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Péter Szövényi,1,* Kristian K. Ullrich,2,7 Stefan A. Rensing,2,3 Daniel Lang,4 Nico van Gessel,5 Hans K. Stenøien,6

Elena Conti,1 and Ralf Reski3,5

1Department of Systematic and Evolutionary Botany, University of Zurich, Switzerland
2Plant Cell Biology, Faculty of Biology, University of Marburg, Germany
3BIOSS—Centre for Biological Signalling Studies, University of Freiburg, Germany
4Plant Genome and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
5Plant Biotechnology, Faculty of Biology, University of Freiburg, Germany
6NTNU University Museum, Trondheim, Norway
7Present address: Max-Planck-Insitut für Evolutionsbiologie, Plön, Germany

*Corresponding author: E-mail: peter.szoevenyi@uzh.ch.

Accepted: May 25, 2017

Data deposition: This project has been deposited at EMBL ENA under the accession PRJEB8683.

Abstract

A long-term reduction in effective population size will lead to major shift in genome evolution. In particular, when effective

population size is small, genetic drift becomes dominant over natural selection. The onset of self-fertilization is one evolutionary

event considerably reducing effective size of populations. Theory predicts that this reduction should be more dramatic in organ-

isms capable for haploid than for diploid selfing. Although theoretically well-grounded, this assertion received mixed experimen-

tal support. Here, we test this hypothesis by analyzing synonymous codon usage bias of genes in the model moss Physcomitrella

patens frequently undergoing haploid selfing. In line with population genetic theory, we found that the effect of natural selection

on synonymous codon usage bias is very weak. Our conclusion is supported by four independent lines of evidence: 1) Very

weak or nonsignificant correlation between gene expression and codon usage bias, 2) no increased codon usage bias in more

broadly expressed genes, 3) no evidence that codon usage bias would constrain synonymous and nonsynonymous diver-

gence, and 4) predominant role of genetic drift on synonymous codon usage predicted by a model-based analysis. These

findings show striking similarity to those observed in AT-rich genomes with weak selection for optimal codon usage and GC

content overall. Our finding is in contrast to a previous study reporting adaptive codon usage bias in the moss P. patens.
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Introduction

A long-term reduction in effective population size is expected

to lead to a major shift in the evolution of genomes (Wright

et al. 2008). In particular, because the efficacy of selection

depends on the product of the effective population size and

the selective coefficient of mutations, reduced effective pop-

ulation size will lead to decreased selection efficacy, given the

same selective coefficient (Kimura 1968). Therefore, slightly

deleterious mutations with small selection coefficient that

would otherwise be removed from the population by purify-

ing selection will become effectively neutral and start to

accumulate with an accelerated rate (McVean and

Charlesworth 1999). At the level of the genome, this is ex-

pected to lead to an increased rate of replacement mutations

(Glémin 2007), decreased synonymous codon usage bias and

ultimately to degeneration of the genome (Jarne 1995;

Charlesworth and Wright 2001; Glémin et al. 2006; Glémin

2007; Qiu, Zeng, et al. 2011; Galtier 2012; Wright et al. 2008,

2013). Genomic features with the weakest selection coeffi-

cient, such as synonymous codon usage, should be the most

sensitive to the reduction of the effective population size (Ne),

because a large number of mutations will shift from the
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selectively driven to the effectively neutral class (McVean and

Charlesworth 1999). Nevertheless, because it is genetic drift

that is acting on these genomic features, phenomena associ-

ated with reduced Ne will occur rather slowly on the order of

the mutation rate (Marais, et al. 2004a).

One evolutionary event that considerably reduces effec-

tive population size is the onset of self-fertilization (Pollak

1987; Nordborg 2000). This is because the rate of selfing

affects the efficacy of natural selection in three ways: 1) In

diploid-dominant organisms, complete selfing will half Ne

through the nonrandom sampling of gametes compared

with outcrossers (Pollak 1987; Nordborg 2000).

Furthermore, 2) selfing will increase the level of genome-

wide homozygosity and lead to decreased effective recom-

bination rates. The drop in effective recombination rates will

intensify the extent of Hill–Robertson interference of muta-

tions and decrease local effective population size even fur-

ther (Kaplan et al. 1989; McVean and Charlesworth 2000;

Charlesworth 2012; Kamran-Disfani and Agrawal 2014).

Finally, 3) population structure and population dynamics of

selfers is expected to further lower species-wide and local

effective population sizes due to the small size of local pop-

ulations and intensive metapopulation dynamics (Pannell

and Charlesworth 1999; Ingvarsson 2002). Although selfing

can also increase the purging of recessive and strongly del-

eterious mutations by homozygote exposure, this does not

appear to override the effect of Ne reduction (Galtier 2012;

Arunkumar et al. 2015). Therefore, population genetic the-

ory predicts severely reduced Ne in selfers, a prediction con-

firmed by experimental evidence (Wright et al. 2013).

The effect of selfing on codon usage bias has been ex-

tensively studied in animal and plant species that express

sex in their diploid-dominant life cycle phase (Powell and

Moriyama 1997; Ingvarsson 2007; Vicario et al. 2008; Qiu,

Bergero, et al. 2011; Qiu, Zeng, et al. 2011; Ness et al.

2012; De La Torre et al. 2015; Szövényi et al. 2015). In

contrast, species expressing sex in their dominant haploid

life phase have been rarely investigated (Whittle et al.

2011, 2012; Gioti et al. 2013). Many species of bryophytes

(liverworts, mosses, hornworts), fungi and algae have

haploid-dominant life cycles and their individuals may be

either unisexual or bisexual. Bisexual species frequently un-

dergo a special type of selfing, referred to as haploid or

intragametophytic selfing, in which genetically identical

gametes produced by a single genetic individual fuse to

form a completely homozygous diploid phase (Barner

et al. 2011; Billiard et al. 2012). In such diploids, the effec-

tive recombination rate is essentially zero, leading to se-

verely reduced effective size through Hill–Robertson

interference (Hedrick 1987a, 1987b; Holsinger 1987).

Therefore, Ne reduction in haploid selfers frequently under-

going intragametophytic selfing is expected to be even

more severe than in their counterparts with a diploid-

dominant life cycle. Consequently, in such organisms,

codon-usage bias should be primarily driven by drift or mu-

tational biases, rather than by natural selection.

In the moss family Funariaceae, monoecy (individuals are

bisexual: Capable of producing both male and female repro-

ductive structures) is assumed to be the ancestral state and

phylogenetic evidence suggests that it has evolved once (Liu

et al. 2012). This family consists of the model moss

Physcomitrella patens and its relatives. In fact, all species of

the family have bisexual gametophytes and are assumed to

reproduce predominantly by intragametophytic selfing (Fife

1985; Perroud et al. 2011; McDaniel and Perroud 2012).

Moreover, the family Funariaceae was estimated to have orig-

inated more than 100 Ma, suggesting persistence of the

monoicous breeding system for a long period of time (Fife

1985; Liu et al. 2012). Therefore, it is thought that sufficient

time has elapsed since the onset of the monoicous breeding

system for the molecular consequences of self-fertilization to

become apparent. In particular, species-wide effective popu-

lation size of the model moss P. patens is assumed to be

severely reduced owing to its high incidence of intragameto-

phytic selfing (92–97% of the sexual reproduction events are

of this type under controlled conditions [Perroud et al. 2011]),

assumed ineffective long-distance dispersal (Beike et al.

2014), and extensive metapopulation dynamics (Liu et al.

2012; Szövényi et al. 2015). Long persistence of the mono-

icous breeding system and frequent intragametophytic selfing

imply that synonymous codon usage of P. patens should be

primarily driven by drift or mutational biases, rather than by

natural selection (McDaniel and Perroud 2012; Hough et al.

