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moment, rare meson decays, Higgs physics, LEP precision data, neutrino-electron

scattering, low energy accelerators and LHC probes.

Keywords: flavor problem, 2HDM, neutrinos, U(1)′, atomic parity violation, muon

magnetic moment, neutrino-electron scatteringar
X

iv
:1

70
5.

05
38

8v
1 

 [
he

p-
ph

] 
 1

5 
M

ay
 2

01
7

mailto:farinaldo.queiroz@mpi-hd.mpg.de


Contents

1 Introduction 3

2 The 2HDM Framework 4

3 2HDM with U(1)X Symmetries 5

3.1 Anomaly Cancellation 6

3.2 Neutrino Masses 8

3.3 Physical Gauge Bosons and Neutral Currents 11

3.4 Z ′ Decays 13

4 Phenomenological Constraints 16

4.1 Meson Decays 16

4.1.1 Rare K Decays 16

4.1.2 Rare B Decays 17

4.2 Higgs Physics 17

4.2.1 Higgs Properties 17

4.2.2 Higgs Associated Production 18

4.2.3 Higgs Decays 21

4.3 Z Decays 22

4.4 Charged Higgs Searches 23

4.5 Atomic Parity Violation 24

4.6 Muon Anomalous Magnetic Moment 28

4.7 Neutrino-Electron Scattering 29

4.8 Low Energy Accelerators 31

4.9 Discussion 34

5 Conclusions 35

A Conditions for Anomaly Freedom 36

B Gauge bosons 37

C δ Parameter 42

D Currents for Z and Z ′ 43

E Comparison with the 2HDM with Gauged U(1)N 45

– 1 –



F Higgs Interactions to Vector Bosons 45

– 2 –



1 Introduction

The discovery of a 125 GeV spin-0 scalar announced by the ATLAS [1] and CMS [2]

collaborations is a major triumph for the Standard Model (SM). The determination

of the scalar sector of particle physics may however not be completed, as there are

many extensions of the SM that require additional scalar particles, such as Higgs

triplets, singlets or doublets. The ρ parameter provides here a direct constraint on

such models, and the value obtained from electroweak precision data of ρ = 1±0.0082

[3] favors for instance small additional vacuum expectation values or scalar doublet

representations with hypercharge 0,±1. In this paper we will study models with

an additional Higgs doublet that has identical SM quantum numbers as the usual

one. Such Two Higgs Doublet Models (2HDM) are in fact typical in a variety of SM

extensions [4].

The 2HDM framework has been proved to be a hospitable environment for ax-

ion models [5–7], baryogenesis [8–10], collider physics [11–14], supersymmetry [15],

lepton flavor violation [16, 17], and flavor anomalies [18], and a natural environment

for new Abelian gauge groups [19–23]. Albeit, the 2HDM framework in its general

form is plagued with Flavor Changing Neutral Interactions (FCNI). To cure this

FCNI problem, an ad-hoc discrete symmetry is usually evoked. Furthermore, neu-

trino masses, one of the major observational evidences for new physics, are typically

not addressed in 2HDM.

In this work we discuss a gauge solution to the FCNI problem which in addition

naturally can incorporate Majorana neutrino masses. The idea is to add a gauged

Abelian U(1)X symmetry to the 2HDM and find anomaly-free models that effectively

lead to the usual 2HDM classes that have no FCNI. Anomaly-free models are also

possible when right-handed neutrinos are added to the particle content. Their mass

terms generate Majorana masses for the light neutrinos. Tracing the absence of dan-

gerous flavor physics and the presence of neutrino masses to the same anomaly-free

gauge origin is an attractive approach within 2HDM that deserves careful study.

A whole class of models is generated by the idea. A new vector gauge boson that

has mass and kinetic-mixing with the SM Z boson is present, and we investigate its

phenomenology in a limit which resembles often studied dark photon models. In par-

ticular, we address several constraints coming from low energy as well as high energy

probes, including atomic parity violation, the muon anomalous magnetic moment,

electron-neutrino scattering, and new physics searches at the LHC and several other

MeV-GeV colliders such as BaBar.

Our work is structured as follows: In Section 2, we shortly review the 2HDM

framework before we augment it in Section 3 with gauged Abelian symmetries and
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study the constraints on the models from anomaly cancellation, including right-

handed neutrinos. In Section 4 the models are confronted with various phenomeno-

logical constraints before we conclude in Section 5. Some details are delegated to

appendices.

2 The 2HDM Framework

In the Standard Model, one scalar doublet accounts for the masses of all charged

fermions and gauge bosons. However, extended scalar sectors are also possible.

Among the various constraints on such cases, the ρ parameter is particularly well

constrained by electroweak precision data [24]; it is defined as,

ρ =

n∑
i=1

[
Ii (Ii + 1)− 1

4
Y 2
i

]
vi

n∑
i=1

1
2
Y 2
i vi

. (2.1)

Here Ii and Yi are the isospin and hypercharge of a scalar representation with vev vi.

The value ρ = 1 is not altered by the addition of scalar doublets under SU(2) with

hypercharge Y = ±1, or scalar singlets with Y = 0. Therefore, enlarging the Stan-

dard Model with a scalar doublet under SU(2) is a natural and popular framework,

the so-called the Two Higgs Doublet Model (2HDM) [25].

In the 2HDM the most general potential for two doublets with hypercharge

Y = 1, gauge invariant and renormalizable, is given by,

V (Φ1,Φ2) =m2
11Φ†1Φ1 +m2

22Φ†2Φ2 −
(
m2

12Φ†1Φ2 + h.c.
)

+
λ1

2

(
Φ†1Φ1

)2

+
λ2

2

(
Φ†2Φ2

)2

+ λ3

(
Φ†1Φ1

)(
Φ†2Φ2

)
+ λ4

(
Φ†1Φ2

)(
Φ†2Φ1

)
+

[
λ5

2

(
Φ†1Φ2

)2

+ λ6

(
Φ†1Φ1

)(
Φ†1Φ2

)
+ λ7

(
Φ†2Φ2

)(
Φ†1Φ2

)
+ h.c.

]
.

(2.2)

The Yukawa Lagrangian reads

−LY2HDM
= y1dQ̄LΦ1dR + y1uQ̄LΦ̃1uR + y1eL̄LΦ1eR

+ y2dQ̄LΦ2dR + y2uQ̄LΦ̃2uR + y2eL̄LΦ2eR + h.c.,
(2.3)

where

Φi =

(
φ+
i

(vi + ρi + iηi) /
√

2

)
. (2.4)
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Having two Higgs doublets generating masses for all fermions leads in general to

the presence of FCNI at tree level, subjecting the model to tight bounds from flavor

probes [26]. The easy solution [27, 28] to this issue is the evocation of an ad-hoc Z2

symmetry, where in particular,

Φ1 → −Φ1, Φ2 → +Φ2, (2.5)

also known as the Natural Flavor Conservation (NFC) criterion.

Assuming CP conservation, the transformations in Eq. (2.5) yield a new scalar

potential,

V (Φ1,Φ2) = m2
11Φ†1Φ1 +m2

22Φ†2Φ2 −m2
12

(
Φ†1Φ2 + Φ†2Φ1

)
+
λ1

2

(
Φ†1Φ1

)2

+
λ2

2

(
Φ†2Φ2

)2

+ λ3

(
Φ†1Φ1

)(
Φ†2Φ2

)
+ λ4

(
Φ†1Φ2

)(
Φ†2Φ1

)
+
λ5

2

[(
Φ†1Φ2

)2

+
(

Φ†2Φ1

)2
]
.

(2.6)

Here the m12 term softly violates the condition in Eq. (2.5), in order to avoid domain

walls. The discrete symmetry Eq. (2.5) will eliminate some of the terms in the general

Yukawa Lagrangian Eq. (2.3) avoiding also the FCNI. Which terms will be eliminated

depends upon the parity assignment of the fermions under Z2. We can, for example,

consider that all fermions are even under Z2 transformation. In this case LY2HDM

becomes,

− LY2HDM
= yd2Q̄LΦ2dR + yu2 Q̄LΦ̃2uR + ye2L̄LΦ2eR + h.c., (2.7)

with only Φ2 coupling to fermions. This is the Type I 2HDM. Other choices of

fermion parities are presented in Table 1; the four 2HDM shown in the table are

subject to different phenomenologies and constraints (see [4] for a review).

After this short summary of the general 2HDM framework, we will discuss how

to base those flavor-safe models on a gauged U(1)X .

3 2HDM with U(1)X Symmetries

A fundamental solution to the flavor problem in the 2HDM could come from well-

established gauge principles. It is known that an Abelian gauge symmetry when

spontaneously broken gives rise to a discrete symmetry, simply because the latter is

a subgroup of the former. The quantum numbers of the particles charged under the

new U(1)X symmetry will dictate what is the remnant symmetry. It has been shown

that the necessary Z2 symmetry to cure 2HDM from FCNI can be generated from

gauge principles [29] under certain conditions. In what follows we will review these

conditions using general arguments and address the implications.
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Model Φ1 Φ2 uR dR eR QL LL
Type I − + + + + + +

Type II − + + − − + +

Lepton-specific − + + + − + +

Flipped − + + − + + +

Table 1: Different types of 2HDM according to the Z2 parities of the SM fermions. In the type

I only Φ2 couples to all SM fermions; In the type II Φ2 couples to up quarks and Φ1 couples to

leptons and down quarks. In the third type of 2HDM, also known as lepton-specific, Φ1 couples

to leptons while Φ2 couples to quarks. Lastly, in the fourth type, called flipped 2HDM, the scalar

doublet Φ1 couples to down quarks while Φ2 couples to leptons and up quarks.

3.1 Anomaly Cancellation

In order to truly prevent FCNI in the 2HDM, and mimic the effect of the Z2 symmetry

at lower energies, the scalar doublets Φ1 and Φ2 have to transform differently under

U(1)X , reducing the scalar potential to

V (Φ1,Φ2) = m2
11Φ†1Φ1 +m2

22Φ†2Φ2 +
λ1

2

(
Φ†1Φ1

)2

+
λ2

2

(
Φ†2Φ2

)2

+ λ3

(
Φ†1Φ1

)(
Φ†2Φ2

)
+ λ4

(
Φ†1Φ2

)(
Φ†2Φ1

)
.

(3.1)

In addition, one needs to successfully generate fermion masses by properly choos-

ing the transformations of the fermions under the U(1)X symmetry. The requirement

that the scalar doublets transform differently still leaves enough freedom to construct

several models, based on the specific charge assignments for the Standard Model par-

ticles. We shall see what kind models one can build using simply gauge invariance

and anomaly cancellation.

Generally speaking, a local transformation shifts the fields as follows,

LL → L′L = eilα(x)LL

QL → Q′L = eiqα(x)QL

eR → e′R = eieα(x)eR

uR → u′R = eiuα(x)uR

dR → d′R = eidα(x)dR

Φ1 → Φ′1 = eih1α(x)Φ1

Φ2 → Φ′2 = eih2α(x)Φ2,

(3.2)

where l, q, e, u, d, h1, h2 are the charges of the fields under U(1)X . Once we write down

a Yukawa Lagrangian and demand gauge invariance, the transformations in Eq. (3.2)

are no longer arbitrary, and the charges under U(1)X will be interconnected. In the
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Type I 2HDM, on which we focus in this paper, where fermions couple only with Φ2,

see Eq. (2.7), the following U(1)X transformations apply:

−LY2HDM
→ −L′Y2HDM

= e(−q+h2+d)iαyd2Q̄LΦ2dR + e(−q−h2+u)iαyu2 Q̄LΦ̃2uR

+ e(−l+h2+e)iαye2L̄LΦ2eR + h.c.
(3.3)

The U(1)X invariance imposes the following conditions on the charges of the fields:

d− q + h2 = 0

u− q − h2 = 0

e− l + h2 = 0.

