Angewandte Chemie

Supporting Information

A Method for the Late-Stage Formation of Ketones, Acyloins, and Aldols from Alkenylstannanes: Application to the Total Synthesis of Paecilonic Acid A
Heiko Sommer ${ }^{+}$, James Y. Hamilton ${ }^{+}$, and Alois Fürstner*

anie_201701391_sm_miscellaneous_information.pdf

General: Unless otherwise noted, all reactions were carried out under Ar in flamed-dried glassware using anhydrous solvents. Anhydrous solvents were prepared by distillation over the indicated drying agents prior to use and were transferred under Ar : $\mathrm{THF} / \mathrm{Et}_{2} \mathrm{O}$ ($\mathrm{Mg} /$ anthracene), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{MeOH}(\mathrm{Mg})$; DMF and $\mathrm{Et}_{3} \mathrm{~N}$ were dried by an adsorption solvent purification system based on molecular sieves. Thin layer chromatography (TLC): Macherey-Nagel precoated plates (POLYGRAM ${ }^{\circledR}$ SIL/UV254). Flash chromatography: Merck silica gel $60(40-63 \mu \mathrm{~m})$ with reagent grade solvents. NMR: Spectra were recorded on Bruker AV VIII 300, 400, or 600 spectrometers in solvents indicated. The solvent signals were used as references, and the chemical shifts were converted to the TMS scale (CDCl_{3} : $\delta_{\mathrm{C}}=77.16 \mathrm{ppm}$; residual CHCl_{3} in $\mathrm{CDCl}_{3}: \delta_{\mathrm{H}}=7.26 \mathrm{ppm} ; \mathrm{CD}_{3} \mathrm{OD}: \delta_{\mathrm{C}}=49.0 \mathrm{ppm}$; residual $\mathrm{CHD}_{2} \mathrm{OD}$ in $\mathrm{CD}_{3} \mathrm{OD}: \delta_{\mathrm{H}}=3.31 \mathrm{ppm}$). ${ }^{119} \mathrm{Sn}$ NMR spectra were recorded using $\mathrm{Me}_{4} \mathrm{Sn}$ as an external standard. IR: Bruker ALPHA Platinum-ATR, wavenumbers (\tilde{v}) in cm^{-1}. MS: Finnigan MAT 8200 (EI, 70 eV), Bruker ESQ 3000 (ESI); accurate mass determinations: Bruker APEX III FT-MS (7 T magnet) or Finnigan Mat 95. Optical rotation ($[\alpha]_{D}$): Krüss P8000-T, $10 \mathrm{~cm} / 1 \mathrm{~mL}$ cell. Chiral GC: Agilent 7890B GC. Unless otherwise noted, all commercially available compounds (ABCR, Acros, Aldrich, Alfa Aesar, TCI) were used as received. [$\left.\mathrm{Cp}{ }^{*} \mathrm{RuCl}_{2}\right]_{n}$ was prepared following a literature precedence and was stored under Ar. ${ }^{1}$

Representative procedure: Copper Acetate Mediated Oxidation of Alkenylstannanes. 4-Oxo-1-phenyInonan-3-yl acetate (2). Copper(II) acetate monohydrate ($998 \mathrm{mg}, 5.0$ $\mathrm{mmol})$ and reagent grade $\mathrm{Et}_{3} \mathrm{~N}(1.74 \mathrm{~mL}, 12.5 \mathrm{mmol})$ were added to a stirred solution of (Z)-1-phenyl-4-(tributylstannyl)non-4-en-3-ol ($1.27 \mathrm{~g}, 2.5 \mathrm{mmol}$) in reagent grade DMSO (20 mL). The mixture was stirred at $45^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ until TLC analysis (hexane/EtOAc $=15 / 1$) showed complete consumption of the starting material. The mixture was diluted with tert-butyl methyl ether and washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The organic layer was separated and the aqueous layer was extracted with tert-butyl methyl ether. The combined extracts were washed with brine, dried over magnesium sulfate, and concentrated under reduced pressure. Flash chromatographic purification of the residue (hexane/EtOAc $=15 / 1$) yielded the product as a colorless oil ($527 \mathrm{mg}, 76 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.14(\mathrm{~m}$, 3 H), 4.99 (dd, $J=8.7,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.84-2.61(\mathrm{~m}, 2 \mathrm{H}), 2.47$ (ddd, $J=17.4,7.8,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{dt}, J=$ $17.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 2.14-1.93(\mathrm{~m}, 2 \mathrm{H}), 1.56$ (dddd, $J=13.6,9.0,6.8,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.37-1.17$ ($\mathrm{m}, 4 \mathrm{H}$), $0.88(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 207.5,170.7,140.6,128.7,128.5,126.4,77.9$, 38.7, 32.2, 31.7, 31.4, 22.9, 22.6, 20.8, 14.0. IR (film, CHCl_{3}) 3028, 2931 2956, 2861, 1727, 1742, 1604, 1497, 1455, 1373, 1230, 1041, 749, $700 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calculated for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 299.1618, found 299.1619 .

The following compounds were prepared analogously:
2-Oxodecyl acetate (5). 74% yield (79 mg). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.65(\mathrm{~s}, 2 \mathrm{H}), 2.40(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}$,
 $2 \mathrm{H}), 2.17$ (s, 3H), 1.59 (dt, J = 5.2, $4.6 \mathrm{~Hz}, 2 \mathrm{H}$), $1.38-1.17$ (m, 10H), $0.95-$ 0.75 (m, 3H). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 203.3,169.5,67.2,38.1,31.1,28.6$, 28.4, 28.4, 22.6, 21.9, 19.8, 13.4. IR (film, CHCl_{3}) 2913, 2848, 2873, 1723, $1750,1459,1475,1407,1430,1375,1335,1279,1293,1259,1211,1130,1105,1075,1050,1009,982$, $960,897,857 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calculated for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 237.1461, found 237.1461.
${ }^{1}$ a) N. Oshima, H. Suzuki, Y. Moro-Oka, Chem. Lett. 1984, 13, 1161-1164; b) T. D. Tilley, R. H. Grubbs, J. E. Bercaw, Organometallics 1984, 3, 274-278.

2-Methyl-3-oxo-6-phenylhexan-2-yl acetate (6). 76\% yield (83 mg). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.32$ $7.23(\mathrm{~m}, 2 \mathrm{H}), 7.18(\mathrm{ddt}, J=7.1,3.1,1.3 \mathrm{~Hz}, 3 \mathrm{H}), 2.62(\mathrm{dd}, J=8.3,6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.45(\mathrm{t}$,
$J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 1.99-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.45(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}(101 \mathrm{MHz}$, IR (film, CHCl_{3}) 2937, 1733, 1719, 1603, 1497, 1454, 1367, 1253, 1146, 1085, 1018, 963, 911, 849, 745, $699 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calculated for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 271.1305$, found 271.1303.

1-Cyclohexyl-2-oxoheptyl acetate (7). 65% yield (82 mg). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.86$ (dd, J = 5.0, $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.55-2.26(\mathrm{~m}, 2 \mathrm{H}), 2.14(\mathrm{~d}, \mathrm{~J}=1.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.87(\mathrm{tq}, \mathrm{J}=6.9,4.3,3.6$
 $\mathrm{Hz}, 1 \mathrm{H}), 1.80-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.70-1.47(\mathrm{~m}, 4 \mathrm{H}), 1.41-1.06(\mathrm{~m}, 1 \mathrm{H}), 1.00-0.82$ ($\mathrm{m}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 207.7,170.9,82.6,39.8,39.4,31.5,29.6,27.5$, 26.3, 26.1, 26.1, 22.9, 22.6, 20.8, 14.0. IR (film, CHCl_{3}) 2928, 2855, 1742, 1726, 1451, 1371, 1232, 1082, 1023, 990, 958, $920 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calculated for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 277.1774, found 277.1775.

2-Oxohexyl benzoate (8). To a stirred solution of (Z)-2-(tributylstannyl)hex-2-en-1-ol ($389 \mathrm{mg}, 1.0 \mathrm{mmol}$)
 in reagent grade DMSO (8 mL) was added copper(II) trifluoroacetate hydrate (475 $\mathrm{mg}, 2.0 \mathrm{mmol}$), sodium benzoate ($576 \mathrm{mg}, 4.0 \mathrm{mmol}$), and reagent grade $\mathrm{Et}_{3} \mathrm{~N}$ ($697 \mu \mathrm{~L}, 5.0 \mathrm{mmol}$). The resulting mixture was stirred at $45^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ until TLC analysis (hexane/EtOAc $=15 / 1$) indicated complete consumption of the starting material. The mixture was diluted with tert-butyl methyl ether and washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The organic layer was separated, and the aqueous layer was extracted with tert-butyl methyl ether. The combined organic phases were washed with brine, dried over magnesium sulfate, and concentrated under reduced pressure. Flash chromatography (hexane/EtOAc $=25 / 1$) yielded the product as a colorless oil ($136 \mathrm{mg}, 62 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.17-8.00(\mathrm{~m}, 2 \mathrm{H}), 7.65-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.52-7.38(\mathrm{~m}, 2 \mathrm{H}), 4.88(\mathrm{~s}$, $2 \mathrm{H}), 2.50(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.72-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.43-1.28(\mathrm{~m}, 2 \mathrm{H}), 0.92(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 204.3,166.0,133.5,130.0,129.4,128.6,68.5,38.8,25.5,22.4,13.9$. IR (film, CHCl_{3}) 2959, 2933, 2873, 1718, 1601, 1452, 1414, 1377, 1315, 1272, 1177, 1115, 1060, 1027, 804, $709 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calculated for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right]:$243.0992, found 243.0993.

9-(1,3-Dioxoisoindolin-2-yl)-4-oxo-1-phenyInonan-3-yl acetate (9). 63\% yield (132 mg). ${ }^{1} \mathrm{H}$ NMR (400
 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.86$ - $7.79(\mathrm{~m}, 2 \mathrm{H}), 7.70(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.24(\mathrm{~m}$, 2 H), $7.23-7.13(\mathrm{~m}, 3 \mathrm{H}), 4.96$ (dd, $J=8.7,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{t}, \mathrm{J}=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.81-2.58(\mathrm{~m}, 2 \mathrm{H}), 2.47(\mathrm{dt}, J=17.6,7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $2.36(\mathrm{dt}, \mathrm{J}=17.7,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 2.12-1.94(\mathrm{~m}, 2 \mathrm{H})$, $1.71-1.51(\mathrm{~m}, 4 \mathrm{H}), 1.38-1.24(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 207.1,170.7,168.5,140.5,134.0$, 132.2, 128.7, 128.5, 126.4, 123.3, 77.9, 38.4, 37.9, 32.1, 31.6, 28.5, 26.4, 22.7, 20.8. IR (film, CHCl_{3}) 2937, 2864, 1771, 1740, 1706, 1604, 1497, 1466, 1455, 1436, 1395, 1369, 1229, 1188, 1081, 1041, 947, 874, $851,794,750 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calculated for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{NO}_{5} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 444.1781$, found 444.1785.

1-((tert-Butyldimethylsilyl)oxy)-4-oxononan-3-yl acetate (10). 64\% yield (106 mg). ${ }^{1} \mathrm{H}$ NMR (400 MHz ,
 CDCl_{3}) $\delta 5.15$ (dd, J = 9.1, 3.7 Hz, 1H), 3.88-3.51 (m, 2H), 2.62-2.35 (m, 2H), $2.13(\mathrm{~s}, 3 \mathrm{H}), 1.99$ (dddd, $J=14.2,8.1,6.0,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.86$ (ddt, $J=14.0,9.3$, $4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.66-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.38-1.20(\mathrm{~m}, 4 \mathrm{H}), 0.88(\mathrm{~s}, 12 \mathrm{H}), 0.04(\mathrm{~d}, \mathrm{~J}=$ $1.2 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl ${ }_{3}$) $\delta 207.5,170.6,75.4,58.6,38.8,33.4,31.5,26.0,23.1,22.6,20.8$,
18.4, 14.1, -5.3, -5.4. IR (film, CHCl_{3}) 2955, 2929, 2858, 1730, 1745, 1471, 1373, 1234, 1094, 1022, 939, 834, 775, $730 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calculated for $\mathrm{C}_{17} \mathrm{H}_{35} \mathrm{O}_{4} \mathrm{Si}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 331.2299$, found 331.2301.

6-Chloro-2-oxohexyl acetate (11). 68% yield (65 mg). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.64(\mathrm{~s}, 2 \mathrm{H}), 3.64-3.47$ $\sim_{\mathrm{O}} \mathrm{Cl}(\mathrm{m}, 2 \mathrm{H}), 2.46(\mathrm{td}, \mathrm{J}=6.1,5.3,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 1.91-1.67(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 203.4,170.4,68.0,44.6,37.9,31.8,20.6$ (two signals unresolved). IR (film, CHCl_{3}) 2938, 1729, 1416, 1373, 1273, 1228, 1073, 1048, 1026, 982, 844, 725, 647 cm^{-1}. $\mathrm{HRMS}(E S I): \mathrm{m} / z$ calculated for $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{O}_{3} \mathrm{CINa}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 215.0445, found 215.0447.

8-Cyano-4-oxo-1-phenyloctan-3-yl acetate (12). 54% yield (78 mg). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34$ -
 $7.27(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.19(\mathrm{~m}, 1 \mathrm{H}), 7.19-7.12(\mathrm{~m}, 2 \mathrm{H}), 4.99-4.91(\mathrm{~m}, 1 \mathrm{H})$, $2.82-2.65(\mathrm{~m}, 2 \mathrm{H}), 2.54(\mathrm{dt}, J=18.0,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{dt}, J=17.9,6.6 \mathrm{~Hz}$, $1 \mathrm{H}), 2.33(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 2.11-1.99(\mathrm{~m}, 2 \mathrm{H}), 1.84-1.56$ (m, 4H). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 206.4,170.8,140.4,128.7,128.5$, $126.5,119.5,77.8,37.5,32.1,31.6,24.8,22.2,20.8,17.2$. IR (film, CHCl_{3}) $3028,2932,1724,1603,1497$, 1454, 1373, 1229, 1080, 1028, 950, 911, $750,700 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calculated for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{Na}$ $\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 310.1414$, found 310.1412.
(R)-2-Methyl-4-oxo-7-phenylheptan-3-yl acetate (13). 61% yield (80 mg). $[\alpha]_{D}^{20}=+4.7$ ($\mathrm{c}=2.25, \mathrm{CHCl}_{3}$). ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.13(\mathrm{~m}, 3 \mathrm{H}), 4.86(\mathrm{~d}, \mathrm{~J}=$ $4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.58-2.31(\mathrm{~m}, 2 \mathrm{H}), 2.26-2.14(\mathrm{~m}, 1 \mathrm{H}), 2.13$ (s, 3H), $2.02-1.85(\mathrm{~m}, 2 \mathrm{H}), 0.98(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 207.2,170.9,141.7,128.6,128.5,126.1,82.8,38.7,35.1$, 29.6, 24.8, 20.7, 19.4, 17.0. IR (film, CHCl_{3}) 2966, 1742, 1724, 1603, 1496, 1454, 1371, 1231, 1028, 949, 908, 746, $699 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calculated for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right]:$285.1461, found 285.1463.

The enantiomeric excess was determined to be 94% by HPLC analysis (150 mm Chiralpak IC-3, 4.6 mm i.D., n-heptane/2-propanol $=98: 2,1.0 \mathrm{~mL} / \mathrm{min}, 4.9 \mathrm{MPa}, 298 \mathrm{~K}, \mathrm{UV} 220 \mathrm{~nm}$).

