CHEMISTRY A European Journal

Supporting Information

© Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2015

A Heteroleptic Ferrous Complex with Mesoionic Bis(1,2,3-triazol-5ylidene) Ligands: Taming the MLCT Excited State of Iron(II)

Yizhu Liu,^[a, b] Kasper S. Kjær,^[a, c] Lisa A. Fredin,^[d] Pavel Chábera,^[a] Tobias Harlang,^[a] Sophie E. Canton,^[e] Sven Lidin,^[b] Jianxin Zhang,^[b] Reiner Lomoth,^[f] Karl-Erik Bergquist,^[b] Petter Persson,^[d] Kenneth Wärnmark,^{*[b]} and Villy Sundström^{*[a]}

chem_201405184_sm_miscellaneous_information.pdf

Table of Contents

- 1. Synthesis and structural identification
- 2. X-ray crystallography
- 3. Cyclic voltammetry, differential pulse voltammetry and spectroelectrochemistry
- 4. Transient absorption spectroscopy
- 5. DFT and TD-DFT calculations

1. Synthesis and structural identification

General

All the reactions were carried out using the standard Schlenk technique or in a glovebox. Anhydrous THF was obtained from a Braun SPS-800 system. Precoated Merck silica gel 60 F254 plates were used for TLC analysis. Flash column chromatography was performed on silica gel (Davisil 35-70 µm). ¹H, ¹³C and 2D (COSY, HMBC, HMQC) NMR were recorded on a Bruker Avance II 400 MHz and a Bruker Avance I 500 MHz NMR spectrometers. Chemical shifts (δ) are reported to the shift-scale calibrated with the residual NMR solvent; CD₃CN (1.94 ppm for ¹H NMR and 1.32 and 118.26 ppm for ¹³C NMR).¹ Electron spray ionization-high resolution mass (ESI-HRMS) spectra were recorded on a Waters Micromass Q-Tof micro mass spectrometer. Elemental analysis was performed by Mikroanalytisches Laboratorium KOLBE (Mülheim an der Ruhr, Germany). Common solvents including acetone, THF, CH₃CN, acetic acid and diethyl ether were purchased from Honeywell and used as received. Sodium ascorbate, tert-butanol, methyl trifluoromethansulfonate, 1,2-dichloroethane and potassium *tert*-butoxide (1 M solution in THF) were purchased from Aldrich. Triethylamine (TEA), 2,2'-bipyridine (bpy), anhydrous ferrous chloride (FeCl₂), tetra(*n*-butyl)ammonium bromide, ammonium hexafluorophosphate, pyridine, sodium nitrite, sodium azide and potassium carbonate were purchased from Acros. p-Toluidine and copper(II) sulfate pentahydrate were purchased from Fluka. 1,4-Bis(trimethylsilyl)-1,3-butadiyne was purchased from Alfa. p-Tolyl azide,² H₂[Fe(bpy)(CN)₄]³ and TBA₂[Fe(bpy)(CN)₄]⁴ (complex 2) were synthesized using literature methods. Fe(bpy)Cl₂ was also synthesized according to the literature method,⁵ except that the commercially available anhydrous FeCl₂ was directly used instead of freshly prepared from Fe powder and HCl.

1,1'-Bis(*p*-tolyl)-4,4'-bis(1,2,3-triazole). This compound was synthesized according to the literature procedure⁶ with the only exception of using *p*-tolyl azide as the azide source. The crude product was purified by silica gel flash column chromatography using CH₂Cl₂/TEA (1%) and recrystallized from a mixture of CH₂Cl₂ and methanol to give light yellow brown powder (yield 70%). ¹H NMR (400 MHz, CDCl₃) δ = 8.53 (s, 2H, triazole), 7.70 (d, *J*=8 Hz, 4H, tolyl), 7.36 (d, *J*=8 Hz, 4H, tolyl), 2.45 ppm (s, 6H, *p*-methyl). ¹³C NMR (100 MHz, CDCl₃) δ = 140.66, 139.30, 134.79, 130.52, 120.61, 119.04, 21.29 ppm. HR–MS calc. for [M–H]⁺ 317.1515, found 317.1511. Elemental analysis: calc. for C₁₈H₁₆N₆ C, 68.34; H, 5.10; N, 26.56; found C 68.29; H, 5.08; N, 26.59.

1,1'-Bis(*p*-tolyl)-4,4'-bis(1,2,3-triazolium) hexafluorophosphate. The synthesis of the titled compound was via the synthesis of its triflate salt,⁷ followed by exchange of the counter-ion.

¹ G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw, K. I. Goldberg, *Organometallics* **2010**, *29*, 2176-2179.

² D. G. Brown, N. Sanguantrakun, B. Schulze, U. S. Schubert, C. P. Berlinguette, J. Am. Chem. Soc. 2012, 134, 12354-12357.

³ A. A. Schilt, J. Am. Chem. Soc. **1960**, 82, 3000-3005.

⁴ H. E. Toma, M. S. Takasugi, J. Sol. Chem. **1983**, 12, 547-561.

⁵ F. F. Charron Jr., W. M. Reiff, Inorg. Chem. 1986, 25, 2786-2790.

⁶ J. T. Fletcher, B. J. Bumgarner, N. D. Engels, D. A. Skoglund, Organometallics 2008, 27, 5430-5433.

⁷ G. Guisado-Barrios, J. Bouffard, B. Donnadieu, G. Bertrand, *Organometallics* **2011**, *30*, 6017-6021.

1,1'-Bis(*p*-tolyl)-4,4'-bis(1,2,3-triazole) (547 mg, 1.73 mmol) was suspended in 1,2-dichloroethane (20 mL) under nitrogen and the mixture was cooled down to -78° C. Methyl trifluoromethansulfonate (433 µL, 3.9 mmol) was then added dropwise using a syringe and the mixture was gradually warmed to room temperature. The solution was heated at 100°C for 48 hrs, cooled down, and the solvent was removed by evaporation. Diethyl ether was added to the residual and the precipitates were collected by filtration and washed with some more diethyl ether. After brief drying, the solid was dissolved in minimum amount of dry acetone and precipitated with tetra(*n*-butyl)ammonium bromide. The obtained bromide salt was then filtered, washed with acetone and dissolved in distilled water (10 mL). Excess of ammonium hexafluorophosphate was added and the precipitated was collected by filtration, washed with water and dried under vacuum to yield the product as pale powder (935 mg, 85%). ¹H NMR (400 MHz, CD₃CN) δ = 9.27 (s, 2H, triazolium), 7.85 (d, *J*=12 Hz, 4H, tolyl), 7.60 (d, *J*=12 Hz, 4H, tolyl), 4.42 (s, 6H, *p*-methyl), 2.51 ppm (s, 6H, 3,3'-methyl). ¹³C NMR (100 MHz, CD₃CN) δ = 144.94, 133.28, 132.15, 132.09, 127.88, 122.86, 41.06, 21.41 ppm. HR–MS calc. for [C₂₀H₂₂N₆–PF₆]⁺ 491.1542, found 491.1542. Elemental analysis: calc. for C₂₀H₂₂F₁₂N₆P₂ C, 37.75; H, 3.48; N, 13.21; found C 37.95; H, 3.58; N, 13.11.

Bis(1,1'-bis(p-tolyl)-4,4'-bis(1,2,3-triazol-5-ylidene))(2,2'-bipyridine)iron(II) hexafluorophos**phate** (Complex 1). 1,1'-Bis(p-tolyl)-4,4'-bis(1,2,3-triazolium) hexafluorophosphate (127 mg, 0.2 mmol) and Fe(bpy)Cl₂ (26 mg, 0.092 mmol) were dried in a 100-mL Schlenk tube under vacuum. Anhydrous THF (25 mL) was charged inside under nitrogen and the mixture was cooled down to -78°C. Potassium tert-butoxide (0.6 mL, 1 M in THF, 0.6 mmol) was added using a syringe, after which the mixture was warmed to room temperature and stirred overnight. The precipitates were collected and washed with THF to give analytically pure product as dark green powder (49 mg, 45% based on Fe(bpy)Cl₂). ¹H NMR (400 MHz, CD₃CN) δ = 7.92 (d, J=4 Hz, 2H, bpy), 7.40 (t, J=8 Hz, 2H, bpy), 7.23 (d, J=8 Hz, 4H, tolyl), 7.11 (d, J=8 Hz, 2H, bpy), 7.00 (d, J=8 Hz, 4H, tolyl), 6.83 (t, J=6 Hz, 2H, bpy), 6.66 (d, J=8 Hz, 4H, tolyl), 6.22 (d, J=8 Hz, 4H, tolyl), 4,42 (s, 6H, 3,3'-methyl), 4.12 (s, 6H, 3.3'-methyl), 2.35 (s, 6H, *p*-methyl), 2.20 ppm (s, 6H, *p*-methyl). ¹³C NMR (100 MHz, CD₃CN) δ = 202.61, 199.20, 158.34, 154.67, 141.69, 141.40, 140.74, 140.64, 136.84, 135.68, 134.52, 129.92, 129.80, 126.50, 125.73, 125.51, 122.21, 40.39, 39.65, 21.06, 20.98 ppm. HR-MS calc. for $[1-(PF_6)]^+$ 1045.3209, found 1045.3178. Elemental analysis: calc. for 1 (C₅₀H₄₈F₁₂FeN₁₄P₂) C, 50.43; H, 4.06; N, 16.47; found C, 49.99; H, 4.02; N, 16.30. Materials for growing X-ray-quality crystals were based on the bromide salt (1Br), which was prepared as below. The complex was dissolved in minimum amount of dry acetone and precipitated with tetra(n-butyl) ammonium bromide. The obtained bromide salt was then filtered and washed with acetone. Single crystals suitable for X-ray crystallography was grown by slow diffusion of diethyl ether to the methanol solution of **1Br**.