(3.4)

Notice that in this case couplings of fermions with Φ1 are forbidden by the U(1)X
symmetry. These couplings would be allowed only if h1 satisfies the same equations

(3.4) as h2, implying that h1 = h2. However, since we require that h1 6= h2, there

is no value of h1 satisfying these equations. Besides the constraints in Eqs. (3.4),

anomaly freedom must also be respected. The general constraints for an anomaly

free U(1)X gauge symmetry are discussed in Appendix A. It turns out that for the

Type I 2HDM, the anomaly cancellation can be achieved without addition of new

fermions whenever the condition u = −2d is respected. To see this, we combine

Equation (A.2) (l = −3q) with the constraints from (3.4) and write the charges of

the fields as function of u and d,

q =
(u+ d)

2
,

l =
−3 (u+ d)

2
,

e = − (2u+ d) ,

h2 =
(u− d)

2
.

(3.5)

It is then straightforward to prove that these charge assignments in Eq. (3.5) sat-

isfy the anomaly conditions Eqs. (A.1)-(A.4). However, for the cancellation of the

[U(1)X ]3 term, Eq. (A.5), we find,

e3 + 3u3 + 3d3 − 2l3 − 6q3 = [− (2u+ d)]3 + 3u3 + 3d3 − 2

[
−3 (u+ d)

2

]3

− 6

[
(u+ d)

2

]3

= − (2u+ d)3 + 3u3 + 3d3 + 6 (u+ d)3

= u3 + 8d3 + 6u2d+ 12ud2

= (u+ 2d)3 .

(3.6)
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This anomaly is not canceled unless u = −2d, i.e. if the up and down quark charges

under U(1)X are proportional to their electric ones.

Here is the point at which neutrino physics can enter: if we decide to keep u

and d arbitrary, the most straightforward possibility is to add right-handed neutrinos

(one per generation). If their charge n is given by

n = − (u+ 2d) , (3.7)

the [U(1)X ]3 anomaly term is canceled because Eq. (A.5) becomes

n3 + e3 + 3u3 + 3d3 − 2l3 − 6q3 = − (u+ 2d)3 + (u+ 2d)3 = 0. (3.8)

Concerning the Φ1 charge under U(1)X , we have only demanded so far that h1 6= h2

to respect the NFC criterion, and no relation between h1 and h2 exist. By adding

a singlet scalar to generate a Majorana mass term for the neutrinos, necessary for

the implementation of the seesaw mechanism, the values of h1 and h2 are no longer

independent, as we will see next.

3.2 Neutrino Masses

As aforementioned, in the conventional 2HDM neutrinos are massless. Similarly to

the Standard Model one can simply add right-handed neutrinos and generate Dirac

masses to the neutrinos. However, a compelling explanation for tiny neutrino masses

arises via the seesaw mechanism [31–35]. In order to realize the type I seesaw mech-

anism one needs Dirac and Majorana mass terms for the neutrinos. This can be

realized in our 2HDM framework by proper assignments of the quantum numbers,

as we will demonstrate in what follows.

Typically, a bare mass term is introduced for the right-handed neutrinos in the

realization of the seesaw mechanism without explaining its origin. Here, we explain

the neutrino masses by adding a scalar singlet Φs, with charge hs under U(1)X . The

first consequence of introducing a new singlet scalar is the extension of the scalar

potential which adds to Eq. (3.1) the potential

Vs = m2
sΦ
†
sΦs+

λs
2

(
Φ†sΦs

)2
+µ1Φ†1Φ1Φ†sΦs+µ2Φ†2Φ2Φ†sΦs+

(
µΦ†1Φ2Φs + h.c.

)
, (3.9)

where

Φs =
1√
2

(vs + ρs + iηs) .

All these terms are straightforwardly invariant under U(1)X except for the last term

which requires hs = h1 − h2. That said, the Yukawa Lagrangian involving the

neutrinos reads

−L ⊃ yDij L̄iLΦ̃2NjR + Y M
ij (NiR)cΦsNRj , (3.10)
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Two Higgs Doublet Models free from FCNI
Fields uR dR QL LL eR NR Φ2 Φ1

Charges u d (u+d)
2

−3(u+d)
2

−(2u+ d) −(u+ 2d) (u−d)
2

5u
2

+ 7d
2

U(1)A 1 −1 0 0 −1 1 1 −1

U(1)B −1 1 0 0 1 −1 −1 1

U(1)C 1/2 −1 −1/4 3/4 0 3/2 3/4 9/4

U(1)D 1 0 1/2 −3/2 −2 −1 1/2 5/2

U(1)E 0 1 1/2 −3/2 −1 −2 7/2 −1/2

U(1)F 4/3 2/3 1 −3 −4 −8/3 1/3 17/3

U(1)G −1/3 2/3 1/6 −1/2 0 −1 −1/2 −3/2

U(1)B−L 1/3 1/3 1/3 −1 −1 −1 0 2

U(1)Y 2/3 −1/3 1/6 −1/2 −1 1/2 6= h2

U(1)N 0 0 0 0 0 0 6= h2

Table 2: The first block of models are capable of explaining neutrino masses and

the absence of flavor changing interactions in the 2HDM type I, whereas the second

block refer to models where only the flavor problem is addressed. The first block

accounts for type I 2HDM in which right-handed neutrinos are introduced without

spoiling the NFC criterion (h1 6= h2). This is possible when u 6= −2d (see Eq. (3.5)

and Eq. (3.14)). Conversely, the second block shows Type I 2HDM with u = −2d.

To preserve the NFC criterion, right-handed neutrinos can not be introduced while

at the same time h1 is kept as a free parameter. The U(1)N models leads to a

fermiophobic Z ′ setup [30]. The U(1)Y yields a ”right-handed-neutrino-phobic” Z ′

boson. The U(1)B−L is the well-known model in which the accidental baryon and

lepton global symmetries are gauged. The U(1)C,G models feature null couplings to

right-handed charged leptons, whereas the U(1)A,B models have vanishing couplings

to left-handed leptons. The U(1)D has null couplings to right-handed down-quarks.

The U(1)E,F models induce Z ′ interactions to all fermions, but have rather exotic

U(1)X charges.

which leads to the usual type I seesaw mechanism equation

(ν N)

(
0 mD

mT
D MR

)(
ν

N

)
(3.11)

with mν = −mT
D

1
MR

mD and mN = MR, as long as MR � mD, where mD = yDv2
2
√

2

and MR = yMvs
2
√

2
. We take vs to be at the TeV scale, and in this case yD ∼ 10−4

and yM ∼ 1 lead to mν ∼ 0.1 eV in agreement with current data [36]. In this

scenario right-handed neutrinos have masses at around 300 − 400 GeV, although

smaller right-handed neutrino masses are also possible.

Let us now take a closer look at Eq. (3.10). Gauge invariance of the first term
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requires

− l − h2 + n = 0. (3.12)

Using Eq. (3.5) and Eq. (3.7) we get

−l − h2 + n = −
[
−3 (u+ d)

2

]
−
[

(u− d)

2

]
− (u+ 2d) = 0. (3.13)

Therefore, the condition in Eq. (3.12) is automatically fulfilled. However, the Majo-

rana mass term in Eq. (3.10) is gauge invariant if 2n + hs = 0, which implies from

Eq. (3.7) that hs = 2u+ 4d. Using that hs = h1 − h2 from the term µΦ†1Φ2Φs in the

scalar potential Eq. (3.9), we get

h1 =
5u

2
+

7d

2
. (3.14)

Now the Φ1 charge under U(1)X is generally determined so that neutrino masses are

generated. If we happened to choose u = d = 1/3, then hs = h1 = 2, h2 = 0, and the

U(1)X symmetry is identified to be U(1)B−L symmetry, which is spontaneously bro-

ken when Φs gets a vacuum expectation value. Various other choices of the charges

are possible, see Table 2 for a list. From the list, the U(1)B−L, U(1)N have been

previously investigated in the literature in different contexts [37–48].

The spontaneous symmetry breaking pattern from high to low energy goes as

follows: (i) the vev vs sets the scale which the U(1)X symmetry is broken, say TeV;

(ii) then v2 breaks the SU(2)L ⊗ U(1)Y group to Quantum Electrodynamics. As

for the v1 scale, there is some freedom, but it should be either comparable to v2

or smaller, as long as v2 = v2
2 + v2

1, where v = 246 GeV, since M2
W = g2v2/4 (see

Appendix B). In the regime in which vs > v2 > v1 one needs to tune down the gX
coupling in order to have a Z ′ boson that is lighter than the SM Z, which is the

regime we will focus in here.

In summary, the introduction of a new gauge symmetry with the charge assign-

ments as exhibited in Table 2 leads to a compelling solution to the flavor problem in

the Type I 2HDM, while successfully generating fermion masses. In particular, neu-

trino masses are explained via the seesaw mechanism. A similar reasoning, respecting

the NFC criterion (h1 6= h2), can be applied to other types of 2HDM preventing them

of FCNI. Nevertheless, the addition of extra chiral fermions is required to preserve

them free of anomalies. Therefore, we focus in this paper on 2HDM of Type I, see

Table 2.

Now that we have reviewed the theoretical motivations for introducing an Abelian

symmetry to the framework of the 2HDM we discuss in model detail the spectrum

of the gauge bosons and neutral currents.
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3.3 Physical Gauge Bosons and Neutral Currents

We emphasize that we are including all renormalizable terms allowed guided by gauge

invariance. Therefore, kinetic mixing between the two Abelian groups is present. To

understand the impact of kinetic mixing in the determination of the physical gauge

boson we should start off writing down the kinetic terms of the gauge bosons. Note

that throughout, the kinetic mixing parameter should fulfill ε � 1 to be consistent

with precision electroweak constraints. That said, the most general gauge Lagrangian

associated to these groups is [49–51]:

Lgauge = −1

4
B̂µνB̂

µν +
ε

2 cosθW
X̂µνB̂

µν − 1

4
X̂µνX̂

µν , (3.15)

with the following covariant derivative

Dµ = ∂µ + igT aW a
µ + ig′

QY

2
B̂µ + igX

QX

2
X̂µ. (3.16)

Here T a, W a
µ and g are the generators, gauge bosons and gauge coupling constant

of SU(2)L respectively; X̂µ and B̂µ the U(1)X and U(1)Y gauge bosons, gX (QX)

is the U(1)X coupling constant (charge) and g′ (QY ) is U(1)Y coupling constant

(charge). The hats means that they are non-physical, i.e. yet to be diagonalized,

fields. As usual B̂µν = ∂µB̂ν − ∂νB̂µ and X̂µν = ∂µX̂ν − ∂νX̂µ.

One first performs a so-called GL(2,R) rotation in order to make the kinetic

terms canonical, (
Xµ

Bµ

)
=

(√
1− (ε/ cos θW )2 0

−ε/ cos θW 1

)(
X̂µ

B̂µ

)
. (3.17)

Therefore B̂µ = ηXXµ +Bµ, and X̂µ = Xµ, where

ηX =
ε/ cos θW√

1− (ε/ cos θW )2
' ε/ cos θW , (3.18)

since we are taking ε/ cos θW � 1 throughout. Thus, the covariant derivative now

reads,

Dµ = ∂µ + igT aW a
µ + ig′

QY

2
Bµ +

i

2

(
gXQX + g′

ε

cos θW
QY

)
Xµ. (3.19)

which is from where we derive the gauge boson masses.