6-Hydroxy-8,8,12-trimethyl-1-phenyltridec-11-en-5-one (14). 77% yield (564 mg). ${ }^{1} \mathrm{H}$ NMR (400 MHz ,
 $\left.\mathrm{CDCl}_{3}\right) \delta 7.31-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.14(\mathrm{~m}, 3 \mathrm{H}), 5.11-5.02(\mathrm{~m}, 2 \mathrm{H})$, $2.62(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.55-2.36(\mathrm{~m}, 2 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 2.01-1.89(\mathrm{~m}$, 2H), $1.73-1.49(\mathrm{~m}, 12 \mathrm{H}), 1.33-1.18(\mathrm{~m}, 2 \mathrm{H}), 0.941(\mathrm{~s}, 3 \mathrm{H}), 0.936(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 207.5,170.7,142.3,131.4,128.5,128.4,125.9,124.7,76.5,42.4,40.9$, $38.2,35.9,33.1,31.0,27.4,27.3,25.8,23.0,22.8,20.9,17.8$. IR (neat) 2931, 2859, 1742, 1729, 1453, 1372, 1231, 1084, 1050, 1025, 935, 829, 746, $699 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calculated for $\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{O}_{3} \mathrm{Na}$ [$\mathrm{M}+\mathrm{Na}^{+}$]: 395.2559, found 395.2557.
($2 R, 3 S, 8 S, 11 R, E$)-11-Hydroxy-2,3,11-trimethyl-7,14-dioxooxacyclotetradec-12-en-8-yl acetate (15). 81\%
 yield (12 mg). The reaction was performed with $\mathrm{Cu}(\mathrm{OAc})_{2}\left(4\right.$ equiv.) and $\mathrm{Et}_{3} \mathrm{~N}$ (10 equiv.). $[\alpha]_{D}^{20}=-59.5\left(c=1.20, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.68(\mathrm{~d}, \mathrm{~J}=15.8 \mathrm{~Hz}, 1 \mathrm{H})$, $5.98(\mathrm{~d}, \mathrm{~J}=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.73-4.59(\mathrm{~m}, 2 \mathrm{H}), 2.51(\mathrm{dt}, J=17.2,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.16(\mathrm{dt}, J=$ $17.3,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 1.87-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.74-1.47(\mathrm{~m}, 5 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}), 1.28$ (d, J = $6.3 \mathrm{~Hz}, 3 \mathrm{H}$), $1.22-1.07(\mathrm{~m}, 1 \mathrm{H}), 1.02(\mathrm{ddt}, \mathrm{J}=13.4,9.0,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 0.90(\mathrm{~d}, \mathrm{~J}=$ $6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 208.1,170.7,165.7,153.0,120.7,78.9,76.9$, 73.4, 40.4, 36.8, 36.0, 34.2, 28.9, 24.5, 22.3, 20.9, 19.4, 17.1. IR (film, CHCl_{3}) 3488, 2969, 2934, 2876, 1739, 1711, 1644, 1455, 1374, 1234, 1156, 1107, 1036, 992, 918, 876, 812, 777, 731, $686 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calculated for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{6} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 363.1778$, found 363.1776 .
anti-3-Methyl-4-oxononan-2-yl acetate (21). 57\% yield based on pure α-alkenylstannane (111 mg). ${ }^{1} \mathrm{H}$

NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.07(\mathrm{dq}, J=7.9,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{dq}, J=7.9,7.1 \mathrm{~Hz}, 1 \mathrm{H})$, $2.49-2.35(\mathrm{~m}, 2 \mathrm{H}), 1.97(\mathrm{~s}, 3 \mathrm{H}), 1.62-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.34-1.21(\mathrm{~m}, 4 \mathrm{H}), 1.18(\mathrm{~d}, \mathrm{~J}$ $=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.04(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}(101 \mathrm{MHz}$, CDCl_{3}) $\delta 212.1,170.2,71.8,50.9,42.1,31.5,23.3,22.6,21.3,17.1,14.0,12.3$. IR (film, CHCl_{3}) 2957, 2933, 2873, 1736, 1714, 1457, 1408, 1372, 1235, 1090, 1036, 1017, 965, $946,850 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calculated for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 237.1461, found 237.1463.
syn-3-Methyl-4-oxononan-2-yl acetate (23). 59% yield based on pure α-alkenylstannane (114 mg). ${ }^{1} \mathrm{H}$
 NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.13(\mathrm{p}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{qd}, J=7.0,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.43$ (td, $J=7.3,4.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}), 1.58-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.37-1.19(\mathrm{~m}, 4 \mathrm{H}), 1.17(\mathrm{~d}$, $J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.07(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}(101 \mathrm{MHz}$, CDCl_{3}) $\delta 211.9,170.4,71.2,50.7,42.6,31.5,23.3,22.6,21.3,17.9,14.0,12.3$. IR (film, CHCl_{3}) 2957, 2933, 2873, 1736, 1714, 1457, 1408, 1372, 1235, 1090, 1036, 1017, 965, $946,850 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calculated for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 237.1461, found 237.1463.

1-(($2 S, 3 S, Z$)-3-Hydroxy-4-(3-phenylpropylidene)oxetan-2-yl)octan-1-one (26). 58% yield (87 mg). ${ }^{1} \mathrm{H}$
 NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.32-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.20(\mathrm{dt}, J=8.2,2.0 \mathrm{~Hz}, 3 \mathrm{H}), 4.99(\mathrm{ddq}, \mathrm{J}=8.7$, $5.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{td}, \mathrm{J}=7.0,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{td}, \mathrm{J}=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.78-2.58(\mathrm{~m}$, $2 \mathrm{H}), 2.32$ (qd, J = 7.5, 1.1 Hz, 2H), 2.01 (d, J = $9.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.68(\mathrm{q}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.49-$ $1.18(\mathrm{~m}, 12 \mathrm{H}), 0.95-0.83(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.1,142.0,128.7,128.3$, 125.9, 96.9, 86.5, 69.6, 36.0, 32.0, 29.7, 29.6, 29.4, 29.2, 24.7, 24.6, 22.8, 14.3. IR (film, CHCl_{3}) 3407, 3027, 2924, 2855, 1716, 1604, 1496, 1454, 1365, 1304, 1234, 1201, 1144, 1069, 984, 940, $893,848,746,724 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calculated for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{2} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 325.2138$, found 325.2140 .
(Z)-1-Methoxydec-2-en-2-yl acetate (33). 82\% yield (94 mg). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.31(\mathrm{tt}, \mathrm{J}=7.3$, $\mathrm{MeO}_{\mathrm{OAc}} \mathrm{C}_{7} \mathrm{H}_{15} \begin{aligned} & 0.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{q}, J=0.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 1.97(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}) \text {, }, 1.10(\mathrm{~m}, 10 \mathrm{H}), 0.91-0.78(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.0,144.2,\end{aligned}$ 121.3, $72.2,58.0,31.9,29.3,29.2,28.9,25.5,22.8,20.8,14.2$. IR (film, CHCl_{3}) 2925, 2855, 1756, 1457, 1369, 1203, 1090, 1017, 942, 914, $587 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calculated for $\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 251.1618, found 251.1619.

Representative procedure: Copper Trifluoroacetate Mediated Oxidation of Alkenylstannanes. 3-(Methoxymethoxy)-1-phenyInonan-4-one (17). Copper(II) trifluoroacetate
 hydrate ($290 \mathrm{mg}, 1.0 \mathrm{mmol}$) and reagent grade $\mathrm{Et}_{3} \mathrm{~N}(349 \mu \mathrm{~L}, 2.5 \mathrm{mmol})$ were added to a stirred solution of tributyl(4-((tetrahydro-2H-pyran-2-yl)oxy)but-1-en-2-yl)stannane ($223 \mathrm{mg}, 0.5 \mathrm{mmol}$) in reagent grade DMSO (4 mL). The mixture was stirred at $45{ }^{\circ} \mathrm{C}$ to $50{ }^{\circ} \mathrm{C}$ until TLC analysis (hexane/EtOAc $=15 / 1$) showed complete consumption of the starting material. The mixture was diluted with tert-butyl methyl ether and washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The organic layer was separated, and the aqueous layer was extracted with tert-butyl methyl ether. The combined extracts were washed with brine, dried over magnesium sulfate, and concentrated under reduced pressure. Purification of the residue by flash chromatography (hexane/EtOAc = 9/1) yielded the product as a colorless oil ($95 \mathrm{mg}, 68 \%$). ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.14(\mathrm{~m}, 3 \mathrm{H}), 4.66(\mathrm{~d}, \mathrm{~J}=0.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.06-3.93(\mathrm{~m}, 1 \mathrm{H}), 3.40(\mathrm{~s}$, 3 H), $2.87-2.61(\mathrm{~m}, 2 \mathrm{H}), 2.49(\mathrm{dd}, \mathrm{J}=7.8,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.04-1.91(\mathrm{~m}, 2 \mathrm{H}), 1.69-1.49(\mathrm{~m}, 2 \mathrm{H}), 1.43-$ $1.18(\mathrm{~m}, 4 \mathrm{H}), 0.93-0.83(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(75} \mathrm{MHz}$,CDCl 3) $\delta 211.6,141.3,128.6,128.6,126.3,96.8,82.2$, 56.3, 38.6, 34.0, 31.7, 31.6, 23.1, 22.6, 14.0. IR (film, CHCl_{3}) 2929, 1715, 1497, 1455, 1148, 1104, 1027, 920, $747,699,494 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calculated for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 301.1774$, found 301.1775.

4-((Tetrahydro-2H-pyran-2-yl)oxy)butan-2-one (19). Prepared analogously (70% yield, 60 mg). ${ }^{1} \mathrm{H}$ NMR $\bigcirc \quad\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.55(\mathrm{dd}, J=4.5,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.01-3.91(\mathrm{~m}, 1 \mathrm{H}), 3.87-3.75(\mathrm{~m}$, $1 \mathrm{H}), 3.70-3.60(\mathrm{~m}, 1 \mathrm{H}), 3.53-3.41(\mathrm{~m}, 1 \mathrm{H}), 2.67(\mathrm{td}, \mathrm{J}=6.2,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H})$, $\left.\left.1.81-1.69(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.57(\mathrm{~m}, 1 \mathrm{H}), 1.57-1.41(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(101} \mathrm{MHz} \mathrm{CDCl},\right)_{3}\right) \delta 207.3,99.2$, 62.7, 62.4, 43.8, 30.7, 30.6, 25.5, 19.6. IR (film, CHCl_{3}) 2942, 1714, 1355, 1324, 1260, 1201, 1161, 1135, $1120,1065,1032,1019,979,904,869,813,755 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calculated for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 195.0992, found 195.0992.
(5S,6R)-5,6-Dihydroxy-1-phenyltetradecan-4-one (27). Pyridinium p-toluenesulfonate ($10.3 \mathrm{mg}, 40.9 \mu \mathrm{~L}$)
 was added to a stirred solution of compound $26(13.7 \mathrm{mg}, 45.3 \mu \mathrm{~L})$ in wet benzene (3 mL) under air. The mixture was stirred for 12 h before it was diluted with tert-butyl methyl ether (5 mL). The organic phase was washed with saturated aqueous NaHCO_{3} solution ($2 \times 2 \mathrm{~mL}$) and $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$, and concentrated in vacuo. Purification of the residue by flash chromatography ($5 / 1=$ hexane/EtOAc) gave the product as a white amorphous solid ($9.7 \mathrm{mg}, 67 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32-7.26(\mathrm{~m}, 2 \mathrm{H})$, $7.23-7.15(\mathrm{~m}, 3 \mathrm{H}), 4.02(\mathrm{~s}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 1 \mathrm{H}), 3.71(\mathrm{~d}, \mathrm{~J}=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.70-2.58(\mathrm{~m}, 3 \mathrm{H}), 2.53-2.43(\mathrm{~m}$, $1 \mathrm{H}), 2.09-1.91(\mathrm{~m}, 2 \mathrm{H}), 1.72-1.55(\mathrm{~m}, 3 \mathrm{H}), 1.50-1.21(\mathrm{~m}, 12 \mathrm{H}), 0.90(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 210.4,141.4,128.6$ (two signals unresolved), 126.2, $79.0,72.1,37.1,35.1,34.6,32.0,29.7$, 29.6, 29.4, 26.0, 25.0 22.8, 14.3. IR (neat) 3420, 2924, 2853, 1711, 1455, 1393, 1362, 1265, 1104, 1070, 1017, $737,698,492 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calculated for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{3} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}{ }^{+}\right]$: 343.2243 , found 343.2244 .
(4S,5R,6R,7S)-4,5-Dihydroxy-11,11-dimethoxy-7-((4-methoxybenzyl)oxy)-6-methylundecan-3-one (31).

Prepared analogously (68% yield, 9.0 mg). $[\alpha]_{D}^{25}=+31.4\left(\mathrm{c}=0.9, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl ${ }_{3}$) $\delta 7.28-7.22(\mathrm{~m}, 2 \mathrm{H}), 6.89-6.84(\mathrm{~m}, 2 \mathrm{H}), 4.51(\mathrm{~d}, \mathrm{~J}=$ $10.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{~d}, \mathrm{~J}=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{t}, \mathrm{J}=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{dd}, J=4.6$, $2.3 \mathrm{~Hz}, 1 \mathrm{H}$), 4.06 (ddd, $J=7.7,4.3,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~d}, J=4.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.62$ (q, J = $5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{~s}, 6 \mathrm{H}), 3.10(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{dq}, \mathrm{J}=$ $18.0,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{dq}, \mathrm{J}=18.0,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.13-2.02(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.55(\mathrm{~m}, 4 \mathrm{H}), 1.50-1.36(\mathrm{~m}$, $2 \mathrm{H}), 1.09(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.02(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 211.9,159.4,130.5$, 129.7, 114.0, 104.6, 82.2, 78.2, 72.8, 71.7, 55.4, 53.0, 52.9, 39.0, 32.8, 31.5, 30.6, 19.8, 12.5, 7.6. IR (neat): 3439, 2939, 1713, 1612, 1513, 1459, 1381, 1302, 1246, 1174, 1033, 821, 756, 578, $516 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{36} \mathrm{O}_{7} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 435.2353$, found: 435.2353 .

Substrates

Representative Procedure for the Ruthenium Catalyzed trans-Hydrostannation. ${ }^{2}$ (Z)-1-Phenyl-4-
 (tributylstannyl)non-4-en-3-ol (1). 1-Phenylnon-4-yn-3-ol ($5.4 \mathrm{~g}, 25 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ and the solution was stirred in an oven-dried Schlenk flask. $\left[\mathrm{Cp}^{*} \mathrm{RuCl}_{2}\right]_{\mathrm{n}}(77 \mathrm{mg}, 0.25 \mathrm{mmol})$ was added, followed by addition of $\mathrm{Bu}_{3} \mathrm{SnH}$ $(7.1 \mathrm{ml}, 26.3 \mathrm{mmol})$ over 1 h via a syringe pump. Stirring was continued for additional 5 min before the volatile materials were removed under reduced pressure. The crude product was purified by flash chromatography (hexane/EtOAc) to give the product as a viscous oil ($11.8 \mathrm{~g}, 93 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.32-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.12(\mathrm{~m}, 3 \mathrm{H}), 6.38-5.96(\mathrm{~m}, 1 \mathrm{H}), 4.35-4.01(\mathrm{~m}$, 1 H), 2.64 (qdd, $J=13.8,9.8,6.1 \mathrm{~Hz}, 2 \mathrm{H}$), $2.13-1.95(\mathrm{~m}, 2 \mathrm{H}), 1.83$ (dddd, $J=13.3,9.7,7.2,6.0 \mathrm{~Hz}, 1 \mathrm{H}$), 1.71 (ddt, $J=13.5,10.0,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.60-1.40(\mathrm{~m}, 8 \mathrm{H}), 1.40-1.21(\mathrm{~m}, 9 \mathrm{H}), 1.04-0.79(\mathrm{~m}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.6,142.3,141.4,128.6,128.5,125.9,79.6,39.4,34.2,32.5,29.4,27.6,22.7$, 14.2, 13.8, 11.2. ${ }^{119} \mathrm{Sn}$ NMR ($149 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-55.09. IR (film, CHCl_{3}) 2955, 2923, 2871, 2854, 1616, 1496, 1456, 1419, 1376, 1340, 1290, 1201, 1072, 1048, 1002, 961, 926, 863, 746, 697, $664 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calculated for $\mathrm{C}_{27} \mathrm{H}_{48} \mathrm{OSnNa}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 531.2619$, found 531.2618.