2013). Yet very little is known on synonymous codon usage

and its driving forces in P. patens, and previous studies came

to contradictory conclusions. An early study concluded that

synonymous codon usage in P. patens is driven by natural

selection, contradicting expectations of evolutionary theory

(Stenøien 2005). Nevertheless, this study only used a subset

of the P. patens gene set and did not explicitly account for

nucleotide compositional biases that may drive codon usage

bias. In contrast, another study found that codon usage is less

biased in the selfer P. patens than in the outcrosser Ceratodon

purpureus, a dioecious moss from the family Ditrichaceae,

implying reduced efficacy of selection in the former

(Szövényi et al. 2015). Finally, it was also suggested that syn-

onymous codon usage of P. patens can be partly explained by

nucleotide biases across the genome (Camiolo et al. 2015).

Therefore, it is not yet clear whether codon usage in the moss

P. patens is primarily driven by natural selection or by neutral

processes.

In this study, we test the hypothesis that in organisms fre-

quently undergoing haploid (intragametophytic) selfing syn-

onymous codon usage bias should be primarily driven by

genetic drift or mutational biases rather than by natural selec-

tion owing to the severely reduced effective population size.

To investigate this question, we provide a detailed analysis of

synonymous codon usage in the highly selfing model moss P.
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patens. In particular, we use the entire P. patens proteome,

large-scale gene expression data (microarray and RNA se-

quencing), and orthologous sequences from the moss C. pur-

pureus to assess whether synonymous codon usage is mainly

driven by drift or natural selection. We show that a weak

correlation between gene expression level and synonymous

codon usage bias seemingly supports the hypothesis of trans-

lational selection. Nevertheless, careful analysis shows that

this correlation is primarily driven by variation in background

nucleotide composition, which suggests that mutational

biases are at work. We also found that, in contrast to what

is expected under the translational/transcriptional selection

scenario, increasing codon usage bias does not decrease the

accumulation of synonymous substitutions between species.

We further show that more broadly expressed genes that are

under stronger purifying selection do not tend to have greater

codon usage bias. Finally, by using a model-based approach

we show that genetic drift and mutational biases are predom-

inant in shaping codon usage bias in P. patens. Therefore, we

argue that synonymous codon usage in P. patens is mainly

driven by drift, potentially by background nucleotide content

variation, and the effect of natural selection on synonymous

codon usage bias is weak. We also found a significant rela-

tionship between tRNA gene copy numbers and preferentially

used codons, which is best interpreted as secondary adapta-

tion of the tRNA pool to the nucleotide content of the pre-

ferred set of codons.

Materials and Methods

Physcomitrella patens Genome, Proteome and Estimating
Codon Usage Bias

We downloaded the P. patens genome version 1.6 (Zimmer

et al. 2013) from Phytozome9 (Goodstein et al. 2012). We did

not use the recent prerelease (version3) of the genome, be-

cause this assembly is still under embargo. Nuclear gene mod-

els were extracted from the genomic DNA using the gff3 file

provided with the genome version. For each gene, we se-

lected only one splice variant, in particular the one coding

the longest protein sequence, which was used in all further

analyses. As estimating the effective number of codons (ENC)

statistic (Wright 1990) is problematic for short sequences, we

discarded genes shorter than 50 amino acids, resulting in

31,708 genes out of 32,273 (Wright 1990).

Codon bias was estimated using three statistics that have

different statistical and distributional properties. First, we used

the ENC to measure codon bias of genes and also to identify

optimal codons (Wright 1990). This statistic measures to what

extent codon usage deviates from the equal usage of synon-

ymous codons in a particular gene, with low values referring

to highly biased (minimum 20) and high values to unbiased

codon usage (maximum 61). One disadvantage of the statistic

is that it is strongly influenced by the background nucleotide

composition (especially GC content) of genes (Novembre

2000). Therefore, we also used a version of ENC, ENC0

(ENC “prime”) which estimates effective codon usage by tak-

ing into account background nucleotide frequencies

(Novembre 2000). Maximum values of ENC and ENC0 can

theoretically exceed 61 (the number of synonymous codons)

for a standard genetic code. Therefore, values are usually

rescaled to fall between 20 and 61. However, rescaling de-

creases the accuracy of estimates; hence, codon usage in

genes with the very same ENC or ENC0 values might differ,

leading to biased estimates. Furthermore, adjustment of the

values will generate many ties that will weaken the power of

further statistical tests, including correlation analysis.

Therefore, we also used a third statistics, the proportion of

optimal codons (Fop), which is strongly affected by back-

ground nucleotide composition but is devoid of the adjust-

ment issues mentioned above. Nonetheless, estimating Fop

requires a priory definition of the optimal set of codons, which

we detail in the next paragraph. We calculated ENC and ENC0

using the software INCA (Supek and Vlahovi�cek 2004) which

uses base composition of coding sequences (CDS) as the neu-

tral reference. All other calculations were carried out in the

statistical environment R (R Development Core Team 2008).

In previous studies, the optimal set of codons was identi-

fied using correspondence analysis on relative synonymous

codon usage (RSCU) values (Rensing et al. 2005; Stenøien

2005; Szövényi et al. 2015). Nevertheless, this approach

may lead to misleading conclusions, especially when muta-

tional biases and selection on codon usage are acting in the

same direction (Perrière and Thioulouse 2002) and (John

Peden, http://www.molbiol.ox.ac.uk/cu (last accessed March

13, 2017), version 1.4.2). Therefore, we defined optimal co-

dons as the synonymous codons of codon families that are

more frequently used in genes with greater codon usage bias.

Genes in which the codon family appeared less than ten times

were discarded. We estimated codon usage bias of genes

using the ENC statistic and its version that corrects for back-

ground nucleotide content (ENC0). To identify the optimal set

of codons for each of the 18 amino acids that are coded by

more than one codon, we correlated each alternative codon’s

frequency in a given gene with the ENC and ENC0 statistics.

We calculated nonparametric Spearman rank-correlation be-

tween ENC/ENC0 and the frequency of alternative codons per

gene and optimal codons were those that showed the stron-

gest significant correlation (P� 0.05/n, where n is the number

of codons encoding the amino acid in question) (Hershberg

and Petrov 2009). Using the set of optimal codons, we also

calculated the statistic Fop, the proportion of optimal codons

per gene.

Gene Expression Data

We used both RNA-seq and microarray-based gene expres-

sion data sets to avoid the effect of technology-dependent

Szövényi et al. GBE
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biases that may influence our conclusions. To compile the

RNA-seq data, we retrieved published data sets describing

gene expression in the chloronemata (the early filamentous

stage) and in the gametophore (the leafy shoot stage of the

haploid phase) from the NCBI SRA database (SRR072918 and

SRR060806). In addition, we generated RNA-seq data for

three developmental stages of the P. patens sporophyte (dip-

loid) (stages 20–23, 25–26, and 28 days after fertilization; all

premeiotic, available in the European Nucleotide Archive un-

der accession number PRJEB19978). The three RNA-seq librar-

ies were prepared using the Truseq RNA-seq library

preparation protocol including polyA selection and were se-

quenced on a Hiseq2000 machine (single end, 101 cycles) at

the Functional Genomics Center Zurich. We trimmed and fil-

tered the raw data sets using trimmomatic (Bolger et al. 2014;

-phred33 ILLUMINACLIP: Hiseq_.fa:2:30:10:8:true

LEADING:9 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:36)

and mapped reads to the P. patens v1.6 (https://www.cos

moss.org/physcome_project/wiki/Downloads; last accessed

May 1, 2017) genome using tophat2 (Kim et al. 2013).