The general formalism of diagonalizing the neutral gauge boson mass matrix is

delegated to Appendix B. The gauge boson mixing is parametrized in terms of εZ
and ε, coming from the contributions of the second Higgs doublet and the kinetic

mixing between the U(1) groups respectively (see below and (B.32)). In the regime
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in which the new vector boson is much lighter than the SM Z boson, we get two

mass eigenstates; one identified as the SM Z boson, labeled Z0 with, m2
Z0 = g2v2

4 cos2W
and the Z ′ boson with,

m2
Z′ =

v2
s

4
g2
Xq

2
X +

g2
Xv

2 cos2 β sin2 β

4
(QX1 −QX2)2, (3.20)

where qX , QX1, QX2 are the charges under U(1)X of the singlet scalar, Higgs dou-

blets Φ1 and Φ2 respectively, tan β = v2/v1, v =
√
v2

1 + v2
2 = 246 GeV, vs sets the

U(1)X scale of spontaneous symmetry breaking, and gX is the coupling constant of

the U(1)X symmetry.

It will be useful to write the Z ′ mass in a compact form as (see Appendix C) by

defining tan βd =
vs
v1

as follows,

mZ′ =
gXv cos2 β

δ
, (3.21)

where

δ =
2 cos β cos βd√

q2
X + cos2 βd

(
sin2 β(QX1 −QX2)2 − q2

X

) . (3.22)

The mixing angle for the diagonalization of the gauge bosons, ξ, in this general

setup can be parametrized as follows (see (B.29)),

ξ ≡ εZ + ε tan θW , (3.23)

where,

εZ ≡
gX
gZ

(QX1 cos2 β +QX2 sin2 β). (3.24)

For instance, in the B − L model one has,

εZ = 2
gX
g

cos2 β, (3.25)

and with the use of Eq. (3.21) we get,

δ =
mZ

mZ′
εz, (3.26)

which agrees with [41], validating our findings.

Having obtained the physical fields we can rewrite the neutral current Lagrangian

(see Appendices B and D):

LNC =− eJµemAµ −
g

2 cos θW
JµNCZµ −

(
εeJµem + εZ

g

2 cos θW
JµNC

)
Z ′µ

+
1

4
gX sin ξ

[(
QR
Xf +QL

Xf

)
ψ̄fγ

µψf +
(
QR
Xf −QL

Xf

)
ψ̄fγ

µγ5ψf
]
Zµ

− 1

4
gX cos ξ

[(
QR
Xf +QL

Xf

)
ψ̄fγ

µψf −
(
QL
Xf −QR

Xf

)
ψ̄fγ

µγ5ψf
]
Z ′µ,

(3.27)
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where QR
X (QL

X) are the left-handed (right-handed) fermion charges under U(1)X .

We emphasize that Eq. (3.27) is the general neutral current for 2HDM augmented

by a U(1)X gauge symmetry.

Again, it is important to validate our results with the existing literature. For

instance, in the U(1)B−L model we get

LNC =− eJµemAµ −
g

2 cos θW
JµNCZµ −

(
εeJµem + εZ

g

2 cos θW
JµNC

)
Z ′µ

− gX
2
QXf

[
ψ̄fγ

µψf
]
Z ′µ,

(3.28)

where QXf = −1 for charged leptons and QXf = 1/3 for quarks, with gX and εZ
related by Eq. (3.25), in agreement with [52].

Now that we have obtained the neutral current for a generic U(1)X model in the

context of the 2HDM we will address the relevant constraints these U(1)X models

are subject to.

3.4 Z ′ Decays

We have introduced a multitude of Abelian gauge groups in the context of the 2HDM

that address two major issues in the original 2HDM framework, namely the absence

of neutrino masses and the presence of flavor changing interactions. Abelian groups

generally give rise to neutral gauge bosons which are subject to a rich phenomenology

that we plan to explore in what follows. Before doing so, some general remarks are

in order:

(i) The kinetic mixing (ε) as well as the mass mixing (εZ) parameters are required

to be smaller than 10−3 to be consistent with a variety of constraints that we

will discuss.

(ii) We will focus on the regime mZ′ � mZ , say mZ′ = 1 MeV − 10 GeV. Some

comments on different regimes will nevertheless be made whenever relevant.

(iii) A light Z ′ can be achieved at the expense of tuning the gauge coupling gX .

(iv) The phenomenology of our models will be dictated by either the kinetic mixing

or the mass-mixing terms.

That said, some of the constrains we will investigate are based on dark photon

searches. Notice that our models are a bit different than the dark photon model

that has only the kinetic mixing term, due to the presence of mass-mixing and the

non-vanishing U(1)X charges of the SM fermions. We remind the reader that only

the models that simultaneously explain neutrino masses and free the 2HDM from
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flavor changing interactions are of interest throughout this work, as displayed in the

first block of Table 2. With this in mind we discuss the Z ′ decays in each one of the

models.

• It is important to first mention the dark photon model. In such models the

coupling of the dark photon A′ with SM fermions f goes as f̄γµfA′µ. The

corresponding branching ratios are shown in Fig. 1. It is important to have a

clear picture of the dark photon model because some of the bounds discussed

in this work have the dark photon model as benchmark as we shall see when

we address neutrino-electron scattering and low energy accelerator constraints.

• In the U(1)A model, the charged leptons and light quarks charges under U(1)A
are the same but due to color multiplicity the Z ′ decays mostly into light quarks

as shown in Fig. 1. As for the U(1)B model, the results are same. Notice that

the label B has nothing to do with baryon number. No decays into active

neutrinos exist since the lepton doublet is uncharged under the new gauge

group.

• In the U(1)C model, the branching ratio into neutrinos is more relevant in

comparison with previous models since now the lepton doublet has charge 3/4

under the new gauge group. However, decays into light quarks are still the

most relevant. The U(1)G model has a similar behavior.

• In the U(1)D model, the branching ratio into leptons prevails. A similar feature

happens in the U(1)B−L model, where B and L account for the baryon and

lepton numbers. In the former, the branching ratios into charged fermions

and neutrinos are very similar, but as soon the decay into muons becomes

kinematically accessible the branching ratio into charged leptons increases. In

the latter, decays into neutrinos are always dominant in the mass region of

interest, as a straightforward consequence of the baryon and lepton quantum

numbers of the fermions.

• In the U(1)E model, decays into neutrinos are dominant until the Z ′ mass

approximates the strange quark and muon kinematic thresholds.

Now that we have highlighted the properties of the Z ′ gauge boson for each

U(1)X model we will discuss a variety of constraints going from mesons decays to

low energy accelerators.
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Figure 1: Branching ratios as a function of the Z ′ mass for several U(1)X models

under study.
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4 Phenomenological Constraints

In this section we will span over the existing limits on the U(1)X models proposed

previously. Our main goal is to estimate limits on the parameter space of these

models and assess how relevant they are. A more dedicated study will be conducted

elsewhere. We start with meson decays.

4.1 Meson Decays

4.1.1 Rare K Decays

The main decays modes of the charged Kaon are µνµ, π
+π0 and π+π+π0 with branch-

ing ratios of 64%, 21% and 6% respectively. Searches for rare meson decays such as

K+ → π+l+l− have also been performed [53, 54], which led to the experimental

constraints [24],

BR(K+ → π+e+e−)exp = (3.00± 0.09)× 10−7, (4.1)

BR(K+ → π+µ+µ−)exp = (9.4± 0.6)× 10−8, (4.2)

BR(K+ → π+νν̄)exp = (1.7± 1.1)× 10−10. (4.3)

In a Two Higgs Doublet Model with Z − Z ′ mass mixing the branching ratio of

K+ → π+Z ′ is estimated to be [55],

BR(K+ → π+Z ′) ' 4× 10−4 δ2, (4.4)

where δ = εZmZ/mZ′ (see Appendix C). Comparing Eq. (4.4) with Eqs. (4.1)-(4.3)

we conservatively find that,

δ .
2× 10−2√

BR(Z ′ → l+l−)
, (4.5)

δ .
7× 10−4√

BR(Z ′ → missing energy)
. (4.6)

These bounds should be used with care since they are not applicable to any Z ′

mass. For instance, the bound obtained in Eq. (4.1) was obtained with a hard cut

in the dilepton invariant mass, namely mee > 140 MeV [54]. Thus this limit is valid

for mZ′ > 140 MeV.

In the U(1)B−L model, for instance, for m′Z < 2mµ, the Z ′ decays with ∼ 75%

braching ratio into neutrinos and therefore Eq. (4.6) should be used, giving stronger

constraints. In the U(1)N model, on other hand, the situation strongly depends

on the ratio ε/εZ . In particular, for ε/εZ � 1, the Z ′ decays mostly into charged

leptons with Eq. (4.5) yielding stronger limits, conversely for ε/εZ < 1, Eq. (4.6) is

more restrictive in agreement with [38]. Either way it is clear that rare kaon decays

introduce an interesting pathway to probe new physics, specially low mass Z ′ gauge

bosons [56–60].
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K Decays

δ . 2× 10−2/
√
BR(Z ′ → l+l−)

δ . 7× 10−4/
√
BR(Z ′ → missing energy)

B Decays

δ . 2× 10−3/
√
BR(Z ′ → l+l−)

δ . 1.2× 10−2/
√
BR(Z ′ → missing energy)

Table 3: Summary of constraints on the model from meson decays.

4.1.2 Rare B Decays

Similar to the K mesons discussed previously rare B decays offer a promising en-

vironment to probe new physics. In particular, the charged B meson with mass of

5.3 GeV, comprised of ub̄, may possibly decay into K+l+l− [61–63] or K+νν̄ [64, 65].

Such decays have been measured to be [24],

BR(B+ → K+l̄+l−)exp < 4.5× 10−7, (4.7)

BR(B+ → K+ν̄ν)exp < 1.6× 10−5. (4.8)

Having in mind that the mass mixing in the 2HDM induces [38, 55, 62],

BR(B → KZd) ' 0.1δ2, (4.9)

implying that,

δ .
2× 10−3√

BR(Z ′ → l+l−)
, (4.10)

δ .
1.2× 10−2√

BR(Z ′ → missing energy)
. (4.11)

Comparing Eqs. (4.10)–(4.11) with Eqs. (4.5)–(4.6) we can see the rare B decays

give rise to more stringent limits on the parameter δ when the Z ′ decays mostly into

charged leptons. We highlight that the large factor in Eq. (4.9) is result of the pres-

ence of the top quark in the Feynman diagram responsible for the b→ s conversion,

and consequently the B → KZ ′ decay.

As for Z ′ decays into neutrino pairs, then precise measurements on Kaon decays

offer the leading constraints. The constraints from meson decays are summarized in

Table 3. We will now move to Higgs physics.

4.2 Higgs Physics

4.2.1 Higgs Properties

Our models are comprised of two Higgs doublets and a singlet scalar. In the limit in

which the scalar doublets do not mix with the singlet, i.e. the regime in which the
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vertex coupling constant

H tt̄,H bb̄,H τ τ̄ sinα
sinβ

HWW,H ZZ cos(β − α)

h tt̄, h bb̄, h τ τ̄ cosα
sinβ

hWW,hZZ sin(β − α)

Table 4: Higgs and light scalar interactions in the 2HDM type I. The coupling

constants in the second column are the overall multiplicative factor in front of the

SM couplings. In other words, when α = β the Higgs in the 2HDM type I interacts

with fermions and gauge bosons identically to the SM Higgs.

parameters µ1, µ2, µ in the potential (3.9) are suppressed, one finds [41]

m2
s = λsv

2
s ,

m2
h =

1

2

(
λ1v

2
1 + λ2v

2
2 −

√
(λ1v2

1 − λ2v2
2)2 + 4(λ3 + λ4)2v2

1v
2
2

)
, (4.12)

m2
H =

1

2

(
λ1v

2
1 + λ2v

2
2 +

√
(λ1v2

1 − λ2v2
2)2 + 4(λ3 + λ4)2v2

1v
2
2

)
,

where the H-h mixing is given by(
H

h

)
=

(
cosα sinα

− sinα cosα

)(
φ1

φ2

)
(4.13)

with

tan 2α =
2(λ3 + λ4)v1v2

λ1v2
1 − λ2v2

2

. (4.14)

Notice that in the limit sinα ∼ 1, H ∼ φ2, i.e. the SM Higgs, and h ∼ φ1.

