	in	a	developmental	study	of	(late)	adolescents	aged	14-24.	These	applications	
illustrate	the	types	of	questions	naturally	accommodated	by	latent	change	score	models.	
	
5.1	Correlated	change	in	high	intensity	training	intervention:	The	COGITO	sample	

The	first	illustration	comes	from	data	on	the	COGITO	project	(Schmiedek	et	al.,	2014),	a	
high-intensity	(100	day)	training	intervention	with	pre	and	post-tests	cognitive	scores	for	
204	adults:	101	young	(age	M=25.11,	SD=2.7,	range=20-31)	and	103	old	(age	M=70.78,	
SD=4.15,	range=64-80).		

We	examine	changes	between	pre-	and	post-test	scores	on	a	latent	variable	of	
processing	speed,	measured	by	three	standardized	tests	from	the	Berlin	Intelligence	
Structure	test	measured	on	two	occasions	(see	Schmiedek	et	al.	(2010)	for	more	details).	
The	neural	measure	of	interest	is	fractional	anisotropy	in	the	sensory	subregion	of	the	
Corpus	Callosum	(see	Lövdén	et	al.,	2010	for	more	details	-	note	in	our	exploratory	analysis	
this	subregion	gave	the	most	stable	results	so	was	used	for	our	illustration).	Longitudinal	
neuroimaging	data	was	available	for	a	subset	of	32	people	(20	younger,	12	older	adults).	
Using	Full	Information	Maximum	Likelihood	estimation	we	can	nonetheless	fit	the	model	to	
the	entire	dataset,	making	use	of	all	available	data.	

First,	we	test	a	multiple	indicator	univariate	latent	change	score	model	(the	same	
type	of	model	as	shown	in	Figure	3).	This	univariate	(only	processing	speed)	multiple	
indicator	(a	latent	variable	of	processing	speed	is	specified)	latent	change	score	model	fits	
the	data	well:	χ2(12)=	15.052,	P=	0.239,	RMSEA=	0.035	[0.000	0.084],	CFI=0.996,	
SRMR=0.028,	Yuan-Bentler	scaling	factor=	0.969).	Inspection	of	key	parameters	shows	that	
scores	increased	between	pre-	and	post-test	(the	intercept	of	the	change	factor=	0.224,	
se=0.031,	Z=7.24),	there	were	significant	individual	differences	in	gains	(variance	parameter	
for	the	latent	change	score:	est=0.120,	se=0.019,	Z=6.5),	but	the	rate	of	improvement	did	
not	depend	on	the	starting	point:	est=-0.069,	se=0.054,	Z=-1.32).	Next,	we	include	a	neural	
measure,	namely	Fractional	Anisotropy	in	the	sensory	region	of	the	Corpus	Callosum	
measured	pre-	and	post-test,	to	fit	a	bivariate	(neural	and	behaviour)	multiple	indicator	(we	
include	a	measurement	model)	latent	change	score	model	shown	in	Figure	8.		

We	next	test	the	evidence	for	four	possible	brain-behaviour	relationships:	
Covariance	(are	scores	on	processing	speed	at	T1	correlated	with	white	matter	structure	at	
T1?),	neural	measures	as	leading	variable	(do	differences	in	white	matter	integrity	at	T1	
affect	the	rate	of	cognitive	training	gains?),	cognition	as	leading	variable	(do	processing	
speed	scores	at	T1	predict	degree	of	white	matter	plasticity	between	T1	and	T2?)	and/or	
correlated	change	(is	the	degree	of	improvement	in	the	cognitive	domain	correlated	with	
the	degree	of	white	matter	change	in	individuals?).	Figure	7A	shows	the	full	model,	Figure	
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7B	shows	the	changes	in	processing	speed	factor	scores	(top)	and	fractional	anisotropy	
(bottom)	(note	we	artificially	expanded	the	interval	between	testing	intervals	for	visual	
clarity).	First,	we	find	that	model	fit	is	good:	χ2(20)=	24.773,	P=	0.21,	RMSEA=	0.034	[90%	CI:	
0.000	0.072],	CFI=0.995,	SRMR=0.083,	Yuan-Bentler	scaling	factor=	1.021.	The	full	model	is	
shown	in	Figure	8.	Inspection	of	the	four	parameters	of	interest,	reflecting	the	four	possible	
brain-behaviour	relationships	outlined	above,	shows	evidence	(only)	for	correlated	change.	
In	other	words,	those	with	greater	gains	in	processing	speed	were,	on	average,	those	with	
less	positive	change	in	fractional	anisotropy	after	taking	into	account	the	other	dynamic	
parameters	(est=-0.006,	se=0.002,	z=-2.631).	Although	counterintuitive,	a	similar	pattern	
was	also	observed	in	Bender,	Prindle,	Brandmaier,	&	Raz	(2015)	who	observed	negative	
correlation	between	age-related	declines	in	episodic	memory	and	white	matter	integrity,	
such	that	a	greater	decrease	in	fractional	anisotropy	was	associated	with	greater	
improvement	in	episodic	memory	(whereas	at	T1	FA	and	episodic	memory	were	positively	
correlated).	This	illustration	shows	how	LCS	models	can	be	used	to	simultaneously	estimate	
four	rather	distinct	brain-behaviour	relationships	over	time.  

 

	

Figure	8:	COGITO	correlated	change	in	processing	speed	and	white	matter	plasticity.	The	panels	on	the	left	show	the	
fitted	model,	parameter	estimates	and	standard	errors.	The	latent	variable	Processing	Speed	is	measured	by	three	
subtests	of	the	Berlin	Intelligence	Structure	test	(BIS1-BIS3)	measured	before	(pre)	and	after	(post)	an	intensive	
training	intervention	(see	Schmiedek	et	al.,	2010).	Observed	variable	intercepts	and	standard	errors	are	omitted	for	
visual	clarity.	The	panels	on	the	right	show	the	raw	scores	changing	across	two	occasions.	The	raw	scores	are	plotted	
on	separate	panels	to	accommodate	the	age	gap,	but	the	model	is	estimated	for	the	population	as	a	whole.	
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5.2	Multigroup	analysis	of	prefrontal	structural	change	in	late	adolescence:	The	NSPN	cohort	
As	the	example	in	the	Cogito	sample	shows,	LCS	offers	a	simple	and	powerful	way	to	test	
distinct	dynamic	pathways	within	a	single	LCS	model.	However,	investigations	in	
Developmental	Cognitive	Neuroscience	are	often	concerned	with	differences	between	
groups	(e.g.	gender,	treatment	vs.	controls,	psychopathology	vs.	healthy	controls,	low	vs	
high	SES	etc.).	Such	questions	are	best	addressed	by	means	of	multigroup	modelling.	Here	
we	illustrate	a	multigroup	model	to	compare	structural	changes	in	a	group	of	adolescents.	
Data	for	this	is	drawn	from	the	Neuroscience	in	Psychiatry	Network	(NSPN),	a	cohort	that	
studies	development	in	adolescents	(see	(Kievit	et	al.,	in	revision;	Whitaker	et	al.,	2016	for	
other	applications).	Here	we	illustrate	a	multigroup	model	to	compare	structural	brain	
change	in	a	group	of	adolescents.	Previous	work	suggests	differences	in	the	temporal	
development	of	the	frontal	cortex,	with	boys	generally	maturing	later	than	girls	(Giedd	et	
al.,	2012;	Ziegler,	Ridgway,	Blakemore,	Ashburner,	&	Penny,	2017),	possibly	as	a	
consequence	of	differences	in	sensitivity	to	hormone	levels	(Bramen	et	al.,	2012).	

For	our	analysis,	we	focus	on	volumetric	changes	in	the	frontal	pole.	This	region	is	
part	of	the	frontal	lobe,	which	is	often	discussed	with	respect	to	the	speed	of	maturational	
changes	and	its	purported	role	in	controlling	higher	cognitive	functions	and	risk	taking	
behaviour	(e.g.	Crone	&	Dahl,	2012;	Johnson,	2011;	Mills	et	al.,	2014).		

Our	sample	consisted	of	176	individuals,	mean	age	=	18.84,	range	14.3-24.9,	82	girls,	
scanned	on	two	occasions	(average	interval:	M=1.24	years,	SD=	0.33	years).	We	fit	a	
multiple	indicator	univariate	latent	change	score	model,	with	volume	of	the	frontal	pole	(FP)	
using	the	neuromorphometrics	atlas	as	the	key	variable	(see	Figure	8D	for	an	illustration).	
Our	measurement	model	consisted	of	volumetric	estimates	of	the	left	and	right	FP	
measured	on	two	occasions	(for	more	details	on	the	structural	processing	pipeline,	see	
Appendix	B).	We	can	use	the	framework	of	multigroup	models	to	investigate	whether	there	
is	evidence	for	differences	between	the	two	groups	in	the	key	parameters	of	interest.	The	
four	parameters	of	interest	are	the	intercept	of	the	frontal	factor	(reflecting	mean	volumes	
at	T1),	the	intercept	of	the	change	factor	(reflecting	the	rate	of	change),	the	variance	of	the	
latent	change	scores	(reflecting	individual	differences	in	rates	of	FP	change)	and	the	
covariance	between	T1	and	rate	of	change.	To	do	so,	we	employ	the	method	of	equality	
constrained	Likelihood	Ratio	tests,	by	comparing	a	model	where	some	parameter	of	interest	
is	constrained	to	be	the	same	across	the	two	groups	with	a	model	where	the	parameter	is	
allowed	to	be	free.	The	difference	in	model	fit	under	the	null	hypothesis	is	chi-square	
distributed	with	a	df	equivalent	to	the	difference	in	numbers	of	parameters	being	
constrained.	In	other	words,	if	a	parameter	of	interest	is	the	same	(or	highly	similar)	
between	two	groups,	the	chi-square	test	will	fail	to	be	rejected,	suggesting	the	more	
parsimonious	model	is	sufficient.	

First,	we	fit	a	model	where	all	measurement	model	parameters	(constraining	all	
factor	loadings	and	residual	(co)variances)	are	constrained	to	be	equal	across	males	and	
females,	but	all	other	parameters	are	free	to	vary	between	the	sexes.	This	model	fit	the	data	
well:	χ2(9)=	8.929,	P=	0.44,	RMSEA=	0.00	[0.000		0.120],	CFI=1,	SRMR=0.021,	Yuan-Bentler	
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scaling	factor=	.983).	Next,	we	explored	which	(if	any)	of	the	four	parameters	above	differed	
between	the	sexes.	If	a	parameter	is	different	between	the	groups,	constraining	it	to	be	
equal	should	result	in	a	significant	decrease	in	model	fit.	Using	the	likelihood	ratio	test,	we	
observe	significant	decreases	in	model	fit	by	constraining	the	mean	of	frontal	lobe	volume	
at	T1	to	be	equal	across	the	sexes	(χ2Δ	=	38.01,	dfΔ	=2,	p=<0.0001).	Inspection	of	parameter	
estimates	shows,	unsurprisingly,	greater	FP	volume	in	males,	compatible	with	either	larger	
brains,	delayed	cortical	thinning,	or	a	combination	of	the	two.	Contrary	to	expectations,	
constraining	the	intercept	of	the	change	scores	did	not	lead	to	a	significant	decrease	in	fit	
(χ2Δ	=	0.31889,	dfΔ	=2,	p=0.57),	indicating	an	absence	of	reliable	differences	in	cortical	
thinning.	However,	constraining	the	variance	of	change	scores	to	be	equal	did	result	in	a	
significant	drop	in	fit	(χ2Δ	=	49.319,	dfΔ	=2,	p=<0.0001),	with	males	showing	greater	
individual	differences	in	rates	of	thinning	than	females.	Finally,	constraining	the	covariance	
between	frontal	volume	and	change	scores	also	led	to	a	drop	in	model	fit,	with	males	
showing	a	stronger	(negative)	association	between	volume	at	T1	and	rate	of	change	
(compatible	with	the	hypotheses	of	delayed	development	in	males).		

