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Abstract. We give fault-tolerant algorithms for establishing synchrony in distributed systems
in which each of the n nodes has its own clock. Our algorithms operate in a very strong fault
model: we require self-stabilisation, i.e., the initial state of the system may be arbitrary, and
there can be up to f < n/3 ongoing Byzantine faults, i.e., nodes that deviate from the protocol in
an arbitrary manner. Furthermore, we assume that the local clocks of the nodes may progress at
different speeds (clock drift) and communication has bounded delay. In this model, we study the
pulse synchronisation problem, where the task is to guarantee that eventually all correct nodes
generate well-separated local pulse events (i.e., unlabelled logical clock ticks) in a synchronised
manner.

Compared to prior work, we achieve exponential improvements in stabilisation time and the
number of communicated bits, and give the first sublinear-time algorithm for the problem:

• In the deterministic setting, the state-of-the-art solutions stabilise in time Θ(f) and have
each node broadcast Θ(f log f) bits per time unit. We exponentially reduce the number of
bits broadcasted per time unit to Θ(log f) while retaining the same stabilisation time.

• In the randomised setting, the state-of-the-art solutions stabilise in time Θ(f) and have
each node broadcast O(1) bits per time unit. We exponentially reduce the stabilisation
time to polylog f while each node broadcasts polylog f bits per time unit.

These results are obtained by means of a recursive approach reducing the above task of self-
stabilising pulse synchronisation in the bounded-delay model to non-self-stabilising binary
consensus in the synchronous model. In general, our approach introduces at most logarithmic
overheads in terms of stabilisation time and broadcasted bits over the underlying consensus
routine.ar
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1 Introduction

Many of the most fundamental problems in distributed computing relate to timing and fault
tolerance. Even though most distributed systems are inherently asynchronous, it is often
convenient to design such systems by assuming some degree of synchrony provided by reliable
global or distributed clocks. For example, the vast majority of existing Very Large Scale
Integrated (VLSI) circuits operate according to the synchronous paradigm: an internal clock
signal is distributed throughout the chip neatly controlling alternation between computation and
communication steps. Of course, establishing the synchronous abstraction is of high interest in
numerous other large-scale distributed systems, as it makes the design of algorithms considerably
easier.

However, as the accuracy and availability of the clock signal is typically one of the most
basic assumptions, clocking errors affect system behavior in unpredictable ways that are often
hard – if not impossible – to tackle at higher system layers. Therefore, reliably generating and
distributing a joint clock is an essential task in distributed systems. Unfortunately, the cost of
providing fault-tolerant synchronisation and clocking is still poorly understood.

1.1 Pulse synchronisation

In this work, we study the self-stabilising Byzantine pulse synchronisation problem [13, 16],
which requires the system to achieve synchronisation despite severe faults. We assume a fully
connected message-passing system of n nodes, where

1. an unbounded number of transients faults may occur anywhere in the network, and
2. up to f < n/3 of the nodes can be faulty and exhibit arbitrary ongoing misbehaviour.

In particular, the transient faults may arbitrarily corrupt the state of the nodes and result
in loss of synchrony. Moreover, the nodes that remain faulty may deviate from any given
protocol, behave adversarially, and collude to disrupt the other nodes by sending them different
misinformation even after transient faults have ceased. Note that this also covers faults of the
communication network, as we may map faults of communication links to one of their respective
endpoints. The goal is now to (re-)establish synchronisation once transient faults cease, despite
up to f < n/3 Byzantine nodes. That is, we need to consider algorithms that are simultaneously
(1) self-stabilising [7, 15] and (2) Byzantine fault-tolerant [24].

More specifically, the problem is as follows: after transient faults cease, no matter what is
the initial state of the system, the choice of up to f < n/3 faulty nodes, and the behaviour of
the faulty nodes, we require that after a bounded stabilisation time all the non-faulty nodes
must generate pulses that

• occur almost simultaneously at each correctly operating node (i.e., have small skew), and
• satisfy specified minimum and maximum frequency bounds (accuracy).

While the system may have arbitrary behaviour during the initial stabilisation phase due to the
effects of transient faults, eventually the above conditions provide synchronised unlabelled clock
ticks for all non-faulty nodes:

skew accuracy

stabilisation
phase

faulty node, arbitrary behaviour

transient 
faults cease

next pulse
at the earliest

next pulse 
at the latest

correct nodes
pulse with small skew

Node 1
Node 2
Node 3 
Node 4
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In order to meet these requirements, it is necessary that nodes can estimate the progress of
time. To this end, we assume that nodes are equipped with (continuous, real-valued) hardware
clocks that run at speeds that may vary arbitrarily within 1 and ϑ, where ϑ ∈ O(1). That is,
we normalize minimum clock speed to 1 and assume that the clocks have drift bounded by a
constant. Observe that in an asynchronous system, i.e., one in which communication and/or
computation may take unknown and unbounded time, even perfect clocks are insufficient to
ensure any relative timing guarantees between the actions of different nodes. Therefore, we
additionally assume that the nodes can send messages to each other that are received and
processed within at most d ∈ Θ(1) time. The clock speeds and message delays can behave
adversarially within the respective bounds given by ϑ and d.

In summary, this yields a highly adversarial model of computing, where further restrictions
would render the task infeasible:

1. transient faults are arbitrary and may involve the entire network,

2. ongoing faults are arbitrary, cover erroneous behavior of both the nodes and the communi-
cation links, and the problem is not solvable if f ≥ n/3 [11], and

3. the assumptions on the accuracy of local clocks and communication delay are minimal to
guarantee solvability.

