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In this paper continuous mixed solution mixed product removal (MSMPR) crystallization 

is considered. This process has been studied well, however, different aspects, in 

particular, process modeling, monitoring and control remain challenging. Within this 

paper we will present a new approach for online measurement of the crystal size 

distribution. Furthermore, unscented Kalman filtering is applied to overcome biased 

concentration measurement. Finally, a discrepancy-based control is applied to 

continuous MSMPR crystallization and its closed-loop performance is evaluated. 
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1 Introduction 

Crystallization is an important separation and purification process used to produce 

different solid materials from liquids in chemical, food and pharmaceutical industries. It 

allows to adjust such properties as crystal size, shape, polymorphic form and purity [1]. 

Control of the product quality as a whole, in most cases expressed in terms of its crystal 

size distribution (CSD), is difficult but worthwhile and requires both an online 

monitoring of this product quality and detailed knowledge of the considered process [2]. 

CSD affects product dissolution behavior, bioavailability and can facilitate downstream 

processing, so its adjustment has a strong influence on product quality and production 

performance. 



  

  

 

In recent years, interest in continuous manufacturing grew dramatically. Within this field, 

continuous mixed solution mixed product removal (MSMPR) crystallization is a 

powerful approach. The main feature of the continuous MSMPR crystallization is a 

constant solution feed and a constant vessel content withdraw, which yields to the 

improvement of product quality and production rates, compared to a similar batch 

operation. In this paper continuous MSMPR crystallization modeling, online monitoring 

and control problems are considered. Image processing techniques are well tested in 

application to crystallization processes: Canny edge detector [3], model-based 

recognition [4], genetic-algorithm-based restoration from axis-length distribution (ALD) 

[5], sufficient image processing rate was reached for online operation using 

multiprocessing system [6]. In [7] it is claimed that realization in Matlab by Mathworks 

shows good quality, but remains sluggish. Image processing is a promising approach for 

online CSD measurement, but the mentioned imaging systems require sophisticated 

hardware and high computational power, so a new embedded approach will be discussed. 

During experiments an issue with concentration measurement was observed: 

measurement bias caused by crystal growth on the probe. One straightforward approach 

to reduce or even overcome this undesired phenomenon may be to alter the probe 

location within the tank or to change process conditions. Alternatively, model based state 

estimation techniques, e.g. unscented Kalman filtering (UKF) can be applied to 

reconstruct the solute concentration from the biased measurement [8]. Acquired and 

reconstructed measurements of the CSD and the concentration  can now be used to 

design controls and operate the process in a desired way. 

In order to control the CSD different strategies have been proposed including robust 

control [9], [10], [11], C-control [12], decentralized PID and nonlinear model predictive 

control (NMPC) [13], direct nucleation control [14]. A Lyapunov-function-based 

approach called discrepancy-based control was presented in [15], which was later 

generalized for particle systems [16]. In contrast to linearization-based control 

techniques, discrepancy-based control (DBC) considered in this contribution is applied to 

nonlinear model taking system nonlinearities into account. The general structure of the 

system including plant measurement, state estimation and control subsystems is shown in 

Fig. 1. 
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2 Mathematical modeling 

Besides sophisticated experimental work, mathematical modeling of the process is 

necessary to obtain a thorough understanding of crystallization processes [17]. Here, the 

population balance modeling (PBM) approach [18] is used. We consider contents of the 

crystallizer to be well-mixed. Crystallization is governed by growth and secondary 

nucleation phenomena. Growth rate is assumed to be size-independent. Nucleating 

crystals have size 
min

L  [19]. Dynamics of the crystal size distribution is described by the 

following population balance equation (PBE) 
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where n(L,t) is the crystal size distribution, t is time, L is characteristic length of crystal, 

G(t) is the growth rate and vτ  is the residence time. Initial condition is  
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and boundary condition is  
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where nucleation is governed by 

                                     tμtSK=tB
b

b 3
1                           (4) 

with nucleation kinetics parameters 
b

K  and b. Crystal  growth  is characterized by the 

following growth rate  
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with growth kinetics parameters 
g

K  and g, activation energy 
gA,

E , gas constant 
gas

R , 

vessel temperature  tT
v

  and supersaturation S(t)  
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where the equilibrium concentration  tc
sat

 is approximated as a polynomial: 
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The properties of the modeled substance – KDP (monopotassium phosphate): growth and 

nucleation kinetics as well as solubility parameters shown in Table 1 were evaluated 

experimentally using methodology described in [20, 21].  

 

((Table 1)) 

 

The liquid phase concentration dynamics is governed by  
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where 
fv,

c  is the feed concentration, 
V

k  is the volumetric shape factor, 
s

ρ  is the solid 

phase density, 
v

V  is the total vessel contents volume, 
v

ρ  is the liquid phase density and 

 tμ
2

 is the second moment of the CSD. Arbitrary moments can be described by the 

moment transform  
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with corresponding dynamics  
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3 Online CSD measurement 

Feedback control is based on process monitoring, so acquisition of representative data is 

crucial for efficient control. The proposed hardware design is a pragmatic combination of 

an online microscope and a low-cost single-board computer (Raspberry Pi by the 

Raspberry Pi foundation). Such system can be mounted on the flow-through cell and 

form a noninvasive online embedded video microscopy tool. Particle flow orients 

particles with bigger facet toward the microscope, therefore analyzed shots represent 

characteristic lengths of crystals. Image processing techniques are well tested in 

application to crystallization processes: Canny edge detector [3], model-based 

recognition [4], genetic-algorithm-based restoration from axis-length distribution (ALD) 

[5], sufficient image processing rate was reached for online operation using 

multiprocessing system [6]. In the contribution, the algorithm suggested in [22] is coded 

in Python programming language using OpenCV library. 

 



  

  

Let  yx,f  represent a 2D image, with coordinates x  and y . First step for edge 

detection is smoothing and noise removal with Gaussian function 
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where σ is the standard deviation of Gauss kernel: 
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In the next step of Canny edge detection algorithm, the gradient  yx,f  is calculated 

over the filtered image  yx,f
filt
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Therefore, edge gradient  yx,F  and direction  yx,Θ  can be determined: 
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Further analysis is called non-maximum suppression. Gradient value is analyzed for local 

maxima in gradient and antigradient directions and marked as an edge, otherwise pixels 

are marked as background and thus set to zero. To robustify results double threshold 

filtration should be applied. The idea is to ignore low gradient values and keep high 

values, so 
low

F and 
high

F  should be defined. Pixel  
ppp

y,xf  is treated as strong edge if 

 
highpp

F>y,xF , weak edge if  
highpplow

F<y,xF<F , otherwise suppressed. Weak 

edge pixels are then tested for neighborhood of strong edge pixels. In positive case, they 

are kept as an edge, otherwise it is suppressed. It is reasonable to normalize threshold 

parameters as median 
median

f  over the whole image and variance ν . Therefore 

 νf=F
medianlow

1 ,  ν+f=F
medianhigh

1 . The crystal size distribution is thus an array of 

circle diameters corresponding to detected edges. Useful information about 



  

  

crystal/solution ratio can be acquired by calculation of area ratio 
v
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v
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A

A
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V
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solid
A  is the area of crystals in the image, 

v
A  is the crystal-free area, 

solid
V  is the 

volume of crystals in the vessel and 
v

V  is the volume of solution in the vessel. This 

relation can be used for exact calculation of the third moment such that 
v

v
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V

A

A
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3
. 

 

The described image analysis software operates on Raspberry Pi hardware with the 

Raspbian operating system with an approximate rate of 10 frames per second (fps). For 

flow-through cell design such rate represents data well and makes online operation 

possible. An analyzed image example is shown in Fig. 2: the first image depicts an 

instance of taken images, the second image shows results of Canny edge detection and 

the third image represents resulting crystal size distribution, similar to the theoretically 

derived exponential distribution. The edge detection algorithm robustness is an important 

problem to discuss, especially if crystal/solution ratio is high. As seen in Fig. 2 (ii), 

crystal agglomerations, overlapping crystals and optical artifacts can influence the 

quality of the measurements, so the detection sensitivity should be thoroughly tuned for 

each setup. 

 

((Figure 2)) 

4 State estimation 

During the experiments crystal formation on the surface of the concentration sensor was 

observed resulting in a biased measurement of the solute concentration  

  d+c=c
vbiasv,

.   (16) 

Nevertheless, the unbiased concentration can be reconstructed using a model based state 

estimator. Therefore, an Unscented Kalman Filter (UKF) [8] was implemented, which is 

also used to estimate the bias d. Here, it is sufficient to include the dynamic equations of 

the first four moments of the CSD according to (10) instead of the full PBM (1). The 

overall UKF algorithm is implemented discrete time and the corresponding dynamics for 

the estimation of the states and the bias is given by  
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Here, w and v denote the zero mean process and measurement noises with covariance 

matrices Q and R. To evaluate the performance, artificial measurements were generated 

using the simulation of the idealized model Eq. (1) - (6) and the theoretical bias was 

implemented as 

                        ttc=td
v

4

0
103exp10.15



 .                (20) 

Thereby, it is assumed, that the crystal layer on the probe is increasing up to a certain 

maximum thickness. The performance of the UKF is shown in Fig. 3. It can be seen that 

both, a good reconstruction of the unbiased solute concentration and estimation of the 

disturbance is obtained for different assumptions on the measurement noise. Even for a 

relative large noise, the estimation is reasonably accurate. 

 

((Figure 3)) 



  

  

5 Discrepancy-based control 

Shift from batch to continuous operation has high potential, but this task is not trivial, 

especially in pharmaceutical industry, where uniformity of properties is extremely 

important. The continuous MSMPR crystallization is a nonlinear distributed-parameter 

system, therefore control design is a challenging task. Different strategies have been 

proposed including robust control [9], [10], [11], C-control [12], decentralized PID and 

nonlinear model predictive control (NMPC) [13], direct nucleation control [14]. A 

Lyapunov-function-based approach called discrepancy-based control was presented in 

[15] and generalized to particle systems in [16]. This approach uses a generalized 

distance measure, discrepancy, and Lyapunov stability theory in order to design a 

stabilizing control law for the nonlinear infinite-dimensional model. The choice of the 

appropriate discrepancy is motivated by the physical insight. In contrast to conventional 

linearization-based approaches, the full nonlinear behavior and complexity of the plant 

can be taken into account. 

 

Consider a dynamical system which satisfies Eq. (1) - (6). Control is designed for the 

third moment 
3

μ  as controlled variable and temperature in the vessel 
v

T  as 

manipulated variable. Defining a discrepancy ρ  based on the third moment   
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with initial condition  
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, the associate control Lyapunov candidate 

functional is given by  
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which is continuously differentiable and positive definite. In order to guarantee closed 

loop stability its time derivative should be negative definite for a non-zero discrepancy 

ρ . Calculating the time derivative results in  
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Inserting the population balance Eq. (1) with nucleation term yields  
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The condition of closed-loop exponential stability with respect to the discrepancy ρ  is 

given by 

cV=V 2 ,     (25) 

where c is the convergence rate, the only parameter to be tuned. As the manipulated 

variable 
v

T  enters growth kinetics dependency in a complicated way, the crystal growth 

rate G will be used as a virtual control input 
virt

u . This is possible as only the growth 

rate is affected by the vessel temperature. Substitution of (22) and (23) into (24) and 

rearrangement with respect to the growth rate yields the virtual control law  
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The temperature 
v

T  can be derived from the virtual control input by solving the 

following nonlinear algebraic equation at each instance of time  
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Closed-loop performance is shown in Fig. 4, the simulation parameters are presented in 

Table 2. Simulation of the feedback loop with the derived discrepancy-based control 

shows the expected exponential convergence with reasonable control effort. The 

presented control technique is compared with the PI-controller tuned according to the 

module optimum for a specific setpoint [23]. The tuning parameters of the controllers are 

shown in Table 3. Integral square error (ISE) is used as a performance indicator and the 

comparison is shown in Table 4. In Fig. 4 three scenarios with different setpoints are 

depicted: the first setpoint is 34

set3,
106.2 mμ



 , the second is 34

set3,
108.2 mμ



  and 

the third is 34

set3,
103 mμ



 . It is noticeable that linear control performance worsens as 

the setpoint drifts away from the linearization point, whereas DBC keeps decent 

performance in different regimes. In [24] it is claimed that the robustness of the 

controller towards substance properties uncertainty, in other words – plant-model 



  

  

mismatch should be assured. To overcome such issue, the adaptive form of the DBC [25] 

should be considered. 

 

((Figure 4)) 

((Table 2)) 

((Table 3)) 

((Table 4)) 

 

6 Conclusions 

Within this paper important issues of continuous MSMPR crystallization were tackled: 

CSD online monitoring, state estimation and control, forming a general process control 

structure as in Fig. 1. Noninvasive online embedded video microscopy is an efficient, 

affordable and flexible tool to enhance crystallization monitoring. Suggested online 

monitoring reaches performance of approximately 10 fps, which allows to apply 

sophisticated control schemes based on solid state measurements. Noninvasive online 

embedded video microscopy can be used not only for CSD measurements, but for 

metastable zone detection or morphology analysis as well. Although, Canny edge 

detector allows to tackle some drawbacks of video microscopy, use of different schemes 

such as Otsu’s binarization or watershed transform should improve the overall 

performance: reduce computational cost, expand possible crystal density range, alleviate 

overlapping crystals detection, avoid false positive detections. During experiments 

concentration measurement issue was retrieved and overcome by unscented Kalman 

filtering which allowed reconstruction of solute concentration from biased measurement. 

It shows good performance and overcomes emerging measurement noise. Control design 

for continuous MSMPR crystallization is a challenging task due to nonlinear and 

distributed-parameter behavior. This motivated the application of discrepancy-based 

control design. System simulation show exponential convergence according to Lyapunov 

stability theory. Measurements based on different algorithms, their verification and 

validation is the next iteration of research as well as implementation of the designed state 

estimator and controller. 

 

Symbols used 

Symbols 



  

  

n(L,t) [# m-1] crystal size distribution 

t [s] time 

L [m] characteristic crystal length 

Lmin [m] nucleus size 

G(t) [m s-1] growth rate 

n0(L)  [# m-1] initial seeding 

B(t) [# s-1] nucleation rate 

Kb, b, Kg, g [-] kinetics parameters 

EA,g [J mol-1] growth activation energy 

Rgas [J K-1 mol-1] gas constant 

Ki [-] interpolation factors 

cv(t) [g g-1] liquid phase concentration 

csat(t) [g g-1] equilibrium concentration 

cv,f [g g-1] feed concentration 

S(t) [-] supersaturation 

Tv(t) [K] solution temperature 

Vv [m3] solution volume 

kV [-] volumetric shape factor 

f(x,y) [-] image 

x,y [-] Cartesian coordinates 

Gfilt(σ) [-] Gaussian function 

ffilt(x,y) [-] filtered function 

 yx,f  [-] image gradient 

 yx,F  [-] gradient magnitude 

 yx,Θ  [-] gradient argument 

Flow, Fhigh [-] threshold values 



  

  

fp(xp,yp) [-] pixel intensity 

fmedian [-] median threshold value 

Vsolid [m3] solid phase volume 

Asolid [m2] solid phase area 

Av [m3] solution volume 

cv,bias [g g-1] biased concentration 

d [g g-1] bias 

w 6-by-1 vector process noise 

v 5-by-1 vector measurement noise 

Q, R 6-by-6 matrices covariance matrices 

x 6-by-1 vector state vector 

y 5-by-1 vector output vector 

nset [# m-1] size distribution setpoint 

V [m6] candidate Lyapunov functional 

c [-] Tuning parameter 

uvirt [m s-1] virtual manipulated variable 

 

Greek symbols 

v
τ  [s] residence time 

σ [-] standard deviation 

ν  [-] threshold variance 

s
ρ  [kg m-3] solid phase density 



  

  

v
ρ  [kg m-3] liquid phase density 

i
μ  [mi] i-th moment 

set
μ

3,
 [m3] 3rd moment setpoint 

ρ  [m3] discrepancy 

 

Sub- and superscripts 

g growth 

b nucleation/birth 

min minimal 

set setpoint 

k on the k-th step 

0 at initial time moment 

v related to the solution in the vessel 

s related to the solid phase 

filt filtered 

 

Abbreviations 

MSMPR mixed solution mixed product removal 

CSD crystal size distribution 

PBM population balance modeling 

ALD axis-length distribution 

PID proportional-integral-differential 

PI proportional-integral 

NMPC nonlinear model predictive control 

DBC discrepancy-based control 

UKF unscented Kalman filter 
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Tables with headings 

 

Table 1 – KDP kinetics and solubility 

Variable Value 

g
K  5112597.405 

g  1.2586921036 

gA
E

,
 69859.933026 

b
K  26856478430.55499 

b  4.235315794045159 

0
K  15.2361 

1
K  0.2058 

2
K  0.0101 

3
K  -1.4506e-4 

4
K  1.2292e-6 

 



  

  

Table 2 – Process parameters and initial conditions 

Parameter Value 

v
V  3

026.0 m  

v
  3

1140


mkg  

V
k  7498.0  

s
  3

2340

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  s3120  
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 1

2757.0
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)0(
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)0(
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)0(
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2613.0
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)0(B  1

#4878.250
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s  

)0(G  17

101973.1
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n(L,0) 


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
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

v
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exp

)0(
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Table 3 – Control parameters 

Control parameter Value 

DBC: convergence rate c 0.001 

PI-control: proportional factor -48000 

PI-control: integral factor -3.86 

 

Table 4 – Control performance, setpoints and initials 

Controller 
set3,

μ  ISE 

DBC 34

106.2 m


  0.0162 

PI-control 34

106.2 m


  0.0175 

DBC 34

108.2 m


  0.0370 



  

  

PI-control 34

108.2 m


  0.0707 

DBC 34

103 m


  0.0578 

PI-control 34

103 m


  0.1237 

 

 

Figure legends 

Figure 1: General structure of image processing, unscented Kalman filter (UKF) and 

discrepancy-based control (DBC) 

Figure 2: Crystal size measurement procedure: (i) acquired image, (ii) edge detection 

results, (iii) crystal size histogram 

Figure 3: State estimation results for three scenarios: low noise - (i) ideal, biased and 

reconstructed measurement, (ii) estimation of bias compared to “real” bias; medium 

noise - (iii) ideal, biased and reconstructed measurement, (iv) estimation of bias 

compared to “real” bias; large noise - (v) ideal, biased and reconstructed measurement, 

(vi) estimation of bias compared to “real” bias; 

Figure 4: MSMPR control simulation for three scenarios: 34

set3,
106.2 mμ



  - (i) 

manipulated variable 
v

T , (ii) controlled variable 
3

μ ; 34

set3,
108.2 mμ



  - (iii) 

manipulated variable 
v

T , (iv) controlled variable 
3

μ ; 34

set3,
103 mμ



  - (v) 

manipulated variable 
v

T , (vi) controlled variable 
3

μ  
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