Infrared spectrum and structure of the

homochiral serine octamer - dichloride complex

Jongcheol Seo¹*, Stephan Warnke¹, Kevin Pagel^{1,2}, Michael T. Bowers³ and Gert von Helden¹*

¹ Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany

² Freie Universität Berlin, Institute of Chemistry and Biochemistry, Takustrasse 3, 14195 Berlin, Germany.

³ Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States.

* e-mail: jseo@fhi-berlin.mpg.de (J.S.), helden@fhi-berlin.mpg.de (G.v.H.)

SUPPLEMENTARY INFORMATION

Table of Contents

- 1. Experimental collision cross sections of serine cluster chloride complexes
- 2. IR spectra of serine octamer-dichloride complexes with isotopic substitutions
- 3. Comparison between two different interaction patterns which form D4 structure
- 4. Theoretical predictions for the possible chiral substitutions
- 5. Fragmentation pattern of Ser₈Cl₂²⁻.
- 6. Optimized geometry of the serine octamer-dichloride complex
- 7. Energetics of the serine octamer in the gas phase at the PBE0+D3/cc-pVTZ level
- 8. References

1. Experimental collision cross sections of serine cluster chloride complexes

C.a.r.		····	CCS (Å ²)	
Sei	CI	1111/2	L-Ser only	L/D-Ser
8	2	455	189	189, 201
9	2	508		211
10	2	560	221	223
11	2	612	236	237
12	2	665	248	251
13	2	717	258	262
14	2	770	273	273

Table 1. Measured CCS values of several serine cluster-dichloride complexes

2. IR spectra of serine octamer-dichloride complexes with isotopic substitutions

Figure 1. Experimental and theoretical IR spectra of octamer-dichloride complexes of L-Ser (a), L-Ser[‡] (L-Ser after H/D exchange reaction, **b**), and L-Ser^{*} (L-Ser-¹³C₃,¹⁵N₁,-2,3,3-D₃, **c**). Theoretical IR spectra (black, blue, and red shades) are obtained at the PBE0-D3 level using the cc-pVTZ basis set. Vibrational frequencies are scaled by 0.957.

3. Comparison between two different interaction patterns which form D4 structure

Figure 2. Comparison between two different structures, both of D4 symmetry, however with different interaction patterns. Predicted IR spectra of the present structure (a) and the less stable structure with intramolecular H-bonds between OH and COO^- (b). The red line is the experimental IRMPD spectrum of Ser₈Cl₂²⁻. The observed IR band positions are diagnostic for the proposed lower energy structure.

4. Theoretical predictions for the possible chiral substitutions

Figure 3. Comparisons of the predicted energetics (a) and IR spectra (b) between homochiral (8+0) and non-homochiral (7+1 and 4+4)octamers. PBE0/cc-pVTZ level of density functional theory was used for the all calculations.

5. Fragmentation pattern of Ser₈Cl₂²⁻.

Figure 4. Fragment mass spectra of $\text{Ser}_8\text{Cl}_2^{2^-}$ obtained by IR irradiations with low (a) and high (b) pulse energies. The notations $n+z\text{Cl}^-$, $n+z\text{Cl}^-+\text{HCl}$, and $n-\text{H}^+$ stand for $\text{Ser}_n\text{Cl}_z^{z^-}$, $\text{Ser}_n\text{Cl}_z^{z^-}$ with HCl adduct, and $(\text{Ser}_n-\text{H})^-$, respectively.

6. Optimized geometry of the serine octamer-dichloride complex

atoms		coordinate (Å)	
	x	У	Z
С	-0.785444	3.819411	2.363353
С	0.747160	3.760286	2.407251
0	1.323823	3.524819	1.307527
0	1.295569	3.939601	3.501349
Ν	-1.279457	2.882751	1.331698
Н	-2.288516	2.677644	1.448326
Н	-0.807749	1.968162	1.438344
Н	-1.126560	3.218440	0.359388
С	-1.472683	3.513540	3.685034
Н	-1.257981	2.476150	3.969971
Н	-1.026240	4.158147	4.444722
0	-2.850124	3.753069	3.578390
Н	-3.325880	2.892409	3.564110
Н	-1.083167	4.824097	2.051058
Н	-2.677644	-2.288516	1.448326
Ν	-2.882751	-1.279457	1.331698
С	-3.819411	-0.785444	2.363353
С	-3.513540	-1.472683	3.685034
0	-3.753069	-2.850124	3.578390
Н	-2.892409	-3.325880	3.564110
Н	-2.476150	-1.257981	3.969971
Н	-4.158147	-1.026240	4.444722
Н	-4.824097	-1.083167	2.051058
С	-3.760286	0.747160	2.407251
0	-3.524819	1.323823	1.307527
0	-3.939601	1.295569	3.501349
Н	-1.968162	-0.807749	1.438344
Н	-3.218440	-1.126560	0.359388
Н	2.288516	-2.677644	1.448326
Ν	1.279457	-2.882751	1.331698
С	0.785444	-3.819411	2.363353
Н	1.083167	-4.824097	2.051058
С	1.472683	-3.513540	3.685034
0	2.850124	-3.753069	3.578390
Н	3.325880	-2.892409	3.564110
н	1.026240	-4.158147	4.444722
н	1.257981	-2.476150	3.969971
С	-0.747160	-3.760286	2.407251
0	-1.295569	-3.939601	3.501349
0	-1.323823	-3.524819	1.307527
н	0.807749	-1.968162	1.438344
Н	1.126560	-3.218440	0.359388

Table 2. An xyz-coordinate of optimized [(L-Ser)₈+ 2Cl]²⁻

Н	2.677644	2.288516	1.448326
Ν	2.882751	1.279457	1.331698
С	3.819411	0.785444	2.363353
С	3.760286	-0.747160	2.407251
0	3.939601	-1.295569	3.501349
0	3.524819	-1.323823	1.307527
Н	4.824097	1.083167	2.051058
С	3.513540	1.472683	3.685034
Н	4.158147	1.026240	4.444722
Н	2.476150	1.257981	3.969971
0	3.753069	2.850124	3.578390
Н	2.892409	3.325880	3.564110
Н	1.968162	0.807749	1.438344
H	3.218440	1.126560	0.359388
CI	0.000000	0.000000	1.980078
Н	2.288516	2.677644	-1.448326
N	1.279457	2.882751	-1.331698
	0.785444	3.819411	-2.303353
	1.472083	3.513540	-3.685034
U L	2.850124	3.753069	-3.578390
п	3.323000	2.092409	-3.504110
н	1.257901	2.470150 A 1581A7	-3.909971
н	1.020240	4.130147	-2 051058
С	-0 747160	3 760286	-2 407251
0	-1.323823	3.524819	-1.307527
0	-1.295569	3.939601	-3.501349
H	0.807749	1.968162	-1.438344
Н	1.126560	3.218440	-0.359388
Н	2.677644	-2.288516	-1.448326
Ν	2.882751	-1.279457	-1.331698
С	3.819411	-0.785444	-2.363353
Н	4.824097	-1.083167	-2.051058
С	3.513540	-1.472683	-3.685034
0	3.753069	-2.850124	-3.578390
Н	2.892409	-3.325880	-3.564110
Н	4.158147	-1.026240	-4.444722
Н	2.476150	-1.257981	-3.969971
С	3.760286	0.747160	-2.407251
0	3.939601	1.295569	-3.501349
0	3.524819	1.323823	-1.307527
H	1.968162	-0.807749	-1.438344
H	3.218440	-1.126560	-0.359388
H	-2.288516	-2.677644	-1.448326
N	-1.2/945/	-2.882/51	-1.331698
	-0.785444	-3.819411	-2.303353
U	0.747160	-3.760286	-2.407251

0	1.295569	-3.939601	-3.501349
0	1.323823	-3.524819	-1.307527
Н	-1.083167	-4.824097	-2.051058
С	-1.472683	-3.513540	-3.685034
Н	-1.026240	-4.158147	-4.444722
Н	-1.257981	-2.476150	-3.969971
0	-2.850124	-3.753069	-3.578390
Н	-3.325880	-2.892409	-3.564110
Н	-0.807749	-1.968162	-1.438344
Н	-1.126560	-3.218440	-0.359388
Н	-2.677644	2.288516	-1.448326
Ν	-2.882751	1.279457	-1.331698
С	-3.819411	0.785444	-2.363353
С	-3.760286	-0.747160	-2.407251
0	-3.524819	-1.323823	-1.307527
0	-3.939601	-1.295569	-3.501349
С	-3.513540	1.472683	-3.685034
Н	-2.476150	1.257981	-3.969971
Н	-4.158147	1.026240	-4.444722
0	-3.753069	2.850124	-3.578390
Н	-2.892409	3.325880	-3.564110
Н	-4.824097	1.083167	-2.051058
Н	-1.968162	0.807749	-1.438344
Н	-3.218440	1.126560	-0.359388
CI	0.000000	0.000000	-1.980078

7. Energetics of the serine octamer in the gas phase at the PBE0+D3/cc-pVTZ level

	CI⁻	Ser ^a	Ser ₈ ^b	Ser ₈ Cl ^{− b}	$(Ser_8Cl_2)^{2-}$
E ₀ ^c	-460.1259	-398.6894	-3189.6828	-3650.0078	-4110.2273
ZPE^d	_	0.1150	_	_	0.9443
G_{corr}^{e}	-0.0150	0.0834	—	—	0.8453

Table 3. Energetics

a) Non-zwitterionic conformer from ref.¹.

b) Calculated at the optimized geometry of $(Ser_8Cl_2)^{2-}$ by removing one or two chloride ions.

c) Electronic energy in Hartree

d) Zero-point energy in Hartree

e) Correction to the Gibbs free energy at 298 K in Hartree

Table 4. Thermodynamics

	$(Ser_8Cl_2)^{2-}$	Ser ₈ Cl ^{-a}	Ser ₈ ^a
ΔE ₀ ^b	–237 (289) ^e	–52 (59) ^e	–169 (184) ^e
ΔE^{c}	–221 (273) ^e	—	_
$\Delta G^0(298K)^d$	–106 (158) ^e	_	_

a) Calculated at the optimized geometry of $(Ser_8Cl_2)^2$ by removing one or two chloride ions.

b) Difference in electronic energy for the reactions: 8 Ser + 2 Cl⁻, Ser₈Cl⁻ + Cl⁻ and Ser₈ + 2Cl⁻ in kcal/mol. Basis-set superposition error (BSSE) is taken into account.

c) as b), including zero point correction and BSSE.

d) Gibbs free energy for the reaction 8 Ser + 2 $Cl^- \rightarrow (Ser_8Cl_2)^{2-}$ at 298 K in kcal/mol. BSSE is taken into account.

e) Values in parentheses stand for those without BSSE corrections.

8. References

1 K. He & W. D. Allen. Conformers of Gaseous Serine. *J. Chem. Theory Comput.* **12**, 3571-3582 (2016).