Figure S2 ¹H NMR of 1,1'-bis(*p*-tolyl)-4,4'-bis(1,2,3-triazole) in CDCl₃.

Figure S3 ¹H NMR of 1,1'-bis(*p*-tolyl)-4,4'-bis(1,2,3-triazolium) hexafluorophosphate in CD₃CN.

Figure S4 ¹³C NMR of 1,1'-bis(*p*-tolyl)-4,4'-bis(1,2,3-triazolium) hexafluorophosphate in CD₃CN.

Figure S6¹³C NMR of complex **1** in CD₃CN.

Figure S8 HMQC and assignment of the 13 C NMR of complex 1 in CD₃CN.

Figure S9 HMBC and assignment of the ¹³C NMR of complex 1 in CD₃CN.

Figure S10 Comparison of the ¹H NMR spectra of $[Fe(bpy)_3]^{2+}$, complex 1 and 2 in CD₃CN.

2. Crystallographic data of complex 1

Intensity data for complex **1** was collected at 293 K with an Oxford Diffraction XcaliburTM 3 system using ω -scans and Mo-K α radiation ($\Lambda = 0.71073$ Å).⁸ CCD data were extracted and integrated and corrected for absorptions using a multi-scan method using Crysalis RED.⁹ The structure was solved by charge flipping and refined by full-matrix least-squares calculations on F² using JANA2006.¹⁰ Non-H atoms were refined with anisotropic displacement parameters. Hydrogen atoms were constrained to parent sites, using a riding model. The crystallographic data is available in CIF format, and can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif with the CCDC reference number 1018263.

The crystals were extremely thin plates that scatter only to limited resolution. To keep the ratio between data and parameters reasonable, all rings were treated as molecular fragments (four triazolylidene rings, four tolyl rings and two pyridyl rings). Hydrogen positions were fixed in a riding model. After refinement, a clearly defined residual density was identified well away from the main complex. This residual consisted of a double peak and when modelled as a pair of carbon atoms, it refined to ca 50% and 67% occupancy. The most probable explanation, given the solvent used, is a partially occupied methanol molecule. The ¹H NMR experiment (Figure S8) indicates the veracity of this conclusion.

Crystal data for **1Br**: $C_{50}H_{48}Br_2FeN_{14}$ •(CH₃OH)_{0.5}, M = 1074.69, orthorhombic, space group = Pbca (#61), a = 22.9329(16) Å, b = 19.472(3) Å, c = 23.180(2) Å, V = 10351.02(197) Å³, Z = 8, density (calc.) = 1.379 g/cm³, independent reflections = 5352 (*R*int = 0.105), GOF = 1.39. The final *R*1 factor was 0.0724 (I>2\sigma(I)) (w*R*2 = 0.1473).

Figure S11 ¹H NMR of the crystals of **1Br** in CD₃CN.

⁸ Crysalis CCD, Oxford Diffraction Ltd. Abingdon, Oxfordshire, UK, 2005.

⁹ Crysalis RED, Oxford Diffraction Ltd. Abingdon, Oxfordshire, UK, 2005.

¹⁰ Petricek, V., Dusek, M. & Palatinus, L. Jana2006, Structure Determination Software Programs (Institute of Physics, Praha, Czech Republic, 2006).

3. Cyclic voltammetry, differential pulse voltammetry and spectroelectrochemistry

All samples were dissolved in CH₃CN (Merck, spectroscopic grade, dried with 3 Å molecular sieves) with *n*-Bu₄NPF₆ (Fluka, electrochemical grade, vacuum dried at 383 K) as supporting electrolyte (0.1 M). All solutions were de-aerated by bubbling with solvent-saturated nitrogen and kept under nitrogen atmosphere during measurements.

Cyclic voltammetry (CV, scan rate 0.1 V/s) and differential pulse voltammetry (DPV, scan rate 0.05 V/s) were performed in a three-electrode, three-compartment cell controlled by an Autolab potentiostat (PGSTAT 302) with a GPES electrochemical interface (Eco Chemie). The cell was equipped with a glassy carbon disk working electrode (diam. 1 mm, CH Instruments), a glassy carbon rod auxiliary electrode, and a non-aqueous Ag⁺/Ag reference electrode (CH Instruments, 0.010 M AgNO₃ in acetonitrile) with a potential of -0.08 V vs. the ferrocenium/ferrocene (Fc⁺/Fc) couple in acetonitrile as an external standard. Potential values for reversible processes reported in this work were calculated as the average of the oxidative and reductive peak potentials in CV ($E_{1/2}=(E_{p,a} + E_{p,c})/2$), while those for the irreversible reduction processes of complex **1** were reported as the average of the oxidative and reductive peak potentials in DPV.

Spectroelectrochemistry was recorded on an 8453 UV-Vis diode array spectrophotometer (Agilent Technologies). The custom-built three-electrode, three-compartment quartz cell with an optical path length of 1 mm was equipped with a Pt mesh working electrode and the same reference and auxiliary electrodes as described for cyclic voltammetry. Multiple spectra were recorded in the course of controlled potential electrolysis that generated the desired redox states of complex 1. The spectra obtained after exhaustive electrolysis were used for generating simulated differential absorption spectra.

Figure S12 DPV of complex 1 in CD₃CN.

4. Solvatochromism of complex 2

Figure S13 Solvatochromism of complex **2**.

5. Femtosecond transient absorption spectroscopy

The femtosecond laser setup is based on a MaiTai seeded Spitfire Pro XP amplifier (Spectra Physics) with central output wavelength of 795 nm and 1 kHz repetition rate delivering ~ 60 fs pulses. The beam was split into two parts: one for pumping a collinear optical parametric amplifier (TOPAS-C, Light Conversion) to generate the pump beam, while the second part was led through a computer-controlled delay line and used to generate the white-light continuum (WLC) probe. To generate the WLC the laser light was focused either into a 2-mm sapphire plate to probe the red part of transient spectra, or into a 3-mm CaF₂ translating optical window to probe in the blue-most tail of the transient spectra. Subsequently, the probe pulses were split into two parts: the former overlapping with the pump pulse in the sample volume and the latter serving as a reference. The probe and the reference beams were then brought to the slit of a spectrograph and dispersed onto a double photodiode array, each with 512 elements (Pascher Instruments). The intensity of excitation pulses was kept below 6.3×10¹⁵ photons pulse⁻¹·cm⁻². Absorption spectra were measured before and after experiments to check for possible sample degradation. For complex 1, degradation did not exceed 5% in any case (Figure S9). For complex 2, photobleaching was observed after staying in the laser beam for 15 min and is illustrated by the comparison of the absorption spectra (Figure S10). The mutual polarization between pump and probe beams was set to the magic angle (54.7°) by placing Berek compensator in the pump beam. To correct for the Group Velocity Dispersion (GVD) of the probe light, the cross-phase modulation signal was measured for the neat solvent of each sample under identical experimental conditions, and used to correct the data.

Singular value decomposition and global analysis^{11,12,13} of the transient spectra were performed according to literature procedures. To avoid any influence of the pump-probe cross-phase modulation on the analysis, the analysis was restricted to the spectra recorded at time delays greater than 0.5 ps.

Figure S14 Steady-state UV–vis absorption spectra of complex **1** excited at 615 nm and probed in either blue (left, 340–550 nm) or red (right, 550–760 nm) window.

¹¹ I. H.M. van Stokkum, D. S. Larsen, R. van Grondelle, *Biochim. Biophys. Acta* 2004, 1657, 82-104.

¹² W. Gawelda, A. Cannizzo, V.-T. Pham, F. van Mourik, Ch. Bressler, M. Chergui, J. Am. Chem. Soc. **2007**, 129, 8199-8206.

¹³ C. Consani, M. Prémont-Schwarz, A. ElNahhas, Ch. Bressler, F. van Mourik, A. Cannizzo, M. Chergui, *Angew. Chem.* **2009**, *121*, 7320-7323; *Angew. Chem. Int. Ed.* **2009**, *48*, 7184-7187.

Figure S15 Steady-state UV–vis absorption spectra of complex **2** excited at 705 nm, before the TA measurement (black), right after the measurement without shaking the cuvette (orange) and after shaking the cuvette (homogenization, light green)

Figure S 16 2D TA plots (left: data; middle: global fit; right: residual) of complexes 1 (up) and 2 (down).