1.2 Background and related work

If one takes any one of the elements described above out of the picture, then this greatly simplifies
the problem. Without permanent faults, the problem becomes trivial: it suffices to have all
nodes follow a designated leader. Without transient faults [23], straightforward solutions are
given by elegant classics [33, 34], where [34] also guarantees asymptotically optimal skew [29].
Taking the uncertainty of unknown message delays and drifting clocks out of the equation leads
to the so-called digital clock synchronisation problem [3, 14, 25, 26, 28], where communication
proceeds in synchronous rounds and the task is to agree on a consistent (bounded) round counter.
While this abstraction is unrealistic as a basic system model, it yields conceptual insights into
the pulse synchronisation problem in the bounded-delay model. Moreover, it is useful to assign
numbers to pulses after pulse synchronisation is solved, in order to get a fully-fledged shared
system-wide clock [27].

In contrast to these relaxed problem formulations, the pulse synchronisation problem was
initially considered to be very challenging – if not impossible – to solve. In a seminal article,
Dolev and Welch [16] proved otherwise, albeit with an algorithm having an impractical expo-
nential stabilisation time. In a subsequent line of work, the stabilisation time was reduced to
polynomial [6] and then linear in f [9]. However, the linear-time algorithm relies on simulating
multiple instances of synchronous consensus algorithms [30] concurrently, which results in a
high communication complexity.

The consensus problem [24, 30] is one of the fundamental primitives in fault-tolerant com-
puting. Most relevant to this work is synchronous binary consensus with (up to f) Byzantine
faults. Here, node v is given an input x(v) ∈ {0, 1}, and it must output y(v) ∈ {0, 1} such that
the following properties hold:

1. Agreement: There exists y ∈ {0, 1} such that y(v) = y for all correct nodes v.

2. Validity: If for x ∈ {0, 1} it holds that x(v) = x for all correct nodes v, then y = x.

3. Termination: All correct nodes eventually decide on y(v) and terminate.

In this setting, two of the above main obstacles are not present: the system is properly initialised
(no self-stabilisation required) and computation proceeds in synchronous rounds, i.e., well-ordered
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time bits type notes reference

poly f O(log f) det. [6]
O(f) O(f log f) det. [9]
O(f) O(log f) det. this work and [4]

2O(f) O(1) rand. adversary cannot predict coin flips [16]
O(f) O(1) rand. adversary cannot predict coin flips [13]
polylog f polylog f rand. private channels, (*) this work and [22]
O(log f) poly f rand. private channels this work and [18]

Table 1: Summary of pulse synchronisation algorithms for f ∈ Θ(n). For each respective
algorithm, the first two columns give the stabilisation time and the number of bits broadcasted by
a node per time unit. The third column denotes whether algorithm is deterministic or randomised.
The fourth column indicates additional details or model assumptions. All algorithms tolerate
f < n/3 faulty nodes except for (*), where we have f < n/(3 + ε) for any constant ε > 0.

compute-send-receive cycles. This confines the task to understanding how to deal with the
interference from Byzantine nodes. Synchronous consensus is extremely well-studied; see e.g.
[32] for a survey. It is known that precisely b(n− 1)/3c faults can be tolerated in a system of n
nodes [30], Ω(nf) messages need to be sent in total [10], the connectivity of the communication
network must be at least 2f + 1 [8], deterministic algorithms require f + 1 rounds [1, 20], and
randomised algorithms can solve the problem in constant expected time [18]. In constrast, no
non-trivial lower bounds on the time or communication complexity of pulse synchronisation are
known.

The linear-time pulse synchronisation algorithm in [9] relies on simulating (up to) one
synchronous consensus instance for each node simultaneously. Accordingly, this protocol requires
each node to broadcast Θ(f log f) bits per time unit. Moreover, the use of deterministic
consensus is crucial, as failure of any consensus instance to generate correct output within a
prespecified time bound may result in loss of synchrony, i.e., the algorithm would fail after
apparent stabilisation. In [13], these obstacles were overcome by avoiding the use of consensus
by reducing the pulse synchronisation problem to the easier task of generating at least one
well-separated “resynchronisation point”, which is roughly uniformly distributed within any
period of Θ(f) time. This can be achieved by trying to initiate such a resynchronisation point
at random times, in combination with threshold voting and locally checked timing constraints
to rein in the influence of Byzantine nodes. In a way, this seems much simpler than solving
consensus, but the randomisation used to obtain a suitable resynchronisation point strongly
reminds of the power provided by shared coins [2, 3, 18, 31] – and this is exactly what the core
routine of the expected constant-round consensus algorithm from [18] provides.

1.3 Contributions

Our main result is a framework that reduces pulse synchronisation to an arbitrary (non-self-
stabilising) synchronous binary consensus routine at very small overheads. In other words, given
any efficient algorithm that solves consensus in the standard synchronous model of computing,
we show how to obtain an efficient algorithm that solves the pulse synchronisation problem in
the bounded-delay model with clock drift.

The key to efficiency is a recursive approach, where each node participates in only dlog fe
consensus instances, one for each level of recursion. On each level, the overhead of the reduction
over a call to the consensus routine is a constant multiplicative factor both in time and bit
complexity; concretely, this means that both complexities increase by overall factors of O(log f).
Applying suitable consensus routines yields exponential improvements in bit complexity of
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deterministic and time complexity of randomised solutions, respectively:

1. In the deterministic setting, we exponentially reduce the number of bits each node broad-
casts per time unit to Θ(log f), while retaining Θ(f) stabilisation time. This is achieved
by employing the phase king algorithm [4] in our construction.

2. In the randomised setting, we exponentially reduce the stabilisation time to polylog f , where
each node broadcasts polylog f bits per time unit. This is achieved using the algorithm by
King and Saia [22]. We note that this slightly reduces resilience to f < n/(3 + ε) for any
fixed constant ε > 0 and requires private communication channels.

3. In the randomised setting, we can also obtain a stabilisation time of O(log f), polynomial
communication complexity, and optimal resilience of f < n/3 by assuming private commu-
nication channels. This is achieved using the consensus routine of Feldman and Micali [18].
This almost settles the open question by Ben-Or et al. [3] whether pulse synchronisation
can be solved in expected constant time.

The running times of the randomised algorithms (2) and (3) hold with high probability and the
additional assumptions on resilience and private communication channels are inherited from
the employed consensus routines. Here, private communication channels mean that Byzantine
nodes must make their decision on which messages to sent in round r based on knowledge of
the algorithm, inputs, and all messages faulty nodes receive up to and including round r. The
probability distribution is then over the independent internal randomness of the correct nodes
(which the adversary can only observe indirectly) and any possible randomness of the adversary.
Our framework does not impose these additional assumptions: stabilisation is guaranteed for
f < n/3 on each recursive level of our framework as soon as the underlying consensus routine
succeeds (within prespecified time bounds) constantly many times in a row. Our results and
prior work are summarised in Table 1.

Regardless of the employed consensus routine, we achieve a skew of 2d, where d is the
maximum message delay. This is optimal in our model, but overly pessimistic if the sum
of communication and computation delay is not between 0 and d, but from (d−, d+), where
d+ − d− � d+. In terms of d+ and d−, a skew of Θ(d+ − d−) is asymptotically optimal [29, 34].
We remark that in [21], it is shown how to combine the algorithms from [13] and [34] to achieve
this bound without affecting the other properties shown in [13]; we are confident that the same
technique can be applied to the algorithm proposed in this work. Finally, all our algorithms
work with any clock drift parameter 1 < ϑ ≤ 1.007, that is, the nodes’ clocks can have up to
0.7% drift. In comparison, cheap quartz oscillators achieve ϑ ≈ 1 + 10−5.

We consider our results of interest beyond the immediate improvements in complexity of
the best known algorithms for pulse synchronisation. Since our framework may employ any
consensus algorithm, it proves that pulse synchronisation is, essentially, as easy as synchronous
consensus – a problem without the requirement for self-stabilisation or any timing uncertainty.
Apart from the possibility for future improvements in consensus algorithms carrying over, this
accentuates the following question:

Is pulse synchronisation at least as hard as synchronous consensus?

Due to the various lower bounds and impossibility results on consensus [8, 10, 20, 30] mentioned
earlier, a positive answer would immediately imply that the presented techniques are near-
optimal. However, one may speculate that pulse synchronisation may rather have the character
of (synchronous) approximate agreement [12, 17], as precise synchronisation of the pulse events at
different nodes is not required. Considering that approximate agreement can be deterministically
solved in O(log n) rounds, a negative answer is a clear possibility as well. Given that all currently
known solutions either explicitly solve consensus, leverage techniques that are likely to be strong
enough to solve consensus, or are very slow, this would suggest that new algorithmic techniques
and insights into the problem are necessary.
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1.4 Outline of this paper

Section 2 starts with an overview of the ingredients used in our construction. Section 3 establishes
some key definitions and Section 4 presents the main results. As the formal treatment of our
results is fairly involved, we start with an informal summary of the main ideas and techniques
behind our results in Section 5. After this, we proceed to give all the details in the subsequent
sections. Section 6 gives a detailed definition of the model of computing, Sections 7–9 give
proofs of our technical results, and Section 10 concludes the paper by showing how to adapt our
framework to utilise randomised consensus algorithms.

2 Ingredients of the framework

In this section, we give a high-level overview of our approach and compare it to previous solutions.
We combine both novel and prior techniques in order to construct efficient pulse synchronisation
algorithms. We take the following key steps:

(a) We start from a simple non-self-stabilising Byzantine-tolerant pulse synchronisation algo-
rithm, which can be interpreted as a special case of the Srikanth–Toueg algorithm [33].
This algorithm operates in the bounded-delay model and relies only on simple timeouts
and threshold voting mechanisms.

(b) We modify the above algorithm to explicitly employ a consensus routine (instead of
threshold voting) to have nodes agree on whether a new pulse should be generated. In
addition, we include a new “recovery” state, which nodes transition into if they observe
inconsistent behaviour. Nodes in the recovery state refrain from generating pulses until all
nodes agree to pulse again. This algorithm is not yet self-stabilising in itself.

(c) We design a self-stabilising resynchronisation algorithm that solves a weak variant of the
pulse synchronisation problem. It guarantees that, eventually, within a small time window
all correct nodes generate a resynchronisation pulse such that no node generates a new
resynchronisation pulse for a long time. Unlike in the pulse synchronisation problem, this
guarantee is limited to a single such pulse; otherwise, the behavior can be arbitrary.

(d) In order to make (b) self-stabilising, we devise an auxiliary stabilisation mechanism that
acts as a wrapper for the consensus routine driving the algorithm. The auxiliary mechanism
uses (a) to simulate any given synchronous consensus routine in the bounded-delay model.
Furthermore, the resynchronisation pulses generated by (c) are used to initialise the
stabilisation mechanism in a self-stabilising manner. Once a resynchronisation pulse
occurs, the mechanism triggers a new stabilisation attempt. During the attempt, it is
guaranteed that either (1) correct nodes quickly synchronise (or remain synchronised if
already stabilised) or (2) all correct nodes observe inconsistent behaviour and end up in the
recovery state of algorithm (b). In the latter case, the auxiliary stabilisation mechanism
exploits the common timebase provided by the resynchronisation pulse to synchronise
the nodes. Finally, if the system has already stabilised, then no subsequent stabilisation
attempt triggered by a resynchronisation pulse interferes with the correct operation of the
system.