Moreover, it is clear from Eq. (4.12) that in the 2HDM we are considering the SM-

like Higgs is heavier than the light scalar h. Their interactions strength with SM

particles is summarized in Table 4. The couplings constants in the second column of

the table are multiplicative factors appearing in front of the SM couplings. In other

words, when α = β the Higgs in the 2HDM type I interacts with fermions and gauge

bosons identically to the SM Higgs. Furthermore, the regime β ∼ α renders the h tt̄,

h bb̄ and h τ τ̄ couplings governed by cot β, whereas the hWW , hZZ interactions are

dwindled.

4.2.2 Higgs Associated Production

Several experiments have searched for scalars with similar properties to the SM Higgs

at LEP. They were particularly focused on the associated production with the Z bo-

son, with the scalar decaying either into fermions or invisibly as displayed in Fig. 2.

The light Higgs in the models under study, h, decays at tree-level into Z ′Z ′. Since the
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Figure 2: Higgs associated production at LEP followed by its invisible decay, illus-

trated by h→ XX.
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Figure 3: Left-panel: Upper limits from invisible Higgs decay searches translated

to the light Higgs mass mh. Right-panel: Constraints from the LHC on the Higgs

properties in the context of 2HDM type I with mh > mH , where H is the SM Higgs,

a scenario which is opposite to what it is being considered here.

LEP searches did not cover fermions with very small invariant mass, i.e. stemming

from a light Z ′, one should use the results from the invisible decay search. That said,

the Zh associated production search resulted into limits on the product of the produc-

tion cross section strength and branching ratio, i.e. σ(Zh)/σ(ZHSM)BR(h→ inv).

Assuming BR(h → inv) ' 1 throughout, one can reinterpret the results from

[66–68] for the light Higgs h, having in mind that the hZZ coupling goes with

sin(β − α), to place a bound on sin2(β − α) as a function of the scalar mass as

shown in the left panel of Fig. 3 [41]. From Fig. 3, one can conservatively conclude

that sin2(β − α) . 0.1, cos2(β − α) > 0.9, independent of tan β. Weaker limits are

applicable depending on the light Higgs mass.

However, the limit presented in Fig. 3 may be not robust because it relies on the

assumption that BR(h → inv) ' 1. A simple check can be done by comparing the

decay into Z ′Z ′ with the usually dominant bb̄ mode that lead to the following decay
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Figure 4: Ratio of the light Higgs decay width for different values of tan β. In the

left panel we set δ = 10−2, while in the right one δ = 10−3. One can see that if the

product δ tan β is sufficiently small, the light Higgs decays dominantly into Z ′Z ′. In

this regime, the limits presented in the left panel of Fig. 3 can be directly applied.

rates,

Γh→Z′Z′ =
g2
Z

128π

m3
h

m2
Z

(δ tan β)4

(
cos3 β cosα− sin3 β sinα

cos β sin β

)2

, (4.15)

Γh→bb̄ =
3m2

bmh

8πv2

(
cosα

sin β

)2

. (4.16)

We thus conclude that the ratio reads

Γh→bb̄
Γh→Z′Z′

=
12m2

b

m2
h

1

(δ tan β)4

(
cos β sin β

cos3 β cosα− sin3 β sinα

)2(
cosα

sin β

)2

, (4.17)

which is displayed in Fig. 4, where we plot this ratio for different values of tan β as

a function of the light Higgs mass. In the left panel we fix δ = 10−2, whereas in

the right one δ = 10−3. One can see that if the product δ tan β is sufficiently small,

the light Higgs decays dominantly into Z ′Z ′, as predicted by Eq. (4.16), justifying

our procedure in the derivation of Fig. 3. A more detailed study regarding the light

Higgs properties has been conducted elsewhere [41]. In this work, we are limited to

discuss all relevant limits to the U(1)X models introduced above.

For completeness, in the right panel of Fig. 3, we exhibit the limits from LHC

data for the 2HDM type I, assuming that the light Higgs is instead the SM Higgs, i.e.

mh > mH , whose interactions strength with gauge bosons is proportional cos(β−α).

The SM limit in this case is found when β ∼ α+π/2, where H ∼ φ1 and h ∼ φ2. Fig.

3 is still useful to us though, because it shows that for tan β > 1 larger deviations

from the SM Higgs are allowed. Moreover, we indeed assume v2 > v1, thus tan β > 1,

throughout.
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Higgs decay channel branching ratio error

bb̄ 5.84× 10−1 1.5%

cc̄ 2.89× 10−2 6.5%

g g 8.18× 10−2 4.5%

ZZ∗ 2.62× 10−1 2%

WW ∗ 2.14× 10−1 2%

τ+τ− 6.27× 10−2 2%

µ+µ− 2.18× 10−4 2%

γγ 2.27× 10−3 2.6%

Zγ 1.5× 10−3 6.7%

ZZ∗ → 4` 2.745× 10−4 2%

ZZ∗ → 2`2ν 1.05× 10−4 2%

Table 5: List of experimental limits on the branching ratio of the SM Higgs. The

channel ZZ∗ → 2`2ν was obtained using the relation BR(H → ZZ∗ → 2`2ν) =

BR(H → ZZ∗)BR(Z → 2`)BR(Z → 2ν)2.

4.2.3 Higgs Decays

After the Higgs discovery the LHC has turned into a Higgs factory and today we have

at our disposal much better measurements of the Higgs branching ratio (see Table

5). Since we are mostly interested in the regime in which the Z ′ is light enough for

the Higgs to decay into, some channels are of great interest for our purposes, namely

H → ZZ∗ → 4` and H → ZZ∗ → 2`2ν. In the context of 2HDM it has been shown

that in the limit in which the Z ′ gauge boson is much lighter than the Z boson we

get [41],

Γ(H → ZZ ′) =
g2
Z

64π

(M2
H −M2

Z)3

M3
HM

2
Z

δ2 tan β2 sin2(β − α), (4.18)

and

Γ(H → Z ′Z ′) =
g2
Z

128π

M3
H

M2
Z

δ4 tan β4

(
cos3 β sinα + sin3 β cosα

cos β sin β

)2

. (4.19)

One can now use precision measurements on Higgs properties summarized in

Table 5 to constrain the model. We will focus on the decay into ZZ ′ since δ is

supposed to be small to obey meson decay constraints1. Enforcing the branching

ratio Γ(H → ZZ ′ → 4`)/Γtotal with Γtotal = 4.1 MeV, to match the measured value

within the error bars as indicated in the Table 5 we obtain,

δ2 ≤ 4.6× 10−6

BR(Z ′ → l+l−) sin2(β − α) tan β2
. (4.20)

1In some regions of the parameter space with sufficiently large tanβ the decay Z ′Z ′ might

become relevant as discussed in [41].
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To have an idea on how competitive this constraint is compared to previous

discussions we shall plug in some numbers. Taking sin2(β−α) = 0.01 and tan β = 10,

we get

δ ≤ 0.002√
BR(Z ′ → l+l−)

, (4.21)

which is comparable to the bound stemming from Kaon decays. We emphasize that

this bound is applicable to all U(1)X models under study here. One need now to

simply choose a model and substitute the respective branching ratio into charged

leptons as provided by Fig. 1.

4.3 Z Decays

In the models we are investigating both the light Higgs h and the Z ′ can be much

lighter than the Z, kinematically allowing the decay Z → hZ ′. In the limit that the

Z ′ mass is very small compared to the Z mass we find,

Γ(Z → hZ ′) = (Ch−Z−Z′)2 mZ

64πm2
Z′

(
1− m2

h

m2
Z

)3

. (4.22)

where (see Appendix F)

Ch−Z−Z′ = gZgXv cos β sin β cos(β − α). (4.23)

Knowing that we can write down the Z ′ mass as a function of δ, as derived in

Appendix C, we get

Γ(Z → hZ ′) =
g2
ZmZ

64π
(δ tan β)2 cos2(β − α)

(
1− m2

h

m2
Z

)3

. (4.24)

We highlight that the exact expression for this decay depends on the Φ1 charge

under U(1)X . Eq. (4.24) is valid for the B − L model for instance, and it agrees

with [41]. Anyways, knowing that the total decay width of the Z is ΓZ = 2.4952 ±
0.0023 GeV [69], one can conservatively enforce the new physics decay to be within

the error bars of the measured value. One can use this to place a lower mass limit

on mh as a function of δ tan β taking cos2(β − α) ∼ 0.9− 1 as shown in Fig. 5.

One can conclude that for sufficiently small δ tan β the bounds from LEP sub-

stantially weaken. We have seen in the previous sections that δ < 10−2 − 10−3, and

since we are interested in the limit of large tan β, say tan β ∼ 10, then the light Higgs

in the U(1)X models under study can be arbitrarily light as long as a fine-tuning in

Eq. (4.12) is invoked. It has been noted that if sinα is different from unity, mh

cannot be lighter than mH/2, otherwise the heavy Higgs, i.e. the SM Higgs, would

decay dominantly into hh in strong disagreement with data [70]. Thus this very light

Higgs scenario is only possible in the limit sinα = 1.
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Figure 5: Lower mass bound on the light Higgs stemming from the LEP precision

measurement on the Z width.

4.4 Charged Higgs Searches

A pleasant feature of our framework is that in contrast to canonical 2HDM there is

no pseudoscalar Higgs particle2, as this degree of freedom becomes the longitudinal

polarization of the Z ′. However, it certainly does have a charged scalar, H±, which

is orthogonal to the longitudinal component of the W±. The phenomenology of the

charged Higgs in the ordinary Type I model was recently discussed in Ref. [4].

In 2HDM type I, the coupling of the charged Higgs to fermions is suppressed by

a factor of tan β. In the models under study, the charged Higgs mass is found to

be m2
H+ = λ4

2
v2. This mass determines which final state is dominant in its decays

[4, 71–74]. In this work we will adopt λ4 ∼ 1, and this case the hW , HW and tb̄

decays are the dominant ones and are found to be described by [75, 76]

Γ(H± → hW±) =
cos2(β − α)

16πv2

1

m3
H±

λ3/2(m2
H± ,m

2
h,m

2
W ) (4.25)

with λ(x, y, z) ≡ x2 + y2 + z2 − 2xy − 2yz − 2zx,

Γ(H± → HW±) =
sin2(β − α)

16πv2

1

m3
H±

λ3/2(m2
H± ,m

2
H ,m

2
W ), (4.26)

and the decay width into tb̄ is given by

Γ(H± → tb̄) ' 3mH±

8πv2

m2
t

tan2 β

(
1− m2

t

m2
H±

)2

(4.27)

2There is a pseudoscalar associated with a Higgs singlet, which remains decoupled as we assume

no mixing between the doublets and singlet. When sizable mixing is introduced, the remaining

pseudoscalar would have small couplings to the SM particles and it could be in principle detectable.
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Experiment 〈Q〉 sin2 θW (mZ) Bound on dark Z (90% CL)

Cesium APV 2.4 MeV 0.2313(16) ε2 < 39×10−6

δ2

(
mZd
mZ

)2
1

K(mZd )2

E158 (SLAC) 160 MeV 0.2329(13) ε2 < 62×10−6

δ2

(
(160 MeV)2+m2

Zd

mZ mZd

)2

Qweak (JLAB) 170 MeV ±0.0007 ε2 < 7.4×10−6

δ2

(
(170 MeV)2+m2

Zd

mZ mZd

)2

Moller (JLAB) 75 MeV ±0.00029 ε2 < 1.3×10−6

δ2

(
(75 MeV)2+m2

Zd

mZ mZd

)2

MESA (Mainz) 50 MeV ±0.00037 ε2 < 2.1×10−6

δ2

(
(50 MeV)2+m2

Zd

mZ mZd

)2

Table 6: Existing (Cesium, E158) and projected constraints on the kinetic mixing

parameter as a function of the mass mixing parameter δ and the Z ′ mass. All masses

are in MeV, hence mZ = 91000 MeV.

where we have taken Vtb = 1.