Unless stated otherwise, the following compounds were prepared analogously:
(Z)-2-(Tributylstannyl)dec-2-en-1-ol (32a). 97\% yield (3.1 g). ${ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(} 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.25$ (tt, J = 7.2,
 $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.28-4.12(\mathrm{~m}, 2 \mathrm{H}), 2.04(\mathrm{q}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.61-1.44(\mathrm{~m}, 6 \mathrm{H}), 1.43-1.25$ $(\mathrm{m}, 16 \mathrm{H}), 1.22(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.02-0.94(\mathrm{~m}, 6 \mathrm{H}), 0.94-0.87(\mathrm{~m}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 143.0,142.2,70.7,34.8,32.0,30.2,29.6,29.4,29.4,27.6,22.8$, 14.3, 13.9, 10.3. ${ }^{119} \mathrm{Sn}$ NMR ($149 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-52.7. IR (film, CHCl_{3}) 3305, 2955, 2922, 2871, 2852, 1462, 1418, 1376, 1340, 1290, 1181, 1148, 1072, 1000, 960, 862, 806, $769 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calculated for $\mathrm{C}_{22} \mathrm{H}_{45} \mathrm{OSn}\left[\mathrm{M}-\mathrm{H}^{+}\right]: 445.2497$, found 445.2503 .
(Z)-Tributyl(1-methoxydec-2-en-2-yl)stannane (32b). An oven-dried Schlenk flask was charged with NaH SnBu_{3} ($180 \mathrm{mg}, 7.5 \mathrm{mmol}$) and THF (20 mL), and the suspension was cooled with an ice bath. (Z)-2-(Tributylstannyl)dec-2-en-1-ol (32a) ($2.23 \mathrm{~g}, 5.0 \mathrm{mmol}$) in a minimal amount of THF was added dropwise. Stirring was continued for 30 min at $0^{\circ} \mathrm{C}$ before Mel (622 $\mu \mathrm{L}, 10.0 \mathrm{mmol}$) was slowly added, and the reaction mixture was allowed to warm to room temperature.

[^0]After stirring for 12 h , the reaction was quenched with water at $0^{\circ} \mathrm{C}$ and the solution acidified with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The mixture was extracted twice with tert-butyl methyl ether, and the combined organic layers were dried over magnesium sulfate and concentrated under reduced pressure. Flash chromatography (hexane/EtOAc $=30 / 1$) yielded the product as a colorless oil ($2.14 \mathrm{~g}, 93 \%$ yield). $1 \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.23(\mathrm{tt}, \mathrm{J}=7.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.00-3.88(\mathrm{~m}, 2 \mathrm{H}), 3.25(\mathrm{~d}, \mathrm{~J}=0.9 \mathrm{~Hz}, 3 \mathrm{H}), 2.02$ ($q, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}$), $1.55-1.41(\mathrm{~m}, 6 \mathrm{H}), 1.41-1.19(\mathrm{~m}, 16 \mathrm{H}), 1.01-0.73(\mathrm{~m}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 143.5,140.6,80.6,57.4,34.8,32.0,30.2,29.6,29.4,29.4,27.6,22.8,14.3,13.9,10.4 .{ }^{119} \mathrm{Sn}$ NMR ($149 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-52.5. IR (film, CHCl_{3}) 2955, 2853, 2871, 2815, 1624, 1463, 1419, 1366, 1376, 1349, 1267, 1291, 1192, 1148, 1110, 1094, 1072, 1002, 1019, 960, 915, $860 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calculated for $\mathrm{C}_{23} \mathrm{H}_{48} \mathrm{OSnNa}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 483.2619$, found 483.2624.
(Z)-2-Methyl-6-phenyl-3-(tributylstannyl)hex-3-en-2-ol. quant. (5.16 g). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36$
 $-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.12(\mathrm{~m}, 3 \mathrm{H}), 6.16(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.78-2.60(\mathrm{~m}, 2 \mathrm{H}), 2.41$ $-2.28(\mathrm{~m}, 2 \mathrm{H}), 1.57-1.41(\mathrm{~m}, 6 \mathrm{H}), 1.39-1.31(\mathrm{~m}, 6 \mathrm{H}), 1.31(\mathrm{~s}, 7 \mathrm{H}), 0.99-0.92(\mathrm{~m}$, $6 \mathrm{H}), 0.89(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.2,142.0,135.6,128.6$, $128.5,126.0,75.5,36.7,35.9,30.9,29.4,27.6,13.9,12.3 .{ }^{119}$ Sn NMR (149 MHz, CDCl_{3}) δ-55.6. IR (film, CHCl_{3}) 2955, 2853, 2871, 2815, 1624, 1463, 1419, 1366, 1376, 1349, 1267, 1291, 1192, 1148, 1110, 1094, 1072, 1002, 1019, 960, 915, $860 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calculated for $\mathrm{C}_{25} \mathrm{H}_{44} \mathrm{OSnNa}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 503.2306$, found 503.2306.
(Z)-1-Cyclohexyl-2-(tributylstannyl)hept-2-en-1-ol. 66% yield (3.2 g). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 6.29 -
 $5.84(\mathrm{~m}, 1 \mathrm{H}), 3.87-3.61(\mathrm{~m}, 1 \mathrm{H}), 2.10-1.89(\mathrm{~m}, 2 \mathrm{H}), 1.83-1.58(\mathrm{~m}, 3 \mathrm{H}), 1.58-$ $1.39(\mathrm{~m}, 6 \mathrm{H}), 1.38-1.25(\mathrm{~m}, 12 \mathrm{H}), 1.18(\mathrm{dtt}, \mathrm{J}=20.5,9.1,3.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.02-0.68$ $(\mathrm{m}, 22 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.0,142.1,85.4,43.1,34.2,32.5,30.3$, 29.4, 28.8, 27.6, 26.7, 26.3, 26.3, 22.8, 14.2, 13.9, 11.3. ${ }^{119} \mathrm{Sn}$ NMR ($149 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-55.5$. IR (film, CHCl_{3}) 3482, 2955, 2921, 2851, 1615, 1451, 1376, 1257, 1202, 1148, 1069, 1001, 961, 890, $862 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calculated for $\mathrm{C}_{25} \mathrm{H}_{49} \mathrm{OSn}\left[\mathrm{M}-\mathrm{H}^{+}\right]: 485.2810$, found 485.2810 .
(Z)-2-(Tributylstannyl)hex-2-en-1-ol. 92\% yield (7.19 g). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.52-5.93(\mathrm{~m}, 1 \mathrm{H})$, $4.28-4.09(\mathrm{~m}, 2 \mathrm{H}), 2.10-1.87(\mathrm{~m}, 2 \mathrm{H}), 1.63-1.41(\mathrm{~m}, 6 \mathrm{H}), 1.41-1.23(\mathrm{~m}, 7 \mathrm{H}), 1.16$ $(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.99-0.92(\mathrm{~m}, 7 \mathrm{H}), 0.89(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 12 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 143.4,142.0,70.7,36.8,29.4,27.6,23.3,14.0,13.8,10.4 .{ }^{119} \mathrm{Sn} \operatorname{NMR}\left(112 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-52.8$. IR (film, $\left.\mathrm{CHCl}_{3}\right) 3301,2955,2924,2871,2853,1622,1462,1418,1376,1340,1291,1182,1148,1073,1045,1021$, 989, $960,897,875,741,664 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calculated for $\mathrm{C}_{18} \mathrm{H}_{38} \mathrm{OSnNa}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 413.1836$, found 413.1839.
(Z)-2-(7-Hydroxy-9-phenyl-6-(tributylstannyl)non-5-en-1-yl)isoindoline-1,3-dione. 76% yield (1.02 g). ${ }^{1} \mathrm{H}$
 NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.87-7.77(\mathrm{~m}, 2 \mathrm{H}), 7.74-7.64(\mathrm{~m}, 2 \mathrm{H})$, 7.26 (ddd, $J=7.8,7.1,0.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.22-7.13(\mathrm{~m}, 3 \mathrm{H}), 6.15(\mathrm{td}, \mathrm{J}=$ $7.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.28-4.00(\mathrm{~m}, 1 \mathrm{H}), 3.69(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.64$ (q dd, $J=13.8,9.8,6.1 \mathrm{~Hz}, 2 \mathrm{H}$), $2.10(q, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.87-1.77$ $(\mathrm{m}, 1 \mathrm{H}), 1.71(\mathrm{dq}, \mathrm{J}=9.8,6.9 \mathrm{~Hz}, 4 \mathrm{H}), 1.58-1.37(\mathrm{~m}, 8 \mathrm{H}), 1.37-1.18(\mathrm{~m}, 6 \mathrm{H}), 1.08-0.90(\mathrm{~m}, 6 \mathrm{H}), 0.86(\mathrm{t}$, $J=7.3 \mathrm{~Hz}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.4,148.6,142.2,140.0,133.9,132.1,128.5,128.3,125.7$, $123.2,79.2,39.3,37.9,33.8,32.3,29.3,28.4,27.4,27.3,13.7,11.1 .{ }^{119} \mathrm{Sn}$ NMR (149 MHz, CDCl ${ }_{3}$) $\delta-55.2$.

IR (film, CHCl_{3}) 2925, 2854, 1773, 1739, 1712, 1455, 1438, 1395, 1371, 1238, 1044, 961, 918, 873, 849, $792,747 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calculated for $\mathrm{C}_{35} \mathrm{H}_{51} \mathrm{NO}_{3} \mathrm{SnNa}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 676.2782$, found 676.2788 .
(Z)-1-((tert-Butyldimethylsilyl)oxy)-4-(tributylstannyl)non-4-en-3-ol. 81\% yield (1.86 g). ${ }^{1} \mathrm{H}$ NMR (400

$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.20(\mathrm{td}, J=7.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.48-4.18(\mathrm{~m}, 1 \mathrm{H}), 3.94-3.72(\mathrm{~m}$, $3 \mathrm{H}), 3.16(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.02(\mathrm{td}, J=8.9,8.1,5.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.79-1.64(\mathrm{~m}$, 2H), $1.58-1.40(\mathrm{~m}, 7 \mathrm{H}), 1.40-1.20(\mathrm{~m}, 11 \mathrm{H}), 1.01-0.76(\mathrm{~m}, 21 \mathrm{H}), 0.07(\mathrm{~s}$, $9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.2,140.1,79.3,62.5,39.7,34.1,32.5$, 29.4, 27.6, 26.0, 22.7, 18.3, 14.2, 13.8, 11.2, -5.4. ${ }^{119} \mathrm{Sn}$ NMR ($149 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-55.1$. IR (film, CHCl_{3}) 2954, 2926, 2856, 1463, 1377, 1254, 1093, 1004, 961, 939, 834, 775, 729, $664 \mathrm{~cm}^{-1}$. HRMS (ESI): m/z calculated for $\mathrm{C}_{27} \mathrm{H}_{58} \mathrm{O}_{2} \mathrm{SiSnNa}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 585.3120, found 585.3123.
(Z)-6-Chloro-2-(tributylstannyl)hex-2-en-1-ol. 75% yield (1.58 g). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.21(\mathrm{tt}$, $\mathrm{J}=$
 $7.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.28-4.12(\mathrm{~m}, 2 \mathrm{H}), 3.54(\mathrm{q}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.19$ (dddd, $J=7.8,6.9$, $6.0,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.00-1.74(\mathrm{~m}, 2 \mathrm{H}), 1.70-1.38(\mathrm{~m}, 6 \mathrm{H}), 1.38-1.27(\mathrm{~m}, 6 \mathrm{H}), 1.24$ $(\mathrm{d}, \mathrm{J}=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.07-0.93(\mathrm{~m}, 6 \mathrm{H}), 0.89(\mathrm{t}, J=7.3 \mathrm{~Hz}, 9 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}(101 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 145.1,139.4,70.5,44.7,32.9,31.8,29.4,27.6,13.9,10.4 .{ }^{119} \mathrm{Sn} \mathrm{NMR}\left(149 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-52.3$. IR (film, CHCl_{3}) 3312, 2955, 2923, 2871, 2851, 1622, 1458, 1376 1340, 1290, 1182, 1072, 999, 961, 866, 767, $727,657 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calculated for $\mathrm{C}_{18} \mathrm{H}_{36} \mathrm{OCISn}\left[\mathrm{M}-\mathrm{H}^{+}\right]: 423.1481$, found 423.1481 .
(Z)-7-Hydroxy-9-phenyl-6-(tributylstannyl)non-5-enenitrile. 89\% yield (2.3 g). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$)

$\delta 7.34-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.20(\mathrm{~m}, 3 \mathrm{H}), 6.13(\mathrm{td}, \mathrm{J}=7.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.27-$ $4.03(\mathrm{~m}, 1 \mathrm{H}), 2.76-2.56(\mathrm{~m}, 2 \mathrm{H}), 2.35(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.20(\mathrm{q}, J=7.2 \mathrm{~Hz}$, $2 H), 1.89-1.64(\mathrm{~m}, 4 \mathrm{H}), 1.55(\mathrm{~d}, \mathrm{~J}=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.53-1.38(\mathrm{~m}, 6 \mathrm{H}), 1.38$ $-1.26(\mathrm{~m}, 6 \mathrm{H}), 1.04-0.92(\mathrm{~m}, 6 \mathrm{H}), 0.90(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 150.9,142.0,137.5,128.5,128.5,125.9,119.6,79.0,39.4,33.1,32.4,29.4,27.5,25.9,16.9$, 13.8, 11.2. ${ }^{119} \mathrm{Sn}$ NMR (149 MHz, CDCl_{3}) δ-54.7. IR (film, CHCl_{3}) 3500, 3027, 2954, 2924, 2870, 2853, 1738, 1604, 1495, 1455, 1422, 1375, 1339, 1243, 1180, 1151, 1046, 961, 915, 877, $748 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calculated for $\mathrm{C}_{27} \mathrm{H}_{45} \mathrm{NOSnNa}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 542.2415, found 542.2417.
(R, Z)-2-Methyl-7-phenyl-4-(tributylstannyl)hept-4-en-3-ol. 91% yield (2.05 g). $[\alpha]_{D}^{20}=-9.7$ (c = 2.23, $\left.\mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.11(\mathrm{~m}, 3 \mathrm{H}), 6.16$ (td, $J=7.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.71 (ddd, $J=8.1,3.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}$), 2.69 (dd, $J=9.1,6.6 \mathrm{~Hz}$, $2 \mathrm{H}), 2.45-2.30(\mathrm{~m}, 2 \mathrm{H}), 1.60-1.41(\mathrm{~m}, 7 \mathrm{H}), 1.40(\mathrm{~d}, \mathrm{~J}=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.37-1.25$ $(\mathrm{m}, 6 \mathrm{H}), 0.99-0.91(\mathrm{~m}, 9 \mathrm{H}), 0.89(\mathrm{t}, J=7.2 \mathrm{~Hz}, 9 \mathrm{H}), 0.79(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 148.4,141.9,140.6,128.6,128.5,126.0,86.3,36.6,36.3,33.5,29.4,27.6,20.1$, 18.3, 13.8, 11.3. ${ }^{119} \mathrm{Sn}$ NMR (149 MHz, CDCl ${ }_{3}$) δ-55.2. IR (film, CHCl_{3}) 3480, 3027, 2954, 2922, 2870, 2853, $1614,1496,1455,1376,1273,1178,1071,1004,959,874,745,697 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calculated for $\mathrm{C}_{26} \mathrm{H}_{46} \mathrm{OSnNa}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 517.2462$, found 517.2465.