We used all these RNA-seq data to refine gene model an-

notations of the P. patens v1.6 gff files (link see above)

using Cufflinks and Cuffmerge (Trapnell et al. 2012). We

then ran CuffDiff (Trapnell et al. 2012) using the refined gtf

files and obtained expression estimates for each gene in

each expression data set as FPKM (fragment per kilobase of

exon per million fragments mapped) values after quantile

normalization. In the following analyses, estimated FPKM

values were used as gene expression estimates.

RNA-seq technology is known to be more accurate in

estimating gene expression than microarray technology,

especially due to its greater dynamic range (Marioni et al.

2008; Zhu et al. 2015). Nevertheless, our RNA-seq data

set is only restricted to five different developmental

stages, which may introduce a bias in estimating gene

expression. Therefore, we repeated the above-mentioned

analyses using a recently published microarray-based

gene expression atlas of P. patens including tissue samples

from ten different parts/developmental stages of the plant

(Ortiz-Ram�ırez et al. 2016). We used the average normal-

ized gene expression estimates per each developmental

stage and for each gene as given in the supplementary

material 2 of the publication. For both type of data (RNA-

seq and microarray), we used the maximum value of gene

expression across all the developmental stages as a mea-

sure of gene expression level in all further analyses. We

followed this strategy because global gene expression can

be highly influenced by the number of tissues a gene is

expressed in. This may generate spurious correlations be-

tween codon usage bias and gene expression that are

primarily driven by expression breadth. Finally, the

strength of translational selection acting on a gene is ex-

pected to be primarily determined by its maximum expres-

sion value. We, however, note that we repeated all

analyses using the arithmetic average of gene expression

values across developmental stages which did not change

our conclusions qualitatively.

We also calculated the expression breadth of genes that

was used later in the analysis. We chose the statistic s (tau),

which combines information on tissue specificity and expres-

sion level. This statistic was also shown to have the best prop-

erties among multiple indices used to describe tissue

specificity of expression (Kryuchkova-Mostacci and

Robinson-Rechavi 2017). We calculated s as given in

Kryuchkova-Mostacci and Robinson-Rechavi (2017). We esti-

mated expression breadth using both the microarray and

RNA-seq data set.

Correlation and Partial Correlation Analyses

Codon usage bias may be shaped by natural selection, genetic

drift, or mutational processes. To test whether codon usage

bias is primarily driven by natural selection or by neutral forces,

we carried out the following analyses and tests. All our tests

are based on nonparametric correlation analysis (partial

Spearman rank-correlation), because statistical properties of

the data did not satisfy those of parametric tests even after

multiple rounds of data transformation.

(a) We first tested whether the predicted number of tRNA

genes in the genome can explain the bias in synonymous

codon usage. We retrieved the predicted number of tRNA

genes in the P. patens genome from the recently updated

GtRNAdb data base (http://gtrnadb.ucsc.edu/; last accessed

November 10, 2016) (Chan and Lowe 2015). We then inves-

tigated the correlation (Spearman rank-correlation) between

the genomic copy number of tRNA genes and the corre-

sponding relative amino acid abundances in the proteome

weighted by each gene’s expression level. If genomic copy

number can be used as a proxy for the cellular concentration

of isoacceptor tRNA species, we expect to find a significant

correlation (Duret 2000).

We also investigated whether synonymous codon usage

can be explained by the biased cellular concentration of tRNA

genes. To test this, we calculated the relative gene frequency

(RGF, is the observed tRNA-gene copy number in the genome

divided by the frequency expected if all isoacceptor tRNA

genes for that amino acid were equally frequent in the ge-

nome) of each tRNA gene in the P. patens genome and cor-

related it with the average RSCU (Sharp et al. 1986) of the

corresponding codon in the 5% most highly expressed genes

(calculated separately for the RNA-seq and for the microarray

data sets). Because one tRNA gene can decode multiple co-

dons, this correlation only partially reflects the coadaptation

of tRNA abundance and codons. To correct for that, we did a

second test in which we took into account classical and re-

vised wobble rules to identify the correspondence among co-

dons and their decoding tRNA genes: 1) GNN tRNAs can pair

with both C and U ending codons; 2) ANN tRNA genes are

Codon Usage Bias in P. patens GBE
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modified to inosine and decode both U and G ending codons

(Percudani 2001). We then calculated RGF for each isoaceptor

tRNA. When grouping codons based on wobbling rules, we

used average RSCU values. For this latter calculation, we

skipped all amino acids for which all alternative codons

were coded by the very same anticodon sequence.

(b) If codon usage bias is driven by translational selec-

tion, then genes expressed at a higher level should show

greater codon bias (Akashi and Eyre-Walker 1998; Akashi

2001; Akashi et al. 2012). We calculated nonparametric

Spearman rank-correlation between the maximum expres-

sion value and ENC, ENC0, and Fop. Nevertheless, a signif-

icant correlation between expression level and codon bias

may also be a result of mutational biases that are correlated

with the level of gene expression. Therefore, we also em-

ployed a third test.

(c) If translational selection is driving codon usage, then

intensity of selection against unpreferred codons should be

greater in more highly expressed genes, which should de-

crease the rate at which synonymous mutations accumulate

between species. Therefore, we investigated the correlation

between gene expression and synonymous divergence (Ks) of

P. patens genes from the moss C. purpureus. We calculated

the synonymous divergence of each P. patens gene from its C.

purpureus ortholog using sequence data of the C. purpureus

GG1 strain (Szövényi et al. 2015). We established one-to-one

orthology between P. patens and C. purpureus GG1 protein

sequences using the bidirectional best hit approach with an e-

value threshold of 10�6 (Tatusov 1997). We then aligned pro-

tein sequences (P. patens vs. C. purpureus GG1) using the

default parameters of muscle (Edgar 2004) and forced nucle-

otide alignments into the protein alignments using pal2nal

(Suyama et al. 2006). Finally, we used Ka/Ks_calculator 2.0

(Wang et al. 2010) to calculate Ks values for each pair of

orthologs with the YN model (Yang and Nielsen 2000). We

additionally calculated the nonparametric correlation be-

tween Ks values and the maximum value of gene expression.

To correct for alignment uncertainty and saturation biases, we

only used orthologs with a Ks � 2 and carried out the corre-

lation analyses at two stringency thresholds (Ks � 1 and �2).

The number of nonsynonymous substitutions per nonsynon-

ymous sites divided by the number of synonymous substitu-

tions per synonymous sites (the Ka/Ks statistic) can be used as

an indicator of the strength of purifying selection acting on a

gene (Nielsen and Yang 2003). Therefore, we also assessed

the correlation between Ka/Ks values and codon usage bias

while controlling for all other confounding genomic variables

at two Ks thresholds as above (Ks�1 and �2).

(d) It was reported that codon usage bias can also be influ-

enced by expression breadth (Duret and Mouchiroud 2000;

Urrutia and Hurst 2001; Ganko et al. 2007; Ingvarsson 2007,

2008). More broadly expressed genes are under greater pu-

rifying selection, which is expected to also act on synonymous

codon usage. Therefore, we calculated Spearman rank-

correlation between expression breadth (s) and codon usage

bias of genes and expected that if codon usage bias is driven

by natural selection more broadly expressed genes will show

greater codon usage bias.

Accounting for the Effect of Other Potentially
Confounding Genomic Features

Synonymous codon usage and evolutionary rate of genes

were also reported to be affected by other genomic variables

that are themselves correlated with gene expression, includ-

ing gene length, intron number, intron length, exon number,

exon length, and GC content (Ingvarsson 2007; Stenøien

2007, 2005; Slotte et al. 2011; Yang and Gaut 2011;

Camiolo et al. 2015; De La Torre et al. 2015; Kryuchkova-

Mostacci and Robinson-Rechavi 2015). Therefore, a signifi-

cant relationship between gene expression and synonymous

codon usage can be potentially explained by the indirect ef-

fect of other genomic variables that correlate with gene ex-

pression. To take this into account in all previous statistical

tests, we used nonparametric partial rank-correlation analysis

to investigate pairwise correlation of variables while correcting

for the effect of potential covariates (Kim 2015). We extracted

the following genomic features from the P. patens genome’s

gff file as potential covariates, because they were previously

reported to affect either codon usage bias or evolutionary

rates of genes: Gene and intron length on the chromosome

in base pairs, percent GC content of genes, exons, third co-

don positions, and introns (Urrutia and Hurst 2001; Akashi

2001; Stenøien 2005, 2007; Akashi et al. 2012; De La Torre

et al. 2015). Gene expression breadth was calculated using

the RNA-seq and the microarray data sets separately, as ex-

plained above. Preliminary analyses suggested that the vari-

able pairs intron number–intron length and CDS length–gene

length are highly significantly correlated. Therefore, the vari-

ables intron number and CDS length were excluded and only

intron length and gene length were included in the final anal-

ysis. Partial rank-correlation analysis was carried out using the

package ppcor in the statistical language R (Kim 2015). We

used the method of Benjamini and Hochberg (Benjamini and

Hochberg 1995) to correct for multiple comparisons.

Assessing the Effect of Mutational Bias and Natural
Selection on Codon Usage Bias Using a Stochastic
Evolutionary Model of Protein Production Rate

The above-mentioned tests rely on correlation analyses or on

divergence statistics which may lead to erroneous conclusions

when selection is weak and mutation bias is strong (Lawrie

et al. 2011, 2013). Therefore, we also used a Bayesian

method (Ribosome Overhead Costs Stochastic Evolutionary

Model of Protein Production Rate [ROC SEMPPR]) (Gilchrist

et al. 2015) to model the effect of mutational bias and natural

selection on synonymous codon usage in a proper population

genetic framework. The model implemented in ROC SEMPPR
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is able to predict the probability of observing a given synon-

ymous codon genotype for a gene based on its protein pro-

duction rate. It is assumed that this probability is a combined

function of the mutation bias and natural selection for trans-

lational inefficiency of which the latter is hypothesized to scale

with the level of protein production and effective population

size (Gilchrist 2007; Wallace et al. 2013; Gilchrist et al. 2015).

Therefore, if Ne is sufficiently large, then the pattern of codon

usage bias should provide sufficient information to accurately

approximate protein production rates without gene expres-

sion information using the model. However, if Ne is low and

codon usage bias is very weak and/or it does not scale with

protein production rates, the fit between predicted produc-

tion rates obtained with or without observed gene expression

estimates included is expected to be poor. Furthermore, when

selection on codon usage is very weak, the model will not be

able to reliably estimate translational inefficiency parameter

and thus identify the selectively preferred codon.

We fitted the model using the codon composition of the P.

patens proteome and run two separate analyses with or with-

out including our RNA-seq-based FPKM values as proxies of

protein production rates. We run 10,000 iterations of the

Markov chain Monte Carlo chain and then used the last

5,000 iterations to obtain posterior estimates of parameters

(mutation bias: DM, translational inefficiency: Dg; and protein

production: U). Initial values for mutation bias and transla-

tional inefficiency were obtained by multinomial logistic re-

gression using observed RNA-seq expression values as

explanatory variables. Initial protein production rates we di-

rectly obtained from the gene expression estimates of the

RNA-seq data. We calculated point estimates of parameters

as arithmetic means of their posterior distribution. We com-

pared the fit between protein production rates of the two

models (with and without observed gene expression esti-

mates included) using regular linear regression. We also cal-

culated the posterior mean of selection on codon usage per

gene (SCU) (Wallace et al. 2013), which is the mean fitness

advantage scaled by the effective population size, that the

organism gains from the gene’s codon composition relative

to an unselected synonymous alternative. When SCU is 1 or is

smaller than 1, drift is dominant over natural selection. We

carried out all analyses using the R package cubfits (Chen

et al. 2014).

Results

Identification of Optimal/Major Codons

We first identified optimal codons per synonymous codon

families that are significantly more frequently used in genes

with greater overall codon usage bias as defined by the ENC

or ENC0 statistics. Our analysis is based on 31,708 genes

(genes with less than 50 codons were excluded). Both ENC

and ENC0 values were relatively high, suggesting weak codon

usage bias overall (ENCmean¼54.82, ENCmedian¼56.46,

ENCIQR[Inter Quartile Range]¼52.78–58.94; ENC0mean¼57.00,

ENC0median¼59.28, ENC0 IQR¼55.95–61.00). A previous study

identified optimal codons by performing a correspondence

analysis on RSCU values (Szövényi et al. 2015); the results

are shown along with results of the current analysis in table

1 and in the supplementary table 1, Supplementary Material

online. The correspondence analysis and our correlation-

based analysis using the statistic ENC0 identified the very

same set of codons as optimal except in a single case. This

slight discordance between the two approaches is likely due

to a lower statistical power of the correlation analysis, because

the optimal codon defined by the correspondence analysis

turned out to be also more frequent in genes with greater

codon usage bias, but the significance of the correlation did

not pass the required threshold set by multiple testing. In

contrast, using the ENC statistic that does not correct for

background nucleotide content led to considerably less con-

cordant results. Fourteen optimal codons that were recovered

by both the correspondence and ENC0-based analyses were

not identified as optimal codons in the ENC-based analysis

(table 1). It is important to note that not all of the optimal

codons identified by the ENC0 and correspondence analyses

were found to be more abundant in the set of highly ex-

pressed genes, as would be expected under the translational

selection hypothesis, and this finding was supported by both

the microarray and the RNA-seq data (table 1, see italicized

and underlined DRSCU values). In particular, 7 out of the 27

optimal codons supported by both the correlation and corre-

spondence analyses were less frequent in the subset of most

highly expressed genes, contradicting the simple translational

selection hypothesis.

Coadaptation of tRNA Copy Number and Codon Bias

We found that estimated copy number of tRNA genes in the

genome and the relative abundance of amino acids in pro-

teins (weighted by their average expression level) were

strongly and significantly correlated (Spearman’s rho [rs]

rs microarray¼0.6468, P¼ 0.0021; rs RNA-seq¼0.6543, P¼
0.0017, fig. 1), as expected when genomic copy number of

tRNA genes corresponds to their concentration in the cell. We

also found that almost all optimal codons corresponded to the

most abundant tRNA genes (table 1) and the proportion of

preferred codons corresponding to the most abundant tRNA

genes was greater than expected by random chance re-

gardless whether wobble rules were taken into account

(without wobble rules 61% and 100% with wobble rules;

Pgetting greater values than observed by chance<0.0001 for both).