The constraints coming from charged Higgs bosons searches are not very restric-

tive and in the limit of large tan β as assumed in this work, charged Higgs searches do

not yield competitive limits and thus ignored henceforth. For a detailed discussion

see [77].

4.5 Atomic Parity Violation

The search for Atomic Parity Violation (APV) provides a promising pathway to

probe new physics, especially the existence of neutral light bosons. It is known that

for mZ′ ∼ 0.1 − 1 GeV, existing limits exclude ε2 > 10−6 [44]. As we shall see in

what follows, APV offers an orthogonal and complementary probe for new physics

depending on the parameter δ.

Anyways, this parity violation is two fold: (i) it can be induced via the non-zero

SM fermion charges under the U(1)X symmetry; (ii) it can arise via the Z ′−Z mass

mixing. That said, let us first review how one can constrain U(1)X models via atomic

parity violation. Using effective field theory APV is parametrized as [78]

− Leff = g2+g′2

m 2
Z

1
4
ēγµγ5e

[
( 1

4
− 2

3
s2
W ) ūγµu + (− 1

4
+ 1

3
s2 ) d̄ γµd

]
− fAe
m 2
Z′
ē γµγ5 e

[
fV u ūγ

µu + fV d d̄ γ
µd
]
.

(4.28)

Here fxy are effective couplings to be derived below for the different models.

The Lagrangian involves the product of the Z and Z ′ axial vector currents of

the electron with the vector neutral currents of the quarks. Remembering that the
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Figure 6: Upper limits on the kinetic mixing as a function of the Z ′ mass for

different values of the mass mixing parameter δ according to the first line of Table 6.

vector part of the Z weak neutral current is associated with the Z weak charge, we

get from Eq. (4.28)

QZ = (2Z +N)

(
1

4
− 2

3
sin2 θW

)
+ (Z + 2N)

(
−1

4
+

1

3
sin2 θW

)
, (4.29)

=
1

4

[
Z(1− 4 sin2 θW )−N

]
=

1

4
QSM
W (Z,N).

The quantity QSM
W is usually referred to as weak charge of a nucleus of Z protons and

N neutrons. Similarly, the quark contribution to the charge QZ′ associated with the

vector part of the Z ′ current is found to be

QZ′ = (2Z +N)fV u + (Z + 2N)fV d (4.30)

= (2fV u + fV d)z + (fV u + 2fV d)N. (4.31)

The effective Lagrangian Eq. (4.28) implies the following parity violation Hamiltonian

density for the electron field in the vicinity of the nucleus3

Heff =e†(~r ) γ5 e(~r )

[
g2 + g′2

4m 2
Z

1

4
QSM
W −

g2 + g′2

4m2
Z′

ε2Z

(
1− l − e

Qx1 cos2
β +Qx2 sin2

β

)
QZ′

]
δ(~r)

=e†(~r)γ5e(~r)
GF

2
√

2
Q eff
W (Z, N)δ(~r),

(4.32)

3δ(~r) can be replaced by the nuclear density ρ(~r) to take into account finite size effects of the

nucleus. For a more detailed discussion about APV see reference [78].
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where

Qeff
W = QSM

W − 4δ2QZ′

(
1− l − e

Qx1 cos2
β +Qx2 sin2

β

)
, (4.33)

using that εZ =
MZ′
MZ

δ. We remind the reader that l and e are the charges of the

left-handed and right-handed electron under U(1)X .

Notice that the effective weak charge of the nucleus Qeff
W includes in addition to

the standard contribution QSM
W an additional Z ′ contribution. In order to know Qeff

W ,

it is necessary to calculate QZ′ . To do so, we need to specify from Eq. (3.27) fV u
and fV d associated to the Z ′ boson,

fV u =

[
1

4
− 2

3
sin2 θW (1− ε cos θW

εZ sin θW
) +

1

4

q + u

Qx1 cos2
β +Qx2 sin2

β

]
, (4.34)

fV d =

[
−1

4
+

1

3
sin2 θW (1− ε cos θW

εZ sin θW
) +

1

4

q + d

Qx1 cos2
β +Qx2 sin2

β

]
, (4.35)

where q(u) is the charge of the left-handed (right-handed) quark field under U(1)X .

Substituting (4.34) and (4.35) into (4.33) we obtain the following general expres-

sion for ∆QW = Qeff
W −QSM

W ,

∆QW = −δ2QSM
W − δ24Z sin θW cos θW

ε

εZ
− δ2 (q + u)(2Z +N)

Qx1 cos2
β +Qx2 sin2

β

(4.36)

− δ2 (q + d)(Z + 2N)

Qx1 cos2
β +Qx2 sin2

β

(
1− l − e

Qx1 cos2
β +Qx2 sin2

β

)
.

Currently, the SM prediction for the weak nuclear charge in the Cesium case is [79]

QSM
W = −73.16(5), (4.37)

so that the general expression Eq. (4.36) becomes:

∆QW = 73.16δ2 − 220δ

(
ε
MZ

m′Z

)
sin θW cos θW − δ2 188(q + u)

Qx1 cos2
β +Qx2 sin2

β

(4.38)

− δ2 211(q + d)

Qx1 cos2
β +Qx2 sin2

β

(
1− l − e

Qx1 cos2
β +Qx2 sin2

β

)
.

On the other hand the experimental value for the weak nuclear charge in the Cesium

case is [80, 81]

Qexp
W = −73.16(35), (4.39)
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and the 90% CL bound on the difference is [37]

|∆QW (Cs)| = |Qexp
W −Q

SM
W | < 0.6, (4.40)

which yields the general APV expression for U(1)X models for the Cesium nucleus:∣∣∣∣∣73.16δ2 − 220δ

(
ε
MZ

m′Z

)
sin θW cos θW − δ2 188(q + u)

Qx1 cos2
β +Qx2 sin2

β

(4.41)

− δ2 211(q + d)

Qx1 cos2
β +Qx2 sin2

β

(
1− l − e

Qx1 cos2
β +Qx2 sin2

β

)∣∣∣∣∣×K(Cs) < 0.6.

The correction factor K(Cs) is introduced for low values of MZ′ where the local limit

approximation is not valid. Different values for this correction factor are listed in

Table I of reference [78]. At first order, one can drop the terms proportional to δ2 in

Eq. (4.41) and then solve it for ε in terms of δ, using 220δ
(
εMZ

m′Z

)
sin θW cos θW = 0.6.

Doing so, we find the bound shown in the first line of Table 6. The numerical

upper limit on the kinetic mixing as a function of the Z ′ mass for different values of

δ taking into account the energy dependence on K(Cs) is displayed in Fig. 6.

It is useful again to apply our procedure to a well known model in the literature

such as the B − L model. In this case q = u = d = 1/3, Qx2 = 0, Qx1 = 2, ` = e.

With these values the expression (4.38) becomes

∆QW = −59.84δ2 − 220δ

(
ε
MZ

m′Z

)
sin θW cos θW − 133δ2 tan2 β, (4.42)

which coincides with the expressions obtained in [37, 38], except for the last term,

that arises due to the non-zero U(1)B−L charges of the fermions. Applying the 90%

CL bound in Eq. (4.41) we get∣∣∣∣−59.84δ2 − 220δ

(
ε
MZ

M ′
Z

)
sinW cosW −133δ2 tan2 β

∣∣∣∣×K(Cs) < 0.6. (4.43)

From Eq. (4.43) we can see the term proportional to δ2 can not always be dropped

as we did before to obtain the limit in the first line of Table 6. For sufficiently large

tan β the last term in Eq. (4.43) might become relevant yielding changes for the

upper limits on the kinetic mixing. Since the importance of this last term is rather

model dependent we will not devote time to discuss its impact here.

Regardless, the conclusion that Cesium nucleus provides an interesting and or-

thogonal test for new physics stands, and depending on the U(1)X model under study

it gives rise to restrictive limits on the kinetic mixing parameter following Table 6.
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Another observable in APV experiments is given by the value of sin θW that is

measured at low energies. The shift in sin2 θW caused by the presence of a new vector

boson that mixes with the Z boson is found to be [37]

∆ sin2 θW = −0.42εδ
mZ

mZ′

m2
Z′

m2
Z′ +Q2

, (4.44)

where Q is the energy at which sin θW is measured and ∆ sin2 θW refers to the error

on the measurement of sin2 θW as shown in Table 6. By plugging the experimental

error bar as displayed in the third column of Table 6 into Eq. (4.44) one can derive

upper limits on ε as a function of δ as shown in the fourth column of Table 6. The

first two rows in Table 6 refer to past experiments, whereas the remaining rows rep-

resent projected experimental sensitivities.

Anyways, one can see that the Qweak experiment is not expected to be as sen-

sitive to the kinetic mixing as the first measurements, but both Moller and MESA

experiments should be able to surpass previous experiments yielding tight bounds

on the kinetic mixing [82–84].

4.6 Muon Anomalous Magnetic Moment

Any charged particle has a magnetic dipole moment (~µ) defined as

~µ = g
( q

2m

)
~s, (4.45)

where s is the spin of the particle, g is the gyromagnetic ratio, q = ±e is the electric

charge of a given charged particle, and m its mass (see [16] for a recent and extensive

review). Loop corrections induce deviations from the tree-level value g = 2, which are

parametrized for the muon in terms of aµ = (gµ− 2)/2, referred to as the anomalous

magnetic moment. An enormous effort has been dedicated to precisely determine

the SM contribution to g−2 [85–87]. Interestingly, the SM prediction does not agree

with recent measurements leading to [88]

∆aµ = aexpµ − aSMµ = (287± 80)× 10−11, (4.46)

which implies a 3.6σ evidence for new physics. Therefore, it is definitely worthwhile

to explore new physics models capable of giving rise to a positive contribution to

g−2. In the U(1)X models under investigation, a particle that fulfills this role is the

massive Z ′ that yields [16, 89, 90]

∆aµ (f, Z ′) =
1

8π2

m2
µ

m2
Z′

∫ 1

0

dx
∑
f

∣∣gfµv ∣∣2 F+(x) +
∣∣gfµa ∣∣2 F−(x)

(1− x) (1− λ2x) + ε2fλ
2x

, (4.47a)
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with

F± = 2x(1− x)(x− 2± 2εf ) + λ2x2(1∓ εf )2(1− x± εf ) (4.47b)

and εf ≡ mf
mµ

, λ ≡ mµ
mZ′

. Here f are charged leptons. Since we are not dealing with

flavor changing interactions in this work, εf ≡ 1 and mf = mµ. Moreover, in the

limit of a Z ′ much heavier than the muon, the contribution simplifies to

∆aµ (Z ′) ' 1

12π2

m2
µ

m2
Z′

(g2
v − 5g2

a), (4.48)

where gv and ga are the vector and axial vector couplings of the Z ′ with the muon.

Notice that only models where the vector coupling is more than five times larger than

the axial vector couplings are capable of addressing the g− 2 anomaly in agreement

with [91]. This condition is satisfied only in the U(1)D and U(1)F models.