The racemic sample was prepared analogously.
The enantiomeric excess was determined to be 98\%by HPLC analysis (150 mm Chiralpak IA-3, 4.6 mm i.D., Säule 3, n-Heptane/2-Propanol = 99.9:0.1 (v/v), 1.0 ml/min, 6.3 MPa, 298 K , UV 220 nm).

(Z)-8,8,12-Trimethyl-1-phenyl-5-(tributylstannyl)trideca-4,11-dien-6-ol. 90\% yield (1.22 g). ${ }^{1} \mathrm{H}$ NMR (400
 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.13(\mathrm{~m}, 3 \mathrm{H}), 6.13(\mathrm{t}, \mathrm{J}=7.1$ $\mathrm{Hz}, 1 \mathrm{H}), 5.13-5.06(\mathrm{~m}, 1 \mathrm{H}), 4.30(\mathrm{dt}, J=6.9,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{t}, \mathrm{J}=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.08-1.99(\mathrm{~m}, 2 \mathrm{H}), 1.92(\mathrm{p}, \mathrm{J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.73-1.63(\mathrm{~m}$, $5 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H}), 1.51-1.41(\mathrm{~m}, 7 \mathrm{H}), 1.37-1.23(\mathrm{~m}, 9 \mathrm{H}), 1.21(\mathrm{~d}, \mathrm{~J}=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 0.98-0.83(\mathrm{~m}, 21 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.6,142.4,139.5,131.0,128.6,128.5,125.9,125.4,78.0,49.6,43.3,36.0$, $33.9,33.2,32.0,29.4,28.0,27.8,27.6,25.9,23.0,17.7,13.9,11.3 .{ }^{119} \mathrm{Sn}$ NMR ($149 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-54.33$. IR (neat) 3496, 2954, 2922, 2854, 1613, 1454, 1376, 1070, 1050, 875, 743, 697, 666, 594, 531, $495 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calculated for $\mathrm{C}_{34} \mathrm{H}_{60} \mathrm{OSnNa}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 627.3559$, found 627.3558 .
(anti,Z)-3-Methyl-4-(tributylstannyl)non-4-en-2-ol (20). 91\% yield (9.43 g; $\alpha / \beta=12: 1$). ${ }^{1} \mathrm{H}$ NMR (300 MHz ,
 $\left.\mathrm{CDCl}_{3}\right) \delta 6.17(\mathrm{td}, \mathrm{J}=7.1,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{dqt}, \mathrm{J}=8.0,4.6,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.26-2.12$ (m, 1H), 2.12-1.97 (m, 2H), 1.86 (dd, J = 1.7, $0.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.55-1.42(\mathrm{~m}, 6 \mathrm{H}), 1.42$ $-1.21(\mathrm{~m}, 8 \mathrm{H}), 1.16(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.09-0.51(\mathrm{~m}, 23 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}$, CDCl_{3}) $\delta 147.0,143.7,70.6,53.9,34.6,32.6,29.4,27.6,22.7,20.1,18.0,14.2,13.8,11.5 .{ }^{119}$ Sn NMR (112 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-54.4. IR (film, CHCl_{3}) 2923, 2871, 2854, 1457, 1419, 1376, 1340, 1264, 1120, 1071, 1046, 1002, 961, 926, $666 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calculated for $\mathrm{C}_{22} \mathrm{H}_{46} \mathrm{OSnNa}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 469.2462$, found 469.2466.
(syn,Z)-3-Methyl-4-(tributylstannyl)non-4-en-2-ol (22). 62% yield ($5.76 \mathrm{~g} ; \alpha / \beta=10: 1$). ${ }^{1} \mathrm{H}$ NMR (400 MHz ,
 $\left.\mathrm{CDCl}_{3}\right) \delta 6.30-5.86(\mathrm{~m}, 1 \mathrm{H}), 3.60$ (dddd, $\left.J=9.6,8.6,6.3,3.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.40-2.19(\mathrm{~m}$, $1 \mathrm{H}), 2.01$ (pd, $J=6.8,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.58-1.41(\mathrm{~m}, 6 \mathrm{H}), 1.41-1.24(\mathrm{~m}, 11 \mathrm{H}), 1.15(\mathrm{~d}, \mathrm{~J}$ $=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.05-0.99(\mathrm{~m}, 3 \mathrm{H}), 0.95-0.78(\mathrm{~m}, 18 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 147.0, 141.1, 69.7, 49.7, 35.1, 32.7, 29.4, 27.6, 22.8, 21.2, 14.4, 14.3, 13.8, 11.0. ${ }^{119}$ Sn NMR (149 MHz , CDCl_{3}) δ-52.00. IR (film, CHCl_{3}) 3341, 2956, 2923, 2871, 2854, 1458, 1418, 1376, 1340, 1291, 1249, 1151, 1076, 1047, 1019, 960, 923, 899, 862, $768 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calculated for $\mathrm{C}_{22} \mathrm{H}_{45} \mathrm{OSn}\left[\mathrm{M}-\mathrm{H}^{+}\right]$: 445.2497, found 445.2500.
($5 S, 6 R, Z$)-1-Phenyl-4-(tributylstannyl)tetradec-3-ene-5,6-diol (25). 54% yield (1.26 g). ${ }^{1} \mathrm{H}$ NMR (400 MHz ,
 $\left.\mathrm{CDCl}_{3}\right) \delta 7.33-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.14(\mathrm{~m}, 3 \mathrm{H}), 6.47-6.05(\mathrm{~m}, 1 \mathrm{H}), 4.04-$ $3.80(\mathrm{~m}, 1 \mathrm{H}), 3.44-3.27(\mathrm{~m}, 1 \mathrm{H}), 2.71(\mathrm{dd}, \mathrm{J}=8.8,6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.45-2.34(\mathrm{~m}$, $2 \mathrm{H}), 2.29$ (dd, J = 16.8, 3.4 Hz, 2H), $1.57-1.40(\mathrm{~m}, 6 \mathrm{H}), 1.40-1.16$ (m, 2OH), $0.99-0.92(\mathrm{~m}, 6 \mathrm{H}), 0.92-0.85(\mathrm{~m}, 12 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 145.5,142.9,141.6,128.5,128.5$, 126.1, 83.5, 74.2, 36.4, 36.3, 33.0, 32.0, 29.9, 29.7, 29.5, 29.4, 27.6, 26.0, 22.8, 14.3, 13.8, 11.3. ${ }^{119} \mathrm{Sn}$ NMR ($149 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-53.8. IR (film, CHCl_{3}) 3397, 2922, 2954, 2853, 2870, 1615, 1496, 1455, 1376, 1339, 1288, 1199, 1072, 1029, 961, 904, 866, 746, 723, $697 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calculated for $\mathrm{C}_{32} \mathrm{H}_{58} \mathrm{O}_{2} \mathrm{SnNa}\left[\mathrm{M}+\mathrm{Na}^{+}\right]:$617.3350, found 617.3355 .
(Z)-Tributyl(3-(methoxymethoxy)-1-phenyInon-4-en-4-yl)stannane (16). Tetrabutylammonium iodide
 ($185 \mathrm{mg}, 0.5 \mathrm{mmol}$) and Hünig base ($1.74 \mathrm{~mL}, 10 \mathrm{mmol}$) were added to a solution of (Z)-1-phenyl-4-(tributylstannyl)-non-4-en-3-ol (1) ($2.53 \mathrm{~g}, 5.0 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, followed by dropwise addition of chloromethyl methyl ether ($570 \mu \mathrm{~L}, 7.5 \mathrm{mmol}$). The mixture was stirred for 18 h while being gradually warmed to room temperature. The reaction was then quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The mixture was extracted twice with tert-butyl methyl ether, and the combined extracts were washed with brine, dried over magnesium sulfate, and concentrated under reduced pressure. Flash chromatography (hexane/EtOAc $=30 / 1$) yielded the product as a colorless oil ($2.62 \mathrm{~g}, 95 \%$ yield). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.32-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.13(\mathrm{~m}, 3 \mathrm{H}), 6.46-5.87(\mathrm{~m}, 1 \mathrm{H}), 4.66(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}$, 1 H), $4.25-3.92(\mathrm{~m}, 1 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 2.80-2.51(\mathrm{~m}, 2 \mathrm{H}), 2.07$ (dddd, J = 8.8, 7.0, 4.9, $1.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.91$ (dddd, $J=13.2,10.5,7.2,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.68$ (ddt, J = 13.5, 10.6, 6.1 Hz, 1H), $1.60-1.41$ (m, 6H), 1.41 $1.14(\mathrm{~m}, 10 \mathrm{H}), 1.01-0.79(\mathrm{~m}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.9,144.1,142.5,128.5,128.5,93.4$, 84.0, 55.6, 38.4, 34.3, 32.6, 29.4, 27.6, 22.8, 14.2, 13.8, 11.3. IR (film, CHCl_{3}) 2954, 2923, 2871, 2855, 1614, 1496, 1455, 1376, 1177, 1147, 1094, 1030, 960, 920, $863,746,697 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calculated for $\mathrm{C}_{29} \mathrm{H}_{52} \mathrm{O}_{2} \mathrm{SnNa}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 575.2881$, found 575.2886.

Tributyl(4-((tetrahydro-2H-pyran-2-yl)oxy)but-1-en-2-yl)stannane (18). A solution of 2-(3-butynyloxy)-
 tetrahydro-2H-pyran ($784 \mu \mathrm{~L}, 5.0 \mathrm{mmol}$) and $\mathrm{Bu}_{3} \mathrm{SnH}(1.41 \mathrm{~mL}, 5.25 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 mL) was added over 1 h via syringe pump to a stirred solution of $\left[\mathrm{Cp} * \mathrm{Ru}(\mathrm{MeCN})_{3}\right] \mathrm{PF}_{6}(63 \mathrm{mg}, 0.125 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ at room temperature. Upon complete addition, the volatile materials were removed under vacuum, and the residue was purified by flash chromatography (hexane/EtOAc $=50 / 1$) to give the product as a pale yellow oil (1.88 g , 84% yield). TLC (hexane/EtOAc $=20: 1$), $\mathrm{Rf}=0.45 .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.94-5.49(\mathrm{~m}, 1 \mathrm{H}), 5.31-$ 5.09 (m, 1H), 4.58 (dd, $J=4.3,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.92-3.81(\mathrm{~m}, 1 \mathrm{H}), 3.78$ (ddd, $J=9.7,7.8,6.7 \mathrm{~Hz}, 1 \mathrm{H}$), $3.55-$ $3.47(\mathrm{~m}, 1 \mathrm{H}), 3.41(\mathrm{ddd}, \mathrm{J}=9.7,7.9,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{ddq}, J=8.0,6.7,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.90-1.79(\mathrm{~m}, 1 \mathrm{H})$, $1.77-1.68(\mathrm{~m}, 1 \mathrm{H}), 1.67-1.39(\mathrm{~m}, 10 \mathrm{H}), 1.39-1.24(\mathrm{~m}, 6 \mathrm{H}), 1.04-0.79(\mathrm{~m}, 15 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , CDCl_{3}) $\delta 151.5,127.1,99.0,67.5,62.5,41.2,30.9,29.3,27.6,25.7,19.8,13.8,9.7 .{ }^{119}$ Sn NMR (149 MHz, CDCl_{3}) δ-43.8. IR (film, CHCl_{3}) 2923, 2871, 2852, 1463, 1377, 1351, 1323, 1260, 1201, 1183, 1135, 1120, 1071, 1031, 981, $960,915 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calculated for $\mathrm{C}_{21} \mathrm{H}_{42} \mathrm{O}_{2} \mathrm{SnNa}\left[\mathrm{M}+\mathrm{Na}{ }^{+}\right]: 469.2098$, found 469.2102.

Representative procedure: Synthesis of Propargyl Alcohols. 1-PhenyInon-4-yn-3-ol. A flame-dried 250
 mL two-necked flask was equipped with a dropping funnel and charged with THF $(100 \mathrm{~mL})$ and 1-hexyne ($6.61 \mathrm{~mL}, 57.5 \mathrm{mmol}$). The solution was cooled with a dry ice/acetone bath before n-butyllithium ($34.4 \mathrm{~mL}, 1.6 \mathrm{M}$ in hexane, 55 mmol) was slowly added via the dropping funnel. Once the addition was complete, stirring was continued for 1 h before neat hydrocinnamaldehyde ($6.58 \mathrm{~mL}, 50 \mathrm{mmol}$) was added in one portion. After being stirred for 30 min , the mixture was warmed to room temperature, the reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution, and the aqueous phase was extracted twice with tert-butyl methyl ether. The combined organic layers were washed with brine, dried over magnesium sulfate, and concentrated under reduced pressure. The product was obtained after flash chromatographic purification of the residue (hexane/EtOAc) (10.7 g, 99\%). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.17$ (m, $3 \mathrm{H}), 4.37(\mathrm{tt}, \mathrm{J}=6.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.24(\mathrm{td}, \mathrm{J}=7.0,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.01(\mathrm{tt}, J=7.8,6.2$ $\mathrm{Hz}, 2 \mathrm{H}), 1.62-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.48-1.35(\mathrm{~m}, 2 \mathrm{H}), 0.93(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} N \mathrm{NR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $141.6,128.6,128.5,126.0,86.1,81.1,62.2,39.8,31.6,30.8,22.1,18.5,13.7$. IR (film, CHCl_{3}): 3338,3027 , 2955, 2931, 2861, 1603, 1496, 1454, 1379, 1328, 1134, $10301054,914,746,699 \mathrm{~cm}^{-1}$. The recorded data were in accordance with literature. ${ }^{3}$

Unless stated otherwise, the following compounds were prepared analogously:
2-Methyl-6-phenylhex-3-yn-2-ol. 97\% yield (2.75 g). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35-7.27$ (m, 2H), $7.26-7.16(\mathrm{~m}, 3 \mathrm{H}), 2.82(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.48(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.07(\mathrm{~s}, 1 \mathrm{H}), 1.49$ ($\mathrm{s}, 6 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.7,128.6,128.4,126.4,86.1,81.8,65.3$, 35.2, 31.7, 21.0. IR (film, CHCl_{3}): 3379, 3028, 2979, 2930, 2863, 1739, 1604, 1496, 1454, 1362, 1341, 1239, 1163, 1047, 1078, 1030, 949, 833, 861, $748,698 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calculated for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{ONa}\left[\mathrm{M}+\mathrm{Na}^{+}\right]:$211.1093, found 211.1093.