This was further supported by a strong and significant re-

lationship between the RGF of cognate tRNA genes and

the RSCU values of the corresponding codons in the 5%

most highly expressed genes, regardless of accounting for

the wobble rules (rs microarray_no_wobble_rules¼0.4369,
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ö

vé
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P¼ 0.0005; rs RNA-seq_no_wobble_rules¼0.4607, P¼ 0.0002;

rs microarray_wobble_rules¼ 0.7598, P�0; rs RNA-

seq_wobble_rules¼ 0.7623, P� 0). When we repeated this

analysis with the 5% most weakly expressed genes, the

strength of the correlation was significantly lower than

that of the highly expressed gene set when taking into account

wobble rules (rs microarray_wobble_rules¼0.5152, P¼ 0.0011; rs RNA-

seq_wobble_rules¼0.5135, P¼ 0.0012), but not when wobble

rules were not accounted for (rs microarray_no_wobble_rules¼0.4379,

P¼ 0.0005; r
s RNA-seq_no_wobble_rules

¼0.5452, P¼ 0.00001;

rs microarray_wobble_rules¼0.5152, P¼ 0.0011; rs RNA-

seq_wobble_rules¼0.5135, P¼ 0.0012; zmicroarray_wobble_rule_

lowly_vs._highly_expressed_genes¼�1.76, P¼ 0.0392; zRNA-seq_

wobble_rule_lowly_vs._highly_expressed_genes ¼�1.79, P¼ 0.0367).

These results imply that tRNA copy number and synony-

mous codon usage are coadapted and that codons with

more abundant cognate tRNA genes in the genome are

on average more preferentially used in highly expressed

genes.

Synonymous Codon Usage and Gene Expression Intensity

If codon usage of genes is driven by translational/transcrip-

tional selection, then gene expression should be positively

correlated with the measure of codon bias. That is, genes

with greater codon bias should use optimal codons more fre-

quently. We found a significant, but weak correlation be-

tween the statistics Fop/ENC and expression intensity of

genes in a partial rank correlation analysis correcting for the

effect of all other confounding variables (fig. 2, table 2).

Furthermore, when we used the ENC0 statistic accounting

for the unequal usage of synonymous codons due to back-

ground nucleotide content, partial correlation with expression

level of genes was very weak and for the RNA-seq data non-

significant (table 2).

As we show below GC content of coding and noncoding

regions is significantly positively correlated in the P. patens

genome. Therefore, if local GC bias is a major driver of codon

bias and GC bias is positively correlated with the level of gene

expression, employing ENC0 in the analysis may have removed

a true signal. Indeed, this is what we found in our analysis

because ENC and Fop are more strongly correlated with gene

expression than ENC0 (table 2). Nevertheless, if codon usage

bias is primarily driven by local GC bias, both ENC and Fop

statistics should show similar strength of correlation with GC

content of noncoding and coding regions, which is what we

observe (table 2). This implies that the effect of translational or

transcriptional selection on synonymous codon usage is very

weak and it is primarily driven by background nucleotide

content.

GC Bias of Genes and Gene Expression

Average GC content of the P. patens genome is 38% which is

on the lower end of values reported so far for land plants

(Kejnovsky et al. 2012; Singh et al. 2016). Nevertheless, cod-

ing regions have a significantly higher GC content (�48%)

which is close to the average detected in land plants overall

(Singh et al. 2016). Furthermore, GC content in coding re-

gions varies considerably across the genome and is signifi-

cantly higher than in intronic and intergenic regions

(�40%). GC content of coding and noncoding regions is
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highly interdependent. More specifically, GC content of CDS

is significantly positively correlated with both GC content of

introns and UTRs (rs GC_CDS_vs._GC_intron¼0.4676,

P< 2.2� 10�16; rs GC3_CDS_vs._GC_intron¼0.5360, P< 2.2

� 10�16; rs GC_CDS_vs._GC_UTR¼0.2880, P< 2.2� 10�16; rs

GC3_CDS_vs._GC_UTR¼0.1960, P< 2.2� 10�16) suggesting that

mutational biases and/or transcription-coupled mutations

have a significant effect on synonymous codon usage.

We showed that optimal codons in P. patens almost all end

with G or C (table 1) (Szövényi et al. 2015) and it is known

that GC content of genes and coding regions is frequently

correlated with gene expression (Kudla et al. 2006).

Therefore, we hypothesize that gene expression may drive

GC content, which, in turn, drives the correlation between

optimal codon frequency and gene expression independently

of transcriptional/translational selection. Therefore, we calcu-

lated how GC content is correlated with codon usage of

genes while controlling for the effect of the other confound-

ing factors including gene and intron length on the chromo-

some in base pairs, and gene expression breadth. Therefore,

rank correlations refer to pairwise partial rank correlations

while controlling for the set of covariates mentioned. We

found that overall GC content of CDS was weakly positively

correlated with gene expression (rs RNA-seq¼0.0610,

P¼ 7.2081� 10�06; rs microarray¼0.0578, P¼ 2.1928�
10�05). Moreover, GC content in third codon positions that

are less selectively constrained and strongly influenced by mu-

tational biases was strongly positively correlated with gene

expression regardless of the data set used (rs RNA-

seq¼0.2136, P¼ 5.0052� 10�58; rs microarray¼0.1900,

P¼ 8.0731� 10�46). Finally, GC content in intronic regions

was also weakly positively correlated with gene expression

(rs RNA-seq¼0.0759, P¼ 2.2509� 10�8; rs microarray¼0.0442,

P¼ 0.0012). That is, GC bias of third codon positions is indeed

increased by gene expression, which is also true for GC con-

tent of noncoding regions but with a lesser extent. We also

note that our conclusions remain qualitatively the same when

potential covariates are not accounted for in the correlations

analysis. This suggests that GC content is primarily driven by

the level of gene expression and this is true for both coding

and surrounding noncoding regions.

Codon Usage and Synonymous and Nonsynonymous
Divergence

If codon usage bias is driven by natural selection, we expect

that increased selection against unpreferred codons will de-

crease silent divergence (Ks) of genes from a closely related

species (Akashi 2001). Nevertheless, as selection for synony-

mous codon usage is weak, this correlation is also expected to

be weak (Powell and Moriyama 1997; Bierne and Eyre-Walker

2003; Marais et al. 2004b). We used divergence data from

the moss C. purpureus and calculated the partial correlation

between synonymous divergence (Ks) and codon usage bias

statistics at two Ks divergence thresholds (Ks�2 and�1). We

found 5,397 strictly one-to-one orthologous gene pairs be-

tween P. patens and C. purpureus, of which 4,485 and 3,190

gene pairs showed a Ks divergence value of�2 and�1, re-

spectively. For all three codon usage bias statistics and for

both Ks thresholds (Ks �2 and �1) we found that genes

with greater codon usage bias showed greater silent diver-

gence (fig. 3, table 2). These observations contradict the hy-

pothesis that codon usage would be driven by selection in P.

patens. We also tested whether this relationship is mainly ex-

plained by GC content of the CDS or that of GC content of

third codon positions. Not controlling for GC content of third

codon positions in the partial correlation analysis considerably

increased the value of Spearman’s rho, especially at the Ks�2

threshold (GC content of third codon positions is not con-

trolled for: Ks �2, Fop vs. Ks rs¼0.2851, P¼ 8.0714� 10�96;

Ks �1, Fop vs. Ks rs¼0.1692, P¼ 3.5518� 10�22) while ex-

cluding GC content of exons had a slighter effect (dropping

GC content exons: Ks �2 Fop vs. Ks rs¼0.1093,

P¼ 1.6185� 10�14; Ks �1: Fop vs. Ks rs¼0.0740,

P¼ 2.8507� 10�05). Therefore, the positive correlation of

Ks and codon usage bias can be at least partially explained

by the GC content at third codon positions.