Figure S17 Kinetic fitting at single wavelengths for complexes 1 (left) and 2 (right). The star spots represent the original kinetic data points and the solid lines are the fitting curves.

Figure S18 TA spectra of 1Br in MeOH excited at 527 nm.

Figure S19 SVD analysis of the TA spectra of **1Br** in MeOH illustrated in Figure S18. The overall spectral evolution can be described by two major vectors. Kinetic fitting of these vectors delivered three time constants of 0.8, 4.3 and 10.6 ps. The results are similar with those for **1** in MeCN shown in Figure 5 (a) in the main text.

Figure S20 Global analysis of the TA spectra of **1Br** in MeOH illustrated in Figure S18. Three components are required to describe the spectral evolution, with the time constants of 0.8, 4.2 and 9.3 ps, consistent with those obtained from SVD. The results are similar with those for **1** in MeCN shown in Figure 6 (a) & (b) in the main text.

6. DFT and TD-DFT calculations

LUMO+21

Fully optimized geometries of the ground state (GS), ³MLCT, ³MC and ⁵MC were performed using the Gaussian09 program,¹⁴ using the 6-311G(d.p) basis set, the PBE0¹⁵¹⁶¹⁷ hybrid functional, and a polarizable continuum model (PCM) description of an acetonitrile solvent environment. No symmetry was imposed in the optimization of the structures and frequency calculations were empolyed to confirm all optimized geometries are local minima. Ground state properties have been calculated using the spin-restricted singlet formalism, while spin-unrestricted DFT (uDFT) calculations have been performed for the lowest triplet and quintet state calculations. The time-dependent formulation of DFT (TD-DFT) was used to probe the absorption properties of the complexes.

 Image: Lumo+23
 Lumo+22

Table S1 Relevant PBE0/6-311G(d,p)/PCM(acetonitrile) calculated HOMOs and LUMOs of complex 1.

LUMO+17

LUMO+20

LUMO+16

¹⁴ Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A.

D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, revision C.01. 2009.

¹⁵ Adamo, C.; Barone, V., Toward reliable density functional methods without adjustable parameters: The PBE0 model. *The Journal of Chemical Physics* **1999**, *110*, 6158-6170.

¹⁶ Perdew, J. P.; Burke, K.; Ernzerhof, M., Generalized Gradient Approximation Made Simple. *Phys. Rev. Lett.* **1996**, 77, 3865-3868.

¹⁷ Perdew, J. P.; Burke, K.; Ernzerhof, M., Generalized Gradient Approximation Made Simple [*Phys. Rev. Lett.* **1996**, 77, 3865]. *Phys. Rev. Lett.* **1997**, 78, 1396-1396.

Excitation	Energy (eV)	Wavelength (nm)	Oscillator Strength (f)		Tı	ransitions		Туре
				HOMO	\rightarrow	LUMO	0.59848	
				HOMO	\rightarrow	LUMO+1	0.10864	
1	2 1 9 2 0	567 72	0.0002	HOMO	\rightarrow	LUMO+3	0.13793	МІСТ
1	2.1659	307.75	0.0005	HOMO	\rightarrow	LUMO+16	-0.18592	MILC I
				HOMO	\rightarrow	LUMO+21	0.11208	
				HOMO	\rightarrow	LUMO+23	0.12806	
				HOMO-2	\rightarrow	LUMO	0.43103	
				HOMO-2	\rightarrow	LUMO+3	0.11027	
				HOMO-2	\rightarrow	LUMO+16	-0.17356	
			0.0034	HOMO-2	\rightarrow	LUMO+21	0.11935	
r	2 1 1 2 6	507 50		HOMO-2	\rightarrow	LUMO+23	0.13229	МІСТ
2	2.4420	507.59		HOMO	\rightarrow	LUMO	0.2762	WILC I
				HOMO	\rightarrow	LUMO+7	0.10592	
				HOMO	\rightarrow	LUMO+16	0.20171	
				HOMO	\rightarrow	LUMO+21	-0.15547	
				HOMO	\rightarrow	LUMO+23	-0.16503	
				HOMO-2	\rightarrow	LUMO	0.5228	
				HOMO-2	\rightarrow	LUMO+16	0.11335	
				HOMO-2	\rightarrow	LUMO+21	-0.10903	
				HOMO-2	\rightarrow	LUMO+23	-0.11151	
3	2.6042	476.09	0.0002	HOMO	\rightarrow	LUMO	-0.17348	MLCT
				HOMO	\rightarrow	LUMO+7	-0.10718	
				HOMO	\rightarrow	LUMO+16	-0.1911	
				HOMO	\rightarrow	LUMO+21	0.13599	
				HOMO	\rightarrow	LUMO+23	0.14576	
				HOMO-1	\rightarrow	LUMO	0.41302	
				HOMO-1	\rightarrow	LUMO+16	-0.19206	
4	2 6197	172 15	0.0107	HOMO-1	\rightarrow	LUMO+21	0.13915	МІСТ
4	2.0187	4/3.43	0.0197	HOMO-1	\rightarrow	LUMO+23	0.15013	MILC I
				HOMO	\rightarrow	LUMO+20	-0.25745	
				HOMO	\rightarrow	LUMO+22	-0.28781	
				HOMO-2	\rightarrow	LUMO+16	-0.15796	
5	2 7516	150 6	0.0252	HOMO-2	\rightarrow	LUMO+21	0.12649	MLCT
3	2.7516	450.6	0.0252	HOMO-2	\rightarrow	LUMO+23	0.13276	
				HOMO-1	\rightarrow	LUMO+22	-0.10933	

Table S2 List of calculated transitions from GS singlet to excited states singlets of complex 1 using DFT, PBE0|6-311G(d,p)|PCM(acetonitrile).

				HOMO	\rightarrow	LUMO	-0.12984	
				HOMO	\rightarrow	LUMO+1	0.60141	
				HOMO-2	\rightarrow	LUMO+20	0.1297	
				HOMO-2	\rightarrow	LUMO+22	0.14934	
				HOMO-1	\rightarrow	LUMO	0.53558	
C	2 7576	110 6	0.0271	HOMO-1	\rightarrow	LUMO+16	0.14125	МІСТ
0	2.7370	449.0	0.0271	HOMO-1	\rightarrow	LUMO+21	-0.10463	MLC I
				HOMO-1	\rightarrow	LUMO+23	-0.11226	
				HOMO	\rightarrow	LUMO+20	0.17741	
				HOMO	\rightarrow	LUMO+22	0.20213	
				HOMO-2	\rightarrow	LUMO+7	0.1236	
				HOMO-2	\rightarrow	LUMO+16	0.24233	
				HOMO-2	\rightarrow	LUMO+21	-0.19296	
				HOMO-2	\rightarrow	LUMO+23	-0.20337	
7	2.7737	447	0.0067	HOMO-1	\rightarrow	LUMO+20	0.22567	MLC1/
				HOMO-1	\rightarrow	LUMO+22	0.25575	MC
				HOMO	\rightarrow	LUMO+1	0.33626	
				HOMO	\rightarrow	LUMO+16	0.13089	
				HOMO	\rightarrow	LUMO+23	-0.10171	
8	2.8587	433.71	0.0154	HOMO	\rightarrow	LUMO+2	0.69658	MLCT
9	2.9993	413.37	0.0024	HOMO-1	\rightarrow	LUMO+1	0.69701	MLCT
10	2 012	411.64	0.0102	HOMO-2	\rightarrow	LUMO	-0.11649	МІСТ
10	5.012	411.04	0.0102	HOMO-2	\rightarrow	LUMO+1	0.69317	MILC I
11	3.1053	399.27	0.0088	HOMO-1	\rightarrow	LUMO+2	0.70127	MLCT
12	3.1167	397.81	0.0004	HOMO-2	\rightarrow	LUMO+2	0.70283	MLCT
				HOMO-1	\rightarrow	LUMO+4	-0.1061	
				HOMO-1	\rightarrow	LUMO+20	0.2226	
13	3.2338	383.4	0.0025	HOMO-1	\rightarrow	LUMO+22	0.25187	MLC1/
				HOMO	\rightarrow	LUMO	-0.11043	MC
				HOMO	\rightarrow	LUMO+3	0.53748	
				HOMO-2	\rightarrow	LUMO+16	0.11484	
				HOMO-1	\rightarrow	LUMO+4	0.22514	
				HOMO-1	\rightarrow	LUMO+13	-0.11768	
15	2 2551	260 54	0.0017	HOMO-1	\rightarrow	LUMO+20	-0.22413	МІСТ
15	5.5551	509.54	0.0017	HOMO-1	\rightarrow	LUMO+22	-0.25355	MILC I
				HOMO	\rightarrow	LUMO+3	0.40476	
				HOMO	\rightarrow	LUMO+7	0.16488	
				HOMO	\rightarrow	LUMO+16	0.17885	
16	3 3750	367 34	0.0250	HOMO-2	\rightarrow	LUMO+20	0.13731	МІСТ
10	5.5752	507.54	0.0239	HOMO-2	\rightarrow	LUMO+22	0.15295	WILC I

				HOMO-1	\rightarrow	LUMO	-0.10802		
				HOMO-1	\rightarrow	LUMO+3	0.16832		
				НОМО	\rightarrow	LUMO+5	0.54959		
				HOMO	\rightarrow	LUMO+8	0.19767		
				HOMO	\rightarrow	LUMO+13	0.10008		
				НОМО	\rightarrow	LUMO+15	0.17669		
				HOMO-2	\rightarrow	LUMO+4	0.14301		
				HOMO-2	\rightarrow	LUMO+5	0.23438		
				HOMO-2	\rightarrow	LUMO+20	0.14805		
				HOMO-2	\rightarrow	LUMO+22	0.16947		
17	2 5052	252 71	0.0004	HOMO-1	\rightarrow	LUMO+3	0.30466		
1/	3.5052	353.71	0.0094	HOMO-1	\rightarrow	LUMO+6	-0.12896	MLCT	
				НОМО	\rightarrow	LUMO+4	0.35235		
				НОМО	\rightarrow	LUMO+5	-0.20719		
				НОМО	\rightarrow	LUMO+20	-0.11322		
				НОМО	\rightarrow	LUMO+22	-0.12565		
				HOMO-2	\rightarrow	LUMO	-0.11129		
18	3.5504	349.22	0.0034	HOMO-2	\rightarrow	LUMO+3	0.66877	MLCT	
				HOMO-2	\rightarrow	LUMO+6	-0.11629		
				HOMO-1	\rightarrow	LUMO+4	-0.12297		
10		244.42	0.0166	HOMO-1	\rightarrow	LUMO+5	-0.15679		
19	3.5998	344.42	0.0166	НОМО	\rightarrow	LUMO+3	0.10888	MLCI	
				НОМО	\rightarrow	LUMO+6	0.64532		
				HOMO-2	\rightarrow	LUMO+4	-0.16552		
				HOMO-2	\rightarrow	LUMO+5	0.16001		
20	3.6241	342.11	0.0206	HOMO-2	\rightarrow	LUMO+8	0.10803	MLCT	
				HOMO-1	\rightarrow	LUMO+3	0.51342		
				НОМО	\rightarrow	LUMO+4	-0.32711		
				HOMO-1	\rightarrow	LUMO+4	0.26048		
21	3.6656	338.24	0.0297	HOMO-1	\rightarrow	LUMO+5	0.59358	MLCT	
				НОМО	\rightarrow	LUMO+6	0.19854		
				HOMO-2	\rightarrow	LUMO+4	0.45107		
				HOMO-2	\rightarrow	LUMO+5	0.38599		
				HOMO-2	\rightarrow	LUMO+13	-0.11616		
22	3.6842	336.53	0.0465	НОМО	\rightarrow	LUMO+4	-0.15719	MLCT	
				HOMO	\rightarrow	LUMO+5	0.1968		
				НОМО	\rightarrow	LUMO+8	-0.15651		
				HOMO	\rightarrow	LUMO+15	-0.10674		
	2 7174	222.52	0.0007	HOMO-2	\rightarrow	LUMO+4	-0.19676	MC/	
23	5./1/4	333.32	0.0006	HOMO-2	\rightarrow	LUMO+5	0.31614	MLCT	
				-					

				HOMO-2	\rightarrow	LUMO+20	0.2171	
				HOMO-2	\rightarrow	LUMO+22	0.24241	
				HOMO-1	\rightarrow	LUMO+3	-0.23074	
				HOMO-1	\rightarrow	LUMO+7	-0.17666	
				HOMO-1	\rightarrow	LUMO+16	-0.16963	
				НОМО	\rightarrow	LUMO+4	-0.16439	
				HOMO	\rightarrow	LUMO+5	-0.18932	
				HOMO	\rightarrow	LUMO+8	0.15836	
				HOMO-2	\rightarrow	LUMO+6	0.1274	
				HOMO-1	\rightarrow	LUMO+4	0.50651	
				HOMO-1	\rightarrow	LUMO+5	-0.18689	
				HOMO-1	\rightarrow	LUMO+8	-0.19736	
24	3.7636	329.43	0.0032	HOMO-1	\rightarrow	LUMO+13	-0.16748	MLCT
				HOMO-1	\rightarrow	LUMO+15	-0.10973	
				HOMO-1	\rightarrow	LUMO+20	0.11016	
				HOMO-1	\rightarrow	LUMO+22	0.11526	
				HOMO	\rightarrow	LUMO+7	-0.19524	
				HOMO-2	\rightarrow	LUMO+4	0.31547	
				HOMO-2	\rightarrow	LUMO+5	-0.14281	
				HOMO-1	\rightarrow	LUMO+3	0.11726	
				HOMO-1	\rightarrow	LUMO+6	0.38558	
25	3.7991	326.35	0.0014	HOMO	\rightarrow	LUMO+5	-0.15916	MLCT
				HOMO	\rightarrow	LUMO+8	0.28318	
				HOMO	\rightarrow	LUMO+9	-0.13999	
				HOMO	\rightarrow	LUMO+15	0.15059	
				HOMO	\rightarrow	LUMO+22	0.1036	
26	3 8735	320.08	0.0086	HOMO-2	\rightarrow	LUMO+6	0.63792	МІ СТ
20	5.0755	520.08	0.0080	HOMO	\rightarrow	LUMO+7	0.17288	WILC I
				HOMO-3	\rightarrow	LUMO	0.14973	
				HOMO-2	\rightarrow	LUMO+4	-0.22796	
				HOMO-2	\rightarrow	LUMO+5	0.17164	
27	3 9203	316.27	0.0034	HOMO-1	\rightarrow	LUMO+6	0.50985	МІСТ
27	5.7205	510.27	0.0054	HOMO-1	\rightarrow	LUMO+7	0.11874	WILC I
				HOMO-1	\rightarrow	LUMO+16	0.10951	
				HOMO	\rightarrow	LUMO+4	0.14897	
				HOMO	\rightarrow	LUMO+8	-0.10789	
				HOMO-2	\rightarrow	LUMO+6	-0.10395	
29	3 9937	310.45	0.0002	HOMO-1	\rightarrow	LUMO+4	0.21128	MLCT/
	3.9937			HOMO-1	\rightarrow	LUMO+5	-0.14625	MC
				HOMO-1	\rightarrow	LUMO+8	0.17054	

				HOMO-1	\rightarrow	LUMO+9	-0.1012		
				HOMO-1	\rightarrow	LUMO+15	0.12694		
				HOMO-1	\rightarrow	LUMO+22	0.1057		
				НОМО	\rightarrow	LUMO+7	0.49801		
				НОМО	\rightarrow	LUMO+21	0.14702		
				НОМО	\rightarrow	LUMO+23	0.12772		
30	4.0005	309.92	0.0103	HOMO-3	\rightarrow	LUMO	0.68016	MLCT	
				HOMO-1	\rightarrow	LUMO+4	0.10959		
				HOMO-1	\rightarrow	LUMO+5	-0.15664		
				HOMO-1	\rightarrow	LUMO+8	0.45392		
31	4.0523	305.96	0.0118	HOMO-1	\rightarrow	LUMO+9	-0.19559	MLC1/	
				HOMO-1	\rightarrow	LUMO+13	0.14481	MC	
				HOMO-1	\rightarrow	LUMO+15	0.25059		
				HOMO	\rightarrow	LUMO+7	-0.26809		
20	4 1070	200.41	0.0002	HOMO	\rightarrow	LUMO+8	0.28125		
32	4.1272	300.41	0.0002	HOMO	\rightarrow	LUMO+9	0.63	MLC I	
				HOMO-3	\rightarrow	LUMO+1	0.13369		
				HOMO-2	\rightarrow	LUMO+8	0.36607		
				HOMO-2	\rightarrow	LUMO+9	-0.16351		
				HOMO-2	\rightarrow	LUMO+15	0.1534		
				HOMO-1	\rightarrow	LUMO+6	0.12006		
33	4.1819	296.48	0.0042	HOMO-1	\rightarrow	LUMO+7	-0.32904	MC	
				HOMO-1	\rightarrow	LUMO+21	-0.10704		
				HOMO	\rightarrow	LUMO+4	0.13439		
				HOMO	\rightarrow	LUMO+8	-0.13183		
				HOMO	\rightarrow	LUMO+11	-0.18844		
				HOMO	\rightarrow	LUMO+13	0.20261		
				HOMO	\rightarrow	LUMO+7	0.10316		
34	4.203	294.99	0.001	HOMO	\rightarrow	LUMO+10	0.67129	MLCT	
				НОМО	\rightarrow	LUMO+12	0.13569		
				HOMO-3	\rightarrow	LUMO+1	0.61867		
35	4 2216	293 69	0 1293	HOMO-1	\rightarrow	LUMO+6	-0.10286	МІ СТ	
55	4.2210	275.07	0.1275	HOMO-1	\rightarrow	LUMO+7	0.13807	MILC I	
				HOMO	\rightarrow	LUMO+11	-0.1454		
				HOMO-2	\rightarrow	LUMO+7	0.62651		
36	4.2474	291.91	0.0037	HOMO-2	\rightarrow	LUMO+21	0.1733	MLCT	
				HOMO-2	\rightarrow	LUMO+23	0.14203		
				HOMO-3	\rightarrow	LUMO+1	0.21545		
37	4.2558	291.33	0.0265	HOMO-1	\rightarrow	LUMO+7	-0.14481	MLCT	
57			0.0200	HOMO	\rightarrow	LUMO+11	0.61197		