1-Cyclohexylhept-2-yn-1-ol. 98\% yield (5.28 g). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.13(\mathrm{dt}, J=6.0,2.1 \mathrm{~Hz}, 1 \mathrm{H})$,
 2.21 (td, $J=7.0,2.0 \mathrm{~Hz}, 2 \mathrm{H}$), 1.79 (ddtd, $J=29.2,12.6,3.2,1.7 \mathrm{~Hz}, 3 \mathrm{H}$), 1.67 (dddd, $J=12.8,5.1,3.1,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.58-1.44(\mathrm{~m}, 3 \mathrm{H}), 1.44-1.33(\mathrm{~m}, 2 \mathrm{H}), 1.32-0.94$ $(\mathrm{m}, 7 \mathrm{H}), 0.91(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 86.4,80.2,67.6,44.5$, $30.9,28.7,28.2,26.6,26.1,26.0,22.1,18.5,13.7$. The recorded data were in accordance with the literature. ${ }^{4}$

2-(7-Hydroxy-9-phenyInon-5-yn-1-yl)isoindoline-1,3-dione. n-Butyllithium ($8.13 \mathrm{~mL}, 1.6 \mathrm{M}$ in hexane, 13
 mmol) was added dropwise to a solution of HMDS ($3.13 \mathrm{~mL}, 15$ $\mathrm{mmol})$ in THF (20 mL) at $0^{\circ} \mathrm{C}$. The resulting mixture was stirred for 30 min before it was cooled to $-78{ }^{\circ} \mathrm{C}$. n-(5 -Hexynyl)-phthalimide ($2.5 \mathrm{~g}, 11 \mathrm{mmol}$) was added, and stirring was continued for 1 h before neat phenylpropionaldehyde ($1.31 \mathrm{~mL}, 10 \mathrm{mmol}$) was added in one portion. The mixture was allowed to warm to room temperature. After being stirred for another 30 min , saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution was added, followed by aqueous $\mathrm{HCl}(2 \mathrm{M})$ to give a clear solution. The mixture was extracted twice with EtOAc, and the combined extracts were washed

[^1]with brine, dried over magnesium sulfate, and concentrated under reduced pressure. Purification of the residue by flash chromatography (hexane/EtOAc $=2 / 1$) delivered the title compound ($746 \mathrm{mg}, 21 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.73(\mathrm{~m}, 2 \mathrm{H}), 7.64-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.14(\mathrm{~m}, 2 \mathrm{H}), 7.14-7.04(\mathrm{~m}, 3 \mathrm{H})$, $4.26(\mathrm{dt}, \mathrm{J}=4.6,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.68(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.40(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{td}$, $J=7.0,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.99-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.73(\mathrm{tt}, J=7.9,6.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.47(\mathrm{dq}, J=9.7,7.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 168.5,141.6,134.0,132.1,128.5,128.4,125.9,123.3,84.8,82.0,61.9,39.6,37.5$, $31.5,27.5,25.6,18.2$. IR (film, CHCl_{3}) 3463, 2940, 2864, 1771, 1736, 1704, 1604, 1496, 1467, 1437, 1396, 1372, 1335, 1239, 1188, 1115, 1039, 915, 847, $792 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calculated for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{Na}$ $\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 384.1570$, found 384.1573 .

1-((tert-Butyldimethylsilyl)oxy)non-4-yn-3-ol

A solution of oxalyl chloride ($1.99 \mathrm{~mL}, 23.2 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ and stirred at $-60^{\circ} \mathrm{C}$ in a flame-dried Schlenk flask. A solution of DMSO ($3.41 \mathrm{~mL}, 48 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added. After $5 \mathrm{~min}, 3$-(tert-butyl-dimethyl-silanyloxy)-propan-1-ol ($3.81 \mathrm{~g}, 20 \mathrm{mmol}$) was added dropwise at $-60^{\circ} \mathrm{C}$, followed by dropwise addition of $\mathrm{Et}_{3} \mathrm{~N}(14.1 \mathrm{~mL}, 101 \mathrm{mmol})$. The mixture was allowed to reach room temperature, and the reaction was quenched with water (100 mL). The phases were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with brine, water, and again with brine before being dried over magnesium sulfate. The solvents were removed under reduced pressure, and the residue was dissolved in diethyl ether and filtered over Celite. The crude aldehyde, which was obtained after concentration under reduced pressure, was used in the next step without further purification.
n-Butyllithium ($7.5 \mathrm{~mL}, 1.6 \mathrm{M}$ in hexane, 12 mmol) was added to a solution of 1-hexyne ($1.38 \mathrm{~mL}, 12$ $\mathrm{mmol})$ in THF (25 mL) at $-78^{\circ} \mathrm{C}$ and stirring was continued for 1 h at the same temperature before freshly prepared 3-((tert-butyldimethyl-silyl)oxy)propanal ($1.88 \mathrm{~g}, 10 \mathrm{mmol}$) was introduced. After an additional 1 h , the mixture was warmed to room temperature and the reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The mixture was extracted twice with EtOAc, and the combined organic layers were washed with brine, dried over magnesium sulfate, and concentrated under reduced pressure. Purification of the residue by flash chromatography (hexane/EtOAc $=10: 1$) yielded the product as a pale yellow oil ($2.29 \mathrm{~g}, 85 \%$ yield). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.54(\mathrm{tt}, \mathrm{J}=4.3,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.97$ (ddd, $J=10.2$, $7.6,4.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.77 (ddd, J = 10.4, 6.2, $4.5 \mathrm{~Hz}, 1 \mathrm{H}$), $3.37(\mathrm{~s}, 1 \mathrm{H}), 2.17$ (td, J = 7.0, 2.0 Hz, 2H), 1.91 (ddt, J $=14.1,7.6,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.80(\mathrm{dtd}, J=14.1,6.3,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.53-1.29(\mathrm{~m}, 4 \mathrm{H}), 0.89-0.83(\mathrm{~m}, 12 \mathrm{H}), 0.04$ (s, 3H), $0.04(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 85.4,80.7,61.9,61.2,39.2,30.8,25.9,22.0,18.5,18.2$, 13.7, -5.5. IR (film, CHCl_{3}): 2955, 2929, 2858, 1470, 1253, 1099, 1006, $939,832,775 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calculated for $\mathrm{C}_{15} \mathrm{H}_{30} \mathrm{O}_{2} \mathrm{SiNa}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 293.1907, found 293.1907.

6-Chlorohex-2-yn-1-ol. n-Butyllithium ($12.5 \mathrm{~mL}, 1.6 \mathrm{M}$ in hexane, 20 mmol) was added dropwise to a solution of 5 -chloro-1-pentyne ($2.14 \mathrm{~mL}, 20 \mathrm{mmol}$) in THF (20 mL) at $-78^{\circ} \mathrm{C}$ and the
 resulting mixture was stirred for 15 min . Paraformaldehyde ($1.62 \mathrm{~g}, 54 \mathrm{mmol}$) was added in one portion and the mixture was stirred at $45{ }^{\circ} \mathrm{C}$ for 2 h . After being cooled to room temperature, saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution was added. The mixture was extracted
twice with tert-butyl methyl ether, and the combined organic layers were washed with brine, dried over magnesium sulfate, and concentrated under reduced pressure. Flash chromatography (hexane/tert-butyl methyl ether $=3: 1$) yielded the product as a colorless oil ($2.15 \mathrm{~g}, 95 \%$ purity, 77% yield). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.25(\mathrm{t}, \mathrm{J}=2.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.65(\mathrm{t}, \mathrm{J}=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{tt}, J=6.8,2.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.96(\mathrm{p}, J=6.6$ $\mathrm{Hz}, 2 \mathrm{H}), 1.83-1.74(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 84.5,79.5,51.4,43.8,31.3,16.3$. IR (film, CHCl_{3}) 3340, 2918, 1433, 1354, 1290, 1230, 1131, 1010, 859, 726, $652 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calculated for $\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{OClNa}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 155.0234$, found 155.0235.

7-Hydroxy-9-phenylnon-5-ynenitrile. 96% yield (2.19 g). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33-7.26$ (m, 2H), $7.25-7.15(\mathrm{~m}, 3 \mathrm{H}), 4.36$ (tdd, $J=6.5,4.7,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}$,
 $2 \mathrm{H}), 2.49(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.43(\mathrm{td}, J=6.8,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.12-1.93(\mathrm{~m}$, $2 \mathrm{H}), 1.93-1.78(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.3,128.6,126.2$, 119.3, 83.2, 82.9, 77.4, 62.0, 39.6, 31.6, 24.5, 18.0, 16.4. IR (film, CHCl_{3}) 3415, 3025, 2944, 2863, 2249, 1603, 1496, 1454, 1432, 1334, 1218, 1155, 1132, 1056, 1030, 915, 749 cm^{-1}. HRMS (ESI): m / z calculated for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NONa}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 250.1202, found 250.1203.
(\boldsymbol{R})-2-Methyl-7-phenylhept-4-yn-3-ol. ${ }^{5}$ An oven-dried Schlenk flask was charged with $\mathrm{Zn}(\mathrm{OTf})_{2}(2.0 \mathrm{~g}, 5.5$ mmol), (+)- N-methylephedrine ($1.08 \mathrm{~g}, 6.0 \mathrm{mmol}$) and toluene (15 mL), and the mixture was stirred for 15 min before $\mathrm{Et}_{3} \mathrm{~N}(836 \mu \mathrm{~L}, 6.0 \mathrm{mmol})$ was added. After being stirred for 2 h , the reaction mixture was treated with 4-phenyl-1-butyne ($844 \mu \mathrm{~L}, 6.0 \mathrm{mmol}$) and stirring was continued for 15 min , followed by addition of iso-butyraldehyde ($456 \mu \mathrm{~L}, 5.0 \mathrm{mmol}$). The mixture was vigorously stirred for 18 h before the reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The mixture was extracted twice with tert-butyl methyl ether, and the combined extracts were washed with brine, dried over magnesium sulfate, and concentrated under reduced pressure. Flash chromatography (hexane/EtOAc = 9:1) yielded the product as a pale yellow oil ($925 \mathrm{mg}, 92 \%$ yield).

[^2]The enantiomeric excess was determined to be 97\%by HPLC analysis (150 mm Chiralcel OD-3, 4.6 mm i.D., n-Heptane $/ 2$-Propanol $=90: 10,1.0 \mathrm{ml} / \mathrm{min}, 7.0 \mathrm{MPa}, 298 \mathrm{~K}, \mathrm{UV} 220 \mathrm{~nm}$).

2-Methyl-7-phenylhept-4-yn-3-ol. 89\% yield (1.08 g). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34$ - 7.25 ($\mathrm{m}, 2 \mathrm{H}$),
 $7.25-7.17$ (m, 3H), 4.13 (ddt, J = 5.6, 3.7, 2.2 Hz, 1H), 2.83 (t, J = $7.5 \mathrm{~Hz}, 2 \mathrm{H}$), $2.59-2.48(\mathrm{~m}, 2 \mathrm{H}), 1.81(\mathrm{pd}, \mathrm{J}=6.7,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.63(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 0.95$ (dd, $J=6.7,3.6 \mathrm{~Hz}, 6 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.7,128.6,128.5,126.4$, 85.5, 80.9, 68.3, 35.3, 34.8, 21.0, 18.2, 17.6. IR (film, CHCl_{3}) 3382, 3028, 2959, 2929, 2871, 1726, 1604, 1496, 1468, 1454, 1430, 1367, 1256, 1146, 1108, 1077, 1021, $959,816,745,697 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calculated for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}$ [M]: 202.1352, found 202.1350.

8,8,12-Trimethyl-1-phenyltridec-11-en-4-yn-6-ol. nBuLi ($1.76 \mathrm{~mL}, 1.6 \mathrm{M}$ in hexane, 2.82 mmol) was
 added dropwise at $-78{ }^{\circ} \mathrm{C}$ to a stirred solution of pent-4-yn-1ylbenzene ($0.408 \mathrm{~mL}, 2.68 \mathrm{mmol}$) in THF (9.8 mL). After stirring for 1 h , a solution of 3,3,7-trimethyloct-6-enal ${ }^{6}$ in THF (0.9 mL) was added and stirring was continued at $-78^{\circ} \mathrm{C}$ for 1 h . The mixture was warmed to ambient temperature before being quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution (5 mL). The mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and the aqueous phase was extracted with tert-butyl methyl ether ($3 \times 10 \mathrm{~mL}$). The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, dried over MgSO_{4}, and concentrated in vacuo. Purification by gradient flash chromatography (hexane/EtOAc $=14 / 1$ to $9 / 1$) gave the product as a colorless oil ($0.777 \mathrm{~g}, 93 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.31-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.14(\mathrm{~m}, 3 \mathrm{H}), 5.08(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{t}, \mathrm{J}=6.3$ $\mathrm{Hz}, 1 \mathrm{H}), 2.69(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.21(\mathrm{td}, \mathrm{J}=7.1,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.99-1.90(\mathrm{~m}, 2 \mathrm{H}), 1.81(\mathrm{p}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, $1.71-1.64(\mathrm{~m}, 6 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H}), 1.33-1.25(\mathrm{~m}, 2 \mathrm{H}), 0.97(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 141.7$, $131.1,128.6,128.5,126.0,125.2,84.9,83.4,60.2,49.9,42.8,35.0,32.7,30.3,27.7,27.6,25.8,22.9,18.3$, 17.7. IR (neat) 3387, 2927, 2861, 1496, 1453, 1376, 1345, 1054, 1028, 992, 834, 744, 698, $491 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calculated for $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{ONa}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 335.2346$, found 335.2345.
anti-3-Methylnon-4-yn-2-ol. n-Butyllithium ($23.4 \mathrm{~mL}, 1.6 \mathrm{M}$ in hexane, 37.5 mmol) was added dropwise to a solution of 1-hexyne ($4.3 \mathrm{~mL}, 37.5 \mathrm{mmol}$) in THF (50 mL) at $-78^{\circ} \mathrm{C}$ and stirring was continued for $10 \mathrm{~min} . \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(4.6 \mathrm{~mL}, 37.5 \mathrm{mmol})$ was then introduced; 15 min later, syn-2,3-dimethyloxirane ($2.18 \mathrm{~mL}, 25 \mathrm{mmol}$) was added and the mixture was stirred at $-78^{\circ} \mathrm{C}$ for 2 h before the reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The mixture was allowed to warm to room temperature and extracted twice with EtOAc. The combined extracts were washed with brine, dried over magnesium sulfate, and concentrated under reduced pressure. Flash chromatography (hexane/EtOAc $=9 / 1$) yielded the product as a pale yellow liquid (3.6 g , 93% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.57(\mathrm{~h}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.41$ (tddd, $\left.J=7.0,5.6,4.6,2.2 \mathrm{~Hz}, 1 \mathrm{H}\right)$, 2.19 (td, J = 6.9, 2.2 Hz, 2H), 1.96 (d, J = 5.7 Hz, 1H), 1.53-1.44 (m, 2H), $1.44-1.34(\mathrm{~m}, 2 \mathrm{H}), 1.22$ (d, J = $6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.16(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 83.7,80.7,71.1$, 35.2, 31.3, 22.1, 20.9, 18.5, 17.9, 13.8. IR (film, CHCl_{3}) 3386, 2932 2960, 2874, 1454, 1376, 1300, 1265,