The ratio of the number of nonsynonymous substitutions

per nonsynonymous sites to the number of synonymous sub-

stitutions per synonymous sites (Ka/Ks) can be used as an in-

dicator of the strength of purifying selection acting on a gene

(Nielsen and Yang 2003). Therefore, we also assessed the

correlation between Ka/Ks values and codon usage bias while

controlling for all other confounding genomic variables at two

Ks thresholds as above (Ks �1 and �2). We found that genes
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FIG. 3.—Correlation between the frequency of optimal codons (Fop)

and the number of synonymous substitutions per synonymous sites (Ks,

calculated in comparison with the orthologous C. purpureus proteins).
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under more relaxed selective constraints (greater Ka/Ks) have

slightly lower codon usage bias when using the Fop and ENC

statistics (table 2). Nevertheless, correlation strengths were

weak or very weak, especially when applying the more reli-

able Ks �1 threshold, at which the effect of alignment ambi-

guity and saturation issues are minimal. Moreover, when we

used the ENC0 statistic, the correlation became even weaker

especially at the Ks �1 threshold (table 2). We repeated the

very same analysis for the number of nonsynonymous substi-

tutions per nonsynonymous sites (Ka) which essentially led to

the same conclusions.

Codon Usage Bias and Gene Expression Breadth

Gene expression breadth is known to be highly influential

concerning the rate of purifying selection that acts also on

synonymous codon usage (Duret and Mouchiroud 2000;

Urrutia and Hurst 2001; Ingvarsson 2007, 2008; Szövényi

et al. 2013; De La Torre et al. 2015). In line with that, multiple

studies revealed greater synonymous codon usage bias in

more broadly expressed genes in both plants and animals

(Urrutia and Hurst 2001; Ganko et al. 2007; Ingvarsson

2007; De La Torre et al. 2015). We found that Fop and ENC

were not significantly correlated with expression breadth (s),

whereas ENC0 showed a weak negative correlation with ex-

pression breadth in a partial correlation analysis (fig. 4,

table 2). This result implies that tissue specificity either does

not affect codon usage bias or increasing tissue specificity is

associated with increasing codon usage bias. This is in contrast

to the general observation that more broadly expressed genes

show greater codon usage bias because they are under

greater selective constraints.

Model-Based Analysis Suggests Low Efficacy of Natural
Selection on Codon Usage Bias

To assess the united effect of mutational bias and natural

selection on synonymous codon usage, we fitted the

Bayesian model ROC SEMPPR (Gilchrist et al. 2015) using co-

don composition of the P. patens proteome and our RNA-seq

gene expression data set. This model assumes that codon

usage of a gene is a combined function of mutation bias

and natural selection for translational inefficiency of which

the latter is expected to scale with protein production and

effective population size. If Ne is sufficiently large, then this

model is able to accurately predict protein production rates

using only codon composition of genes. Moreover, adding

experimental data on protein production rate estimates to

the model should have negligible effect on protein production

rate estimates. In line with our correlation-based analyses, we

found that protein production rate estimates solely based on

codon composition of the proteome poorly fitted the esti-

mates obtained with a model including observed gene expres-

sion values (linear regression of estimated protein production

rates obtained with a model including vs. excluding observed

gene expression estimates: R2¼0.7231, y¼ 0.0642 �
0.5031x). Furthermore, this regression line significantly devi-

ated from the expected 1:1 relationship (z-test of difference

from a slope of 1; P¼ 0.000002) with more than three-quar-

ters of the observed data falling outside of the 95% confi-

dence interval of the one-to-one line. That is, codon usage of

genes itself does not contain sufficient information to predict

protein production rates.

We also obtained model-based estimates of codon-specific

translational inefficiencies (Dg), mutation bias (DM), and the

per gene selection intensity on codon usage (SCU). When

SCU� 1, drift will dominate over natural selection. In line

with the predicted low Ne, we found that the difference in

translational inefficiency between the reference (optimal) and

alternative synonymous codons was small ranging between

0.00047 and 0.016 with an average value of 0.00656.

Nevertheless, the 95% confidence intervals did not overlap

with zero suggesting the presence of weak selection (supple-

mentary table 2, Supplementary Material online). We also

found that all per gene SCU estimates (SCUmean¼0.7072,

SD¼ 0.1507), but one, were below one that is codon usage

bias is primarily driven by genetic drift (fig. 5). In contrast,

codon-specific mutation bias estimates, the natural logarithm

of the ratio of synonymous codon frequencies in the absence

of selection, were considerable ranging between �0.4646

and 1.1165 with an absolute average of 0.2624 (supplemen-

tary table 3, Supplementary Material online).

Discussion

Here, we analyzed synonymous codon usage bias of genes in

the model moss P. patens with a life cycle and breeding sys-

tem implying low local and species-wide effective population
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FIG. 4.—Correlation between gene expression breadth (Tau [s]) and

the frequency of optimal codons (Fop).
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sizes (Perroud et al. 2011). In line with predictions from pop-

ulation genetic theory, we found that the effect of natural

selection on synonymous codon usage bias is weak.

Our results well-fit the repeated pattern found in organisms

with AT-rich genomes experiencing putatively weak selection

on the genome, GC content and GC-ending codons overall

(Hershberg and Petrov 2009, 2010; Lassalle et al. 2015;

Rudolph et al. 2016). Therefore, we propose that synonymous

codon usage is mainly driven by nucleotide compositional

biases. Our finding is in contrast to a previous study reporting

adaptive codon usage bias in the moss P. patens (Stenøien

2005). Our conclusion is supported by four lines of evidence

that we further discuss below: 1) Very weak or nonsignificant

correlation between gene expression and codon usage bias,

2) no or weak increase of codon usage bias in more broadly

expressed genes, 3) no evidence that codon usage bias would

constrain synonymous and nonsynonymous divergence, and

4) predominant role of genetic drift on synonymous codon

usage predicted by a model-based analysis.

Weak and/or Nonsignificant Correlation between Codon
Bias and Gene Expression

If codon usage bias is driven by translational or transcriptional

selection, optimal codons are expected to be preferentially

used in highly expressed genes (Akashi and Eyre-Walker

1998; Akashi 2001; Akashi et al. 2012). Nevertheless, a pos-

itive correlation can also arise when mutational biases are

nonrandom and correlated with expression level of genes

(Hershberg and Petrov 2009). Although we found a positive

correlation between codon usage bias and gene expression

level, this relationship was very weak (table 2). This implies

that selection for optimal codon usage is at most weak and is

primarily driven by nucleotide compositional biases.

Our result is in contrast to a previous study reporting a

significant and substantial correlation between gene expres-

sion and codon usage bias for P. patens (Stenøien 2005).

However, the former study used only a small set of the

P. patens proteome, EST library-based gene expression esti-

mates and codon bias indices (Fop and ENC) that do not ac-

count for background nucleotide biases. Furthermore, our

analysis used a partial correlation approach that accounts

for the effect of other genomic variables potentially affecting

codon usage bias. Therefore, we argue that contrasting re-

sults obtained by our analyses and those of the mentioned

study are primarily of methodological origin.

Our results are also in line with population genetic theory

predicting that effective population size is key in determining

whether codon usage bias is driven by natural selection or

genetic drift (Ikemura 1985; Akashi 1996; Ingvarsson 2007;

Stoletzki and Eyre-Walker 2007; Hershberg and Petrov 2008;

Sharp et al. 2010; Burgarella et al. 2015). In particular, tran-

sition from an outcrossing to a selfing breeding system result-

ing in an overall effective population size reduction was

shown to decrease the efficacy of selection acting on codon

usage bias in plants and in animals (Sweigart and Willis 2003;

Cutter et al. 2006; Foxe et al. 2008; Cao et al. 2011; Qiu,

Zeng, et al. 2011; Ness et al. 2012; Slotte et al. 2013). This

effect is expected to be especially strong if selfing is frequent

and enough time has elapsed since the onset of selfing be-

havior to significantly affect codon usage (Morton and Wright

2007; Cutter et al. 2008).

Physcomitrella patens is frequently undergoing intragame-

tophytic selfing which, in contrast to selfing in vascular plants,

will lead to a fully homozygous diploid phase and should dra-

matically decrease effective population size (Perroud et al.

2011). Moreover, phylogenetic evidence strongly supports

long-lasting persistence of the monoicous breeding system

of P. patens. Breeding system of P. patens is shared by all

species of the family Funariaceae estimated to have originated

more than 100 Ma (Liu et al. 2012). Therefore, our data are in

accordance with theory by showing that codon usage in P.

patens is primarily driven by genetic drift and the effect of

natural selection is weak at most.

Ks Is Not Negatively but Positively Correlated with Codon
Bias

It is expected that, if synonymous codon usage is driven by

natural selection, then genes with more biased codons should

show reduced synonymous divergence from the correspond-

ing gene sequences of a closely related species (Sharp and Li

1987; Akashi 2001; Drummond and Wilke 2008). This is be-

cause most synonymous mutations will change preferred co-

dons to unpreferred codons, which, in turn, will decrease the

number of synonymous mutations per synonymous sites that

go to fixation. This effect, however, may be weak, especially if

selection on codon usage bias is weak, as it is in species with
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reduced effective population sizes (Powell and Moriyama

1997; Bierne and Eyre-Walker 2003; Marais, Domazet-Lo�so,

et al. 2004).We found that increasing codon usage bias was

positively and not negatively associated with the number of

fixed synonymous changes. This is the opposite of what one

would expect if selection would preserve preferred synony-

mous codons, which will in turn decrease the number of sub-

stitutions at synonymous sites. Nevertheless, we also showed

that this effect can be well alleviated by correcting for biased

nucleotide composition as well as for GC content. Therefore,

GC content in third codon positions is at least partially respon-

sible for the positive correlation and increased silent

divergence.

One potential explanation for the positive correlation be-

tween Ks and codon usage bias is that preferred synonymous

codons differ between the two species investigated (P. patens

and C. purpureus). Nevertheless, this contradicts findings of a

previous study describing the very same set of preferred co-

dons in the two species (Szövényi et al. 2015). A potentially

more likely explanation is that codon bias is primarily driven by

mutational biases in P. patens whereas natural selection dom-

inates in the outcrosser C. purpureus. This would be expected

to drive synonymous codon usage of the two species apart

and would lead to an increased number of synonymous sub-

stitutions, especially if mutational biases depend differently on

genomic features/context in the two species. Finally, it is also

possible that the positive correlation between synonymous

divergence and codon usage is a result of a combination of

strong mutational bias and weak purifying selection (Lawrie

et al. 2011, 2013; Lawrie and Petrov 2014). Under such cir-

cumstances even increasing constraint can lead to accelerated

evolutionary rates. This is a conceivable explanation because

mutations are thought to be A/T-biased across all eukaryotes

(Galtier et al. 2001; Smith and Eyre-Walker 2001; Hershberg

and Petrov 2010) and our analysis suggests that purifying se-

lection on codon usage bias is weak. Our data are insufficient

to distinguish among these three alternative hypotheses but

they all support the conclusion that natural selection on codon

usage bias is rather weak in P. patens. We note that with

more data on gene expression and genomic features in the

moss C. purpureus the three alternative hypotheses will be-

come testable.

Although the Ks–codon usage correlation analysis has been

extensively used as a decisive test of the effect of natural

selection on codon usage bias in many studies, it is not free

of caveats (Ingvarsson 2007, 2008; Slotte et al. 2011; Hough

et al. 2013; De La Torre et al. 2015). First of all, as all Ks-based

tests it is designed to be used between relatively closely re-

lated species pairs. Unfortunately, high-quality sequence data

are only available for C. purpureus which are estimated to

have shared a common ancestor with P. patens about

200 Ma (Szövényi et al. 2015). We intended to correct for

the deep divergence of the two species by limiting our analysis

to less divergent orthologous gene pairs to avoid issues related

to saturation of substitutions and alignment uncertainty.

Nevertheless, we acknowledge that the deep divergence be-

tween the two species adds some uncertainty to our analysis

which we could not easily resolve. For instance, our data are

insufficient to decide whether efficacy of selection on codon

usage bias was constantly low along the branch leading to P.

patens or it was actually strong on the terminal branch leading

to P. patens but this signal may have been diluted over the

long evolutionary branch connecting the two species.

Although we cannot unambiguously exclude this latter expla-

nation we believe that it is unlikely because besides the Ks-

based analysis our other tests are independent of any diver-

gence statistics and support the conclusion that the effect of

natural selection on codon usage bias is weak in P. patens.

Finally, assessing the correlation between Ka/Ks and codon

usage bias led to similar conclusions, showing either a very

weak correlation or no correlation at all (table 2). Altogether,

these observations provide another line of evidence that in P.

patens, characterized by a dramatically reduced effective pop-

ulation size, the efficacy of natural selection on codon usage

bias is weak.

Gene Expression Breadth and Codon Usage Bias

Another important finding contradicting the hypothesis that

codon usage bias is primarily driven by translational/transcrip-

tional selection in P. patens is the sign of correlation between

gene expression breadth and codon usage bias. Gene expres-

sion breadth was shown to be one of the main factors con-

straining molecular evolutionary rates of genes in a moss and

in the model plant Arabidopsis thaliana (Slotte et al. 2011;

Yang and Gaut 2011; Szövényi et al. 2013). That is, more

broadly expressed genes have lower dN/dS values due to

more efficient purifying selection. Therefore, expression

breadth of genes can be used as a proxy for the strength of

purifying selection (Urrutia and Hurst 2001). If codon usage

bias is driven by translational or transcriptional selection, more

broadly expressed genes should be under greater selective

constraints and should exhibit greater codon usage bias.

Our observation contradicts this hypothesis, as more broadly

expressed genes have slightly less biased codon usage when

nucleotide compositional biases are accounted for or the cor-

relation is not significant at all. This suggests that the efficacy

of natural selection on codon usage bias is weak.

Model-Based Estimates Also Suggest That Efficacy of
Selection on Synonymous Codon Usage Is Weak

Correlation- and divergence-based tests assessing the effect

of natural selection on synonymous codon usage may fail

when mutation bias is strong and purifying selection is

weak (Lawrie et al. 2011, 2013). Therefore, we also used a

model-based analysis that is able to model the united effect of

mutation bias, natural selection, and their often nonlinear

dependence on gene expression level on synonymous codon
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usage (Gilchrist 2007; Gilchrist et al. 2015). Results of this

analysis provide further support to the observation that the

effect of natural selection on synonymous codon usage is

rather weak in P. patens.

In particular, the model predicts that when Ne is sufficiently

large, protein production rates can be accurately estimated

using codon composition of genes. If this is true, adding ex-

perimental data on protein production rates to the model

should have negligible effect on protein product rate

estimates. We found that a model solely based on codon

usage pattern of the proteome very poorly fit the estimates

obtained with a model including experimental estimates of

protein production. Previous studies showed that the model

can accurately predict protein production rates in simulated

and real data in which selection for optimal codons is consid-

erable (Gilchrist 2007; Wallace et al. 2013; Gilchrist et al.

2015). Therefore, in accordance with the correlation-based

analysis, this implies that synonymous codon usage of P. pat-

ens genes provides only limited information on protein pro-

duction rates. This is in line with our hypothesis that P. patens

has low overall Ne and selection for optimal codon usage is

weak.

We also obtained model-based estimates for the two ma-

jor parameters of the model, codon-specific translational in-

efficiencies (Dg) and mutation bias (DM) and the a composite

parameter quantifying the per gene selection intensity on co-

don usage (SCU) (Gilchrist 2007; Wallace et al. 2013; Gilchrist

et al. 2015). In brief, codon-specific translational inefficiency

(g) is a parameter describing how codon usage of a given

open reading frame alters the ratio of the expected cost of

protein production over the expected benefit of protein syn-

thesis (Gilchrist et al. 2015). It is assumed that natural selection

favors codon usage that reduces this cost–benefit ratio and

selection increases with protein production rates. More spe-

cifically, translational inefficiency (Dg) is the difference two

codons make to g relative to the effect of genetic drift. Our

analysis provided very small estimates for the translational in-

efficiency parameters implying that codon usage data predict

only slight selective differences among alternative synony-

mous codons. Indeed, our estimates were more than ten

times smaller than those obtained for yeast showing consid-

erable selection for optimal codon usage (Gilchrist 2007;

Wallace et al. 2013; Gilchrist et al. 2015).

To verify this observation, we also estimated a composite

parameter describing the per gene selection intensity on co-

don usage (SCU). SCU is the mean fitness advantage scaled

by the effective population size, that the organism gains from

the gene’s codon composition relative to an unselected syn-

onymous alternative (Wallace et al. 2013). When SCU� 1,

drift will dominate over natural selection. We found that all

but one SCU estimates fell below 1. This is strikingly different

from the observation made in yeast where most of the genes

had SCU values over 1 (Gilchrist 2007; Wallace et al. 2013;

Gilchrist et al. 2015). Because selection for optimal codon

usage is considerable in yeast our finding on SCU implies

that optimal codon usage is mainly driven by genetic drift

rather than by natural selection.

Finally, we also obtained estimates for the mutational bias

parameter (DM). The mutation bias parameter is the natural

logarithm of the ratio of the frequencies of the reference co-

don to codon i in the absence of natural selection (Gilchrist

et al. 2015). We found that our estimates were comparable to

those found in previous studies in yeast (Gilchrist 2007;

Wallace et al. 2013; Gilchrist et al. 2015). Therefore, the ab-

solute strength of mutation bias does not seem to be strikingly

different in the moss and in yeast but the overall efficacy of

selection on codon usage is considerably weaker in the moss.

Altogether, correlation-, divergence-, and model-based anal-

yses all converge to the very same conclusion that natural

selection is only a weak force shaping synonymous codon

usage bias in P. patens.

Potential Driving Forces of Nucleotide Compositional
Biases

Altogether, our observations suggest that codon usage bias of

P. patens is primarily driven by nonselective forces that may be

mutational bias and drift. This observation is in line with the

life cycle characteristics of the species, implying highly reduced

effective local and species-wide population sizes (Quatrano

et al. 2007; Perroud et al. 2011; McDaniel and Perroud

2012). Moreover, our analysis also suggests that synonymous

codon usage can be primarily explained by nucleotide biases,

especially by variation in GC content across CDS.

Nevertheless, the exact factors responsible for the composi-

tional biases are unknown. In the next paragraphs, we provide

some speculation about the potential molecular mechanisms

that may be driving codon usage bias in P. patens.

The exact mechanism through which GC content of cod-

ing regions evolves is debated and used to be explained by

three main processes: Mutational biases, synonymous codon

usage bias, and GC-biased gene conversion (Glémin et al.

2014). Studies often prefer the latest as the most likely expla-

nation (Glémin et al. 2014). Nevertheless, the effect of biased

gene conversion in an intragametophytic selfer should be

negligible (Burgarella et al. 2015). Furthermore, although

nonallelic gene conversion may occur in P. patens, it is prob-

ably not GC-biased and unlikely to explain our findings (Assis

and Kondrashov 2012). Therefore, we argue that weak selec-

tion for optimal codon usage bias and overall GC content may

be more likely to explain GC variation of CDS in P. patens. This

hypothesis is supported by the observation that GC content of

coding and surrounding noncoding regions is positively cor-

related and they are all positively correlated with level of gene

expression. This implies that GC content of genomic regions is

considerably influenced by regional mutational biases which

are positively correlated with expression of genes and codon

usage bias. Nevertheless, the exact mechanisms through
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which gene expression or some other unknown genomic fea-

tures that correlate with gene expression affect GC content of

the genome or vice versa are currently unknown.

Finally, our findings are also strikingly similar to those ob-

served in a wide-range of organisms with AT-rich genomes.

There is indication that selection on optimal codon usage and

GC content is overall weaker in AT-rich genomes (Hershberg

and Petrov 2009, 2010; Lassalle et al. 2015; Rudolph et al.

2016). The observations from AT-rich genomes are in line

with our findings: 1) A clear mismatch between optimal co-

dons identified by the ENC and ENC0 statistics, 2) weak cor-

relation between gene expression and codon usage bias, and

3) discordance between optimal codons and codons used in

the set of highly expressed genes. Furthermore, we showed

that noncoding parts of the P. patens genome are especially

AT-rich among land plants (Kejnovsky et al. 2012; Singh et al.

2016). Therefore, our findings on the P. patens genome add

additional support to the observation that overall selection for

optimal codon usage and GC content is generally weak in AT-

rich genomes.

Coadaptation of tRNA Gene Copy Numbers and Codon
Usage Bias

The above-mentioned findings clearly support the idea

that codon usage bias in the moss P. patens is driven by

a combination of mutational biases and weak natural se-

lection of which the former seem to be predominant.

Nevertheless, we also report that tRNA gene numbers

and their cognate codons seem to be significantly

coadapted. That is, synonymous codons frequently used

in highly expressed genes have also the most biased tRNA

gene copy numbers. One possible interpretation of this

pattern is that tRNA copy number is driving synonymous

codon usage, which is an indication of translational selec-

tion. Nevertheless, it is also possible that codon usage bias

is primarily driven by neutral forces, and this in turn drives

the evolution of tRNA copy numbers. This latter hypothe-

sis has been proposed earlier and was recently confirmed

by experimental evidences (Hershberg and Petrov 2008,

2009; Trotta 2013). For instance, Yona et al. (2013)

showed that adaptation to a perturbed tRNA pool can

rapidly occur. Therefore, we argue that the tRNA

abundance-codon usage correlation discovered here is

the result of the adaptation of tRNA gene copy numbers

to the optimal set of synonymous codons of which the

latter is primarily driven by nucleotide compositional

biases (Whittle et al. 2012). We note that this explanation

does assume that the adaptation between tRNA copy

numbers and synonymous codons is a result of natural

selection. Nevertheless, it hypothesizes that the strength

of natural selection exerted by each gene on tRNA copy

numbers is very weak but it becomes sufficiently strong

when it scales up to the level of the genome.

Conclusions

Altogether, our analyses suggest that codon usage bias in the

moss P. patens is primarily driven by neutral processes, poten-

tially by nucleotide biases, and the effect of natural selection is

weak, albeit detectable. This is in line with evolutionary theory

predicting strongly reduced effective population size and

weak efficacy of natural selection in organisms frequently un-

dergoing haploid (intragametophytic) selfing. Nevertheless,

our data are insufficient to determine the key molecular pro-

cesses driving biased nucleotide usage across the genome.

Therefore, to gain detailed insights into the molecular mech-

anisms driving codon usage bias in P. patens, the relationship

between nucleotide bias, codon usage bias, recombination

rate, and genome-wide methylation should be determined.

With data on these genomic features in P. patens, such anal-

yses will be feasible in the future.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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Glémin S, Bazin E, Charlesworth D. 2006. Impact of mating systems on

patterns of sequence polymorphism in flowering plants. Proc Biol Sci.

273:3011–3019.
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