While we build upon existing techniques, our approach has many key differences. First
of all, while Dolev et al. [13] also utilise the concept of resynchronisation pulses, these are
generated probabilistically. Moreover, their approach has an inherent time bound of Ω(f) for
generating such pulses. In contrast, we devise a new recursive scheme that allows us to (1)
deterministically generate resynchronisation pulses in Θ(f) time and (2) probabilistically generate
resynchronisation pulses in o(f) time.
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To construct algorithms that generate resynchronisation pulses, we employ resilience boosting
and filtering techniques inspired by our recent line of work on digital clock synchronisation in the
synchronous model [25, 26, 28]. One of its main motivations was to gain a better understanding
of the linear time/communication complexity barrier that research on pulse synchronisation ran
into, without being distracted by the additional timing uncertainties due to communication delay
and clock drift. The challenge here is to port these newly developed tools from the synchronous
model to the bounded-delay bounded-drift model in a way that keeps them in working condition.
Unsurprisingly, this is a non-trivial task. Moreover, while the approach in [25, 28] uses consensus,
it does not directly lend itself to the use of arbitrary consensus routines, whereas [26] does not
guarantee that stabilisation persists in the randomised setting (i.e., there is a positive probability
that the algorithm fails after stabilisation). We resolve these issues in the bounded-delay model.

3 Preliminaries

We now establish some basic notation and definitions. Let V denote the set of all n nodes,
F ⊆ V be the set of faulty nodes such that |F | < n/3, and G = V \ F the set of correct nodes.
The sets G and F are unkown to the correct nodes in the system. We assume a continous
reference time [0,∞) that is not available to the nodes in the distributed system. The reference
time is only used to reason about the behaviour of the system. The adversary can choose the
initial state of the system (memory contents, initial clock values, any messages in transit), the
set F of faulty nodes which it controls, how the correct nodes’ clocks progress and what is the
delay of each individual message within the respective maximum clock drift and message delay
bounds of ϑ and d. We assume that ϑ and d are known constants. The full formal description of
the model is given in Appendix 6.

3.1 Pulse synchronisation algorithms

In the pulse synchronisation problem, the task is to have all the correct nodes locally generate
pulse events in an almost synchronised fashion, despite arbitrary initial states and the presence of
Byzantine faulty nodes. In addition, these pulses have to be well-separated. Let p(v, t) ∈ {0, 1}
indicate whether a correct node v ∈ G generates a pulse at time t. Moreover, let pk(v, t) ∈ [t,∞)
denote the time when node v generates the kth pulse event at or after time t and pk(v, t) =∞ if
no such time exists. We say that the system has stabilised from time t onwards if

1. p1(v, t) ≤ t+ Φ+ for all v ∈ G,
2. |pk(v, t)− pk(u, t)| < σ for all u, v ∈ G and k ≥ 1,
3. Φ− ≤ pk+1(v, t)−min{pk(u, t) : u ∈ G} ≤ Φ+ for all v ∈ G and k ≥ 1,

where Φ− and Φ+ are the accuracy bounds controlling the separation of the generated pulses.
That is, (1) all correct nodes generate a pulse during the interval [t, t+ Φ+], (2) the kth pulse
of any two correct nodes is less than σ time apart, and (3) for any pair of correct nodes their
subsequent pulses are at least Φ− but at most Φ+ time apart.

We say that A is an f -resilient pulse synchronisation algorithm with skew σ and accuracy
Φ = (Φ−,Φ+) with stabilisation time T (A), if for any choices of the adversary such that
|F | ≤ f , there exists a time t ≤ T (A) such that the system stabilises from time t onwards.
Moreover, a pulse synchronisation algorithm A is said to be a T -pulser if the accuracy bounds
satisfy Φ−,Φ+ ∈ Θ(T ). We use M(A) to denote the maximum number of bits a correct node
communicates per unit time when executing A.

3.2 Resynchronisation algorithms

In our pulse synchronisation algorithm, we use so-called resynchronisation pulses to facilitate
stabilisation. Essentially, the resynchronisation pulses are given by a weak variant of a pulse
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synchronisation algorithm, where the guarantee is that at some point all correct nodes generate
a pulse almost synchronously, which is followed by a long period of silence. At all other times,
the behaviour can be arbitrary.

Formally, we say that B is an f -resilient resynchronisation algorithm with skew ρ and
separation window Ψ that stabilises in time T (B) if the following holds: for any choices of the
adversary such that |F | ≤ f , there exists a time t ≤ T (B) such that every correct node v ∈ G
locally generates a resynchronisation pulse at time r(v) ∈ [t, t+ρ) and no other resynchronisation
pulse before time t+ ρ+ Ψ. We call such a resynchronisation pulse good. In particular, we do
not impose any restrictions on what the nodes do outside the interval [t, t+ ρ+ Ψ), that is, there
may be spurious resynchronisation pulses outside this interval:

Node 1
Node 2
Node 3 
Node 4

good resynchronisation pulse

faulty node, arbitrary behaviour

spurious pulses

t t + ⇢ + t + ⇢
no pulses for 

time 

4 The transformation framework

Our main contribution is a modular framework that allows to turn any non-self-stabilising
synchronous consensus algorithm into a self-stabilising pulse synchronisation algorithm in the
bounded-delay model. In particular, this construction yields only a small overhead in time
and communication complexity. This shows that efficient synchronous consensus algorithms
imply efficient pulse synchronisation algorithms. As our construction is relatively involved,
we opt to present it in a top-down fashion. In this section, we give our main result, which
relies on two auxiliary results. We first state the main result, then state the two auxiliary
results needed to obtain it, and finally show how these two results can be recursively applied to
obtain new pulse synchronisation algorithms with increasing resilience. This approach is inspired
by the resilience boosting techniques used for digital clock synchronisation algorithms in the
synchronous model [25, 26, 28].

4.1 The main result

For notational convenience, we say that C is a family of synchronous consensus routines with
running time R(f) and message size M(f), if for any f ≥ 0 and n ≥ n(f), there exists a
synchronous consensus algorithm C ∈ C that runs correctly on n nodes given that there are at
most f faulty nodes, terminates in R(f) rounds, and uses messages of size M(f). Here n(f)
gives the minimum number of nodes needed as a function of the resilience parameter f . Note
that R(f), M(f), and n(f) depend on C; however, making this explicit would clutter notation.
We emphasise that the algorithms in C are not assumed to be self-stabilising, that is, they work
only if the system is properly initialised.

Our main technical result states that given a family of consensus routines, we can obtain
pulse synchronisation algorithms with only small additional overhead.

Theorem 1. Let C be a family of synchronous consensus routines that satisfy (i) for any
f0, f1 ∈ N, n(f0 + f1) ≤ n(f0) + n(f1) and (ii) both M(f) and R(f) are increasing. Then, for
any f ≥ 0, n ≥ n(f), and 1 < ϑ ≤ 1.007, there exists a T0(f) ∈ Θ(R(f)), such that for any
T ≥ T0(f) we can construct a T -pulser A with skew 2d. The stabilisation time T (A) and number
of bits M(A) broadcasted per time unit satisfy

T (A) ∈ O

d+

dlog fe∑
k=0

R(2k)

 and M(A) ∈ O

1 +

dlog fe∑
k=0

M(2k)

 ,
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where the sums are empty when f = 0.

In the deterministic case, the phase king algorithm [5] provides a family of synchronous
consensus routines that satisfy the requirements. Moreover, it achieves optimal resilience (i.e.,
the minimal possible n(f) = 3f + 1 [30]), constant message size, and asymptotically optimal [20]
running time R(f) ∈ O(f). Thus, this immediately yields the following result.

Corollary 1. For any f ≥ 0 and n > 3f , there exists a deterministic f -resilient pulse synchro-
nisation algorithm over n nodes with skew 2d and accuracy bounds Φ−,Φ+ ∈ Θ(f) that stabilises
in O(f) time and has correct nodes broadcast O(log f) bits per time unit.

4.2 The auxiliary results

The two main ingredients in the construction of Theorem 1 are a pulse synchronisation algorithm
whose stabilisation mechanism is triggered by a resynchronisation pulse and a resynchronisation
algorithm providing the latter. The result related to the first construction is stated below; the
details of the construction are discussed later.

Theorem 2. Let f ≥ 0, n > 3f and (1 +
√

5)/3 > ϑ > 1. Suppose for a network of n nodes
there exist

• an f -resilient synchronous consensus algorithm C, and
• an f-resilient resynchronisation algorithm B with skew ρ ∈ O(d) and sufficiently large

separation window Ψ ∈ O(R) that tolerates clock drift of ϑ,

where C runs in R = R(f) rounds and lets nodes send at most M = M(f) bits per round. Then
a ϕ0(ϑ) ∈ 1 +O(ϑ−1) exists so that for any constant ϕ > ϕ0(ϑ) and sufficiently large T ∈ O(R),
there exists an f -resilient pulse synchronisation algorithm A for n nodes that

• has skew σ = 2d and satisfies the accuracy bounds Φ− = T and Φ+ = Tϕ,
• stabilises in T (B) +O(R) time and has nodes broadcast M(B) +O(M) bits per time unit.

To apply the above theorem, we require suitable consensus and resynchronisation algorithms.
We rely on consensus algorithms from prior work and construct efficient resynchronisation
algorithms ourselves. The idea is to combine pulse synchronisation algorithms that have low
resilience to obtain resynchronisation algorithms with high resilience.

Theorem 3. Let f, n0, n1 ∈ N, n = n0 + n1, f0 = b(f − 1)/2c, f1 = d(f − 1)/2e, and
1 < ϑ ≤ 1.007. Suppose that for some given Ψ ∈ Ω(1), sufficiently small constant ϕ > ϕ0(ϑ),
and T0 ∈ Θ(Ψ), it holds that for any h ∈ {0, 1} and T0 ≤ T ∈ O(Ψ) there exists a pulse
synchronisation algorithm Ah that

• runs on nh nodes and tolerates fh faulty nodes,
• has skew σ = 2d and accuracy bounds Φ−h = T and Φ+

h = Tϕ.

Then there exists a resynchronisation algorithm with skew ρ ∈ O(d) and separation window of
length Ψ that generates a resynchronisation pulse by time max{T (A0), T (A1)}+O(Ψ), where
nodes broadcast only O(1) additional bits per time unit.

Thus, given a suitable consensus algorithm, one can now combine Theorems 2 and 3 to
reduce the problem of constructing an f -resilient pulse synchronisation algorithm to finding
algorithms that tolerate up to bf/2c faults and recurse; see Figure 1 for an overview.
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Output: 
synchronised 
pulses

B(n, f) 
resync. alg.
SS+BD

A(n, f) 
pulse sync. alg.
SS + BD P(n, f) : non-SS pulser

BD

auxiliary state machine

main state machine
BD

F₀(n, f) : filter 0
SS+BD

A₀(n₀, f₀) 
SS+BD

Output: resynchronisation pulses

(1)

(2)

block 0

n = n₀ + n₁ = 4
f = f₀ + f₁ + 1 = 1

F₁(n, f) : filter 1
SS+BD

A₁(n₁, f₁) 
SS+BD

block 1 (faulty) Legend
SS = self-stabilising
BD = bounded-delay

correct node

Parameters
faulty node

C(n, f) : consensus
synchronous, non-SS

Figure 1: Ingredients for f -resilient resynchronisation and pulse synchronisation algorithms
for n nodes, where f = 1 and n = 4. (1) The resynchronisation algorithm B. The network is
divided into two disjoint blocks, where each block i ∈ {0, 1} runs a copy of a fi-resilient pulse
synchronisation algorithm Ai for ni nodes. The output of Ai is fed into the filtering mechanism
Fi. The filtering mechanism Fi employs all the nodes in the network to impose some control
on the (observed) behaviour of Ai, because due to f = f0 + f1 + 1, (at most) one of the Ai

is not guaranteed to stabilise. The grey block i = 1 contains more than f1 = 0 faulty nodes,
and hence, A1 may have arbitrary output. (2) The pulse synchronisation algorithm A. The
resynchronisation pulses from B are used to reset the stabilisation mechanism, which utilises
two non-self-stabilising components: a pulse synchronisation algorithm P and a synchronous
consensus routine C, where the round-based algorithm C is simulated using P. The stabilisation
mechanism interacts with the main state machine to stabilise the output of A produced by the
main state machine.