[^3]1173, 1098, 997, 1011, 955, $913 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calculated for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{ONa}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 177.1250, found 177.1250 .
syn-3-Methylnon-4-yn-2-ol. Prepared analogously from anti-2,3-dimethyloxirane ($2.18 \mathrm{~mL}, 25 \mathrm{mmol}$) as
 a pale yellow liquid ($3.2 \mathrm{~g}, 83 \%$ yield). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.76-3.60(\mathrm{~m}$, $1 \mathrm{H}), 2.56(\mathrm{ttd}, J=7.0,4.9,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.16(\mathrm{td}, J=7.0,2.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.80(\mathrm{~d}, J=6.0 \mathrm{~Hz}$, $1 \mathrm{H}), 1.53-1.31(\mathrm{~m}, 4 \mathrm{H}), 1.21(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.11(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{t}, \mathrm{J}=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 83.1,81.2,70.6,34.3,31.3,22.1,19.5,18.5,16.7,13.8$. IR (film, CHCl_{3}) 3384, 2962, 2932, 2874, 1742, 1727, 1454, 1374, 1328, 1298, 1246, 1202, 1168, 1083, 1008, 972, $911 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calculated for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{ONa}\left[\mathrm{M}+\mathrm{Na}{ }^{+}\right]$: 177.1250, found 177.1250.
($5 R, 6 R$)-1-Phenyltetradec-3-yne-5,6-diol (24). ${ }^{7}$ AD-mix- $\beta(7.5 \mathrm{~g}$) was dissolved in t - $\mathrm{BuOH}(25 \mathrm{~mL}$) and the solution was stirred at $4^{\circ} \mathrm{C}$ in air. A solution of $\mathrm{MeSO}_{2} \mathrm{NH}_{2}$ ($514 \mathrm{mg}, 5.4 \mathrm{mmol}$) in water (25 mL) was added, followed by (E)-tetradec-5-en-3-yn-1-ylbenzene (1.45 g , $5.4 \mathrm{mmol})$. After being stirred at the same temperature for 12 h , the reaction was quenched with saturated aqueous $\mathrm{Na}_{2} \mathrm{SO}_{3}$ solution at $4{ }^{\circ} \mathrm{C}$. The mixture was then extracted three times with EtOAc. The combined extracts were washed with brine, dried over magnesium sulfate, and concentrated under reduced pressure. Purification of the residue by flash chromatography (hexane/EtOAc $=4 / 1$ to $2 / 1$) yielded the product as a colorless oil, which solidified upon standing ($1.18 \mathrm{~g}, 72 \%$ yield). $[\alpha]_{D}^{20}=+13.3\left(\mathrm{c}=1.60, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34-7.27$ $(\mathrm{m}, 2 \mathrm{H}), 7.25-7.17(\mathrm{~m}, 3 \mathrm{H}), 4.10(\mathrm{dt}, \mathrm{J}=6.3,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{ddd}, \mathrm{J}=8.0,6.3,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{t}, \mathrm{J}=$ $7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.53(\mathrm{td}, \mathrm{J}=7.4,1.9 \mathrm{~Hz}, 4 \mathrm{H}), 1.65-1.16(\mathrm{~m}, 14 \mathrm{H}), 0.97-0.84(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right)$ (140.5, 128.5, 128.5, 126.5, 86.4, 79.6, 75.2, 66.4, 34.9, 32.4, 32.0, 29.7, 29.7, 29.4, 25.7, 22.8, 20.9, 14.3. IR (film, CHCl_{3}) 3361, 2922, 2854, 1496, 1454, 1260, 1129, 1031, $745,697,579,507 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calculated for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{2} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 325.2138$, found 325.2137.

Total Synthesis of Paecilonic Acid A

(2S,3S)-1,1-Dimethoxyundecane-2,3-diol (40). A 1 L round-bottom flask was charged with (R)- α, α -
 bis[3,5-bis(trifluoromethyl)phenyl]-2-pyrrolidinemethanol trimethylsilyl ether (0.485 $\mathrm{g}, 0.811 \mathrm{mmol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}(65 \mathrm{~mL})$, and trans-2-undecenal ($6.43 \mathrm{~mL}, 32.4 \mathrm{mmol}$) under an ambient atmosphere. After being stirred for 5 min , the mixture was treated with $\mathrm{H}_{2} \mathrm{O}_{2}$ ($35 \%(w / w)$ in $\mathrm{H}_{2} \mathrm{O}, 4.1 \mathrm{~mL}, 42.2 \mathrm{mmol}$) and stirring was continued for 24 h . MeOH $(650 \mathrm{~mL})$ and sodium methoxide ($17.5 \mathrm{~g}, 324 \mathrm{mmol}$) were added, and the resulting mixture was vigorously stirred for 24 h . The mixture was concentrated in vacuo, the residue was redissolved in $\mathrm{H}_{2} \mathrm{O}(250 \mathrm{~mL})$, and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 100 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Purification of the crude product by gradient flash chromatography (hexane/EtOAc $=2 / 1$ to $1 / 1$) gave the title compound as a colorless oil ($4.78 \mathrm{~g}, 59 \%$). $[\alpha]_{D}^{25}=-22.8\left(\mathrm{c}=2.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 4.37(\mathrm{~d}, \mathrm{~J}=4.9 \mathrm{~Hz}$, 1 H), 3.59 (ddd, $\mathrm{J}=9.1,6.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}$), $3.50-3.44(\mathrm{~m}, 4 \mathrm{H}), 3.41(\mathrm{~s}, 3 \mathrm{H}), 1.66-1.22(\mathrm{~m}, 14 \mathrm{H}), 0.90(\mathrm{t}, \mathrm{J}=$ $6.6 \mathrm{~Hz}, 3 \mathrm{H}$) ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 106.3,75.2,72.6,55.54,55.48,33.2,33.1,30.8,30.7,30.5$, 26.7, 23.7, 14.5. IR (neat): 3415, 2922, 2854, 1464, 1378, 1312, 1192, 1124, 1060, 972, 913, 722, 571 cm^{-1}. HRMS (ESI): m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 271.1880, found: 271.1878.

[^4]GC chromatogram on chiral column [Macherey-Nagel Hydrodex-beta-TBDAc-CD G681 (25.0 m, i.D. 0.25 mm); FID; Temperature: $230^{\circ} \mathrm{C}$ (injector), $350^{\circ} \mathrm{C}$ (detector), $155^{\circ} \mathrm{C}\left(60 \mathrm{~min}\right.$ iso) to $220^{\circ} \mathrm{C}\left(8^{\circ} \mathrm{C} / \mathrm{min}, 3\right.$ min iso); Gas: $\mathrm{H}_{2}(0.5 \mathrm{bar}) ; 97 \%$ ee $\left(\mathrm{t}_{\mathrm{R}}(\right.$ major $)=41.8 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $\left.)=40.1 \mathrm{~min}\right)$].

No.	Ret.Time	area- $\%$
	\min	$\%$
1	31,39	5,00
2	32,05	5,14
3	40,09	44,79
4	41,80	45,08

No. Ret.Time
Ret. Time
\min
39,95
41,70

Rel.Area Peak Name
\%
1,54
98,46
((($2 S, 3 S$)-1,1-Dimethoxyundecane-2,3-diyl)bis(oxy))bis(methylene))dibenzene (S1). A solution of compound $40(3.50 \mathrm{~g}, 14.1 \mathrm{mmol})$ in DMF (20.5 mL) was added dropwise to a stirred
 solution of sodium hydride ($1.02 \mathrm{~g}, 42.3 \mathrm{mmol}$) in DMF (50 mL) at $0^{\circ} \mathrm{C}$. The resulting mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 15 min before addition of benzyl bromide $(4.20 \mathrm{~mL}$, $35.3 \mathrm{mmol})$. After being stirred at ambient temperature for 3 h , the reaction was quenched by addition of $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and the mixture was diluted with tert-butyl methyl ether (300 mL). The resulting solution was washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 100 \mathrm{~mL})$ and brine (100 mL), dried over MgSO_{4}, and concentrated in vacuo. Purification of the crude product by gradient flash chromatography (hexane/EtOAc = 19/1 to 9/1) gave the title compound as a colorless oil ($5.42 \mathrm{~g}, 90 \%$). $[\alpha]_{D}^{25}=-35.8\left(\mathrm{c}=2.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.44-7.19(\mathrm{~m}, 10 \mathrm{H}), 4.80-4.71(\mathrm{~m}, 2 \mathrm{H}), 4.58$ (d, J= $11.6 \mathrm{~Hz}, 1 \mathrm{H}$), $4.47(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.70-3.64(\mathrm{~m}, 1 \mathrm{H}), 3.62-3.56(\mathrm{~m}$, 1 H), $3.44(\mathrm{~s}, 3 \mathrm{H}), 3.39(\mathrm{~s}, 3 \mathrm{H}), 1.78-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.60-1.40(\mathrm{~m}, 2 \mathrm{H}), 1.34-1.17(\mathrm{~m}, 11 \mathrm{H}), 0.88(\mathrm{t}, \mathrm{J}=$ $6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.0,138.9,128.4,128.3,128.1,128.0,127.6,127.5,105.7$, $79.8,79.7,74.2,72.0,55.8,55.4,32.0,30.2,29.9,29.7,29.4,25.9,22.8,14.3$ IR (neat): 2924, 2854, 1497, 1454, 1376, 1327, 1204, 1065, 1028, 962, 912, 733, 696, 607, $461 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{44} \mathrm{NO}_{4}\left[\mathrm{M}+\mathrm{NH}_{4}{ }^{+}\right]: 446.3265$, found: 446.3259.
(4R,5S,E)-4,5-Bis(benzyloxy)tridec-2-enal (43). Step 1: A mixture of $\mathrm{H}_{2} \mathrm{O}$ and trifluoroacetic acid (1:1 $(v / v), 38 \mathrm{~mL})$ was added to a stirred solution of compound $\mathbf{S} 1(5.42 \mathrm{~g}, 12.6 \mathrm{mmol})$ in

BnO,
 $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (38 mL). After being vigorously stirred for 24 h , the reaction was carefully quenched with saturated aqueous NaHCO_{3} solution (30 mL) and the mixture was diluted with tert-butyl methyl ether (200 mL). The mixture was then washed with saturated aqueous NaHCO_{3} solution ($3 \times 70 \mathrm{~mL}$) and brine (70 mL), dried over MgSO_{4}, and concentrated in vacuo to afford aldehyde $\mathbf{4 1}$ as a pale yellow oil, which was used directly in the subsequent step.

Step 2: Diethylzinc ($15 \%(w / w)$ in toluene, $19.9 \mathrm{~mL}, 22.1 \mathrm{mmol}$) was added to tris(ethoxyvinyl)borane ${ }^{8}$ $\left(0.28 \mathrm{M}\right.$ in toluene, $22.1 \mathrm{~mL}, 6.19 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$. After being stirred for 20 min at $-78^{\circ} \mathrm{C}$, a solution of aldehyde 41 in toluene (6.3 mL) was added dropwise. The mixture was gradually warmed to RT over 3 h and then further kept at ambient temperature for 30 min before being cooled to $0^{\circ} \mathrm{C}$. The solution was diluted with $\mathrm{Et}_{2} \mathrm{O}(22 \mathrm{~mL})$ and the reaction carefully quenched with brine (22 mL). Aqueous $\mathrm{HCl}(2 \mathrm{M})$ was added dropwise to the heterogeneous mixture until complete dissolution of all precipitates was reached (at approximately pH 2). This biphasic mixture was stirred for 19 h and then quenched by addition of saturated aqueous NaHCO_{3} solution (15 mL). The resulting mixture was diluted with tert-butyl methyl ether (100 mL), washed with saturated aqueous NaHCO_{3} solution $(30 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$, the organic phase was dried over MgSO_{4}, and concentrated in vacuo. Purification of the crude product by flash chromatography (hexane/EtOAc $=9 / 1$) gave the title compound as a colorless oil ($3.81 \mathrm{~g}, 74 \%$). $[\alpha]_{D}^{25}=$ -25.2 (c = 2.0, CHCl $)^{1}{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.59(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.26(\mathrm{~m}, 10 \mathrm{H}), 6.87(\mathrm{dd}, \mathrm{J}$ $=15.9,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.34$ (ddd, $J=15.9,7.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.69-4.55(\mathrm{~m}, 3 \mathrm{H}), 4.47(\mathrm{~d}, \mathrm{~J}=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.13$ (ddd, $J=6.0,4.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{dt}, J=8.1,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.67-1.18(\mathrm{~m}, 14 \mathrm{H}), 0.89(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 193.5, 154.6, 138.4, 137.8, 134.0, 128.6, 128.5, 128.2, 128.0, 127.9 (two signals unresolved), 81.1, 80.7, 73.1, 71.9, 32.0, 31.4, 29.8, 29.7, 29.4, 25.5, 22.8, 14.3. IR (neat): 2924, 2854, 1691, 1496, 1454, 1352, 1207, 1095, 1027, 978, 734, 696, 607, $462 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{40} \mathrm{NO}_{3}\left[\mathrm{M}+\mathrm{NH}_{4}{ }^{+}\right]: 426.3003$, found: 426.2999 .
(4R,5S)-4,5-Bis(benzyloxy)tridecanal (S2). $\mathrm{H}_{2} \mathrm{SO}_{4}\left(1 \mathrm{M}\right.$ in $\mathrm{H}_{2} \mathrm{O}, 465 \mu \mathrm{~L}, 0.465 \mathrm{mmol}$) and triethylsilane
 $(2.23 \mathrm{~mL}, 14.0 \mathrm{mmol})$ were sequentially added to a stirred solution of compound 43 ($3.80 \mathrm{~g}, 9.30 \mathrm{mmol}$) and $\mathrm{Pd} / \mathrm{C}(10 \%(w / w), 99.0 \mathrm{mg}, 93.0 \mu \mathrm{~mol})$ in THF (31 mL). After being stirred for 45 min , the mixture was neutralized by addition of $\mathrm{Et}_{3} \mathrm{~N}(64.8 \mu \mathrm{~L}$, 0.465 mmol), the suspension was filtered through Celite, and the filtrate was concentrated in vacuo. Purification of the crude product by flash chromatography (hexane/EtOAc =9/1) gave the title compound as a colorless oil ($2.46 \mathrm{~g}, 64 \%$). $[\alpha]_{D}^{25}=+11.9$ ($\left.\mathrm{c}=2.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 9.71(\mathrm{t}, \mathrm{J}=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.26(\mathrm{~m}, 10 \mathrm{H}), 4.69(\mathrm{~d}, \mathrm{~J}=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{~d}, \mathrm{~J}=11.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.56(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{dt}, J=7.5,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{dt}, J=8.4,3.4 \mathrm{~Hz}, 1 \mathrm{H})$, $2.58-2.43(\mathrm{~m}, 2 \mathrm{H}), 2.02-1.84(\mathrm{~m}, 2 \mathrm{H}), 1.68-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.53-1.40(\mathrm{~m}, 2 \mathrm{H}), 1.36-1.20(\mathrm{~m}, 11 \mathrm{H})$, $0.90(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 202.7,138.9,138.5,128.53,128.47,128.2,128.0$, $127.8,127.7,80.1,80.0,72.6,72.2,40.5,32.0,31.1,29.9,29.7,29.4,26.0,23.0,22.8,14.3$. IR (neat): 2924, 2854, 1723, 1496, 1454, 1351, 1206, 1094, 1061, 1027, 733, 696, 607, $460 \mathrm{~cm}^{-1}$. HRMS (ESI): m/z calcd for $\mathrm{C}_{27} \mathrm{H}_{38} \mathrm{O}_{3} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 433.2713$, found: 433.2710 .