That said, the region that explain the g − 2 anomaly is easily obtained through

the equality
g2
v

(mZ′ [GeV])2
' 3.3× 10−5. (4.49)

For instance, in the U(1)D model gv = −1.75gX . Keeping gX = 1, we need mZ′ ∼
540 GeV to accommodate the g − 2 anomaly, which is way beyond the region of

interest in this work. Anyways, such heavy gauge bosons are subject to stringent

limits from dimuon searches as shown in [92–101], preventing such gauge bosons to

be a solution to the g − 2 anomaly. However, if we set gX = 10−4, then mZ′ ∼
54 MeV is required, being potentially able to explain the g − 2 anomaly, as long as

the kinetic and mass mixing parameters are kept sufficiently small. A more thorough

discussion of the possibility of explaining g− 2 in each of these models will be made

elsewhere. It is interesting to see though, that one might be able to cure 2HDM from

flavor changing interactions, generate neutrino masses, while solving a relevant and

long standing anomaly in particle physics. junior

4.7 Neutrino-Electron Scattering

Intensity frontier constitutes a promising endeavor in the quest for new physics,

being able to explore models inaccessible at high-energy frontiers. One canonical

example are the precise measurements on neutrino-electron scattering using different

targets, as measured by several experiments such as TEXONO, GEMMA, BOREX-

INO, LSND and CHARM. Since neutrino interactions are purely leptonic, they are

subject to small uncertainties. Moreover, interesting models such as the dark pho-

ton and light Z ′ models such as ours, predict different signals at these experiments.

Therefore, the use of neutrino-electron scattering to explore hints of new physics is

both theoretically and experimentally well motivated.
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Figure 7: Feynmann diagrams relevant for neutrino-electron scattering

That said, several works have been done to place limits on new physics models

based on neutrino-electron scattering data [102–107]. Here we will briefly review the

concept behind these and derive constraints the gauge couplings as a function of the

Z ′ mass.

The physics behind these constraints lies on the computation of the neutrino-

electron scattering due to new physics. In Fig. 7 we exhibit the SM diagram alongside

the new physics ones. Following Ref. [108] the new physics neutrino-electron scat-

tering cross section can be parametrized in terms of the B−L model which is found

to be [105]

dσ

dER
=

g4
B−Lme

4πE2
ν(m

2
Z′ + 2meER)2

(2E2
ν + E2

R − eEREν −meER) (4.50)

where ER is the electron recoil energy, Eν is the energy of the incoming neutrino, me

is the electron mass, and GF the Fermi constant.

The idea is to compute the expected neutrino-scattering rate from new physics,

(dR/dER)NP, which is related to the neutrino-electron scattering through(
dR

dER

)
NP

= t ρe

∫ ∞
Eminν

dΦ

dEν

dσ

dER
dEν , (4.51)

where Φ is the neutrino flux, t is period of mock data taking, and ρe is electron number

density per kg of the target mass. Once that has been computed, one compares it

with the measured rate and finds 90% level limits applying a χ2 statistics as follows:

χ2 =
∑
i=1

(Rexp i − (RSM i +RNP))2

σi
(4.52)
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Table 7: Summary of experiments that constrained ν − e scattering.

Experiment Type of neutrino 〈Eν〉 T

TEXONO-NPCGe [110] ν̄e 1−2 MeV 0.35−12 keV

TEXONO-HPGe [111, 112] ν̄e 1−2 MeV 12−60 keV

TEXONO-CsI(Tl) [113] ν̄e 1−2 MeV 3−8 MeV

LSND [114] νe 36 MeV 18−50 MeV

BOREXINO [115] νe 862 keV 270−665 keV

GEMMA [116] ν̄e 1−2 MeV 3−25 keV

CHARM II [117] νµ 23.7 GeV 3-24 GeV

CHARM II [117] ν̄µ 19.1 GeV 3-24 GeV

where Rexp, RSM are the measured and SM predicted rates respectively, and σi is the

statistical error on the measurement of Rexp. The index i runs through energy bins.

Using data from several experiments subject to different energy threshold and type

of incoming neutrino flavor as summarized in Table 7, constraints on the new physics

have been placed [108]. The limits were interpreted in terms of the B −L model, as

shown in Fig. 8. These bounds are the most restrictive for mZ′ ∼ 100 MeV − 1 GeV,

as exhibited in Fig. 9 where all relevant constraints are put together. See [109] for a

recent review on neutrino-electron scattering experiments.

One needs to apply these constraints to the U(1)X models under study with

care. Obviously, for the B − L model in Table 2, the limits in Fig. 9 are directly

applicable. For the remaining U(1)X models, one can estimate the limits through

rescaling. Since the kinetic and mass-mixing are constrained to be small, the leading

diagram is the t-channel Z ′ exchange in Fig. 7. Therefore, the scattering cross section

scales with g2
Z′−ν−νg

2
Z′−e−e, where gZ′−ν−ν , gZ′−e−e are the Z ′ vectorial couplings with

the neutrinos and electrons respectively. These are easily obtained knowing that the

vector coupling with a given fermion field is gfv = gX/2(QfL + QfR), where QfL

and QfR are the charges of the left-handed and right-handed field components under

U(1)X as displayed in Table 2. In summary, there is a plot similar to Fig. 8 for each

U(1)X model in this work. Clearly this exercise is outside the scope of this work.

Anyways, it is clear that neutrino-electron scattering provides a competitive probe

for new physics and is relevant for the U(1)X models under study. These bounds can

be circumvented by tuning the kinetic mixing to sufficiently small values, similarly

to the dark photon model.

4.8 Low Energy Accelerators

Low energy accelerators are capable of probing new physics models out of reach of

high-energy colliders. Models with light mediators, such as the dark photon model

are considered a benchmark [118, 119]. The sensitivity of low energy accelerators is
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Constraints from neutrino-electron scattering experiments
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Figure 8: Constraints on the B − L model based on measurements of neutrino-

electron scattering.
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Figure 9: Summary of constraints from neutrino-electron scattering on U(1)X mod-

els with very light Z ′ gauge bosons. These constraints have been interpreted from

dark photon searches.
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driven by high-intensity beams and/or high precision detectors. Such accelerators

are usually divided into two classes: (i) collider; (ii) fixed-target experiments. In

the former, high-intensity beams of e+e− are capable of directly producing on-shell

light mediators, whereas in the latter, light particles are produced as result of a

decay chain created after the beam hits the target. In either case, the low-energy

accelerators are excellent laboratories to spot new physics effects. In Fig. 10 we

present a summary of current constraints on the dark photon model, with the dark

photon, A′, decaying into charged leptons. With care, the limits exhibited in Fig. 10

can be applicable to the U(1)X are investigation. For instance, the BaBar experiment

searched for the e+e− → γA′, with A′ decaying into l+l−. The interaction of the dark

photon with charged leptons reads ε l̄γµl A
′µ. Having in mind that the two important

quantities are the production cross section and the branching ratio into electrons,

one can recast the BaBar upper limits on the dark photon kinetic mixing (εDP) to

other U(1)X models as follows

ε2DP → (glv)
2BR(Z ′ → l+l−), (4.53)

where glv = gX/2(Ql
L +Ql

R) is the Z ′ vectorial coupling to charged leptons. Here Ql
L

and Ql
R are the left-handed and right-handed charged lepton charges under U(1)X .

In all U(1)X models that accommodate neutrino masses and are free from flavor

changing interactions the Z ′ boson features a vectorial coupling with electrons. Since

the SM fermions are charged under U(1)X , in addition to the kinetic mixing term,

a vectorial interaction proportional to gX also arises. Therefore, Eq. (4.53) is valid

when the term proportional to gX is dominant, otherwise, the bounds in Fig. 10 are

directly applicable. Hence, one can use Eq. (4.53) to obtain limits for each U(1)X
model. A similar reasoning can be applied to other collider experiments.

As for fixed target experiments such as NA48/2, the rescaling is restricted to

the branching ratio into charged leptons. Sometimes these experiments include both

e+e− and µ+µ− decay modes in the analysis, while other times they consider only one

of those. Our goal here is not to describe each one of these searches individually but

rather present to the reader the existence of limits on the kinetic-mixing stemming

from low energy accelerators. The precise bound on ε for each U(1)X model is not

relevant for us, since they can all be evaded by simply tuning down the free kinetic

mixing parameter.

Furthermore, it is worth pointing out that there is also a similar plot considering

only invisible decays of the dark photon. However, as far as the U(1)X models go,

the only possible invisible decay modes are the active neutrinos and right-handed

neutrinos. Except in the case of the U(1)B−L model, this branching ratio is expected

to be small, substantially weakening the limits on ε. Thus the searches for visible
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Figure 10: Summary of bounds from low energy accelerators constraints on the

dark photon model [109]. After proper rescaling these constraints are also applicable

to the U(1)X models in this work. In particular, the BaBar limits can be recast using

the relation ε2DP → (glv)
2BR(Z ′ → l+l−). See text for details.

decays are more constraining.

In summary, low energy accelerators yield very strong limits on the kinetic mixing

parameter of the U(1)X models.

4.9 Discussion

We have discussed a variety of limits on the parameters δ and the kinetic mixing ε.

They are model dependent. The bounds on δ were derived under the assumption that

the fermions were uncharged under U(1)X , where only the mass-mixing would dictate

the Z ′ interactions with fermions. However, due to the presence of new interactions

between the SM fermions and the Z ′ gauge boson these limits might be subject to

changes by a factor of few depending on the value of gX and fermion charges under

U(1)X . As for the limits on the kinetic mixing, they were obtained assuming that
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the kinetic mixing alone dictates the observables since they were originally meant for

the dark photon model. Since both δ and ε, in principle, are arbitrarily small, the

constraints presented in this work might be circumvented. A more detailed analysis

incorporating precise bounds on the U(1)X models is left for the future. The goal

of this work was to propose new 2HDM gauge models capable of accommodating

neutrino masses and freeing the 2HDM from flavor changing interactions, as well as

estimate what kind of phenomenology these models can generate.

On a side note, one more interesting avenue that is worth exploring is the near

future is the possibility of accommodating a dark matter candidate. Naively, one can

could have a Sub-GeV singlet fermion charged under U(1)X that interacts with SM

fermions though the light Z ′ gauge boson, scenario which has been studied before in

different contexts [120–124].

5 Conclusions

Two Higgs Doublet Models are a natural extension of the Standard Model with in-

teresting Higgs and collider phenomenology. These models are plagued with flavor

changing interactions and for this reason a Z2 symmetry has in the past been evoked

to save such flavor changing couplings from tight flavor constraints. In this work, we

cure 2HDM model flavor changing interactions from gauge principles and addition-

ally embed neutrino neutrino masses via the see-saw mechanism. In particular, we

propose eight different models where neutrino masses and absence of flavor changing

interactions are nicely explained. To do so, we gauge an Abelian gauge group that

gives rise to a massive Z ′ via spontaneous symmetry breaking. We work in the light

Z ′ regime, mZ′ � mZ , and investigate the associated phenomenology touching rare

meson decays, Higgs physics, LEP precision data, neutrino-electron scattering, low

energy accelerators and LHC probes.

In summary, we find that these models give rise to a rather rich phenomenology

and can be made compatible with data while successfully generating neutrino masses

and freeing 2HDM from flavor changing interactions.
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A Conditions for Anomaly Freedom

Generically we will call the U(1)X charges Y ′, where Y ′ = l, q, e, u, d. The anomaly

free conditions can be read as:

[SU(3)c]
2 U(1)X :

A = Tr

[{
λa

2
,
λb

2

}
Y ′R

]
− Tr

[{
λa

2
,
λb

2

}
Y ′L

]
A ∝

∑
quarks

Y ′R −
∑

quarks

Y ′L = [3u+ 3d]− [3 · 2q] = 0.

Therefore,

u+ d− 2q = 0. (A.1)

[SU(2)L]2 U(1)X :

A = −Tr

[{
σa

2
,
σb

2

}
Y ′L

]
∝ −

∑
YL = − [2l + 3 · 2q] = 0.