Figure	9:	NSPN:	Differential	variability	in	frontal	lobe	thinning.	Panel	A	shows	longitudinal	development	in	
frontal	structure.	Panel	B	shows	the	model	fit	for	the	best	model.	Where	parameters	are	different	
between	groups	we	show	male	estimates	in	blue,	female	in	red.	Panel	C	shows	the	AIC	and	BIC	of	the	free	
versus	constrained	models	–	in	all	cases	only	one	parameter	is	constrained	to	equality	and	compared	to	
the	‘all	free’	model.	Panel	D	shows	the	left	and	right	frontal	poles	of	the	neuromorphometrics	atlas	used	
in	our	analysis.	See	Appendix	B	for	more	details	on	the	imaging	pipeline.	
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Together,	this	suggests	that	there	are	considerable	differences	in	frontal	
development	between	males	and	females	in	(late)	adolescence:	Although	males	and	
females	show	similar	rates	of	cortical	thinning,	males	show	greater	initial	volume,	greater	
individual	differences	in	thinning	and	a	stronger	association	between	initial	volume	and	rate	
of	thinning.	Notably,	the	parameters	where	the	evidence	for	sex	differences	is	strongest	
(e.g.	variance	and	covariance	in	change	scores)	are	not	parameters	often	studied	using	
conventional	techniques	such	as	paired	t-tests	(other	than	as	a	statistical	assumption	such	
as	equality	of	variances).	Conversely,	the	parameter	that	would	be	the	key	focus	with	
traditional	techniques	(i.e.	group	differences	in	change	scores)	does	not	show	differences.	
Figure	9	shows	the	temporal	development	of	FP	structure	between	sexes,	information	
based	model	comparison	and	parameter	estimates	for	the	full	model	(with	different	
estimates	for	males	and	females	where	required).		
	

6.	Challenges	
6.1	Sample	Size	and	Data	Requirements	

When	venturing	out	with	a	new	data-analytic	method,	researchers	commonly	ask,	
“What	sample	size	do	I	need	to	apply	this	method?”	They	do	rightly	so,	as	sample	size	is	a	
major	determinant	of	statistical	power	(Cohen,	1988)	and,	thus,	of	the	probability	of	
detecting	a	hypothesized	effect	if	it	exists.	One	often	encounters	rule	of	thumb,	which	
typically	are	misleading	and	never	capture	the	full	story.	Here,	we	advise	against	such	
heuristics.	When	designing	a	longitudinal	study,	there	are	many	more	design	decisions	that	
directly	affect	statistical	power,	such	as	indicator	reliability,	true	effect	size,	or	the	number	
and	spacing	of	measurement	occasions	(Brandmaier,	von	Oertzen,	Ghisletta,	&	
Lindenberger,	2015).	Although	factors	determining	statistical	power	in	latent	growth	models	
are	well	understood	(Hertzog,	Lindenberger,	Ghisletta,	&	Oertzen,	2006;	Hertzog,	von	
Oertzen,	Ghisletta,	&	Lindenberger,	2008;	Oertzen,	Hertzog,	Lindenberger,	&	Ghisletta,	
2010;	Rast	&	Hofer,	2014;	von	Oertzen	&	Brandmaier,	2013;	von	Oertzen	et	al.,	2015),	we	
know	of	no	empirical	simulation	studies	that	may	serve	as	guidelines	for	the	power	of	
(bivariate)	LCSM.	Currently,	statistical	power	for	a	specific	LCSM	design	(including	a	
hypothesized	true	effect	and	sample	size)	can	only	be	approximated	mathematically	
(Satorra	&	Saris,	1985)	or	by	computer-intensive	simulation	(Muthén	&	Muthén,	2002).	A	
more	flexible	approach	is	to	use	the	code	provided	with	this	manuscript	to	generate	data	
under	some	hypothesized	model	of	interest,	specify	two	competing	models,	and	test	by	
simulation	how	often	model	comparison	(for	a	given	sample	and	effect	size)	prefers	the	true	
model	over	some	comparison	model.	

One	implicit	assumption	in	latent	change	models	is	that	the	interval	between	two	
time	points	is	equal	across	all	individuals.	One	often	used	solution	(e.g.	Ferrer	&	McArdle,	
(2004),	page	941)	is	to	rescale	scores	to	account	for	different	sizes	of	intervals	by	
multiplying	the	difference	in	scores	by	the	difference	in	intervals	to	a	uniform	interval	(e.g.	
one	year).	Although	this	works	for	modest	discrepancies,	it	can	become	more	challenging	if	
the	differences	are	large,	or	if	differences	in	interval	size	concatenate	across	multiple	waves.	

. CC-BY 4.0 International licensenot peer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/110429doi: bioRxiv preprint first posted online Feb. 22, 2017; 

http://dx.doi.org/10.1101/110429
http://creativecommons.org/licenses/by/4.0/


22	
	

One	‘solution’	for	cohorts	yet	to	be	tested	is	to	keep	interval	sizes	roughly	equivalent	across	
individuals.	More	advanced	options	include	a	fully	continuous	SEM	framework	developed	by	
Driver	et	al.	(2016)	that	allows	researchers	to	model	processes	where	the	temporal	
resolution	is	greater	than	the	number	of	individuals.	

Above,	we	illustrate	the	flexibility	and	power	of	using	Latent	Change	Score	models	in	
two	developing	cohorts.	There	are	many	technical	and	conceptual	issues	with	SEM	more	
generally	and	LCS	models	specifically	that	are	beyond	the	purview	of	this	basic	tutorial.	
Recommended	sources	for	advanced	(longitudinal)	SEM	include	McArdle,	(2009),	Newsom	
(2015),	Hoyle	(2014),	Little,	(2013),	Driver	et	al.	(2016)	and	Voelkle	(2007),	as	well	as	the	
tutorials	cited	above.	Other	useful	resources	are	SEM-oriented	email	groups	such	as	
SEMNET	(http://www2.gsu.edu/~mkteer/semnet.html)	or	package	focused	help	groups	
(e.g.	https://groups.google.com/forum/#!forum/lavaan	)		
	

7.	Conclusion	
In	this	tutorial,	we	introduce	the	powerful	framework	of	Latent	Change	Score	modelling	
whose	deployment	can	be	an	invaluable	aid	for	developmental	cognitive	neuroscience.	It	is	
our	hope	that	more	widespread	employment	of	these	powerful	techniques	will	aid	the	
developmental	cognitive	neuroscientific	community.	Adopting	the	statistical	techniques	we	
outline	in	tandem	with	the	more	widespread	availability	of	large,	longitudinal,	cohorts	of	
developing	adolescents	will	allow	researchers	to	more	fully	address	questions	of	interest,	as	
well	as	inspire	new	questions	and	approaches.	The	approach	we	outline	puts	renewed	
emphasis	on	the	value	of	longitudinal	over	cross-sectional	data	in	addressing	developmental	
questions.	
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Appendix	A	

Creating	and	fitting	Latent	Change	Score	models	using	R	and	Ωnyx	
 
In	the	associated	folder	you	will	find	code	(file	extensions	.R),	data	(file	extensions	.csv)	and	
Ωnyx	model	files	(file	extensions	.xml)	for	five	different	latent	change	score	models.	Below	we	
outline	how	to	specify	and	fit	models	using	lavaan	and	R.	
	

1. Analyse	data	using	R	and	lavaan	
 
-Install	R	(https://cran.r-project.org/)	
-Install	Rstudio	(recommended)	(https://www.rstudio.com/)	
-Open	the	relevant	lavaan	file	(e.g.	‘1_ULCS.R’)	
-Install	the	appropriate	packages	by	uncommenting	(e.g.	lines	17-19	in	1_ULCS.R)	
-Select	and	run	lines	30-60	to	create	a	simulated	dataset	with	given	parameters	
-Select	and	run	lines	85-92	to	visualize	the	raw	data	
-Select	and	run	lines	65-80	to	fit	the	latent	change	score	model	
-Run	line	81	to	examine	model	fit	and	parameters	
-If	so	desired,	modify	the	parameters	in	lines	47-53	to	examine	the	consequences	for	the	raw	data	
and	model	fit	
	
2.	Fit	a	model	to	existing	dataset	using	Ωnyx	
	
-Install	Ωnyx	(http://onyx.brandmaier.de/)	(install	Java	if	necessary)	
-Open	Ωnyx	
-Select	‘load	model	or	data’	
-Select	1_ULCS.xml	
-Select	‘load	model	or	data’	
-Load	1_simdatULCS.csv	
-Right-click	on	data	window	
-Select	‘Send	data	to	model’	
-As	soon	as	the	data	is	sent	the	model	begins	estimation.	Note	that	the	
data	window	variable	names	must	be	identical	to	those	in	the	model	
specification	(e.g.	‘COG_T1’)	

	
3.	Creating	a	new	model	using	Ωnyx	

To	create	variables	in	the	model,	right-click	on	the	model	frame	and	choose	‘add	variable’	to	
add	an	observed,	latent	or	constant	variable.	Alternatively,	users	can	double-click	on	the	model	frame	
to	create	an	observed	variable.	Existing	variables	can	be	moved	by	left-dragging	(press	left	mouse	
button	and	move	mouse	while	button	pressed).	Double-clicking	while	holding	down	the	SHIFT	button	
creates	a	latent	variable.	Regression	paths	(single	headed)	are	drawn	by	right	drags,	that	is,	by	
pressing	the	right	mouse	button	on	a	variable	and	releasing	the	button	only	when	the	mouse	was	
moved	to	a	second	variable.	Covariance	paths	(double	headed)	are	drawn	by	holding	SHIFT	while	
releasing	a	path.	Variance	paths	are	created	by	creating	a	covariance	path	from	a	variable	to	itself.	By	
default,	path	values	are	fixed	to	one.	Paths	values	can	be	changed	either	by	right-clicking	a	path	and	
entering	a	new	value	in	the	context	menu	or	by	moving	the	mouse	over	a	path	and	directly	typing	the	
desired	value.	Path	can	be	defined	to	represent	a	freely	estimated	parameter	by	right-clicking	a	path	
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and	choosing	“Free	Parameter”.	Using	the	context	menu,	parameters	can	be	renamed	and	starting	
values	can	be	given.	Observed	variables	can	be	either	associated	with	a	data	column	or	not.	This	is	
indicated	by	observed	variables	either	having	a	grey	box	(not	linked)	or	a	black	box	(linked	data).	To	
link	a	variable	with	data,	one	can	load	a	dataset	from	an	existing	file	and	simply	drag	the	variables	
onto	the	Ωnyx	representation.		

As	an	alternative	to	the	manual	creation	of	a	change	score	model,	Ωnyx	provides	a	wizard	for	
quick	model	specification,	even	for	more	advanced	models.	Users	can	right-click	on	the	Ωnyx	desktop	
and	choose,	among	other	models,	‘Create	new	LGCM’	(for	a	linear	growth	curve	model)	or	‘Create	
new	DCSM’	(for	a	dual	change	score	model),	which	can	then	be	modified	as	desired.	The	LCSM	wizard	
allows	you	to	specify	the	number	of	time	points.	Once	the	model	is	specified,	users	can	simply	drag	
and	drop	data	(e.g.	columns	in	a	.csv	file)	from	an	existing	data	file	onto	the	appropriate	observed	
variables	in	the	model	by	selecting	‘load	data’	from	the	main	drop-down	menu.	As	soon	as	variables	
are	added	the	program	starts	estimation.		

 
 
Advanced	features	of	Ωnyx		

As	noted	before,	Ωnyx	provides	various	functions	to	export	models	to	other	SEM	programs.	
For	 example,	 if	 users	 wish	 to	 use	 more	 complicated	 modelling	 approaches	 (e.g.,	 ordinal	
outcomes,	non-linear	constraints),	Ωnyx	can	quickly	create	a	graphical	model	specification	
which	 then	 can	 be	 exported	 to	 another	 SEM	 program	 that	 allows	 greater	 flexibility	 in	
modelling.	Ωnyx	also	exports	diagrams	as	bitmap	graphics	(JPG,	PNG)	or	vector	graphics	(PDF,	
EPS)	and	even	creates	LaTeX-representations	of	diagrams	based	on	the	tikz	package.	Ωnyx	
comes	with	different	visual	style	templates	that	can	be	applied	to	a	model	with	a	single	click.	
To	choose	among	styles,	right-click	on	a	model	frame	and	choose	Customize	Model	à	Apply	
Diagram	Style,	or	hit	CTRL+L	to	cycle	through	styles	in	the	active	model	frame.	Ωnyx	may	be	
used	 to	 simulate	data	 from	 the	model-implied	means	and	covariance	matrix.	 To	 this	end,	
choose	“Simulation->Start	Simulation”	in	the	context	menu	of	a	model	frame.	Ωnyx	allows	
parameter	names	to	be	defined	in	a	pseudo	LaTeX	input	style,	which	allows	users	to	use	greek	
symbols	(e.g.,	\alpha,	\beta,	\gamma,…),	subscripts	(e.g.,	\epsilon_i)	and	superscripts	(e.g.,	
\sigma^2).	

. CC-BY 4.0 International licensenot peer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/110429doi: bioRxiv preprint first posted online Feb. 22, 2017; 

http://dx.doi.org/10.1101/110429
http://creativecommons.org/licenses/by/4.0/


35	
	

	

Appendix	B	
Structural	Imaging	and	Map	Generation	

Brain	scans	were	acquired	using	the	MPM	protocol	(Weiskopf	et	al.,	2013)	on	three	3T	whole-
body	MRI	systems	(Magnetom	TIM	Trio;	VB17	software	version;	Siemens	Healthcare)	located	
in	Cambridge	and	London.	Between-site	reliability	of	MRI	procedures	was	assessed	in	a	pilot	
study	scanning	five	healthy	volunteers	at	each	site.	The	between-site	bias	was	found	to	be	less	
than	3%	and	the	between-site	coefficient	of	variation	was	less	than	8%	for	both	longitudinal	
relaxation	rate	(R1)	and	MT	parameters	(Weiskopf	et	al.,	2013)	Isotropic	1	mm	MT	images	were	
quantified	in	Matlab	(2014b,	The	MathWorks,	Inc.)	using	SPM12	r6685	(Wellcome	Trust	Centre	
for	 Neuroimaging,	 London,	 UK,	 http://www.fil.ion.ucl.ac.uk/spm),	 the	 Voxel-Based	
Quantification	(VBQ)	toolbox	for	SPM	(Callaghan	et	al.,	2014)	and	custom	made	tools.			

Longitudinal	Image	Processing	and	Feature	Extraction	
All	 further	 image	 processing	 steps	 of	 MT	 maps	 were	 performed	 in	 SPM12.	 Longitudinal	
morphometry	was	used	to	assess	macroscopic	brain	maturational	changes.	Since	longitudinal	
imaging	 is	prone	to	artefacts	due	to	registration	 inconsistency,	scanner	 inconsistencies	and	
age-related	deformations	of	the	brains,	it	requires	sophisticated	processing	pipelines	in	order	
to	detect	the	changes	of	interest	and	achieve	unbiased	results.	

First,	 we	 applied	 symmetric	 diffeomorphic	 registration	 for	 longitudinal	 MRI	 (Ashburner	 &	
Ridgway,	2012)	combining	non-linear	diffeomorphic	and	rigid-body	registration	and	correction	
for	 intensity	 inhomogeneity	 artefacts.	 The	 optimization	 is	 realized	 within	 one	 integrated	
generative	model	and	provides	consistent	estimates	of	within-subject	brain	deformations	over	
the	study	period.	The	registration	model	also	creates	a	midpoint	image	for	each	subject	and	
the	corresponding	deformation	fields	for	every	individual	scan.		

Second,	we	applied	SPM12's	Computational	Anatomy	Toolbox	(CAT,	r955,	Structural	Imaging	
Group,	http://dbm.neuro.uni-jena.de/cat12/)	segmentation	to	each	subject's	midpoint	image,	
which	assumes	every	voxel	to	be	drawn	from	an	unknown	mixture	of	gray	matter	(GM),	white	
matter	(WM),	cerebrospinal	fluid	(CSF).	Earlier	results	showed	that	MT	maps	are	highly	suitable	
for	automated	segmentation	 in	multi-subject	morphometric	studies,	showing	 improved	GM	
tissue	 contrast	 in	 subcortical	 structures	 (Helms,	 Draganski,	 Frackowiak,	 Ashburner,	 &	
Weiskopf,	 2009).	 This	 applied	 segmentation	 procedure	 contains	 partial	 volume	 estimation	
(PVE)	to	account	for	mixed	voxels	with	two	tissue	types	(Tohka,	Zijdenbos,	&	Evans,	2004).	The	
CAT	algorithm	is	based	on	an	adaptive	maximum	a	posteriori	 (AMAP)	approach	(Rajapakse,	
Giedd,	&	Rapoport,	1997)	and	subsequent	application	of	a	hidden	Markov	random	field	model	
(Cuadra,	 Cammoun,	 Butz,	 Cuisenaire,	 &	 Thiran,	 2005).	 Importantly,	 the	 applied	 AMAP	
estimation	 does	 not	 rely	 on	 tissue	 priors,	 which	 overcomes	 potential	 bias	 due	 to	 the	
application	of	 inappropriate	tissue	priors	 in	young	maturing	subjects	with	different	to	adult	
brain	anatomy.		

Third,	nonlinear	template	generation	and	image	registration	was	performed	on	the	individual	
midpoint	GM	and	WM	tissue	maps	using	DARTEL	registration	and	the	template	was	registered	
to	 MNI	 space	 using	 an	 affine	 transform	 (Ashburner,	 2007).	 Consecutively	 longitudinal	
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normalised	 tissue	 segments	 from	all	 subjects	and	 time-points	were	modulated	by	 Jacobian	
determinants	accounting	for	local	tissue	volume	differences	across	subjects	and	within-subject	
changes	over	time.	 In	order	to	detect	stronger	deviations	due	to	potential	segmentation	or	
normalization	 errors,	 we	 included	 a	 quality	 check	 using	 covariance-based	 sample	
inhomogeneity	measures	implemented	in	the	CAT	toolbox	to	exclude	subjects	with	extremal	
values	and/or	severe	artefacts.	

Fourth,	 neuromorphometrics	 atlas	 was	 used	 to	 assess	 gray	matter	 density	 in	 the	 bilateral	
frontal	poles	after	Gaussian	smoothing	with	6	mm	full	width	at	half	maximum.	The	atlas	was	
based	on	maximum	probability	tissue	labels	derived	in	the	MICCAI	2012	Grand	Challenge	and	
Workshop	 on	 Multi-Atlas	 Labeling	 with	 data	 originating	 from	 the	 OASIS	 project	
(http://www.oasis-brains.org/)	 and	 the	 atlas	 provided	 by	 Neuromorphometrics,	 Inc.	
(http://Neuromorphometrics.com/)	under	academic	subscription.	

All	longitudinal	features	for	subsequent	structural	equation	modelling	were	obtained	using	the	
above	 steps.	 Since	 common	processing	pipelines	of	 longitudinal	 and	 cross-sectional	data	 is	
different,	 this	can	 introduce	biases	 (Bernal-Rusiel	et	al.,	2013).	We	 initially	 focussed	on	the	
largest	 fully	 longitudinally	 processed	 subsample	 of	 the	 NSPN	 dataset	 available,	 with	 202	
subjects	 having	 at	 least	 2	 scans	 per	 person.	 After	 rigorous	 quality	 control	 of	 all	 processed	
imaging	data,	scans	from	26	subjects	had	to	be	discarded	due	to	artefacts,	resulting	in	a	finally	
analyzed	brain	features	from	373	scans	from	176	subjects	 (2.12	scans/person).	 	Although	a	
small	subset	of	individuals	had	a	third	intermediate	scan,	for	modelling	purposes	here	we	use	
only	the	first	and	last	scan.	
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