Methyl (12S,15R,16S)-15,16-bis(benzyloxy)-12-hydroxytetracos-10-ynoate (35). (-)-N-Methylephedrine
 $(0.458 \mathrm{~g}, 2.56 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.356 \mathrm{~mL}, 2.56 \mathrm{mmol})$ were added to a stirred suspension of $\mathrm{Zn}(\mathrm{OTf})_{2}(0.885 \mathrm{~g}, 2.44$ mmol) in toluene (8.4 mL). The heterogeneous mixture was stirred for 2 h , treated with methyl 10 -undecynoate (0.526 $\mathrm{mL}, 2.44 \mathrm{mmol}$), and further stirred for 1 h . A solution of compound $\mathbf{S 2}(0.500 \mathrm{~g}, 1.22 \mathrm{mmol})$ in toluene (1.2 mL) was added dropwise. The resulting mixture was stirred for additional 24 h before the reaction was quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$

[^5]solution (10 mL). The aqueous phase was extracted with tert-butyl methyl ether ($3 \times 15 \mathrm{~mL}$) and the combined organic layers were dried over MgSO_{4} and concentrated in vacuo. Purification of the crude product by gradient flash chromatography (hexane/EtOAc $=6 / 1$ to $5 / 1$) gave the title compound as a colorless oil ($0.553 \mathrm{~g}, 75 \%$). $[\alpha]_{D}^{25}=-0.9\left(\mathrm{c}=2.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.40-7.21(\mathrm{~m}, 10 \mathrm{H})$, $4.69(\mathrm{dd}, J=11.6,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.54(\mathrm{dd}, J=11.6,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.34(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.56-$ $3.50(\mathrm{~m}, 2 \mathrm{H}), 2.29(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.18(\mathrm{td}, J=7.1,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.91-1.69(\mathrm{~m}, 4 \mathrm{H}), 1.68-1.56(\mathrm{~m}, 3 \mathrm{H})$, $1.56-1.41(\mathrm{~m}, 4 \mathrm{H}), 1.41-1.19(\mathrm{~m}, 19 \mathrm{H}), 0.88(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl $\left.{ }_{3}\right) \delta 174.4$, 139.0, 138.7, 128.5, 128.4, 128.1, 128.0, 127.7, 127.6, 85.6, 81.3, 80.6, 80.5, 72.4, 72.2, 62.8, 51.6, 34.6, $34.2,32.0,30.9,29.9,29.7,29.4,29.21,29.18,29.0,28.9,28.8,26.2,26.1,25.0,22.8,18.8,14.3$. IR (neat): 3439, 2924, 2854, 1738, 1454, 1354, 1204, 1172, 1095, 1061, 1027, 734, 697, 609, $460 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calcd for $\mathrm{C}_{39} \mathrm{H}_{58} \mathrm{O}_{5} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 629.4176, found: 629.4173.

Methyl (12S,15R,16S,Z)-15,16-bis(benzyloxy)-12-hydroxy-11-(tributylstannyl)tetracos-10-enoate (44).
 Tributyltin hydride ($0.83 \mathrm{~mL}, 3.09 \mathrm{mmol}$) was added over 1 h to a stirred solution of compound $35(1.71 \mathrm{~g}, 2.81 \mathrm{mmol})$ and $\left[\mathrm{Cp}^{*} \mathrm{RuCl}_{2}\right]_{\mathrm{n}}(21.6 \mathrm{mg}, 70.3 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(12 \mathrm{~mL})$. Upon complete addition, the reaction mixture was further stirred for 5 min and concentrated in vacuo. The residue was subjected to flash chromatography (hexane/EtOAc $=9 / 1$) to afford the title compound as a pale yellow oil ($2.08 \mathrm{~g}, 83 \%$). $[\alpha]_{D}^{25}=-0.8\left(\mathrm{c}=2.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37-7.24(\mathrm{~m}, 10 \mathrm{H})$, $6.12\left(\mathrm{t}, J=7.1, J_{S n-H}=122.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.70(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.54(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=11.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.08(\mathrm{~s}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.55-3.48(\mathrm{~m}, 2 \mathrm{H}), 2.30(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.01(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.71-$ $1.57(\mathrm{~m}, 7 \mathrm{H}), 1.57-1.40(\mathrm{~m}, 9 \mathrm{H}), 1.38-1.21(\mathrm{~m}, 27 \mathrm{H}), 1.05-0.80(\mathrm{~m}, 18 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 174.4, 147.9, 140.9, 139.1, 138.9, 128.4 (two signals unresolved), 128.0, 127.9, 127.6, 127.5, 80.9, 80.8, 80.3, 72.4, 72.3, 51.6, 34.41, 34.38, 34.2, 32.0, 30.9, 30.3, 29.9, 29.7, 29.61, 29.57, 29.44, 29.39, 29.37, 29.3, 27.6, 27.2, 26.3, 25.1, 22.8, 14.3, 13.8, 11.2. ${ }^{119} \mathrm{Sn}$ NMR ($149 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-55.39$. IR (neat): 3497, 2923, 2853, 1740, 1455, 1357, 1204, 1173, 1066, 1027, 874, 754, 696, 666, 595, 499, $454 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calcd for $\mathrm{C}_{51} \mathrm{H}_{85} \mathrm{O}_{5} \mathrm{Sn}\left[\mathrm{M}-\mathrm{H}^{+}\right]$: 897.5424, found: 897.5436.

Methyl (12S,15R,16S)-12-acetoxy-15,16-bis(benzyloxy)-11-oxotetracosanoate (45). $\mathrm{Et}_{3} \mathrm{~N}$ (1.59 mL, 11.4 mmol) was added to a stirred solution of compound 44
 $(2.05 \mathrm{~g}, 2.28 \mathrm{mmol})$ and $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(0.912 \mathrm{~g}, 4.57 \mathrm{mmol})$ in reagent grade DMSO (18 mL) under an ambient atmosphere. After being vigorously stirred at $70^{\circ} \mathrm{C}$ for 22 h , the heterogeneous mixture was diluted with tert-butyl methyl ether (100 mL) and the suspension was filtered through Celite. The filtrate was washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution ($2 \times 40 \mathrm{~mL}$) and $\mathrm{H}_{2} \mathrm{O}(40 \mathrm{~mL})$, the organic phase was dried over MgSO_{4} and concentrated in vacuo. Purification of the crude product by flash chromatography (hexane/EtOAc = $7 / 1$) gave the title compound as a yellow oil (1.18 g, 77\%). $[\alpha]_{D}^{25}=+5.2\left(\mathrm{c}=2.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.37-7.24(\mathrm{~m}, 10 \mathrm{H}), 4.98-4.91(\mathrm{~m}, 1 \mathrm{H}), 4.67(\mathrm{~d}, \mathrm{~J}=11.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.55(\mathrm{~d}, \mathrm{~J}=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.48$ $(\mathrm{d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.52(\mathrm{dt}, J=7.4,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{dt}, J=7.3,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.49-2.25(\mathrm{~m}$, $4 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 2.05-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.77-1.39(\mathrm{~m}, 10 \mathrm{H}), 1.39-1.19(\mathrm{~m}, 21 \mathrm{H}), 0.89(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 207.4,174.4,170.7,138.9,138.6,128.53,128.48,128.1,128.0,127.8,127.7$,
80.7, 80.3, 78.9, 72.6, 72.3, 51.6, 38.8, 34.3, 32.0, 31.1, 29.9, 29.7, 29.5, 29.43, 29.39, 29.35, 29.27 (two signals unresolved), 27.0, 26.5, 26.1, 25.1, 23.3, 22.8, 20.8, 14.3. IR (neat): 2925, 2854, 1737, 1454, 1372, 1233, 1171, 1094, 1061, 1027, 735, 697, 606, $463 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calcd for $\mathrm{C}_{41} \mathrm{H}_{62} \mathrm{O}_{7} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 689.4388, found: 689.4389.

Methyl 10-((1R,4S,5S,7S)-4-acetoxy-7-octyl-6,8-dioxabicyclo[3.2.1]octan-5-yl)decanoate (46). A
 suspension containing Pd/C ($10 \%(w / w), 96.0 \mathrm{mg}, 90.2 \mu \mathrm{~mol})$ and compound 45 ($0.602 \mathrm{~g}, 0.902 \mathrm{mmol}$) in THF (9 mL) was stirred under an atmosphere of H_{2} (balloon) for 40 h . The catalyst was removed by filtration through Celite, rinsing with additional THF $(9 \mathrm{~mL})$ to aid the complete transfer. The obtained colorless filtrate was treated with $\mathrm{HCl}(4 \mathrm{M}$ in 1,4dioxane, $1.13 \mathrm{~mL}, 4.51 \mathrm{mmol}$) and stirred for 3 h before the reaction was quenched with saturated aqueous NaHCO_{3} solution (5 mL). The mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 $\times 20 \mathrm{~mL}$). The combined organic layers were dried over MgSO_{4} and concentrated in vacuo. Purification of the crude product by flash chromatography (hexane/EtOAc $=9 / 1$) gave the title compound as a coloress oil $(0.352 \mathrm{~g}, 83 \%) .[\alpha]_{D}^{25}=+45.8\left(\mathrm{c}=2.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.68(\mathrm{~d}, \mathrm{~J}=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.25$ $(\mathrm{t}, \mathrm{J}=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.00-3.93(\mathrm{~m}, 1 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.24-2.12(\mathrm{~m}, 1 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H})$, $2.03-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.17(\mathrm{~m}, 32 \mathrm{H}), 0.87(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C} N \mathrm{NR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 174.4$, 170.7, 106.8, 80.3, 76.2, 70.0, 51.5, 34.2, 34.0, 32.0, 29.8 (two signals unresolved), 29.61, 29.56, 29.5, $29.34,29.32,29.26,29.2,26.8,25.1,23.5,22.8,22.0,21.5,20.9,14.2$. IR (neat): 2925, 2854, 1736, 1436, 1371, 1240, 1168, 1102, 1021, 917, 756, 608, $515 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{48} \mathrm{O}_{6} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 491.3343, found: 491.3340.

Paecilonic acid A (34). $\mathrm{NaOH}\left(4 \mathrm{M}\right.$ in $\mathrm{H}_{2} \mathrm{O}, 1.21 \mathrm{~mL}, 4.84 \mathrm{mmol}$) was added to a stirred solution of compound 46 ($247 \mathrm{mg}, 0.527 \mathrm{mmol}$) in $\mathrm{MeOH} / \mathrm{THF}$ (1:1.5 (v/v),
 5.4 mL) in air. The mixture was stirred for 14 h and concentrated in vacuo. The residue was redissolved in $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$, acidified with aqueous $\mathrm{HCl}(2 \mathrm{M})$ to approximately pH 2 , and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4} and concentrated in vacuo. Purification of the crude product by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=49 / 1\right.$ with $\left.0.5 \% \mathrm{AcOH}\right)$ gave paecilonic acid $\mathrm{A}(34)$ as a white amorphous solid ($0.207 \mathrm{~g}, 95 \%$). $[\alpha]_{D}^{25}=+35.5\left(\mathrm{c}=2.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 4.19(\mathrm{t}, \mathrm{J}=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.93$ (dddd, $\left.\mathrm{J}=7.5,6.3,4.1,1.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.42(\mathrm{dt}, \mathrm{J}=4.6,1.1$ $\mathrm{Hz}, 1 \mathrm{H}), 2.27$ (t, J = $7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 2.13 (tdd, $J=13.9,6.7,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.03$ (tddd, $J=13.9,6.1,3.8,0.8 \mathrm{~Hz}$, $1 \mathrm{H}), 1.79(\mathrm{dt}, \mathrm{J}=14.3,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.77-1.69(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.45(\mathrm{~m}, 7 \mathrm{H}), 1.45-1.38(\mathrm{~m}, 2 \mathrm{H}), 1.38-$ $1.25(\mathrm{~m}, 21 \mathrm{H}), 0.90(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 177.8,109.6,81.6,77.9,69.4,35.1$, $35.0,33.1,31.1,30.9,30.8,30.7,30.6,30.51,30.48,30.3$ (two signals unresolved), 28.0, 27.2, 26.2, 23.8, 23.3, 21.5, 14.5. IR (neat): 3277, 2920, 2851, 2650, 1695, 1467, 1388, 1282, 1251, 1177, 1095, 1017, 960, $926,907,723,638,483 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{45} \mathrm{O}_{5}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 413.3262$, found: 413.3259.

Comparison of ${ }^{1} \mathrm{H}$ NMR Data ($\mathrm{CD}_{3} \mathrm{OD}$) of Paecilonic Acid $\mathrm{A}(34)^{9}$

position	$\delta_{H}(\mathrm{~J}$ in Hz)		
	natural	synthetic	$\Delta \delta$ (ppm)
1	-	-	-
2	2.29, t (7.2)	2.27, t (7.5)	0.02
3	1.62, quint	1.45-1.66, m	-
4-8	1.30-1.36, m	1.25-1.38, m	-
9	1.45, quint	1.38-1.45, m	-
10	$\begin{aligned} & \hline 1.66, \text { dt (15.2, 7.2); } \\ & \text { 1.82, dt (15.2, 7.2) } \end{aligned}$	$\begin{aligned} & \hline 1.45-1.66, \mathrm{~m} ; \\ & 1.79, \mathrm{dt}(14.3,8.0) \end{aligned}$	0.03
11	-	-	-
12	3.44, br d (4.8)	3.42, dt (4.6, 1.1)	0.02
13	$\begin{aligned} & 1.54, \mathrm{~m} ; \\ & 2.16, \operatorname{tdd}(14.4,7.2,4.8) \end{aligned}$	$\begin{aligned} & \hline 1.45-1.66, \mathrm{~m} ; \\ & 2.13, \operatorname{tdd}(13.9,6.7,4.6) \end{aligned}$	0.03
14	$\begin{aligned} & 1.53, \mathrm{~m} ; \\ & 2.05, \operatorname{tdd}(14.4,6.4,4.8) \end{aligned}$	$\begin{aligned} & 1.45-1.66, \mathrm{~m} ; \\ & 2.03, \operatorname{tdd}(13.9,6.1,3.8,0.8) \end{aligned}$	0.02
15	4.22, br t (4.0)	4.19, t (4.0)	0.03
16	3.96, dt (4.0, 7.2)	3.93, dddd (7.5, 6.3, 4.1, 1.0)	0.03
17	$\begin{aligned} & \hline 1.58, \mathrm{~m} ; \\ & 1.75, \mathrm{~m} \end{aligned}$	$\begin{aligned} & 1.45-1.66, \mathrm{~m} ; \\ & 1.69-1.77, \mathrm{~m} \end{aligned}$	-
18	$\begin{aligned} & \hline 1.36, \mathrm{~m} ; \\ & 1.51, \mathrm{~m} \end{aligned}$	$\begin{aligned} & 1.25-1.38, \mathrm{~m} ; \\ & 1.45-1.66, \mathrm{~m} \end{aligned}$	-
19-21	1.30-1.36, m	1.25-1.38, m	-
22	1.28, m	1.25-1.38, m	-
23	1.31, m	1.25-1.38, m	-
24	0.92, t (7.2)	0.90, t (7.1)	0.02