Therefore,

l = −3q. (A.2)

[U(1)Y ]2 U(1)X :

A = Tr [{YR, YR}Y ′R]− Tr [{YL, YL}Y ′L] ∝
∑

Y 2
RY
′
R −

∑
Y 2
LY
′
L

A ∝

[
(−2)2 e+ 3

(
4

3

)2

u+ 3

(
−2

3

)2

d

]
−

[
2 (−1)2 l + 3 · 2

(
1

3

)2

q

]
= 0.

Therefore,

6e+ 8u+ 2d− 3l − q = 0. (A.3)

U(1)Y [U(1)X ]2 :

A = Tr [{Y ′R, Y ′R}YR]− Tr [{Y ′L, Y ′L}YL] ∝
∑

YRY
′
R

2 −
∑

YLY
′
L

2

A ∝
[
(−2) e2 + 3

(
4

3

)
u2 + 3

(
−2

3

)
d2

]
−
[
2 (−1) l2 + 3 · 2

(
1

3

)
q2

]
= 0.

Therefore,

− e2 + 2u2 − d2 + l2 − q2 = 0. (A.4)

– 36 –



[U(1)X ]3 :

A = Tr [{Y ′R, Y ′R}Y ′R]− Tr [{Y ′L, Y ′L}Y ′L] ∝
∑

Y ′R
3 −

∑
Y ′L

3

A ∝
[
e3 + 3u3 + 3d3

]
−
[
2l3 + 3 · 2q3

]
= 0.

Therefore,

e3 + 3u3 + 3d3 − 2l3 − 6q3 = 0. (A.5)

B Gauge bosons

We will now derive the physical gauge boson spectrum, first of all let us write the

covariant derivative Eq. (3.19) in terms of ε as

Dµ = ∂µ + igT aW a
µ + ig′

QY

2
Bµ +

i

2

(
g′

εQY

cos θW
+ gXQX

)
Xµ, (B.1)

or explicitly,

Dµ = ∂µ +
i

2

(
gW 3

µ + g′QYBµ +GXXµ g
√

2W+
µ

g
√

2W−
µ −gW 3

µ + g′QYBµ +GXXµ

)
, (B.2)

where we defined for simplicity

GXi =
g′εQYi

cos θW
+ gXQXi (B.3)

with QYi being the hypercharge of the scalar doublet under SU(2)L, which in the

2HDM is taken to equal to +1 for both scalar doublets; QXi is charge of the scalar

doublet i under U(1)X .

We will use DµΦi to refer to the action of the covariant derivative on the i scalar

doublet of Y = 1 (i = 1, 2). Disregarding the term ∂µ we have

DµΦi =
i

2
√

2

(
gW 3

µ + g′Bµ +GXiXµ g
√

2W+
µ

g
√

2W−
µ −gW 3

µ + g′Bµ +GXiXµ

)(
0

vi

)
, (B.4)

DµΦi =
i

2
√

2
vi

( √
2gW+

µ

−gW 3
µ + g′Bµ +GXiXµ

)
. (B.5)

Consequently,

(DµΦi)
† (DµΦi) = 1

4
v2
i g

2W−
µ W

+µ + 1
8
v2
i

[
g2W 3

µW
3µ + g

′2BµB
µ +G2

XiXµX
µ
]

+1
8
v2
i

[
−2gg′W 3

µB
µ − 2gGXiW

3
µX

µ + 2g′GXiBµX
µ
]
. (B.6)

Carrying out the electroweak rotation as usual,

Bµ = cos θWAµ − sin θWZ
0
µ

W 3
µ = sin θWAµ + cos θWZ

0
µ, (B.7)

– 37 –



we obtain

(DµΦi)
† (DµΦi) =

1

4
v2
i g

2W−
µ W

+µ +
1

8
v2
i

[
g2
ZZ

0
µZ

0µ +G2
XiXµX

µ − 2gZGXiZ
0
µX

µ
]
,

(B.8)

where g2
Z = g2 + g

′2 = g2/ cos2 θW . As we can see, after the rotation Eq. (B.7) the

field Aµ identified as the photon is massless, as it must be.

For the singlet ΦS (with QY = 0 and T a = 0 and disregarding the ∂µ term) we

obtain

DµΦS =
i

2
√

2
vsgXqXXµ, (B.9)

so that

(DµΦS)† (DµΦS) =
1

8
v2
sg

2
Xq

2
XXµX

µ. (B.10)

Notice from Eq. (B.10) that the singlet only contributes to the U(1)X gauge boson

mass. Then:

Lmass = (DµΦ1)† (DµΦ1) + (DµΦ2)† (DµΦ2) + (DµΦS)† (DµΦS)

=
1

4
g2v2W−

µ W
+µ +

1

8
g2
Zv

2Z0
µZ

0µ − 1

4
gZ
(
GX1v

2
1 +GX2v

2
2

)
Z0
µX

µ

+
1

8

(
v2

1G
2
X1 + v2

2G
2
X2 + v2

sg
2
Xq

2
X

)
XµX

µ,

(B.11)

where v2 = v2
1 + v2

2. Finally Eq. (B.11) can be written as

Lmass = m2
WW

−
µ W

+µ +
1

2
m2
Z0Z0

µZ
0µ −∆2Z0

µX
µ +

1

2
m2
XXµX

µ, (B.12)

where

m2
W =

1

4
g2v2, (B.13)

m2
Z0 =

1

4
g2
Zv

2, (B.14)

∆2 =
1

4
gZ
(
GX1v

2
1 +GX2v

2
2

)
, (B.15)

m2
X =

1

4

(
v2

1G
2
X1 + v2

2G
2
X2 + v2

sg
2
Xq

2
X

)
. (B.16)

Summarizing, after the symmetry breaking pattern of this model we realize that

there is a remaining mixing between Z0
µ and Xµ, that may expressed through the

matrix

m2
Z0X =

1

2

(
m2
Z0 −∆2

−∆2 m2
X

)
, (B.17)
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or explicitly

m2
Z0X =

1

8

(
g2
Zv

2 −gZ (GX1v
2
1 +GX2v

2
2)

−gZ (GX1v
2
1 +GX2v

2
2) v2

1G
2
X1 + v2

2G
2
X2 + v2

sg
2
Xq

2
X

)
(B.18)

The above expression Eq. (B.18) for the mixing between the Z0
µ and Xµ bosons

is given as function of arbitrary U(1)X charges of doublets/singlet scalars. It is

important to note that when QX1 = QX2, and there is not singlet contribution, the

determinant of the matrix Eq.(B.18) is zero.

Eq. (B.18) is diagonalized through a rotation O(ξ)(
Zµ
Z ′µ

)
=

(
cos ξ − sin ξ

sin ξ cos ξ

)(
Z0
µ

Xµ

)
, (B.19)

and its eigenvalues are:

m2
Z =

1

2

[
m2
Z0 +m2

X +

√(
m2
Z0 −m2

X

)2
+ 4 (∆2)2

]
m2
Z′ =

1

2

[
m2
Z0 +m2

X −
√(

m2
Z0 −m2

X

)2
+ 4 (∆2)2

]
.

(B.20)

The ξ angle is given by

tan 2ξ =
2∆2

m2
Z0 −m2

X

. (B.21)

The expressions for the gauge boson masses above are general but not very intuitive.

We will simplify these equations by working in the limit in which the mass mixing is

small and the Z ′ is much lighter than the Z boson. That said, we can find a reduced

formula for the masses as follows

m2
Z '

1

2

[
m2
Z0 +

√
m4
Z0 + 4 (∆2)2

]
' 1

2

[
m2
Z0 +m2

Z0

]
.

In this case:

m2
Z ' m2

Z0 =
1

4
g2
Zv

2, (B.22)

being gZ = g
cos θW

. Similarly for the Z ′ one finds

m2
Z′ =

1

2

[
m2
Z0 +m2

X −
√(

m2
Z0 −m2

X

)2
+ 4 (∆2)2

]

=
1

2

m2
Z0 +m2

X −
(
m2
Z0 −m2

X

) [
1 +

4 (∆2)
2(

m2
Z0 −m2

X

)2

] 1
2


' 1

2

{
m2
Z0 +m2

X −
(
m2
Z0 −m2

X

) [
1 +

2 (∆2)
2(

m2
Z0 −m2

X

)2

]}

' 1

2

[
m2
Z0 +m2

X −m2
Z0 +m2

X −
2 (∆2)

2

m2
Z0

]

' m2
X −

(∆2)
2

m2
Z0

,

(B.23)
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We may also further simplify Eq. (B.23) by working out explicitly ∆ in the small-

mixing regime of interest. The mixing angle must satisfy ξ � 1 by the measurements

of LEP experiment, i.e.

tan 2ξ ' sin 2ξ ' 2ξ (B.24)

with which one gets

ξ ' ∆2

m2
Z0 −m2

X

. (B.25)

For the case m2
Z0 � m2

X we find

ξ ' ∆2

m2
Z0

=
1

gz
(GX1 cos2 β +GX2 sin2 β). (B.26)

Substituting the Eq. (B.3) into Eq. (B.26) we obtain

ξ ' 1

gZ

[(
g′εQY1

cos θW
+ gXQX1

)
cos2 β +

(
g′εQY2

cos θW
+ gXQX2

)
sin2 β

]
. (B.27)

which simplifies to

ξ ' 1

gZ

[(
gXQX1 cos2 β + gXQX2 sin2 β

)
+

(
g′εQY1

cos θW
cos2 β +

g′εQY2

cos θW
sin2 β

)]
.

(B.28)

Since both Higgs doublets have the same hypercharge equal to +1, g′ = e/ sin θW
and g = e/ cos θW , we further reduce Eq. (B.28) to

ξ ' ∆2

m2
Z0

=
gX
gZ

(QX1 cos2 β +QX2 sin2 β) + ε tan θW , (B.29)

which can also be written as

ξ = εZ + ε tan θW (B.30)

where

εZ ≡
gX
gZ

(QX1 cos2 β +QX2 sin2 β). (B.31)

Eq. (B.29) is the general expression for the mass-mixing between the Z boson and

the Z ′ stemming from an arbritarry U(1)X symmetry in the limit mZ′ � mZ .

In particular, for the B − L case it is straightforward to prove that Eq. (B.29)

becomes

ξ ' ∆2

m2
Z0

' 2
gX
gZ

cos2 β + ε tan θW = εZ + ε tan θW , (B.32)

where

εZ = 2
gX
gZ

cos2 β, (B.33)

in agreement with [41]. The parameter εZ appears often throughout the manuscript

via its connection to the ξ in Eq. (B.29).
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Anyways, with Eq. (B.29) we can obtain the general expression for the Z ′ mass.

To do so, we need a few ingredients. Firstly, notice that

∆4

m2
Z

=
g2
Xv

2

4
QX1 cos2 β(1− sin2 β) +

g2
Xv

2

2
QX1QX2 cos2 β sin2 β

+
g2
Xv

2

4
Q2
X2 sin2 β(1− cos2 β) +

g2
Zv

2ε2

4
tan2 θW

gXgZv
2

2
(QX1 cos2 β +QX2 sin2 β)ε tan θW , (B.34)

with m2
Z defined in Eq. (B.14). Secondly, expanding Eq. (B.16) we get

m2
X =

1

4

[
v2

1 (gXQX1 + gZε tan θWQY 1)2 + v2
2 (gXQX2 + gZε tan θWQY 2)2 + v2

sg
2
Xq

2
X

]
(B.35)

which simplifies to

m2
X =

g2
Zε

2 tan2 θWv
2

4
+
g2
X

4
(Q2

X1v
2
1 +Q2

X2v
2
2)

+
gXgZε tan θW

2
(QX1v

2
1 +QX2v

2
2) +

v2
Sg

2
Xq

2
X

4
.