4.3 Proof of Theorem 1

Our proof takes an inductive approach. The idea is to interleave Theorem 2 and Theorem 3
to obtain pulse synchronisation algorithms with increasing resilience. First, we take a pulse
synchronisation algorithms with small resilience. We then use this to devise a resynchronisation
algorithm with higher resilience (Theorem 3). Second, we apply the resynchronisation algorithm
together with a suitable consensus routine to obtain a new pulse synchronisation construction
(Theorem 2). Thus, we obtain a pulse synchronisation algorithm with higher resilience, and can
repeat the process.

Lemma 1. Let f, n0, n1 ∈ N, n = n0 + n1, f0 = b(f − 1)/2c, and f1 = d(f − 1)/2e. Suppose for
i ∈ {0, 1} there exists an fi-resilient Θ(R)-pulser Ai that runs on ni nodes and whose accuracy
bounds Φ−h and Φ+

h satisfy Φ+
h = ϕΦ−h for sufficiently small constants ϕ > ϑ. Let C be an

f-resilient consensus algorithm for a network of n nodes that has running time R and uses
messages of at most M bits. Then there exists a Θ(R)-pulser A that

• runs on n nodes and has resilience f ,
• stabilises in time T (A) ∈ max{T (A0) + T (A1)}+O(R),
• has nodes broadcast M(A) ∈ max{M(A0) +M(A1)}+O(M) bits per time unit, and
• has skew 2d and whose accuracy bounds Φ− and Φ+ satisfy that Φ+ = ϕΦ−.
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Proof. From Theorem 3, we get that for any sufficiently large Ψ ∈ Θ(R), there exists a
resynchronisation algorithm B with skew ρ ∈ O(d) and separation window of length Ψ that

• runs on n nodes and has resilience f ,
• stabilises in time max{T (A0) + T (A1)}+O(Ψ) = max{T (A0) + T (A1)}+O(R), and
• has nodes broadcast max{M(A0) +M(A1)}+O(1) bits per time unit.

We feed B and C into Theorem 2, yielding a pulse synchronisation algorithm A with the claimed
properties, as the application of Theorem 2 increases the stabilisation time by an additional
O(R) time units and adds O(M) bits per time unit.

With these results in place, Theorem 1 is now a relatively straightforward consequence of
the above lemma.

Remark 1. Note that one can convert an f -resilient pulse synchronisation algorithm A on n
nodes into an f -resilient algorithm A′ that runs on n′ > n nodes: (1) run A on the first n nodes
and have them broadcast a bit when they generate a pulse locally and (2) have the remaining
n′ − n nodes generate a pulse when they see at least n − f > 2f + 1 of the nodes running A
generate a pulse.

Theorem 1. Let C be a family of synchronous consensus routines that satisfy (i) for any
f0, f1 ∈ N, n(f0 + f1) ≤ n(f0) + n(f1) and (ii) both M(f) and R(f) are increasing. Then, for
any f ≥ 0, n ≥ n(f), and 1 < ϑ ≤ 1.007, there exists a T0(f) ∈ Θ(R(f)), such that for any
T ≥ T0(f) we can construct a T -pulser A with skew 2d. The stabilisation time T (A) and number
of bits M(A) broadcasted per time unit satisfy

T (A) ∈ O

d+

dlog fe∑
k=0

R(2k)

 and M(A) ∈ O

1 +

dlog fe∑
k=0

M(2k)

 ,

where the sums are empty when f = 0.

Proof. We prove the claim for f ∈ N =
⋃

k∈N0
[2k, 2k+1) using induction on k. As base case, we

use f = 0. This is trivial for all n: we pick a single node as a leader that generates a pulse when
Φ+ − ϑd units have passed on its local clock. Whenever the leader node pulses, all other nodes
observe this within d time units. We have all other nodes generate a pulse whenever they observe
the leader node generating a pulse. Thus, for f = 0 we have algorithms that stabilise in O(d)
time, broadcast O(1) bits within d time, and have accuracy bounds of Φ+ and Φ− = Φ+/ϑ− d.
Choosing Φ+ ∈ O(1) sufficiently large, this results in Φ+/Φ− ≤ ϕ for any fixed constant ϕ > ϑ.

For the inductive step, consider f ∈ [2k, 2k+1) and suppose that, for all 0 ≤ f ′ < 2k and
n′ ≥ n(f ′), there exists an f ′-resilient pulser algorithm A′ on n′ nodes with accuracy bounds Φ′

and ϕΦ′ for any Φ′ ≥ Φ′0 ∈ Θ(R(f ′) and sufficiently small constant ϕ > ϑ) so that

T (A′) ≤ α

d+

dlog f ′e∑
k′=0

R(2k
′
)

 and M(A′) ≤ β

1 +

dlog f ′e∑
k′=0

M(2k
′
)

 ,

where α and β are sufficiently large constants. In particular, we can now apply Lemma 1 with
f0, f1 ≤ f/2 < 2k and any n ≥ n(f), as n(f) ≥ n(f0) + n(f1) guarantees that we may choose
some n0 ≥ n(f0) and n1 ≥ n(f1) such that n = n0 +n1. This yields an f -resilient Θ(R(f))-pulser
A over n nodes (with accuracy bounds Φ and ϕΦ for any Φ ≥ Φ0 ∈ Θ(R(f))), with stabilisation
time

T (A) ≤ max{T (A0) + T (A1)}+ γR(f)

≤ α

d+

dlog f/2e∑
k=0

R(2k)

+ γR(2dlog fe) ≤ α

d+

dlog fe∑
k=0

R(2k)

 ,
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where γ ≤ α is a constant; the second step uses that R(f) is increasing. Similarly, the bound on
the number of bits sent by A follows from Lemma 1 and the induction assumption:

M(A) ≤ max{M(A0) +M(A1)}+ γ′M(f)

≤ β

1 +

dlog f/2e∑
k=0

M(2k)

+ γ′M(2dlog fe) ≤ β

1 +

dlog fe∑
k=0

M(2k)

 ,

where γ′ ≤ β is a constant and we used that M(f) is increasing.

4.4 Randomised algorithms

Employing randomised consensus algorithms in our framework is straightforward. We now
summarise the main results related to randomised pulse synchronisation algorithms; the details
are discussed later in Section 10. First, by applying our construction to a fast and communication-
efficient randomised consensus algorithm, e.g. the one by King and Saia [22], we get an efficient
randomised pulse synchronisation algorithm.

Corollary 2. Suppose we have private channels. For any f ≥ 0, constant ε > 0, and n > (3+ε)f ,
there exists a randomised f -resilient Θ(polylog f)-pulser over n nodes with skew 2d that stabilises
in polylog f time w.h.p. and has nodes broadcast polylog f bits per time unit.

We can also utilise the constant expected time protocol by Feldman and Micali [18]. With
some care, we can show that for R(f) ∈ O(1), Chernoff’s bound readily implies that the
stabilisation time is not only in O(log n) in expectation, but also with high probability.

Corollary 3. Suppose we have private channels. For any f ≥ 0 and n > 3f , there exists a
randomised f -resilient Θ(log f)-pulser over n nodes with skew 2d that stabilises in O(log f) time
w.h.p. and has nodes broadcast polylog n bits per time unit.

5 Overview of techniques

In this section, we overview the elements used in our construction illustrated in Figure 1:

• a non-self-stabilising pulse synchronisation algorithm P,
• a synchronous, non-self-stabilising consensus routine C,
• a self-stabilising resynchronisation algorithm B, and
• the constructed pulse synchronisation algorithm A.

As the proofs are relatively involved due to a large number of technicalities arising from the
uncertainties introduced by the clock drift and message delay, we now summarise the key ideas
and deliberately skip over a number of details and avoid formalising the claims. Later in the
subsequent sections, we will fill in all the missing details and give full proofs.

5.1 Our variant of the Srikanth–Toueg algorithm

The first component we need is a non-self-stabilising pulse synchronisation algorithm that
tolerates Byzantine faults. To this end, we use a variant of the classic clock synchronisation
algorithm by Srikanth and Toeug [33] that avoids transmitting clock values in favour of unlabelled
pulses. As we do not require self-stabilisation for now, we can assume that all nodes receive
an initialisation signal during the time window [0, τ) for a given parameter τ . The following
theorem summarises the properties of the algorithm; the algorithm is given in Section 7.

Theorem 4. Let n > 1, f < n/3, and τ > 0. If every correct node receives an initialisation
signal during [0, τ), then there exists a pulse synchronisation algorithm P such that:
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pulserecover
G1

G1’

G2’
Transition guards:

G2

G2

wait ⌘ T1 expires and saw � n � f ‘pulse’ messages within time T1

at some point before the timeout expires

⌘ T1 expires and G1 is not satisfied

⌘ auxiliary machine signals ‘output 1’

⌘ Twait expires or auxiliary machine signals ‘output 0’

G1

G1’
G2
G2’

Figure 2: The main state machine. When a node transitions to state pulse, it generates a pulse
event and sends a pulse message to all nodes. When the node transitions to state wait, it
broadcasts a wait message to all nodes. Guard G1 employs a sliding window memory buffer,
which stores any pulse messages that have arrived within time T1. When a correct node
transitions to pulse, it resets a local timer of length T1. Once it expires, either Guard G1 or
Guard G1’ become satisfied. Similarly, the timer Twait is reset when a node transitions to wait.
Once it expires, Guard G2’ is satisfied and the node transitions from wait to recover. The
node transitions to state pulse when Guard G2 is satisfied, which requires an “output 1” signal
from the auxiliary state machine.

• all correct nodes generate the first pulse (after initialisation) within time O(ϑ2dτ),
• the pulses have skew 2d,
• the accuracy bounds are Φ− ∈ Ω(ϑd) and Φ+ ∈ O(ϑ2d), and
• the algorithm communicates at most one bit per time unit.

We can simulate synchronous message-passing algorithms with the above algorithm as follows.
Assuming that no transient failures or new initialisation signals occur after time τ , by time
O(ϑ2dτ) the algorithm starts to generate pulses with skew 2d and accuracy bounds Φ− ∈ Ω(ϑd)
and Φ+ ∈ O(ϑ2d). We can set the Ω(ϑd) term to be large enough so that all correct nodes can
complete local computations and send/receive messages for each simulated round i− 1 before
the ith pulse occurs. Thus, nodes can associate each message to a distinct round i (by counting
locally) and simulate synchronous message-passing algorithms.

5.2 The self-stabilising pulse synchronisation algorithm (Theorem 2)

The general idea is to make the Srikanth–Toueg algorithm self-stabilising. Thus, we must deal
with an arbitrary initial system state. In particular, the correct nodes may be scattered over
the states, with inconsistent memory content, and also the timers employed in the transitions
guards may have arbitrary values (within their domains). However, assume for the moment that
there is a small window of length ρ ∈ O(d) during which each node receives a resynchronisation
pulse, which triggers the initialisation of the stabilisation mechanism.

The construction relies on two components:

1. a main state machine given in Figure 2, and
2. an auxiliary state machine that acts as a wrapper for an arbitrary consensus algorithm.