[^6]
Comparison of ${ }^{13} \mathrm{C}$ NMR Data ($\mathrm{CD}_{3} \mathrm{OD}$) of Paecilonic Acid $\mathrm{A}(34)^{9}$

position	δ_{c} type		
	natural	synthetic	$\Delta \delta$ (ppm)
1	176.5, C	177.8, C	1.3
2	34.2, CH_{2}	35.1, CH_{2}	0.9
3	25.1, CH_{2}	26.2, CH_{2}	1.1
4-8	29.0-29.8, CH_{2}	30.3-31.1, CH_{2}	-
9	22.0, CH_{2}	23.3, CH_{2}	1.3
10	33.7, CH_{2}	35.0, CH_{2}	1.3
11	108.3, C	109.6, C	1.3
12	68.1, CH	69.4, CH	1.3
13	25.9, CH_{2}	27.2, CH_{2}	1.3
14	20.2, CH_{2}	21.5, CH_{2}	1.3
15	76.6, CH	77.9, CH	1.3
16	80.3, CH	81.6, CH	1.3
17	29.1, CH_{2}	30.3, CH_{2}	1.2
18	26.7, CH_{2}	28.0, CH_{2}	1.3
19-21	29.0-29.8, CH_{2}	30.3-31.1, CH_{2}	-
22	31.8, CH_{2}	33.1, CH_{2}	1.3
23	22.5, CH_{2}	23.8, CH_{2}	1.3
24	13.2, CH_{3}	14.5, CH_{3}	1.3

4-Oxo-1-phenyInonan-3-yl acetate (2)

	1	1	1	1	1	1	1	1	1	1	1	,	1	1	1	1	1	1	1	1	1	1
20	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

2-Oxodecyl acetate (5)

	1	1	1	1	1	1	1	1	1	1	1	10	1	1	7	1	1	1	1	1	1	
20	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

2-Methyl-3-oxo-6-phenylhexan-2-yl acetate (6)

1-Cyclohexyl-2-oxoheptyl acetate (7)

2-Oxohexyl benzoate (8)

9-(1,3-Dioxoisoindolin-2-yl)-4-oxo-1-phenyInonan-3-yl acetate (9)

[^7]
1-((tert-Butyldimethylsilyl)oxy)-4-oxononan-3-yl acetate (10)

				1	1			1	1	1	110		1	1	70	6	5	1	1	1	10	
20	210	200	190	180	170	160	150	140	130	120	$\begin{array}{r} 110 \\ \mathrm{f} 1 \end{array}$	100	90	80	70	60	50	40	30	20	10	0

6-Chloro-2-oxohexyl acetate (11)

8-Cyano-4-oxo-1-phenyloctan-3-yl acetate (12)

	1	1	1		1			1	1	1	1	1	1	1	1	1	1	1	1	1	1	
20	210	200	190	180	170	160	150	140	130	120	$\begin{array}{r} 110 \\ f 1 \end{array}$	100	90	80	70	60	50	40	30	20	10	0

(R)-2-Methyl-4-oxo-7-phenylheptan-3-yl acetate (13)

6-Hydroxy-8,8,12-trimethyl-1-phenyltridec-11-en-5-one (14)

in

[^8](2R,3S,8S,11R,E)-11-Hydroxy-2,3,11-trimethyl-7,14-dioxooxacyclotetradec-12-en-8-yl acetate (15)

anti-3-Methyl-4-oxononan-2-yl acetate (21)

	1		1	1	1		1	1	1	1	1	1	1	1			1			1	1	
20	210	200	190	180	170	160	150	140	130	120	$\begin{array}{r} 110 \\ \text { f1 } \end{array}$	$\begin{aligned} & 100 \\ & \mathrm{~mm}) \end{aligned}$	90	80	70	60	50	40	30	20	10	0

syn-3-Methyl-4-oxononan-2-yl acetate (23)

$\stackrel{\infty}{\infty} \stackrel{\text { i }}{\stackrel{\infty}{1}}$

|

		1	1		17			1	1	1	1	1	1	1	7		1	1		1	1	
20	210	200	190	180	170	160	150	140	130	120	$\begin{array}{r} 110 \\ \mathrm{f} 1 \end{array}$	100	90	80	70	60	50	40	30	20	10	0

1-((2S,3S,Z)-3-Hydroxy-4-(3-phenylpropylidene)oxetan-2-yl)octan-1-one (26)

128.50 ($16,16^{\prime}$), 128.14 (17, 17'), 125.74 (18), 96.74 (12), 86.39 (9), 77.32, 77.00, 76.68, 69.40 (10), 35.85 (14), 31.84 (3), $29.51,29.43,29.20,29.07$ (8), 24.58 (7), 24.43 (13), 22.64 (2), 14.08 (1).
H NMR (400 MHz , Chloroford $\delta=7.33-7.23$ (m, 2H), $7.23-7.15(\mathrm{~m}, 3 \mathrm{H}), 4.99$ (dd $\left.\mathrm{m}_{9} 8.6,5.9,1.3,1 \mathrm{H}\right), 4.70(\mathrm{td}$, $J=6.9,6.0,1 \mathrm{H}), 4.43(\mathrm{t} d=7.5,1.5,1 \mathrm{H}), 2.76-2.60(\mathrm{~m}, 2 \mathrm{H})$, $2.39-2.25(\mathrm{~m}, 2 \mathrm{H}), 2.06(\not \pm 9.1,1 \mathrm{H}), 1.73-1.64(\mathrm{~m}, 2 \mathrm{H})$,
 $1.50-1.06(\mathrm{~m}, 12 \mathrm{H}), 0.90(\mathrm{t}, 3 \mathrm{H})$

SOI-SA-1318 15 mg CDC 32298

soi-sa-1318-01.3.1.2 rr - soi-sa-1318-01 — 5mm, CDCl3, 13mg - 13C-HSQC-ed @ 298K - av400t + BBFO - 14.12.15

SOI-SA-1318 $\quad 15 \mathrm{mg} \mathrm{CDC} 32298 \mathrm{~K}$

soi-sa-1318-01.4.1.2rr - soi-sa-1318-01 — 5mm, CDCl3, $13 \mathrm{mg}-13 \mathrm{C}-\mathrm{HMBC} @ 298 \mathrm{~K}-\mathrm{av} 400 \mathrm{t}+$ BBFO -14.12 .15

(Z)-1-Methoxydec-2-en-2-yl acetate (33)

3-(Methoxymethoxy)-1-phenyInonan-4-one (17)

(

			1							1	1		1	1		1	1					
20	210	200	190	180	170	160	150	140	130	120	$\begin{array}{r} 110 \\ \mathrm{f} 1 \end{array}$	$\begin{aligned} & 100 \\ & \mathrm{opm}) \end{aligned}$	90	80	70	60	50	40	30	20	10	0

4-((Tetrahydro-2H-pyran-2-yl)oxy)butan-2-one (19)

(5S,6R)-5,6-Dihydroxy-1-phenyltetradecan-4-one (27)

สั			$\stackrel{\circ}{\infty}$	$\underbrace{\text { ̇ }}_{\text {- }}$	

	1	1	1	1	1		1	1	1	1	1 1	1	1	1	1	1	1	1	1	1	1
20	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

(4S,5R,6R,7S)-4,5-Dihydroxy-11,11-dimethoxy-7-((4-methoxybenzyl)oxy)-6-methylundecan-3one (31)

											筑	dill		ঢু			$\underset{T}{1}$						
\bigcirc	1	1	7.5		T		1	1	5	+	,		1		1		1		1.	1	1		
. 0	8.5	8.0	7.5		7.0	6.5	6.0	5.5	5.0	4.5	$\begin{array}{r} 4.0 \\ f 1(p) \end{array}$		3.5		3.0	2.5	2.0	1.5	1.0	0.5	0.0	-0.5	-1

			1	1	1	1	1	1	1	1	1-1	1	1	1	1	1	1	1	1	1	1
20	210	200	190	180	170	160	150	140	130	120	$\begin{gathered} 110 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	100	90	80	70	60	50	40	30	20	10

(Z)-1-Phenyl-4-(tributylstannyl)non-4-en-3-ol (1)

(Z)-2-(Tributylstannyl)dec-2-en-1-ol (32a)

(Z)-Tributyl(1-methoxydec-2-en-2-yl)stannane (32b)

00	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

(Z)-2-Methyl-6-phenyl-3-(tributylstannyl)hex-3-en-2-ol

(Z)-1-Cyclohexyl-2-(tributylstannyl)hept-2-en-1-ol

00	190	180	170	160	150	140	130	120	110	100		80	70	60	50	40	30	20	10	0

(Z)-2-(Tributylstannyl)hex-2-en-1-ol

(Z)-2-(7-Hydroxy-9-phenyl-6-(tributylstannyl)non-5-en-1-yl)isoindoline-1,3-dione

[^9]
(Z)-1-((tert-Butyldimethylsilyl)oxy)-4-(tributylstannyl)non-4-en-3-ol

(Z)-6-Chloro-2-(tributylstannyl)hex-2-en-1-ol

(Z)-7-Hydroxy-9-phenyl-6-(tributylstannyl)non-5-enenitrile

(R,Z)-2-Methyl-7-phenyl-4-(tributylstannyl)hept-4-en-3-ol

(Z)-8,8,12-Trimethyl-1-phenyl-5-(tributylstannyl)trideca-4,11-dien-6-ol

$\stackrel{\infty}{\text { nu }}$

[^10](anti,Z)-3-Methyl-4-(tributylstannyl)non-4-en-2-ol (20)

(syn,Z)-3-Methyl-4-(tributylstannyl)non-4-en-2-ol (22)

(5S,6R,Z)-1-Phenyl-4-(tributylstannyl)tetradec-3-ene-5,6-diol (25)


```
00 190
```

(Z)-Tributyl(3-(methoxymethoxy)-1-phenyInon-4-en-4-yl)stannane (16)

[^11]Tributyl(4-((tetrahydro-2H-pyran-2-yl)oxy)but-1-en-2-yl)stannane (18)

[^12]
1-Phenylnon-4-yn-3-ol

	1	18	170	16	15	1	1	1	110	1	1	1	1	1	1	1	1	1	1	T
00	190	180	170	160	150	140	130	120	110	100		80	70	60	50	40	30	20	10	0

2-Methyl-6-phenylhex-3-yn-2-ol

2-(7-Hydroxy-9-phenylnon-5-yn-1-yl)isoindoline-1,3-dione

1-((tert-Butyldimethylsilyl)oxy)non-4-yn-3-ol

6-Chlorohex-2-yn-1-ol

			1		15	1		1	11		1	1		1	1		1	1		
00	190	180	170	160	150	140	130	120	110	$\begin{array}{r} 100 \\ \mathrm{f} 1 \end{array}$		80	70	60	50	40	30	20	10	0

7-Hydroxy-9-phenylnon-5-ynenitrile

(R)-2-Methyl-7-phenylhept-4-yn-3-ol

	1		1					1	110	1	1		7	6		1			1	
00	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

8,8,12-Trimethyl-1-phenyltridec-11-en-4-yn-6-ol

anti-3-Methylnon-4-yn-2-ol

syn-3-Methylnon-4-yn-2-ol

(5R,6R)-1-PhenyItetradec-3-yne-5,6-diol (24)

(2S,3S)-1,1-Dimethoxyundecane-2,3-diol (40)

[^13]
((($2 S, 3 S)$-1,1-Dimethoxyundecane-2,3-diyl)bis(oxy))bis(methylene))dibenzene (S1)

	1	1	1	1	1	1	1	1	1	,		1	1	1	1	1	1	1	,	
00	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

（4R，5S，E）－4，5－Bis（benzyloxy）tridec－2－enal（43）

商

\bigcirc	¢08	
$\stackrel{\square}{\infty}$	ベ̇	
V	／／	，

(4R,5S)-4,5-Bis(benzyloxy)tridecanal (S2)

										1		1	1	1		1		1			
10	200	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10	0

Methyl (12S,15R,16S)-15,16-bis(benzyloxy)-12-hydroxytetracos-10-ynoate (35)

Methyl (12S,15R,16S,Z)-15,16-bis(benzyloxy)-12-hydroxy-11-(tributylstannyl)tetracos-10enoate (44)

Methyl (12S,15R,16S)-12-acetoxy-15,16-bis(benzyloxy)-11-oxotetracosanoate (45)

Methyl 10-((1R,4S,5S,7S)-4-acetoxy-7-octyl-6,8-dioxabicyclo[3.2.1]octan-5-yl)decanoate (46)

Paecilonic acid A (34)

HAP-HB-205-01 $\quad 17 \mathrm{mg}$ d4 4 -MeOD 298 K

 haphb20501.15.1.2rr - HAP-HB-205-01 - HMBC @ 298K - 17mg MeOD

HAP-HB-205-01
$17 \mathrm{mg} \mathrm{d}_{4}-\mathrm{MeOD} 298 \mathrm{~K}$

$\begin{array}{ll}4.3 & 4.2 & 4.1 & 4.0 & 3.9 & 3.8 & 3.7 & 3.6 & 3.5 & 3.4 & 3.3 & 3.2 & 3.1 & 3.0 & 2.9 & 2.8 & 2.7 & 2.6 & 2.5 & 2.4 & 2.3 & 2.2 & 2.1 & 2.0 & 1.9 & 1.8 & 1.7 & 1.6 & 1.5 & 1.4 & 1.3 & 1.2 & 1.1 & 1.0 & 0.9 & 0.8 & 0.7\end{array}$ haphb20501.41.1.1r - HAP-HB-205-01 - 1D-cosy @ 298K - 17mg CDCl3

HAP-HB-205-01 $17 \mathrm{mg} \mathrm{d}_{4}-\mathrm{MeOD} 298 \mathrm{~K}$

$\begin{array}{lllllllllllllllllll} & 4.0 & 3.9 & 3.8 & 3.7 & 3.6 & 3.5 & 3.4 & 3.3 & 3.2 & 3.1 & 3.0 & 2.9 & 2.8 & 2.7 & 2.6 & 2.5 \\ \text { f1 (ppm) }\end{array}$
haphb20501.45.1.1r — HAP-HB-205-01 - 1D-cosy @ 298 K — 17mg CDCl3

HSQC-TOCSY 250ms
H24-C23, C22, C21, C20, C19, C18, C17 C24-H15, H16

[^0]: ${ }^{2}$ S. M. Rummelt, A. Fürstner, Angew. Chem. Int. Ed. 2014, 53, 3626-3630; Angew. Chem. 2014, 126, 3700-3704.

[^1]: ${ }^{3}$ M. Egi, Y. Yamaguchi, N. Fujiwara, S. Akai, Org. Lett. 2008, 10, 1867-1870.
 ${ }^{4}$ R. B. Lettan, K. A. Scheidt, Org. Lett. 2005, 7, 3227-3230.

[^2]: ${ }^{5}$ D. E. Frantz, R. Fässler, E. M. Carreira, J. Am. Chem. Soc. 2000, 122, 1806-1807.

[^3]: ${ }^{6}$ D. L. J. Clive, V. Farina, P. L. Beaulieu, J. Org. Chem. 1982, 47, 2572-2582.

[^4]: ${ }^{7}$ T. Honda, S. Horiuchi, H. Mizutani, K. Kanai, J. Org. Chem. 1996, 61, 4944-4948.

[^5]: ${ }^{8}$ P. Valenta, N. A. Drucker, J. W. Bode, P. J. Walsh, Org. Lett. 2009, 11, 2117-2119.

[^6]: ${ }^{9}$ H. Wang, J. Hong, J. Yin, J. Liu, Y. Liu, J. S. Choi, J. H. Jung, Bioorg. Med. Chem. Lett. 2016, 26, 2220-2223.

[^7]:

[^8]:

[^9]:

[^10]:

[^11]: | 00 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 | - |
 | :--- |

[^12]:

[^13]:

