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Growth-coupled overproduction is feasible for
almost all metabolites in five major production
organisms
Axel von Kamp1 & Steffen Klamt1

Computational modelling of metabolic networks has become an established procedure in the

metabolic engineering of production strains. One key principle that is frequently used to guide

the rational design of microbial cell factories is the stoichiometric coupling of growth and

product synthesis, which makes production of the desired compound obligatory for growth.

Here we show that the coupling of growth and production is feasible under appropriate

conditions for almost all metabolites in genome-scale metabolic models of five major

production organisms. These organisms comprise eukaryotes and prokaryotes as well as

heterotrophic and photoautotrophic organisms, which shows that growth coupling as a strain

design principle has a wide applicability. The feasibility of coupling is proven by calculating

appropriate reaction knockouts, which enforce the coupling behaviour. The study presented

here is the most comprehensive computational investigation of growth-coupled production so

far and its results are of fundamental importance for rational metabolic engineering.
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T
he shift from a petrochemical to a bio-based and
sustainable production of chemicals and fuels remains as
a major global challenge of humanity in the twenty-first

century. Diverse commercial compounds are currently produced
in fermentation processes including commodity chemicals,
polymers, biofuels, pharmaceuticals, nutritional supplements
and so on.1–3. To further optimize existing and to develop new
fermentation processes, metabolic engineering emerged as an
enabling technology. It combines experimental and theoretical
approaches to engineer cell factories with maximal
performance1,3,4. Computational modelling has become an
important method for metabolic engineering, not only to gain
deep insights into properties and production capabilities of
metabolic networks5 but also to identify rational metabolic
intervention strategies for the design and optimization of
microbial production organisms6.

One key design principle that has become particularly relevant
for metabolic engineering and computational strain design over
the past decade is to couple cellular growth with the production
of a desired metabolite. The central goal is to make the desired
metabolite a mandatory by-product of growth and its production
thus an integral part of the organism’s metabolic function (Fig. 1).
In this way, growth of the organism becomes a driving force of
production. Without coupling, the functionality that is needed for
enhanced production may easily be lost from a production strain
that adapts to a higher growth rate as this functionality
usually poses a burden on the organism7. Furthermore, when a
growth-coupled strain has been designed, it is possible to improve
its production capabilities through adaptive laboratory evolution
by selecting for maximum growth8–12.

OptKnock13 was the first optimization method proposed for
computing reaction deletion strategies to couple the production
of a metabolite to cellular growth. This method can be seen as
the origin of a variety of developed strain design methods for
growth-coupled product syntheses6,14–16. In all these methods,
growth-coupled product synthesis demands that mutant strains
are forced to produce the desired metabolite to be able to grow
with maximal growth rate or to be able to grow at all (with any
rate). Using growth coupling as the design principle, a variety of
mutant strains has successfully been constructed. Examples for
E. coli are strains for the production of lactate8, ethanol from a
mixture of glucose and xylose17 as well as glycerol10, isobutanol18,
1,4-butanediol19, malonlyl-CoA20, fatty acids21 and itaconic
acid22. In Saccharomyces cerevisiae, mutant strains have been
designed for the production of 2,3-butanediol23 and succinate12.

However, growth coupling is not per se possible for every
metabolite. Feasibility of growth-coupled product synthesis has
recently been investigated from a theoretical point of view24.
The authors first distinguish between weak and strong coupling
and then derive criteria for the feasibility of (weakly or strongly)
growth-coupled production in a given metabolic network. Weak
coupling means that a sufficiently high product yield is achieved if
the cell grows with maximal or close-to-maximal biomass yield
(similar to OptKnock-related methods mentioned above). In
contrast, strong coupling demands more, it additionally requires
that production must also occur even without growth (Fig. 1). In
other words, strong coupling means that substrate uptake already
enforces the production of the desired metabolite. The derived
criteria for feasibility of weak and strong coupling are based on
elementary (flux) vectors, a generalization of elementary (flux)
modes to the inhomogeneous case25. As a concrete example, a
small-scale model of the central metabolism of E. coli
(89 metabolites and 107 reactions) was taken to examine
whether the production of each metabolite can be coupled to
growth24. This test could be achieved rather easily because the
model was small enough to quickly compute all its elementary

vectors24. Briefly, the necessity to calculate all elementary vectors
for evaluating the criteria derives from the fact that not only an
elementary vector needs to be found that supports the desired
growth-coupled production but that it is also necessary to prove
that there is a way to disable all other elementary vectors whose
potential operation would break growth-coupled production. The
surprising result was that growth-coupled product synthesis is
possible for all metabolites under aerobic conditions and
most metabolites in the anaerobic case24. This raises the
question whether the same result can also be obtained in a full
genome-scale model and whether growth-coupled production is
possible for metabolites from other parts of the metabolism as
well. An additional question is to what degree the growth-coupled
synthesis of metabolites is feasible also in other relevant
production organisms.

The aim of this work is therefore to investigate the feasibility of
growth-coupled product synthesis in genome-scale metabolic
models of five representative production organisms. The chosen
species have been used as cell factories in numerous
biotechnological applications, covering prokaryotes and
eukaryotes as well as heterotrophic and photoautotrophic
organisms. These organisms and their associated established
genome-scale metabolic models are E. coli (iJO1366; ref. 26),
S. cerevisae (iMM904; ref. 27), the Gram-positive bacterium
Corynebacterium glutamicum (iJM658; ref. 28), the filamentous
fungus Aspergillus niger29 and the cyanobacterium Synechocystis
sp. PCC 6803 (ref. 30).

As the computation of elementary vectors has the same
complexity as the computation of elementary modes25, this will,
despite recent algorithmic advances31,32, typically be impractical
in genome-scale metabolic networks with many inputs and
outputs. Therefore, the criteria for growth-coupled product
synthesis24 cannot be directly applied to the models above. One
possibility to circumvent the need for calculating all elementary
vectors is to search directly for a single combination of knockouts
that disables product yields below a given threshold while
ensuring that production and growth yields above their respective
thresholds remain feasible24. Such an intervention strategy can be
computed as a constrained minimal cut set (cMCS); if (and only
if) a cMCS with these properties exists, then strong coupling is
possible. A cMCS comprises a set of reactions that need to
be knocked out to enforce coupling. A procedure for the direct
calculation of cMCS has been described earlier33,34 and
will be applied in a modified form here. The main difference in
the application of this procedure in the present study is that it
is sufficient to find any cMCS to prove that growth coupling
is possible. For proving coupling, the size of the cut set does not
matter, whereas it was a central aim in the original application to
enumerate smallest cMCS33,34. In contrast to other works, in all
calculations we will focus on strong coupling (Fig. 1), as it
demands coupling under all conditions even if the cell does not
behave growth optimal.

Using our developed algorithmic pipeline, we demonstrate that
suitable intervention strategies for growth-coupled overproduc-
tion exist for almost all metabolites in all five organisms
investigated. These results are of fundamental importance as
they show that growth-coupled product synthesis is indeed a
widely applicable design principle for rational metabolic
engineering.

Results
Computational framework for testing feasibility of coupling.
The organisms and associated models for which the feasibility of
strong coupling was examined are listed in Table 1. Two of the
organisms, A. niger and C. glutamicum, have a very limited
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capability for anaerobic growth, while E. coli and S. cerevisiae can
grow aerobically as well as anaerobically. The growth of these four
heterotrophic organisms was simulated on glucose minimal
medium. The fifth organism, Synechocystis sp. PCC 6803,
is photoautotrophic and was simulated with light as limited
‘substrate’ together with an unlimited uptake of CO2. Specific
details on model configurations used in the calculations can be
found in the Methods section. Briefly, all models were provided
with an unlimited supply of inorganic compounds (via the
respective exchange reactions) necessary for growth while uptake
of the substrate glucose (photons in case of Synechocystis sp. PCC
6803) was limited to known maximal values. Outflows of typical
organic (for example, fermentation) products for the given
organism were left open and thus have to be accounted for
when the cut sets were calculated. Importantly, to ensure that the
calculated knockout strategies (cut sets) have a high degree of
biological relevance, reactions were set to be irrepressible and
can thus not be knocked out if they do not correspond to
enzyme-catalysed biochemical reactions (for example,
spontaneous reactions or pseudo reactions representing transport
processes) or if no associated gene is known (in models where
gene-reaction mappings were available). Overall, the percentage
of irrepressible reactions in the respective models is significant
and reaches up to 34.5% (in E. coli) of the operative reactions
(Table 1).

In every model it was then tested for each organic metabolite
producible from the substrate whether a suitable knockout
strategy (cMCS) exists such that growth and production of the
metabolite can be strongly coupled. For each candidate metabolite
an exchange reaction for this compound was temporarily added
to the model and calculations were done for three different levels
of demanded minimal product yield, specifically 10, 30 and 50%
of the maximum yield for the respective metabolite (see Methods
section). The 10% level was chosen to check if strong coupling is
in principle possible, whereas the 50% level provides information
about whether the metabolite can be produced with a high yield
under coupling. The intermediate level 30% was included to see
in more detail how the feasibility of strong coupling changes
with increasing minimum product yield. To test whether
growth-coupled production is possible, it was attempted to
calculate a cMCS for each metabolite and given minimum yield.

The calculation of such a cMCS is a computationally hard
problem. Based on earlier developments, we therefore built an
algorithmic pipeline to determine effectively such cMCS by
solving dedicated Linear Programming (LP) and Mixed Integer
Linear Programming (MILP) problems (see Methods section).
For a given metabolite and yield level, the algorithm seeks to
either find a cMCS proving coupling or to disprove feasibility of
coupling. If the MILP problem cannot be solved nor its
infeasibility be determined within the given time limit (see
Methods section), then it is not possible to decide if strong
coupling is feasible. This happened only in relatively few of the
considered cases (see below).

Feasibility of coupling. Figure 2 shows the results of the
computations for E. coli and S. cerevisiae; these two models were
simulated under aerobic and anaerobic conditions (detailed
results of all calculations can be found in the Supplementary Data 1).
As a major finding for both organisms, it can be seen that for over
96% of all metabolites producible from the substrate glucose
strong coupling is feasible under aerobic conditions for all three
levels of coupling. For the 10% yield level, suitable interventions
for growth coupling were found for even more than 99% of the
substrate-producible metabolites. These results were unexpected,
as they demonstrate an almost unrestricted feasibility of
growth-coupled strain design for producing any of the native
metabolites in E. coli and yeast, even when taking the large
number of irrepressible reactions into account (Table 1). Figure 2
shows that the fraction of metabolites that can be coupled drops
(slightly) with increasing minimum yield, which can be expected
because with increasing yield it becomes more difficult to ensure
with knockouts that sufficient flux is forced through the reactions
that participate in production. However, only for a very minor
percentage of the metabolites (o4% in both organisms),
feasibility of coupling cannot be determined any more when
demanding a minimum yield of 50%, instead of 10% of the
maximal yield. For all cases, where a cMCS inducing strong
coupling under aerobic conditions was not found in reasonable
time, a final proof of infeasibility of coupling could not be given
by the solver within the set time limit (see Methods section).
Hence, the percentages shown for aerobic growth in Fig. 2 should
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be constructed, growth without product synthesis is not possible anymore (production without growth is allowed). All (remaining) flux distributions in the

mutant strain reach a product yield above a demanded threshold.
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even be seen as lower bounds. Figure 2 also shows the number of
tested (substrate-producible) candidate metabolites in each model
together with statistics about the size of the calculated cMCS and
the computation time. As can be seen, the computation times in
the aerobic scenarios increase with the demanded yield. This is in
part due to the fact that when the (in-)feasibility of coupling
cannot be decided for a given metabolite, then the associated
MILP has been repeatedly executed a number of times until the
time limit is reached, which increases the overall computation
time considerably. For the cMCS sizes under aerobic conditions, a
trend towards larger sizes with increasing minimum yield can be
observed.

The mean cMCS sizes calculated for the organisms are partially
quite large because genome-scale metabolic networks are used
and, to keep the overall computation time acceptable, only limited
time resources could be invested to minimize the size of each

cMCS (compare steps 7 and 10 in Methods section). To analyse
whether smaller (and thus for practical applications more
realistic) cMCS exist for the 50% minimum product yield level
under aerobic conditions in E. coli, the MILP was restarted from
the solution associated with the original cut set and minimization
then continued for up to 10 min per metabolite (see column (50*)
in Fig. 2). This required 8 days of additional computation time
but reduced the mean cMCS size from 20.6 to 12.9 and the
maximum cMCS size from 58 to 34 (the size histogram for these
cMCS is shown Supplementary Data 1). Furthermore, 68 of the
cMCS found during this extended time limit for minimization are
already proven to be optimal, that is, they are the smallest cMCS
(all of these contain at most six knockouts). This shows that for
many cases cMCS with substantially reduced sizes can be found
within a reasonable amount of time if efficient metabolic design
strategies for coupling are to be calculated for specific products.

Table 1 | Details of the models used in this study.

Organism
(model name)

Internal
metabolites

Reactions
(operative)

Repressible
reactions

(operative)

Irrepressible
reactions

(operative)

Substrate uptake
limit

(mmol gDW� 1 h� 1)

ATP maintenance
demand

(mmol gDW� 1 h� 1)

Reference

E. coli (iJO1366) 1,805 2,582 (1,761) 1,414 (1,154) 1,168 (607) 15 (glucose) 3.15 26

S. cerevisiae (iMM904) 1,228 1,577 (1,217) 1,020 (822) 557 (395) 10 (glucose) 1 27

C. glutamicum (iJM658) 984 1,065 (647) 788 (510) 277 (137) 5.4 (glucose) 3.2 28

A. niger 1,037 1,280 (1,094) 961 (877) 319 (217) 2 (glucose) 1.9 29

Synechocystis sp. PCC 6803 518 594 (594) 584 (584) 10 (10) 100 (photons) — 30

ATP, adenosine triphosphate.
Operative reactions are those that can carry a flux under the considered constraints and growth conditions (minimal medium). Irrepressible reactions (for example, exchange reactions, transporters,
technical or pseudo reactions) are not allowed to be knocked out. The substrate for all organisms is glucose, except for Synechocystis sp. PCC 6803, which absorbs photons. ATP maintenance is a
technical reaction that represents the ATP requirements for non-growth-associated maintenance processes. Where such a reaction was provided by the respective models, the lower limit of its flux is set
to the value shown in the table.

Condition Aerobic Anaerobic Aerobic Anaerobic

Substrate-produ-
cible organic
metabolites 954 935 688 688

Min. yield (%) 10 30 50 50* 10 30 50 10 30 50 10 30 50

cMCS

size

Min 3 3 3 3 3 4 4 2 2 2 1 2 3

Mean 17.4 18.3 20.6 12.9 28.3 25.7 21.3 11.0 11.5 13.2 14.6 6.9 5.0

Max 50 52 58 34 94 108 51 25 25 32 35 27 7

Comp. time (h) 39.9 54.1 81.1 191.7 267.6 305.1 19.7 16.5 21.2 42.6 19.1 2.7 3.7
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Figure 2 | Feasibility of strong coupling in Escherichia coli and Saccharomyces cerevisiae. Percentage of substrate-producible organic metabolites from

E. coli and S. cerevisiae for which feasibility (coloured bars) or infeasibility (grey bars) of strong coupling can be proven, depending on the minimum yield

level and conditions used. Statistics for the cut set sizes and MILP computation time are given in the table. The column (50*) for E. coli (aerobic growth)

shows the cMCS sizes that result when the solver is restarted from the solution associated with the original cut set (for 50% minimum yield level) and

minimization of the number of cuts is continued for up to 10 min for each cMCS. Sixty-eight of the cMCS found in this way can even be proven to be the

smallest cMCS, that is, the solver has found an optimal solution.
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For E. coli and yeast, we also analysed feasibility of strong
coupling under anaerobic conditions. Here it should first be noted
that, in our simulations, the degree of feasibility of coupling under
anaerobic conditions can never be greater than for aerobic
conditions since a deactivation of respiratory reactions in the cut
sets for aerobic conditions can always mimic an anaerobic regime
(in fact, some ‘aerobic’ cut sets target reactions involved in
respiration). In E. coli, we found that the production of 77.4% of
the metabolites producible from glucose under anaerobic
conditions can still be coupled to growth at the 10% minimum
yield level. With increasing demand for product yield,
this fraction drops more strongly than in the aerobic case.
Interestingly, because of the reduced solution space of flux vectors
under anaerobic conditions, infeasibility of coupling can now be
proven by the solver for a larger number of metabolites.
For example, at the 50% minimum yield level, strong coupling
was proven to be feasible for 30.9% and to be infeasible for 61.4%
of the substrate-producible metabolites; hence, the percentage of
feasible couplings is between 30.9 and 38.6%. The situation in
yeast changes much more drastically when moving from an
aerobic to an anaerobic growth regime since coupling becomes
almost impossible for all metabolites. Even at the 10% minimum
yield level, the fraction of substrate-producible metabolites that
can be coupled drops to 3.9% and infeasibility can already be
proven for more than 94%. We analysed in detail what structural
properties of the yeast metabolism induce these sharp differences
compared to E. coli. In contrast to the latter, in the
chosen yeast model with standard outflows we found
that excretion of ethanol is essential for anaerobic growth on
glucose confirming experimental results35. After breakdown
of glucose to glyceraldehyde 3-phosphate, ethanol is
produced from glyceraldehyde 3-phosphate via 1,3-bisphospho-
D-glycerate, 3-phospho-D-glycerate, 2-phospho-D-glycerate,
phosphoenolpyruvate (PEP), pyruvate and acetaldehyde in a

series of reaction steps that become essential under anaerobic
conditions and are thus unavailable as knockout targets.
In contrast, under anaerobic conditions in E. coli only the
two reactions from glyceraldehyde 3-phosphate along
1,3-bisphospho-D-glycerate to 3-phospho-D-glycerate are
essential. Since in yeast ethanol synthesis along the path listed
above must be kept active in the model, strong coupling is lost for
almost all metabolites: no suitable knockout sets can then exist
that would guarantee a minimum yield of the respective
metabolite because the substrate glucose could, in principle, be
completely converted to ethanol. In fact, it has been reported that
formation of ethanol as an undesired by-product is one
disadvantage when establishing new fermentation processes
based on yeast36. Only very few metabolites (for example,
isobutanol, 2,3-butanediol) could, at least stoichiometrically, serve
as alternative fermentation products in the model allowing
disruption of pathways leading to ethanol, thus enabling strong
coupling.

To illustrate how the fluxes in a metabolic network are affected
by a cMCS, we describe the effects of the found cMCS inducing
growth-coupled production of shikimate in yeast under aerobic
conditions. The cMCS, which ensures a shikimate yield above
50% of its maximum yield, consists of three targets
(compare Supplementary Data 1): {{PGCD [phosphoglycerate
dehydrogenase] OR PSERT [phosphoserine transaminase] OR
PSP_L [phosphoserine phosphatase (L-serine)]} AND {PYK
[pyruvate kinase]} AND {TPI [triose-phosphate isomerase]}}.
It tells us that for the first cut one of three reactions
(phosphoglycerate dehydrogenase, phosphoserine transaminase,
phosphoserine phosphatase) can be selected, which effectively
serves to disrupt the phosphoserine pathway of serine
biosynthesis, which connects to glycolysis via glyceraldehyde
3-phosphate. Since the second cut targets the triose-phosphate
isomerase, glyceraldehyde 3-phosphate cannot be converted to
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Figure 3 | Feasibility of strong coupling in Aspergillus niger, Corynebacterium glutamicum and Synechocystis species PCC 6803. Percentage of

substrate-producible organic metabolites from A. niger, C. glutamicum and Synechocystis species PCC 6803 for which feasibility of strong coupling can be

proven, depending on the minimum yield level. For the practically obligate aerobes A. niger and C. glutamicum aerobic growth on glucose was considered

while photoautotrophic metabolism was assumed for Synechocystis. Statistics for the cMCS sizes and MILP computation time are shown in the table.
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dihydroxyacetone phosphate. Therefore, glycolytic flux that
flows through glyceraldehyde 3-phosphate has to proceed
towards PEP, but cannot continue all the way to pyruvate
because the pyruvate kinase is knocked out as third intervention.
PEP, together with erythrose 4-phosphate from the pentose
pathway, serves as entry point to the shikimate pathway and the
further reaction steps towards shikimate all become essential.
All in all, the cMCS channels an excess glycolytic flux towards
PEP, which is then relieved via the production of shikimate.
Since the cMCS contains the pyruvate kinase as knockout,
it also becomes clear that this cMCS cannot work under
anaerobic conditions because, as mentioned above, the pyruvate
kinase is an essential reaction in yeast under anaerobic
conditions.

Supplementary Data 1 also provides a list of the reactions in
the E. coli model sorted with respect to the frequency of their
occurrence in the found cMCS. As can be expected, reactions
lying on pathways to standard (fermentation) products of E. coli
(for example, lactate dehydrogenase, acetate kinase, acetaldehyde
dehydrogenase) are frequently used targets.

The results of the computations for aerobic growth of A. niger
and C. glutamicum on glucose and for photoautotrophic growth
of Synechocystis sp. PCC 6803 lead to very similar findings as for
aerobic growth in E. coli and yeast (Fig. 3). Growth-coupled
designs can again be found for all three organisms for almost all
metabolites. For example, for the 10% yield level, suitable
intervention strategies exist in all three organisms for at least
94% of the metabolites and only a small reduction of this
percentage (not below 87%) is seen for larger product yields.
The highest percentage of feasibility of growth coupling for all
investigated organisms can be seen for the phototrophic
Synechocystis sp. PCC 6803, which can, at least partially, be
attributed to the fact that this network model does not contain
(irrepressible) exchange reactions for organic metabolites, which
simplifies the induction of coupling.

The cMCS calculated for the five organisms directly target the
reactions as they are contained in the models. However, although
these reaction cut sets simplify the interpretation of the found
intervention strategies as illustrated above, in reality the cuts must
usually be implemented as gene knockouts. Owing to isozymes
(encoded in different genes), enzyme complexes (whose parts are
encoded in several genes) or multifunctional enzymes (which may
catalyse more than one reaction), suitable cut sets with gene
knockouts may differ from the reaction cut sets and one may ask
whether the results on the feasibility of coupling holds also true
with gene knockouts as relevant interventions. If the association
between genes, enzymes and reactions is known and provided in
the model, then the cMCS can also be calculated with gene
knockouts by integrating the gene association into the model37

(see Methods section). The E. coli iJO1366 (ref. 26) model
contains well-established gene associations in the form of logical
expressions for almost all reactions, which we used to check
whether the feasibility of coupling is impacted when the cMCS
are calculated as gene knockouts. In fact, in the aerobic case, the
metabolites that can be coupled are nearly identical for all three
minimum yield levels, thus confirming the broad feasibility
of growth-coupled production. Only for one metabolite
(protein-bound lipoate) the feasibility of coupling could not
be decided when using gene knockouts, whereas a cMCS was
found when using reaction cuts. For the anaerobic case the
situation is more complicated: here the number of couplings
found is slightly reduced (66.3%/50.2%/26.0% at the
10%/30%/50% minimum yield level) compared to reaction cuts
(Fig. 2). For a few metabolites, we also found gene cMCS that
induces coupling where a corresponding reaction cMCS could not
be found.

Discussion
The central goal of this study was to investigate systematically
for five major production organisms frequently used in
biotechnological applications how far suitable intervention
strategies exist by which stoichiometric coupling of growth and
synthesis of native metabolites can be achieved at genome scale.
The results of our study are highly encouraging as they show
that, under appropriate conditions, it is possible to strongly
couple the production of the large majority of metabolites to
growth for the organisms investigated here. Our work thus proves
that growth-coupled product synthesis is indeed a widely usable
design principle for metabolic engineering applicable to diverse
organisms for enhancing the production of a large variety of
metabolic products.

The presented exhaustive and genome-scale study on feasibility
of growth-coupled strain designs is by far the largest and most
comprehensive of its kind and our developed algorithmic pipeline
turned out to be a very efficient and fast procedure for
this purpose. So far, studies on feasibility of growth-coupled
product synthesis focused on single products or/and on a single
organism (E. coli) only38,39. Furthermore, although other used
methods such as OptKnock13, OptGene40, GDLS41 and
FastPros38 demand only weak coupling, which is easier to
achieve than strong coupling demanded in this work, an almost
unlimited feasibility of coupling under aerobic conditions in E.
coli as proven herein could not be concluded with any of these
methods38.

For E. coli and especially for yeast the results show that, under
anaerobic conditions, the feasibility of coupling drops markedly
and infeasibility of coupling can be proven for a larger fraction of
metabolites. In fact, coupling becomes even largely impossible in
yeast. There are two possible reasons for this observation: First,
during anaerobic growth it is necessary to remove excess NADH,
which the cell can achieve by excreting fermentation products
that are less oxidized than the substrate. This means that under
anaerobic conditions outflow of some fermentation product(s)
must be possible but must be restricted by reaction cuts in such a
manner that not too much carbon is lost through fermentation
because otherwise it will not be possible to keep up the minimum
product yield. Therefore, coupling can be expected to be more
difficult to realize (especially for yeast, where ethanol occurs as an
essential by-product in the model) than under aerobic conditions
where a possible NADH excess can be removed through
respiration. This is related to the second possible reason why
coupling is easier under aerobic conditions. Owing to respiration
a much higher amount of ATP is available, which can support
production of metabolites with high energy demand. However,
for cases where no suitable knockout strategy for coupling could
be found, it has to be noted that all calculations for the
heterotrophic organisms were made based on glucose as
substrate. We expect that, at least for some products, an infeasible
coupling might become feasible with other substrates or if
heterologous reactions or pathways are added.

The cMCS calculated here are primarily intended to test
whether coupling is, in principle, possible or not. Existence of a
suitable cMCS proves stoichiometric feasibility of coupling but
does not consider regulatory (for example, feedback) or capacitive
constraints (which might require further interventions or
modifications; for example knockout of certain regulators,
enzyme redesign or overexpression of certain genes).
Furthermore, although measures have been taken to make sure
that the cMCS are biologically plausible (knockouts of transport
and non-enzymatic reactions were not allowed), not all calculated
cMCS will represent suitable candidates for the construction
of real production strains. When determining cMCS for
experimental implementation, the time for minimization of the
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cut sets should be extended (see below) and a variety of cMCS
can be calculated from which some might be potentially more
promising (for example, because of knowledge not contained in
the model) than the others. In addition, higher minimum yields
can be tested for production strains to determine what maximal
product yields under coupling can be achieved with a limited
number of knockouts.

The number of knockouts to be implemented is a relevant
criterion for assessing the feasibility of a knockout strategy. For
a smaller fraction of metabolites, even after spending more time
for minimization, we identified very large cut sets. As an example,
Supplementary Data 1 shows the histogram of the cut set sizes
found for the extended computation for the 50% yield threshold
in E. coli (where the average cut set size is 12.9; compare column
50* in Fig. 2). In all, 4.4% of the found intervention strategies
would involve more than 20 reaction knockouts that might
appear unrealistic. In those cases, as mentioned above, for a single
(particular) product of interest, one may drastically increase the
computation time to further reduce the cut set size, if possible all
the way to the optimum. If the found cut sets are still (too) large,
some of the targeted pathways, especially in the anabolism, can
often be assumed to have a very low capacity and could therefore
be excluded when implementing the knockout strategies, at least
in a first attempt. Furthermore, given the ongoing evolution of
genome-editing techniques, the experimental implementation
also of cut sets with a larger number of knockouts can be expected
to be feasible, especially in a model organism like E. coli.
For instance, a well-known technique42 for deleting arbitrary
genes in E. coli has already been published in the year 2000, which
requires about 6 days to establish a knockout. Recently, a similar
technique has been proposed which enabled the implementation
of seven gene knockouts in only 7 days43. Mutant strains with up
to 16 reaction knockouts appear therefore not unrealistic
anymore, with which more than 75% of the cut sets found in
the extended E. coli 50% yield scenario would already become
feasible. Finally, the CRISPR-Cas9 system has recently been
shown to be a very efficient tool for multiple genetic
manipulations, also in more complex organisms44, and its
particular potential for metabolic engineering has been
emphasized45.

An important factor when setting up the model for cMCS
calculation for growth-coupled product synthesis is the selection
of active organic metabolite outflows. In the model configurations
used herein, we allowed standard (fermentation) products to be
excreted by the cells. If outflows for other organic metabolites,
that are unlikely to be excreted, are left open, then the number of
required cuts will increase making the calculation and experi-
mental implementation of the cut sets more difficult than
necessary. Moreover, feasibility of coupling can then even be
completely lost for some metabolites because no knockout
strategy can be found that can prevent synthesis of undesired
by-products while still allowing growth. For instance, when all
285 organic metabolite outflows contained in the iJO1366 model
are open in E. coli, the percentage of the substrate-producible
metabolites that can be coupled with growth at the 10% minimal
product yield level reduces to 43.4%, which is nevertheless still
significant. The mean cut set size increases by approximately
seven reaction knockouts. Analogously, in yeast 52.4%, in A. niger
even 81.4% and in C. glutamicum 35.9% of the metabolites can
still be coupled at the 10% minimal yield level when all organic
outflows present in the respective models are open (the
Synechocystis model does not contain such outflows; see Methods
section). In those cases, feasibility of coupling would increase
again, if we allow knockouts also for at least those exchange
reactions where corresponding genes of the involved transporters
are definitely known (in fact, most transport reactions in the

iJO1366 (ref. 26) model have been assigned associated genes).
Generally, opening all potential outflows, for example, in the
E. coli model describes an extreme and unrealistic situation since
normally no or only few organic metabolites (mainly standard
fermentation products) are excreted by E. coli. On the other hand,
if a production strain constructed from a cut set excretes a
metabolite whose exchange reaction was not open in the model,
then this cut set might not work as expected. For those cases, a
practical solution can be found as follows: when the situation
arises that, after experimental implementation of some knockouts
of a calculated cut set, a metabolite is excreted whose outflow was
not considered in the model before, it is possible to modify the
model accordingly and then to recalculate and adapt the current
cut set(s) to get intervention strategies which additionally
suppress the unwanted excretion. In this manner, a production
strain can be designed through an iterative cycle of calculation
and experiment as was recently demonstrated for high-yield
itaconic acid synthesis in E. coli22.

In summary, our results underline the great potential of
growth-coupled designs for the rational engineering of cell
factories. We have shown that such designs are, in principle,
widely realizable in all production organisms investigated. Several
microbial strains that implement coupling have already been
developed8,10,12,17–23 and with our results we expect further
reports of successful constructions of growth-coupled production
strains in the future.

Methods
Model configurations. The organisms and associated models used herein are
listed in Table 1. The growth of the four heterotrophic organisms was simulated on
glucose minimal medium. For E. coli and S. cerevisiae aerobic as well as anaerobic
growth was considered. Simulation of anaerobic growth of E. coli was implemented
by removing the exchange reaction for oxygen, while for S. cerevisiae this was
achieved by removing the cytochrome c oxidase which is part of the respiratory
chain (in the yeast model the production of a few essential metabolites requires
oxygen, although in very small amounts only). The other two heterotrophic
organisms, A. niger and C. glutamicum, are obligate aerobes; hence, only aerobic
growth was considered. The fifth organism, Synechocystis sp. PCC 6803, is
photoautotrophic and was simulated with light as limited ‘substrate’ together with
an unlimited supply of CO2. All models allow an unlimited uptake of inorganic
compounds necessary for growth while uptake of the substrate (photons in case of
Synechocystis sp. PCC 6803) is limited to known maximal values. Furthermore,
organism-specific ATP requirements for non-growth-associated maintenance
processes were taken into account if provided by the original models (Table 1).

The models of the four heterotrophic organisms contain many exchange
reactions for organic metabolites allowing the outflow of the associated metabolites
from the cell. For example, the E. coli model contains 285 and the yeast model 153
potential outflows for organic metabolites. As it is unlikely that all these organic
metabolites are simultaneously excreted from the cell, the (non-essential) outflows
of organic metabolites were restricted to typical (fermentation) products for the
given organism when the cut sets were calculated (no restrictions were set for
inorganic compounds). Concretely, in E. coli we considered ethanol, lactate,
formate, acetate, succinate and hydrogen as possible outflows (methanol can also
be excreted in the E. coli model, but occurs only in tiny amounts as by-product of
biotin synthesis). For S. cerevisiae we allowed ethanol, glycerol, pyruvate, acetate
and succinate to leave the cell. For A. niger the open outflows are gluconate, citrate,
oxalate, malate, succinate and erythritol; for C. glutamicum they are glutamate,
succinate, lysine, lactate, acetate, alanine, isoleucine and glycine. In the
Synechocystis sp. PCC 6803 model only three organic metabolites can be excreted
from the cell and because these outflows are essential for growth they were left
open.

To ensure that the calculated knockout strategies (cut sets) have a high degree of
biological relevance, reactions were set to be irrepressible in the models if they do
not correspond to enzyme-catalysed biochemical reactions in which substrates are
converted to products. This pertains to pseudo reactions representing transport
processes, for example, between different cellular compartments and the exchange
of substances to/from the extracellular space (even if genetically encoded
transporters are known the corresponding reactions were considered to be not
repressible as these transporters are often unspecific). Furthermore, other pseudo
reactions (including the consumption of ATP for maintenance processes) and non-
enzymatic spontaneous reactions are contained in the models. All these reactions
mentioned above were considered as irrepressible, that is, they cannot be knocked
out in the cut sets (Table 1). In the E. coli model, all reactions that do not have an
associated gene were also considered irrepressible. For the other two models that
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include some gene-reaction mappings (A. niger and C. glutamicum), the cases of
missing associations were investigated in more detail to decide whether or not to
make such reactions irrepressible. The number and percentage of irrepressible
reactions in the respective models is shown in Table 1.

Procedure for checking the feasibility of growth-coupled synthesis. Each
metabolic network with m internal metabolites and n reactions is represented
by its m� n stoichiometric matrix N together with the sets Irr and Rev containing
the indices of the irreversible and reversible reactions, respectively. The network is
assumed to be in steady state implying that the net reaction rates r¼ (r1, r2, y, rn)T

fulfil

Nr ¼ 0; ri � 0 8i 2 Irr:

For some reactions, lower (ai) or/and upper (bi) flux bounds might be known further
constraining the reaction rates:

ai � ri � bi:

Metabolic flux distributions in a cell that are unfavourable for the efficient
production of a certain chemical (for example, flux vectors with low product
yield YP/S) can be specified by linear inequalities

Tr � t

with t� n matrix T and t� 1 vector t. Herein, we used the following inequality to
describe undesired flux distributions having a product yield below a given
minimum threshold YP=S

min (rS is the substrate uptake rate and rP the product excretion
rate):

rP

rS
� YP=S

min , rP�YP=S
min � rS � 0 ð1Þ

Hence, matrix T consists here of a single row containing zeros except a ‘þ 1’ for rP

and �YP=S
min in the column of rS, while vector t has only one (row) element being zero.

Similarly, the inequalities

Dr � d

with d� n matrix D and d� 1 vector d can be used to represent desired (wanted)
metabolic behaviours. We used the following inequalities to describe desired flux
distributions with a product yield above YP=S

min together with a minimum biomass
yield YB=S

min (m is the growth rate):

YP=S
min � rS � rP � 0

YB=S
min � rS �m � 0

ð2Þ

Hence, matrix D consists here of two rows: the first contains zeros except a ‘� 1’
for rP and YP=S

min in the column of rS, while the second row contains non-zero values
only for the growth rate (� 1) and again for the substrate uptake rate rS (value
YB=S

min ). The vector d has two rows both containing a zero.
For inducing (and proving feasibility of) strong coupling, a reaction knockout

set (a cMCS) has to be found that disables all undesired flux vectors (fulfilling (1))
while keeping at least one desired flux vector fulfilling (2). Note that the desired
behaviour described in (2) is a subset of the complement of the undesired
behaviour in (1) as the latter does not contain a constraint for biomass yield.

Given these specifications, the MILP problem that is used to calculate a cMCS
to check if growth-coupled production is possible takes the following form34,46:

NT
Irr IIrr 0 0 TT

Irr 0

NT
Rev 0 IRev � IRev TT

Rev 0

0 0 0 0 0 N

0 0 0 0 0 D

0
BBB@

1
CCCA

u

vpIrr

vpRev

vnRev

w

r

0
BBBBBBBB@

1
CCCCCCCCA

�
¼
¼
�

0

0

0

d

0
BBB@

1
CCCA

tTw � � c

u 2 <m; r 2 <n; w 2 <t ; vpIrr; vpRev ; vnRev ;w; rIrr � 0; c40

8i 2 Rev : ri � ð1� zpi � zniÞ � ai; ri � ð1� zpi� zniÞ � bi; zpi þ zni � 1

8i 2 Irr : ri � ð1� zpiÞ � ai; ri � ð1� zpiÞ � bi

zpi; zni 2 f0; 1g; a; b 2 <n

Here the stoichiometric matrix N, the identity matrix I and the matrix T are
split into two submatrices containing the reversible (NRev, IRev and TRev) and
irreversible (NIrr, IIrr and TIrr) reactions (columns), respectively. The zpi and zni

variables are Boolean indicator variables that distinguish whether the
corresponding vpi and vni variables are equal or unequal to zero (zpi¼ 02vpi¼ 0,
zpi¼ 12vpia0 for all reactions and additionally zni¼ 02vni¼ 0,
zni¼ 12vnia0 for the reversible reactions). In case an indicator variable is
unequal to zero, then its associated reaction is in the cut set and can carry no flux as
demanded by the constraints for ri. For this MILP problem it is essential that finite
lower (ai) and upper (bi) bounds for all fluxes are provided (see below). Finally, for
the irrepressible reactions that are not allowed to be knocked out (see above and
Table 1), the values of their associated zpi and, in case of reversible reactions, of zni

variables are fixed to zero in the MILP.

The MILP explained above is the central element of the procedure for
testing whether a suitable knockout strategy (cMCS) exists that induces
growth-coupled production of a metabolite with a demanded minimum product
yield. In each model, the feasibility of growth coupling is checked for all
organic metabolites that can be produced from the substrate, with two
exceptions: First, for the models that use glucose as substrate the possibility of
coupling the production of unphosphorylated glucose (which may occur in
other compartments beside the extracellular space) is not considered as it is the
same compound as the substrate. Second, if a metabolite (for example, ethanol
or acetate in the E. coli and yeast model) is connected to one of the open
standard outflow pathways of the model (which may go through different
compartments), then it is assumed that the metabolite to be coupled is excreted
along this outflow. Hence, in those cases, coupling is only considered for the
(excreted) metabolite in the extracellular space and different instances of the
same metabolite in other compartments are not taken as candidates for
coupling. The respective numbers of candidate metabolites for coupling are
shown in Figs 2 and 3 (‘substrate-producible organic metabolites’) and full lists
of the metabolites that are candidates for coupling can be found in Supplementary
Data 1.

For each candidate metabolite for coupling, the following steps are performed:

(1) An exchange reaction for this metabolite is added to the model if it does not
yet exist. The exchange reaction is set up so that only the outflow (not uptake)
of the metabolite is possible.

(2) The flux through this export reaction is maximized via solving an appropriate
linear optimization (LP) problem (applying substrate uptake limit, ATP
maintenance). If the result is zero, then the metabolite cannot be produced at
all, if it its unbounded then its production is not bounded by the limited
substrate (those metabolites are not part of the list of candidate metabolites
for coupling). When the result is greater than zero and bounded it is divided
by the substrate uptake and taken as maximum product yield.

(3) The minimum demanded product yield YP=S
min is set to the required fraction

(10%/30%/50%) of the maximum product yield; the minimum demanded
biomass yield YB=S

min is set to 0.01 gDW mmol� 1 glucose for the heterotrophic
organisms and to 10� 4 gDW mmol� 1 photons for the cyanobacterium
Synechocystis sp. PCC 6803 (which requires 51 photons to produce one
molecule glucose).

(4) The network is compressed by merging sets of fully coupled reactions and by
removing conservation relations.

(5) In case a cut set for a lower minimum product yield is known, it is checked
whether this cut is also applicable for the current minimum yield. If this is the
case steps 6 to 8 are skipped.

(6) A flux variability analysis (FVA) with substrate uptake limit, ATP
maintenance and minimum biomass yield YB=S

min is performed to calculate
flux bounds for all reactions; in case unbounded fluxes remain these are
limited to ±2,000 mmol gDW� 1 h� 1. Compared to the LP in step 2,
minimum biomass yield has been added as additional restriction for the FVA.
Consequently, the LPs of the FVA may now be infeasible in which case
growth-coupled production is not possible for this metabolite (where the
following steps can be skipped).

(7) The MILP is run with a given time limit (1–10 min.). The MILP minimizes
the number of knockouts, but, to reduce the computation time, the solver is
configured to stop as soon as the relative gap between the current objective
and the best bound drops below 98% (which is still large but sufficient for our
purpose). The solver stops when a solution is found, the time limit is reached
or when the problem is determined by the solver to be infeasible (meaning
that coupling is not possible).

(8) In case a solution (and thus a cut set) has been found by the solver for the
MILP problem it is verified with separate LPs, testing whether, under
application of the reaction knockouts contained in the cut set, coupling is
achieved, that is, the undesired behaviour becomes infeasible and the desired
behaviour remains feasible.

(9) If neither a solution was found nor the infeasibility of the problem has been
determined, then the procedure is repeated up to 10 times from step 7 using a
different solver seed which leads to a different exploration of the search space.

(10) If a cut set has been found this will typically be a non-minimal cut set; hence,
a superset of one or more cMCS. A cMCS is then extracted from the cut set by
iteratively checking the necessity of each knockout with a LP (this yields a
cMCS since no further knockout can be removed from the cut set; however, it
is not necessarily the smallest cMCS with fewest number of cuts).

When no cMCS was found by the solver nor the infeasibility of the problem
concluded after the maximum number of repetitions of steps 7 and 8, then it
cannot be decided whether growth coupling is possible or not. If, for a given
product and coupling yield (for example, 30%), a cut set C1 was found that required
less interventions than a cut set C2 found for the same metabolite for a lower
coupling yield (for example, 10%), then cut set C2 was replaced by C1 (this is
mainly relevant for the cut set size statistics shown in Figs 2 and 3).

For the calculation of gene cut sets in the E. coli model, we adapted a recently
proposed approach37 and integrated the gene–enzyme–reaction association into
the metabolic network model as follows: for each enzyme-catalysed reaction an
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auxiliary metabolite is added which is consumed by this reaction. Each auxiliary
metabolite is produced by one or more reactions with each of these reactions
corresponding to an enzyme that can catalyse the metabolic reaction associated
with the auxiliary metabolite. A reaction that corresponds to an enzyme thereby
consumes metabolites which represent the gene product(s) of which this enzyme is
composed. Each gene product metabolite is in turn produced by a gene translation
reaction (which does not consume anything). To calculate gene cuts only the gene
translation reactions are allowed to be knocked out. Furthermore, only those gene
translation reactions can be cut that affect metabolic reactions which are repressible
in the reaction cut calculations. All other reactions are considered to be
irrepressible.

All calculations were carried out on a computer with two Intel Xeon X5650
(2.67 GHz) hexacore CPUs using API functions of CellNetAnalyzer47 (version
2016.1) which uses CPLEX 12.5.1 as MILP solver.

Code availability. CellNetAnalyzer can be downloaded at: http://www2.mpi-
magdeburg.mpg.de/projects/cna/cna.html. An example script to calculate cMCS for
growth-coupled product synthesis can be found at: http://www2.mpi-magde-
burg.mpg.de/projects/cna/etcdownloads.html.

Data availability. The authors declare that the data supporting the findings of this
study are available within the paper and its Supplementary Data file.
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