				HOMO	\rightarrow	LUMO+13	-0.11553	
20	4 2170	297.10	0.0144	НОМО	\rightarrow	LUMO+10	-0.15252	MLCT
38	4.3172	287.19	0.0144	НОМО	\rightarrow	LUMO+12	0.66779	MLCI
				HOMO-1	\rightarrow	LUMO+7	0.29422	
				HOMO-1	\rightarrow	LUMO+21	0.10119	
				НОМО	\rightarrow	LUMO+8	-0.26353	
39	4.3314	286.24	0.0035	НОМО	\rightarrow	LUMO+9	0.11358	MLC17
				НОМО	\rightarrow	LUMO+11	0.22367	MC
				НОМО	\rightarrow	LUMO+13	0.40488	
				НОМО	\rightarrow	LUMO+15	0.20426	
40	4 2421	295 54	0 1015	HOMO-4	\rightarrow	LUMO	-0.33802	MICT
40	4.3421	283.34	0.1915	HOMO-3	\rightarrow	LUMO+2	0.57725	MILC I
				HOMO-9	\rightarrow	LUMO	-0.10845	
4.1	4 2409	285.04	0.0061	HOMO-5	\rightarrow	LUMO	0.1413	LC
41	4.3498	283.04	0.0901	HOMO-4	\rightarrow	LUMO	0.56823	LC
				HOMO-3	\rightarrow	LUMO+2	0.33772	
				HOMO-2	\rightarrow	LUMO+8	0.36619	
				HOMO-2	\rightarrow	LUMO+9	-0.16763	
				HOMO-1	\rightarrow	LUMO+7	0.361	
42	4.3796	283.1	0.0007	HOMO-1	\rightarrow	LUMO+16	-0.11387	MLC1/
				HOMO	\rightarrow	LUMO+8	0.17999	MC
				HOMO	\rightarrow	LUMO+13	-0.18866	
				HOMO	\rightarrow	LUMO+15	-0.21174	
44	1 1286	279 97	0.0008	HOMO-1	\rightarrow	LUMO+8	0.25195	МІСТ
++	4.4200	219.91	0.0000	HOMO-1	\rightarrow	LUMO+9	0.63496	WILC I
45	1 1177	278 76	0.0432	HOMO-5	\rightarrow	LUMO	0.67384	IC
43	4.4477	278.70	0.0452	HOMO-4	\rightarrow	LUMO	-0.15055	
46	4 4645	277 71	0.0001	HOMO-8	\rightarrow	LUMO	-0.23023	IC
+0		277.71	0.0001	HOMO-6	\rightarrow	LUMO	0.65533	LC
47	4.4784	276.85	0.0071	HOMO	\rightarrow	LUMO+14	0.66756	MLCT
				HOMO-2	\rightarrow	LUMO+10	0.59522	
49	4.511	274.85	0.0011	HOMO-2	\rightarrow	LUMO+12	0.14482	MLCT
				HOMO-1	\rightarrow	LUMO+11	0.28169	
				HOMO-7	\rightarrow	LUMO	-0.17735	
				HOMO-2	\rightarrow	LUMO+10	-0.30291	
50	4.5154	274.58	0.0145	HOMO-1	\rightarrow	LUMO+9	0.10019	MLCT
				HOMO-1	\rightarrow	LUMO+11	0.54736	
				HOMO-1	\rightarrow	LUMO+13	-0.15783	
51	4 5448	272.8	0.0003	HOMO-4	\rightarrow	LUMO+2	-0.12733	MLCT
51	7.5770	272.0	0.0005	HOMO-2	\rightarrow	LUMO+4	-0.11191	

				НОМО-2	\rightarrow	LUMO+11	0.56892	
				HOMO-2	\rightarrow	LUMO+13	-0.29101	
				НОМО	\rightarrow	LUMO+15	0.15315	
				HOMO-6	\rightarrow	LUMO+2	-0.11627	
52	4.546	272.73	0.0636	HOMO-4	\rightarrow	LUMO+1	0.6525	MLCT
				HOMO-1	\rightarrow	LUMO+11	-0.10381	
				HOMO-7	\rightarrow	LUMO	0.57536	
				HOMO-7	\rightarrow	LUMO+1	0.11241	
53	4.5717	271.2	0.1794	HOMO-1	\rightarrow	LUMO+8	0.14212	LC
				HOMO-1	\rightarrow	LUMO+11	0.13743	
				HOMO-1	\rightarrow	LUMO+13	-0.19737	
				HOMO-4	\rightarrow	LUMO+2	-0.21934	
				HOMO-2	\rightarrow	LUMO+8	0.12582	
				HOMO-2	\rightarrow	LUMO+11	-0.26928	
54	4.594	269.88	0.0072	HOMO-2	\rightarrow	LUMO+13	-0.13434	MLCT
				HOMO-1	\rightarrow	LUMO+12	0.28391	
				НОМО	\rightarrow	LUMO+13	-0.26393	
				НОМО	\rightarrow	LUMO+15	0.38241	
				HOMO-4	\rightarrow	LUMO+2	0.11453	
				HOMO-2	\rightarrow	LUMO+8	-0.12068	
55	4 6060	260.12	0.0044	HOMO-2	\rightarrow	LUMO+11	0.16641	МІСТ
55	4.0009	209.15	0.0044	HOMO-1	\rightarrow	LUMO+12	0.61722	WILC I
				НОМО	\rightarrow	LUMO+13	0.1022	
				НОМО	\rightarrow	LUMO+15	-0.10859	
				HOMO-7	\rightarrow	LUMO	-0.13257	
				HOMO-2	\rightarrow	LUMO+12	0.40433	
56	4 6195	268 15	0.0115	HOMO-1	\rightarrow	LUMO+8	0.22398	МІСТ
50	4.0185	208.43	0.0115	HOMO-1	\rightarrow	LUMO+11	-0.2073	WILC I
				HOMO-1	\rightarrow	LUMO+13	-0.38471	
				HOMO-1	\rightarrow	LUMO+15	-0.16317	
				HOMO-7	\rightarrow	LUMO	0.12771	
				HOMO-2	\rightarrow	LUMO+10	-0.14562	
				HOMO-2	\rightarrow	LUMO+12	0.53107	
57	4.6265	267.98	0.011	HOMO-1	\rightarrow	LUMO+8	-0.18031	MLCT
				HOMO-1	\rightarrow	LUMO+11	0.14981	
				HOMO-1	\rightarrow	LUMO+13	0.28132	
				HOMO-1	\rightarrow	LUMO+15	0.12734	
				HOMO-8	\rightarrow	LUMO+1	-0.20287	
58	4.6488	266.7	0.1171	HOMO-6	\rightarrow	LUMO+1	-0.33653	MLCT
				HOMO-5	\rightarrow	LUMO+2	0.14343	

				HOMO-4	\rightarrow	LUMO+2	0.48723	
				НОМО	\rightarrow	LUMO+13	-0.12694	
				HOMO	\rightarrow	LUMO+15	0.20333	
				HOMO-14	\rightarrow	LUMO	-0.18962	
				HOMO-12	\rightarrow	LUMO	-0.28313	
				HOMO-10	\rightarrow	LUMO	0.25807	
				HOMO-8	\rightarrow	LUMO	-0.2849	
50	4.6670	265 61	0.0142	HOMO-8	\rightarrow	LUMO+1	0.12119	LC
59	4.6679	265.61	0.0142	HOMO-6	\rightarrow	LUMO	-0.14465	LC
				HOMO-2	\rightarrow	LUMO+11	0.14802	
				HOMO-2	\rightarrow	LUMO+13	0.29945	
				HOMO	\rightarrow	LUMO+13	-0.13013	
				HOMO	\rightarrow	LUMO+15	0.12619	
				HOMO-12	\rightarrow	LUMO+1	0.13278	
				HOMO-8	\rightarrow	LUMO+1	0.57806	
61	4.729	262.18	0.1021	HOMO-5	\rightarrow	LUMO+2	0.21125	LC
				HOMO-4	\rightarrow	LUMO+2	0.10254	
				HOMO-3	\rightarrow	LUMO+3	-0.11399	
				HOMO-8	\rightarrow	LUMO+2	0.14773	
				HOMO-6	\rightarrow	LUMO+2	-0.27769	
62	1 7315	261.87	0.0457	HOMO-5	\rightarrow	LUMO+1	0.53255	IC
02	1.7515	201.07	0.0457	HOMO-2	\rightarrow	LUMO+14	0.14409	
				HOMO-1	\rightarrow	LUMO+13	0.10004	
				НОМО	\rightarrow	LUMO+16	-0.11836	
				HOMO-6	\rightarrow	LUMO+1	0.23117	
				HOMO-5	\rightarrow	LUMO+2	-0.14958	
63	4.7518	260.92	0.0014	HOMO-4	\rightarrow	LUMO+2	0.14673	MLCT
				HOMO-2	\rightarrow	LUMO+13	0.11882	
				HOMO-1	\rightarrow	LUMO+14	0.55946	
				HOMO-9	\rightarrow	LUMO+1	0.18007	
64	4.7584	260.56	0.0004	HOMO-8	\rightarrow	LUMO+2	-0.31339	MLCT
				HOMO-2	\rightarrow	LUMO+14	0.53832	
				HOMO-12	\rightarrow	LUMO	-0.12234	
				HOMO-10	\rightarrow	LUMO	-0.30269	
				HOMO-6	\rightarrow	LUMO+1	-0.27486	I C/
65	4.78	259.38	0.0001	HOMO-5	\rightarrow	LUMO+2	0.17499	MI CT
				HOMO-4	\rightarrow	LUMO+2	-0.20977	MILC I
				HOMO-3	\rightarrow	LUMO+3	0.34768	
				HOMO-1	\rightarrow	LUMO+14	0.28785	
66	4.7876	258.97	0.0079	HOMO-11	\rightarrow	LUMO	0.61842	LC

				HOMO-9	\rightarrow	LUMO	-0.12287	
				HOMO-9	\rightarrow	LUMO+1	-0.11548	
				HOMO-7	\rightarrow	LUMO+1	-0.20225	
				HOMO-2	\rightarrow	LUMO+14	0.13435	
				HOMO-12	\rightarrow	LUMO	0.21639	
				HOMO-10	\rightarrow	LUMO	0.4955	
				HOMO-8	\rightarrow	LUMO	0.2196	
				HOMO-6	\rightarrow	LUMO+1	-0.20376	
67	4.7908	258.8	0.0005	HOMO-5	\rightarrow	LUMO+2	0.10811	LC
				HOMO-4	\rightarrow	LUMO+2	-0.17496	
				HOMO-3	\rightarrow	LUMO+3	0.10523	
				HOMO-1	\rightarrow	LUMO+14	0.12442	
				HOMO	\rightarrow	LUMO+17	-0.13007	
				HOMO-11	\rightarrow	LUMO	-0.23767	
				HOMO-9	\rightarrow	LUMO+1	-0.24918	
				HOMO-8	\rightarrow	LUMO+2	0.25765	
69	4 7047	258 50	0.0027	HOMO-6	\rightarrow	LUMO+2	0.11239	LC/
08	4./94/	238.39	0.0037	HOMO-2	\rightarrow	LUMO+14	0.33101	MLCT
				HOMO	\rightarrow	LUMO+16	0.26782	
				HOMO	\rightarrow	LUMO+21	0.17001	
				HOMO	\rightarrow	LUMO+23	0.11992	
				HOMO-15	\rightarrow	LUMO	-0.12558	
				HOMO-14	\rightarrow	LUMO	-0.18225	
				HOMO-12	\rightarrow	LUMO	-0.33907	
69	4.8224	257.1	0.0264	HOMO-8	\rightarrow	LUMO	0.42036	LC
				HOMO-6	\rightarrow	LUMO	0.13256	
				HOMO-4	\rightarrow	LUMO+2	-0.12009	
				HOMO-3	\rightarrow	LUMO+3	-0.29674	
				HOMO-11	\rightarrow	LUMO	0.1384	
				HOMO-9	\rightarrow	LUMO+1	0.13736	
				HOMO-7	\rightarrow	LUMO	-0.11825	
				HOMO-7	\rightarrow	LUMO+1	0.45845	
70	4.8244	256.99	0.0487	HOMO-5	\rightarrow	LUMO+1	0.13471	LC/ MLCT
				HOMO-1	\rightarrow	LUMO+15	-0.18168	WILC I
				HOMO	\rightarrow	LUMO+16	0.28397	
				HOMO	\rightarrow	LUMO+21	0.184	
				HOMO	\rightarrow	LUMO+23	0.13085	
				HOMO-8	\rightarrow	LUMO+2	0.18393	
71	4.8389	256.22	0.0083	HOMO-7	\rightarrow	LUMO+1	0.35017	LU/ MI CT
				HOMO-6	\rightarrow	LUMO+2	0.12588	WILC I

				HOMO-1	\rightarrow	LUMO+8	-0.12651	
				HOMO-1	\rightarrow	LUMO+13	-0.20185	
				HOMO-1	\rightarrow	LUMO+15	0.39992	
				HOMO	\rightarrow	LUMO+16	-0.16891	
				HOMO	\rightarrow	LUMO+21	-0.11419	
				HOMO-14	\rightarrow	LUMO	-0.10094	
				HOMO-12	\rightarrow	LUMO	-0.18406	
				HOMO-12	\rightarrow	LUMO+1	0.15223	
				HOMO-8	\rightarrow	LUMO	0.17411	
70	4 0 4 4 1	255.05	0.0020	HOMO-6	\rightarrow	LUMO+1	0.18421	MLCT/
12	4.8441	255.95	0.0038	HOMO-5	\rightarrow	LUMO+2	-0.10482	LC
				HOMO-4	\rightarrow	LUMO+2	0.16582	
				HOMO-3	\rightarrow	LUMO+3	0.36728	
				HOMO-2	\rightarrow	LUMO+13	-0.13609	
				HOMO	\rightarrow	LUMO+17	-0.34022	
				HOMO-12	\rightarrow	LUMO+1	0.21193	
				HOMO-10	\rightarrow	LUMO	0.13419	
73	4.8552	255.36	0.006	HOMO-10	\rightarrow	LUMO+1	-0.12894	MLCT
				HOMO-3	\rightarrow	LUMO+3	0.22929	
				HOMO	\rightarrow	LUMO+17	0.54609	
				HOMO-9	\rightarrow	LUMO+1	0.20639	
				HOMO-8	\rightarrow	LUMO+2	0.35663	
				HOMO-6	\rightarrow	LUMO+2	0.22262	
74	1 9597	255.2	0.0003	HOMO-3	\rightarrow	LUMO+2	-0.11857	LC/
74	4.0302	233.2	0.0003	HOMO-1	\rightarrow	LUMO+13	0.20448	MLCT
				HOMO-1	\rightarrow	LUMO+15	-0.29968	
				HOMO	\rightarrow	LUMO+16	-0.18509	
				HOMO	\rightarrow	LUMO+21	-0.11493	
				HOMO-14	\rightarrow	LUMO+1	0.17607	
				HOMO-12	\rightarrow	LUMO+1	0.43526	
				HOMO-10	\rightarrow	LUMO+1	-0.26686	
				HOMO-8	\rightarrow	LUMO	-0.11246	
75	4.8663	254.78	0.0034	HOMO-8	\rightarrow	LUMO+1	-0.17893	LC
				HOMO-6	\rightarrow	LUMO+1	-0.12879	
				HOMO-4	\rightarrow	LUMO+2	-0.10526	
				HOMO-3	\rightarrow	LUMO+3	-0.20098	
				HOMO	\rightarrow	LUMO+17	-0.14468	
				HOMO-9	\rightarrow	LUMO	0.10772	
76	4.8814	253.99	0.1363	HOMO-9	\rightarrow	LUMO+1	0.50696	LC
				HOMO-8	\rightarrow	LUMO+2	0.11186	

				HOMO-7	\rightarrow	LUMO+1	-0.23523	
				HOMO-5	\rightarrow	LUMO+1	0.1419	
				HOMO-1	\rightarrow	LUMO+13	-0.11869	
				HOMO-1	\rightarrow	LUMO+15	0.18605	
				HOMO	\rightarrow	LUMO+16	0.13201	
				HOMO-11	\rightarrow	LUMO	0.16304	
77	4 9086	252 58	0.0128	HOMO-9	\rightarrow	LUMO	0.63793	IC
11	4.9080	232.38	0.0128	HOMO-7	\rightarrow	LUMO+1	0.11332	
				HOMO-4	\rightarrow	LUMO	0.14142	
				HOMO-9	\rightarrow	LUMO+2	0.24713	
				HOMO-7	\rightarrow	LUMO+2	0.42669	LC
70	4.0191	252 1	0.0072	HOMO-5	\rightarrow	LUMO+2	0.16533	
/8	4.9181	232.1	0.0075	HOMO-2	\rightarrow	LUMO+13	-0.12068	
				HOMO-2	\rightarrow	LUMO+15	0.36008	
				HOMO-1	\rightarrow	LUMO+16	-0.13481	
				HOMO-14	\rightarrow	LUMO+2	0.2175	
				HOMO-12	\rightarrow	LUMO+2	0.45492	
				HOMO-10	\rightarrow	LUMO+2	-0.27399	
79	4.928	251.59	0.0016	HOMO-9	\rightarrow	LUMO+1	0.14369	LC
				HOMO-6	\rightarrow	LUMO+2	-0.22927	
				HOMO-5	\rightarrow	LUMO+1	-0.13062	
				HOMO-3	\rightarrow	LUMO+4	-0.14411	
				HOMO-9	\rightarrow	LUMO+2	-0.13204	
				HOMO-7	\rightarrow	LUMO+2	-0.37792	
				HOMO-5	\rightarrow	LUMO+2	-0.13272	
80	4.9284	251.57	0.0038	HOMO-2	\rightarrow	LUMO+13	-0.13167	MLC1/
				HOMO-2	\rightarrow	LUMO+15	0.42569	LC
				HOMO-1	\rightarrow	LUMO+16	-0.1763	
				HOMO	\rightarrow	LUMO+17	0.1274	

Table S3 PBE0|6-311G(d,p)|PCM(acetonitrile) spin density on Fe transitioning from MLCT triplets and quintets on the left to MC states on the right. The geometries used for these values are named across the top and calculated values of spin on Fe center.

		GS		³ MLCT			· · · · ·	³ MC		⁵ MC		
	х	у	z	х	у	z	х	У	z	х	У	Z
С	2.175	-0.981	1.637	2.173	-0.948	1.663	2.048	-1.241	1.621	2.356	-0.870	1.692
С	1.905	-0.020	0.653	1.914	0.001	0.675	1.840	-0.168	0.745	2.158	0.093	0.702
Ν	3.410	-0.751	2.140	3.401	-0.702	2.176	3.312	-1.160	2.103	3.497	-0.561	2.368
Ν	3.971	0.279	1.564	3.954	0.324	1.589	3.946	-0.136	1.603	4.065	0.504	1.874
С	-0.127	-1.464	1.296	-0.112	-1.481	1.292	-0.321	-1.549	1.428	0.018	-1.560	1.507
С	1.064	-1.837	1.936	1.069	-1.817	1.952	0.895	-2.058	1.889	1.317	-1.846	1.931
С	4.154	-1.427	3.190	4.143	-1.359	3.241	4.032	-1.998	3.048	4.113	-1.181	3.531
Η	3.602	-1.363	4.127	3.591	-1.269	4.176	3.468	-2.065	3.977	3.341	-1.399	4.268
Η	4.327	-2.465	2.914	4.309	-2.403	2.986	4.197	-2.986	2.620	4.641	-2.089	3.243
Η	5.106	-0.912	3.292	5.097	-0.847	3.329	4.989	-1.519	3.237	4.818	-0.465	3.945
С	1.756	-3.828	3.379	1.746	-3.771	3.455	1.609	-4.304	2.896	2.455	-3.951	2.838
Η	2.611	-4.118	2.769	2.602	-4.081	2.857	2.419	-4.467	2.186	3.314	-3.789	2.187
Η	2.079	-3.284	4.265	2.064	-3.199	4.325	1.995	-3.974	3.859	2.700	-3.707	3.871
Η	1.202	-4.715	3.675	1.186	-4.645	3.775	1.051	-5.228	3.026	2.143	-4.990	2.773
Ν	0.856	-3.004	2.589	0.853	-2.968	2.633	0.688	-3.318	2.355	1.347	-3.134	2.371
N	-0.944	-2.498	1.670	-0.933	-2.502	1.667	-1.147	-2.606	1.692	-0.603	-2.744	1.782
N	3.062	0.710	0.695	3.057	0.744	0.711	3.060	0.448	0.806	3.255	0.881	0.897

Table S4 Optimized coordinates for each stationary point geometry (GS (ground state), ³MLCT, ³MC, and ⁵MC states) of complex **1**.

C	3.400	1.914	0.000	3.411	1.925	-0.019	3.483	1.672	0.198	3.596	2.071	0.188
С	3.420	1.949	-1.386	3.369	1.933	-1.403	3.541	1.786	-1.182	3.420	2.120	-1.187
C	3.742	3.038	0.742	3.842	3.039	0.690	3.866	2.728	1.014	4.102	3.165	0.879
С	3.777	3.124	-2.031	3.759	3.077	-2.084	3.975	2.976	-1.748	3.746	3.281	-1.872
Η	3.165	1.065	-1.954	3.039	1.058	-1.944	3.258	0.950	-1.809	3.036	1.254	-1.710
C	4.101	4.205	0.082	4.231	4.174	-0.007	4.301	3.911	0.434	4.429	4.316	0.177
Н	3.728	2.994	1.825	3.870	3.014	1.773	3.822	2.619	2.092	4.235	3.113	1.953
C	4 120	4 271	-1 312	4 193	4 215	-1 402	4 358	4 058	-0.953	4 253	4 399	-1 205
Н	3 704	3 1/6	3 116	3 725	3.081	3 160	4.024	3.060	2 820	3 611	3 315	2 040
Н	3.794	5.092	-5.110	5.725	5.045	-5.109	4.024	5.000	-2.029	3.011	5.170	-2.949
C	4.368	5.082	0.664	4.566	5.045	0.547	4.600	4./36	1.073	4.824	5.170	0.718
C	-2.297	-2.748	1.282	-2.284	-2.756	1.264	-2.538	-2.704	1.405	-1.974	-3.063	1.553
C	-3.301	-1.875	1.671	-3.294	-1.894	1.661	-3.357	-1.610	1.646	-2.940	-2.094	1.791
C	-2.587	-3.877	0.531	-2.557	-3.876	0.494	-3.058	-3.880	0.882	-2.329	-4.326	1.101
C	-4.608	-2.123	1.277	-4.595	-2.144	1.252	-4.705	-1.689	1.336	-4.273	-2.396	1.565
Η	-3.059	-1.025	2.296	-3.063	-1.054	2.305	-2.930	-0.715	2.082	-2.637	-1.122	2.159
С	-3.902	-4.116	0.148	-3.867	-4.116	0.096	-4.414	-3.947	0.587	-3.670	-4.613	0.883
Η	-1.793	-4.560	0.250	-1.756	-4.550	0.211	-2.409	-4.730	0.706	-1.565	-5.073	0.921
С	1 020	3 240	0.502	4 902	3 251	0.455	5 256	2 851	0 705	1 663	3 657	1 105
н	-4.727	-3.240	0.302	-4.702	-3.231	0.433	-5.250	-2.034	0.793	-4.003	-3.037	1.105
11	-5.393	-1.440	1.585	-5.388	-1.472	1.565	-5.345	-0.833	1.528	-5.027	-1.639	1.759
Η	-4.131	-5.003	-0.435	-4.087	-4.994	-0.502	-4.822	-4.867	0.179	-3.948	-5.601	0.530

С	-6.341	-3.481	0.058	-6.309	-3.492	-0.006	-6.712	-2.916	0.438	-6.108	-3.965	0.845
Η	-6.484	-4.511	-0.276	-6.445	-4.519	-0.349	-7.049	-3.946	0.316	-6.274	-5.038	0.740
Η	-7.050	-3.277	0.864	-7.026	-3.295	0.795	-7.327	-2.438	1.205	-6.742	-3.595	1.655
Η	-6.600	-2.820	-0.777	-6.559	-2.825	-0.837	-6.900	-2.388	-0.503	-6.447	-3.481	-0.077
С	4.477	5.543	-2.023	4.577	5.457	-2.149	4.798	5.350	-1.575	4.574	5.659	-1.952
Η	5.017	6.229	-1.368	5.268	6.073	-1.571	5.445	5.917	-0.902	5.315	6.260	-1.420
Η	5.095	5.346	-2.903	5.044	5.216	-3.107	5.336	5.178	-2.511	4.958	5.442	-2.952
Η	3.573	6.056	-2.370	3.691	6.064	-2.361	3.932	5.979	-1.807	3.676	6.274	-2.074
Fe	0.000	0.031	0.000	0.000	0.041	0.000	0.001	0.074	0.008	-0.005	0.073	0.006
С	-1.085	-1.825	-1.936	-1.089	-1.805	-1.952	-1.227	-1.887	-1.867	-1.260	-1.875	-1.939
C	-1.904	0.002	-0.653	-1.914	0.022	-0.676	-1.853	0.133	-0.727	-2.166	0.036	-0.712
С	-2.186	-0.956	-1.637	-2.184	-0.923	-1.663	-2.235	-0.895	-1.598	-2.330	-0.930	-1.704
С	0.111	-1.465	-1.297	0.095	-1.482	-1.292	0.056	-1.574	-1.413	0.032	-1.547	-1.522
N	-3.418	-0.712	-2.140	-3.408	-0.663	-2.176	-3.470	-0.610	-2.079	-3.475	-0.652	-2.386
N	-3.967	0.324	-1.564	-3.949	0.369	-1.589	-3.926	0.507	-1.585	-4.075	0.396	-1.894
N	-3.053	0.745	-0.696	-3.048	0.779	-0.711	-2.955	0.942	-0.792	-3.282	0.794	-0.911
N	-0.890	-2.994	-2.589	-0.887	-2.958	-2.633	-1.220	-3.163	-2.334	-1.256	-3.167	-2.367
N	0.336	-3.422	-2.441	0.334	-3.392	-2.471	-0.031	-3.695	-2.239	-0.060	-3.685	-2.299
N	0.915	-2.509	-1.670	0.905	-2.512	-1.667	0.708	-2.746	-1.685	0.684	-2.717	-1.790
С	-4.169	-1.379	-3.190	-4.158	-1.311	-3.241	-4.320	-1.321	-3.021	-4.066	-1.288	-3.553

Η	-3.617	-1.322	-4.127	-3.605	-1.228	-4.176	-3.774	-1.489	-3.948	-3.283	-1.488	-4.284
Η	-4.355	-2.416	-2.914	-4.336	-2.354	-2.986	-4.653	-2.263	-2.588	-4.572	-2.210	-3.268
Η	-5.115	-0.853	-3.292	-5.107	-0.789	-3.329	-5.181	-0.687	-3.215	-4.786	-0.591	-3.973
С	-1.799	-3.808	-3.379	-1.788	-3.750	-3.455	-2.286	-3.993	-2.873	-2.342	-4.019	-2.824
Η	-2.657	-4.088	-2.769	-2.648	-4.051	-2.857	-3.110	-4.029	-2.161	-3.205	-3.870	-2.177
Η	-2.116	-3.261	-4.265	-2.100	-3.175	-4.325	-2.619	-3.604	-3.834	-2.591	-3.796	-3.861
Η	-1.255	-4.701	-3.675	-1.238	-4.632	-3.775	-1.880	-4.992	-3.007	-2.004	-5.050	-2.744
С	-3.377	1.953	-0.001	-3.388	1.964	0.018	-3.167	2.224	-0.196	-3.659	1.972	-0.201
С	-3.396	1.988	1.385	-3.346	1.972	1.403	-3.204	2.360	1.184	-3.479	2.026	1.173
С	-3.707	3.080	-0.742	-3.806	3.083	-0.691	-3.370	3.322	-1.022	-4.203	3.049	-0.889
С	-3.740	3.167	2.031	-3.723	3.120	2.084	-3.430	3.611	1.737	-3.841	3.174	1.861
Η	-3.152	1.101	1.953	-3.027	1.093	1.944	-3.063	1.495	1.819	-3.063	1.173	1.694
С	-4.052	4.252	-0.082	-4.181	4.222	0.006	-3.598	4.567	-0.454	-4.566	4.189	-0.185
Η	-3.693	3.036	-1.825	-3.834	3.058	-1.774	-3.345	3.197	-2.099	-4.337	2.994	-1.963
С	-4.071	4.318	1.312	-4.144	4.263	1.401	-3.627	4.735	0.932	-4.388	4.275	1.197
Η	-3.757	3.189	3.116	-3.689	3.124	3.168	-3.462	3.714	2.817	-3.703	3.211	2.937
Η	-4.309	5.131	-0.664	-4.507	5.098	-0.548	-3.755	5.424	-1.101	-4.991	5.030	-0.723
С	2.265	-2.775	-1.282	2.253	-2.782	-1.264	2.073	-3.051	-1.415	2.063	-2.994	-1.561
С	3.280	-1.913	-1.671	3.273	-1.931	-1.662	3.042	-2.093	-1.681	3.001	-2.000	-1.804
С	2.543	-3.907	-0.531	2.513	-3.905	-0.494	2.421	-4.286	-0.886	2.455	-4.245	-1.103
							-					

	_		-			-			_			_
С	4.584	-2.176	-1.277	4.571	-2.196	-1.252	4.369	-2.370	-1.391	4.343	-2.261	-1.577
Η	3.047	-1.061	-2.297	3.052	-1.089	-2.306	2.747	-1.149	-2.121	2.669	-1.038	-2.175
C	3.855	-4.161	-0.148	3.820	-4.159	-0.096	3.757	-4.551	-0.610	3.804	-4.491	-0.884
Η	1.741	-4.580	-0.250	1.705	-4.570	-0.211	1.655	-5.027	-0.690	1.713	-5.013	-0.919
С	4.892	-3.297	-0.502	4.865	-3.306	-0.456	4.750	-3.599	-0.846	4.769	-3.508	-1.110
Η	5.377	-1.502	-1.585	5.371	-1.533	-1.566	5.125	-1.621	-1.604	5.074	-1.484	-1.774
Η	4.074	-5.050	0.435	4.030	-5.040	0.502	4.029	-5.517	-0.197	4.111	-5.469	-0.526
C	-0.329	1.457	2.597	-0.295	1.443	2.615	-0.195	1.755	2.630	-0.252	1.778	2.661
C	-0.062	2.783	0.729	-0.061	2.788	0.702	0.177	3.025	0.745	-0.083	3.070	0.758
С	-0.323	2.556	3.438	-0.309	2.530	3.456	-0.085	2.855	3.463	-0.265	2.891	3.487
Η	-0.435	0.453	2.989	-0.382	0.437	3.011	-0.392	0.761	3.022	-0.313	0.772	3.065
С	-0.044	3.934	1.512	-0.067	3.941	1.527	0.317	4.179	1.513	-0.073	4.237	1.519
Η	-0.428	2.414	4.507	-0.408	2.387	4.525	-0.196	2.741	4.534	-0.340	2.773	4.561
Η	0.087	4.906	1.054	0.044	4.919	1.074	0.543	5.130	1.050	0.016	5.208	1.050
С	0.094	2.782	-0.729	0.094	2.787	-0.702	0.306	3.015	-0.728	0.005	3.077	-0.723
С	0.089	3.933	-1.512	0.113	3.940	-1.527	0.356	4.176	-1.496	-0.040	4.248	-1.477
С	0.220	3.819	-2.886	0.233	3.816	-2.883	0.479	4.068	-2.872	0.049	4.167	-2.858
Η	-0.031	4.907	-1.055	0.014	4.919	-1.074	0.287	5.152	-1.033	-0.154	5.213	-1.001
С	0.346	1.453	-2.597	0.311	1.439	-2.615	0.469	1.701	-2.612	0.204	1.802	-2.637
Η	0.213	4.703	-3.514	0.239	4.700	-3.513	0.520	4.959	-3.488	0.015	5.068	-3.459

H 0.441 0.447 - C 0.352 2.552 - H 0.456 2.408 - C -0.176 3.821	-2.989 0.38 -3.439 0.33 -4.507 0.43 2.885 -0.18 3.513 -0.18	 7 0.433 8 2.526 5 2.382 9 3.819 5 4.702 	-3.012 -3.457 -4.525 2.883	0.503 0.539 0.631 0.179	0.688 2.805 2.674	-3.004 -3.445 -4.516	0.294 0.176 0.247	0.801 2.920 2.811	-3.047 -3.456 -4.531
C 0.352 2.552 - H 0.456 2.408 - C -0.176 3.821	-3.439 0.33 -4.507 0.43 2.885 -0.18 3.513 -0.18	 8 2.526 5 2.382 9 3.819 5 4.702 	-3.457 -4.525 2.883	0.539 0.631 0.179	2.805 2.674	-3.445 -4.516	0.176 0.247	2.920 2.811	-3.456 -4.531
H 0.456 2.408 - C -0.176 3.821	-4.507 0.43 2.885 -0.18 3.513 -0.18	 5 2.382 9 3.819 5 4.702 	-4.525 2.883	0.631 0.179	2.674	-4.516	0.247	2.811	-4.531
C -0.176 3.821	2.885 -0.18 3.513 -0.18	9 3.819 5 4.702	2.883	0.179	4 002				
	3.513 -0.18	5 4 702			4.092	2.889	-0.169	4.144	2.899
H -0.159 4.705		5 4.702	3.513	0.283	4.978	3.506	-0.164	5.043	3.506
N -0.202 1.554	1.268 -0.18	9 1.538	1.280	-0.075	1.833	1.304	-0.166	1.862	1.334
N 0.220 1.551 -	-1.269 0.20	7 1.535	-1.280	0.362	1.798	-1.287	0.124	1.876	-1.309
N -0.375 -3.418	2.440 -0.37	3 -3.388	2.470	-0.568	-3.658	2.253	0.168	-3.687	2.301
C 6 302 - 3 554 -	-0.058 6.26	9 -3 564	0.005	6 185	-3 875	-0 510	6 222	-3 772	-0 848
H 6 567 -2 896	0.777 6.52	6 -2 800	0.837	6.466	-3 372	0.422	6 546	_3 279	0.074
H (122 1505	0.777 0.52	4 4 500	0.037	0.400	-5.572	0.422	6.420	-3.277	0.74
6.433 -4.585	0.276 6.39	4 -4.592	0.349	6.367	-4.943	-0.380	6.420	-4.840	-0.742
H 7.013 -3.358 -	-0.864 6.98	8 -3.375	-0.795	6.852	-3.502	-1.292	6.846	-3.384	-1.658
C -4.412 5.593	2.023 -4.51	3 5.510	2.148	-3.841	6.089	1.541	-4.749	5.523	1.947
H -5.033 5.403	2.902 -4.98	4 5.275	3.105	-4.399	6.020	2.478	-5.131	5.291	2.944
H -3.503 6.096	2.371 -3.61	9 6.106	2.362	-2.880	6.564	1.767	-3.869	6.163	2.076
H -4.944 6.286	1.367 -5.19	6 6.135	1.569	-4.383	6.750	0.862	-5.504	6.104	1.413