(B.36)

Now substituting Eq. (B.34) and Eq. (B.36) into Eq. (B.23) we find

m2
Z′ =

v2
s

4
g2
Xq

2
X +

g2
Xv

2

4
Q2
X1 sin2 β cos2 β +

g2
Xv

2

4
Q2
X2 cos2 β sin2 β

− g2
Xv

2

2
QX1QX2 cos2 β sin2 β

(B.37)

which reduces to

m2
Z′ =

v2
s

4
g2
Xq

2
X +

g2
Xv

2 cos2 β sin2 β

4
(QX1 −QX2)2. (B.38)

We emphasize that qX , QX1, QX2 are the charges under U(1)X of the singlet scalar,

Higgs doublets Φ1 and Φ2 respectively, tan β = v2/v1, v = 246 GeV, vs sets the

U(1)X scale of spontaneous symmetry breaking, and gX is the coupling constant of

the U(1)X symmetry. Eq. (B.38) accounts for the Z ′ mass for every single U(1)X
models studied in this work.

A few remarks are in order:

(i) The Z ′ mass is controlled by gX . Thus in order to achieve mZ′ � mZ one

needs to sufficiently suppress this coupling.

(ii) The Z ′ mass is generated via spontaneous symmetry breaking and for this

reason it depends on the vs which sets the U(1)X breaking and v due to the

Z − Z ′ mass mixing.
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(iii) The Z ′ mass as expected depends on the U(1)X charges of the scalar doublets

and the singlet scalar since they all enter into the covariant derivative of the

respective scalar field from which the Z and Z ′ are obtained.

(iv) If (QX1−QX2)2 is not much larger than four as occurs for many U(1)X models

in Table 2, then mZ′ is approximately

m2
Z′ =

v2
s

4
g2
Xq

2
X . (B.39)

For instance, in the B − L model, QX1 = 2, qX = 2, QX2 = 0, implying that

B − L : m2
Z′ = v2

sg
2
X + g2

Xv
2 cos2 β sin2 β. (B.40)

Setting vs = 1 TeV, we need gX = 10−3 − 10−6 to achieve mZ′ = 1 MeV − 1 GeV.

Notice that this small coupling constant is a feature common to all dark photon-like

models such as ours.

C δ Parameter

Defining tan βd =
vs
v1

, we can write mZ′ from (B.38) as:

m2
Z′ =

g2
Xv

2 cos2 β
[
sin2 β(QX1 −QX2)2 + tan2 βdq

2
X

]
4

,

=
g2
Xv

2 cos2 β
[
q2
X + cos2 βd

(
sin2 β(QX1 −QX2)2 − q2

X

)]
4 cos2 βd

,

(C.1)

⇒ mZ′ = gXv cos2 β

√[
q2
X + cos2 βd

(
sin2 β(QX1 −QX2)2 − q2

X

)]
2 cos β cos βd

,

=
gXv cos2 β

δ
,

(C.2)

with

δ =
2 cos β cos βd√[

q2
X + cos2 βd

(
sin2 β(QX1 −QX2)2 − q2

X

)] . (C.3)

Even in this general scenario we realize that there is a relation among the masses of

the neutral gauge bosons and εZ from Eq. (B.31):

δ =
mZ

mZ′
εZ . (C.4)

In the B−L model where QX1 = 2, qX = 2, QX2 = 0, δ from Eq. (C.3) is reduced to

δ =
cos β cos βd√

1− cos2 β cos2 βd
, (C.5)
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and Eq. (C.4) is reproduced for the mZ′ and δ values given in equations Eq. (B.40)

and Eq. (C.5), respectively. In the doublets only case, vs = 0, cos βd = 1 and

consequently (C.5) becomes

δ tan β = 1. (C.6)

On the other hand, in the limit v2 � v1 and vs � v1:

δ ' cos β cos βd '
1

tan β tan βd
. (C.7)

D Currents for Z and Z ′

In this section we will derive the generalized interactions among fermions and gauge

bosons from the following Lagrangian:

Lfermion =
∑

fermions

Ψ̄LiγµDµΨL + Ψ̄RiγµDµΨR. (D.1)

After the electroweak rotation (B.7) the covariant derivative Eq. (3.19) for neutral

gauge bosons becomes (the charged interactions are the same as those of the SM):

DL
µ =igT 3

(
sin θWAµ + cos θWZ

0
µ

)
+ ig′

QY

2

(
cos θWAµ − sin θWZ

0
µ

)
+
i

2

(
g′QY

ε

cos θW
+ gXQX

)
Xµ.

(D.2)

In Appendix B we have demonstrated that after the final SSB process a mixing

between Z0
µ and Xµ remains, and this is the origin of δ. Replacing Z0

µ and Xµ as

function of the physical bosons Zµ and Z ′µ, Eq. (B.19), we obtain

Ψ̄LiγµDL
µΨL =− eQf ψ̄

L
f γ

µψLfAµ

−
[
gZ
(
TL3f −Qf sin2 θW

)
cos ξ − 1

2

(
εgZQ

L
Y f tan θW + gXQ

L
Xf

)
sin ξ

]
ψ̄Lf γ

µψLf Zµ

−
[
gZ
(
TL3f −Qf sin2 θW

)
sin ξ +

1

2

(
εgZQ

L
Y f tan θW + gXQ

L
Xf

)
cos ξ

]
ψ̄Lf γ

µψLf Z
′
µ,

(D.3)

where the relations g sin θW = g′ cos θW = e, gZ = g/ cos θW , g′ = gZ sin θW and

T 3 + QY /2 = Qf have been used. For the right-handed fields it suffices to replace

TL3f for TR3f = 0, in which case:

Ψ̄RiγµDR
µΨR =− eQf ψ̄

R
f γ

µψRf Aµ

−
[
−gZQf sin2 θW cos ξ − 1

2

(
εgZQ

R
Y f tan θW + gXQ

R
Xf

)
sin ξ

]
ψ̄Rf γ

µψRf Zµ

−
[
−gZQf sin2 θW sin ξ +

1

2

(
εgZQ

R
Y f tan θW + gXQ

R
Xf

)
cos ξ

]
ψ̄Rf γ

µψRf Z
′
µ.

(D.4)
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The generalized interactions among fermions and gauge bosons, Eq. (D.1), is the

sum of the contributions (D.3) and (D.4), and can be written as follows:

Lfermion =− eQf ψ̄fγ
µψfAµ

−
[
gZ
(
T3f −Qf sin2 θW

)
cos ξ − 1

2
εgZQ

L
Y f tan θW sin ξ

]
ψ̄Lf γ

µψLf Zµ

−
[
−gZQf sin2 θW cos ξ − 1

2
εgZQ

R
Y f tan θW sin ξ

]
ψ̄Rf γ

µψRf Zµ

−
[
gZ
(
T3f −Qf sin2 θW

)
sin ξ +

1

2
εgZQ

L
Y f tan θW cos ξ

]
ψ̄Lf γ

µψLf Z
′
µ

−
[
−gZQf sin2 θW sin ξ +

1

2
εgZQ

R
Y f tan θW cos ξ

]
ψ̄Rf γ

µψRf Z
′
µ

+
1

2
gXQ

L
Xf sin ξψ̄Lf γ

µψLf Zµ +
1

2
gXQ

R
Xf sin ξψ̄Rf γ

µψRf Zµ −
1

2
gXQ

L
Xf cos ξψ̄Lf γ

µψLf Z
′
µ

− 1

2
gXQ

R
Xf cos ξψ̄Rf γ

µψRf Z
′
µ.

(D.5)

The last two lines of (D.5) are the contributions introduced when the charges of the

fermions under U(1)X are non-zero. In Appendix E we derive explicitly the neutral

currents of both Z and Dark Z bosons of reference [41] (QL,R
X = 0 case). After that

Eq. (D.5) can be written as

L =− eJµemAµ −
gZ
2
JµNCZµ −

(
εeJµem +

εZgZ
2

JµNC

)
Z ′µ

+
1

4
gX sin ξ

[(
QR
Xf +QL

Xf

)
ψ̄fγ

µψf +
(
QR
Xf −QL

Xf

)
ψ̄fγ

µγ5ψf
]
Zµ

− 1

4
gX cos ξ

[(
QR
Xf +QL

Xf

)
ψ̄fγ

µψf −
(
QL
Xf −QR

Xf

)
ψ̄fγ

µγ5ψf
]
Z ′µ.

(D.6)

Eq. (D.6) is the general neutral current for all U(1)X models studied in this work.

Since we are interested in the regime in which the mixing angle is much smaller than

one, ξ � 1, and gX � 1, then Z properties will be kept unmodified.

For concreteness, we shall obtain again the neutral current for a well-known

model, such as the U(1)B−L model. In this case, we find

L =− eJµemAµ −
gZ
2
JµNCZµ −

(
εeJµem +

εZgZ
2

JµNC

)
Z ′µ

− εZgZ
2

[
a

4 cos2 β
ψ̄fγ

µψf

]
Z ′µ,

(D.7)

Here a = −2 for charged leptons and a = 2/3 for quarks. Notice that in our case we

have a new vector coupling for Z ′ when compared to the Z ′ of the Dark 2HDM [41].
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E Comparison with the 2HDM with Gauged U(1)N

It is important to cross-check our findings with the existing literature. In [41] a

2HDM similar to the U(1)N model in Table 2 was studied. Therefore, in this setup

all fermions are uncharged under the U(1)X symmetry, i.e. QL,R
X = 0. Using Eq.

(D.5) the neutral current involving the Z boson reads

LZ = −gZ
2

cos ξJµNCZµ − εgZ tan θW sin ξ

[(
T3f

2
−Qf

)
ψ̄fγ

µψf −
T3f

2
ψ̄fγ

µγ5ψf

]
Zµ.

(E.1)

Since the mixing angle (ξ) and the kinetic mixing (ε) are much smaller than one,

only the SM neutral current, the first term of Eq. (E.1) is left. In other words, the

Z properties are kept identical to the SM.

As for the neutral current of the Z ′ boson, we get from Eq. (D.5) that

LZ′ = −gZ sin ξ

[(
T3f

2
−Qf sin2 θW

)
ψ̄fγ

µψf −
T3f

2
ψ̄fγ

µγ5ψf

]
Z ′µ

+ εgZ tan θW cos ξ

[(
T3f

2
−Qf

)
ψ̄fγ

µψf −
1

2
T3f ψ̄fγ

µγ5ψf

]
Z ′µ.

(E.2)

Using Eq. (B.32) and taking ξ � 1, we find

LZ′ = −εeQf ψ̄fγ
µψfZ

′
µ −

εZgZ
2

[(
T3f − 2Qf sin2 θW

)
ψ̄fγ

µψf − T3f ψ̄fγ
µγ5ψf

]
Z ′µ

(E.3)

which simplifies to

LZ′ = −
(
εeJµem +

εZgZ
2

JµNC

)
Z ′µ. (E.4)

Our limiting case of the U(1)N model matches the result of [41], once again

validating our findings.

F Higgs Interactions to Vector Bosons

In this section we summarize the Higgs-gauge boson vertices under the assumption

that the mixing between the Higgs doublets and the singlet scalar is suppressed. We

find that

CH−Z−Z =
g2
Zv

2
cos(β − α), (F.1)

CH−Z−Z′ = −gZgXv cos β sin β sin(β − α), (F.2)

CH−Z′−Z′ = 2g2
Xv cos β sin β(cos3 β sinα + sin3 β cosα), (F.3)

Ch−Z−Z =
g2
Zv

2
sin(β − α), (F.4)

Ch−Z−Z′ = −gZgXv cos β sin β cos(β − α), (F.5)

Ch−Z′−Z′ = 2g2
Xv cos β sin β(cos3 β sinα− sin3 β cosα). (F.6)
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