The main state machine is responsible for generating pulses, whereas the auxiliary state machine
generates signals that drive the main state machine. The main machine works as follows:
whenever a node enters the pulse state, it waits for some time to see if at least n− f nodes
generated a pulse within a short time window. If not, the system has not stabilised, and the
node goes into the recover state to indicate this. Otherwise, the node goes into the wait
state, where it remains for long enough to (a) separate any subsequent pulses from previous
ones and (b) receive the next signal from the auxiliary machine. Once stabilised, the auxiliary
machine is guaranteed to send the signal “1” within bounded time. This indicates that the node
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should pulse again. If no signal arrives on time or the signal is “0”, this means that the system
has not stabilised and the node goes into the recover state.

While the auxiliary state machine is slightly more involved, the basic idea is simple: (a) nodes
try to check whether at least n− f nodes transition to the wait state in the main state machine
in a short enough time window (that is, time window which the nodes should follow during
correct operation) and (b) then use a consensus routine to agree on this observation. Assuming
that all correct nodes participate in the simulation of the consensus routine, we get the following:

• If the consensus algorithm C outputs “0”, then some v ∈ G did not see n − f nodes
transitioning to wait in a short time window, and hence, the system has not yet stabilised.
• If the consensus algorithm C outputs “1”, then every v ∈ G agrees that a transition to
wait happened recently.

In particular, the idea is that when the system operates correctly, the consensus simulation will
always succeed and output “1” at every correct node.

The obvious problem here is that the consensus routine is not self-stabilising and it operates
in a synchronous model of computation. To remedy the latter problem, we use the algorithm
from Theorem 4 to simulate round-based execution. However, this requires that an initialisation
signal is generated within a time window of length τ , thus requiring some level of synchrony
among the correct nodes. To wiggle our way out of this issue, we carefully construct the main
state machine and auxiliary machine to satisfy the following properties:

1. The main state machine guarantees that if some correct node transitions to wait, then
after a short interval no correct node transitions to wait for an extended period of time.

2. If a node u ∈ G sees eat least n− f nodes transitioning to wait in a short time window
(including itself), then the node attempts to start a consensus instance with input “1”.

3. If node u ∈ G attempts to start a simulation of consensus with input “1”, then at least
n− 2f > f correct nodes v ∈ G must have recently transitioned to wait. As all nodes can
reliably detect this event, this essentially ensures that their auxilliary machines synchronise.
This way, we can guarantee that all correct nodes initialise a new consensus instance within
τ time of each other and generate a consistent output.

4. If this output is “1”, all correct nodes generate a synchronised pulse and the system
stabilises. Otherwise, all of them transition to state recover.

5. If no u ∈ G attempts to start a simulation of consensus with input “1” within a certain
time, we make sure that all correct nodes end up in recover. Here, we exploit that any
consensus instance can be made silent [26], which means that no messages are sent by
correct nodes if they all have input “0”. Hence, even if not all correct nodes actually
participate in an instance, it does not matter as long as no correct node has input “1”.

Thus, either the system stabilises within a certain time or all correct nodes end up in state
recover. This is where we utilise the resynchronisation signals: when a resynchronisation signal
is received, the nodes reset a local timer. Since the resynchronisation signal has a small skew
of ρ ∈ O(d), these timers expire within a relatively small time window as well. If the timer expires
when all correct nodes are in the recover state, then they can explicitly restart the system in
synchrony, also resulting in stabilisation. The key here is to get a good resynchronisation pulse at
some point, so that no spurious resynchronisation pulses interfere with the described stabilisation
mechanism until it is complete. Once succesful, no correct nodes transition to recover anymore.
Thus, any subsequent resynchronisation pulses do not affect pulse generation. For a detailed
discussion and formal analysis, see Appendix 8.
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Figure 3: Idea of the resynchronisation algorithm. We take two pulse sources with coprime
frequencies and output the logical OR of the two sources. In this example, the pulses of the first
source should occur in the blue regions, whereas the pulses of the second source should hit the
yellow regions. The green regions indicate a period where a pulse from either source is followed
by at least Ψ time of silence. Eventually, such a region appears. (a) Two correct sources that
pulse with set frequencies. (b) One faulty source that produces spurious pulses. Here, a pulse
occurs too early (red region), and thus, we then enforce that the faulty source is silenced for
Θ(Ψ) time.

5.3 Generating resynchronisation pulses (Theorem 3)

The final ingredient is a mechanism to generate resynchronisation pulses. We use a principle that
has been previously used in digital clock synchronisation in the synchronous model [26]. However,
as we now work in the bounded-delay model, we have to take into account the uncertainty
created by clock drift. Nevertheless, while the technical details are much more involved, the
underlying principle is the same.

Recall that a good resynchronisation pulse is an event triggered at all correct nodes within a
small time interval, followed by at least Ψ time during which no correct node triggers a new
such event. In order to construct an algorithm that generates such an event, we partition the set
of n nodes into two disjoint blocks of roughly n/2 nodes. Each block runs an instance of a pulse
synchronisation algorithm tolerating fi faults, where f0 + f1 + 1 = f (and f0 ≈ f1 ≈ f/2). For
these two algorithms, we choose different pulsing frequencies (that is, accuracy bounds) that are
roughly coprime integer multiples of the desired separation window Ψ. Both algorithms are used
as potential sources of resynchronisation pulses. The idea behind our construction is illustrated
in Figure 3. If both instances stabilise, it is not difficult to set up the frequencies such that Ai

eventually generates a pulse that is not followed by a pulse from A1−i within time Ψ.
Unfortunately, one of the instances (but not both) could have more than fi faulty nodes,

never stabilise, and thus generate possibly inconsistent pulses at arbitrary points in time. We
overcome this by a two-step filtering process illustrated in Figure 4. First, we apply a number of
threshold votes ensuring that if a pulse of a block is considered as a candidate resynchronisation
pulse by some correct node, then all correct nodes observe this event. Second, we locally filter
out any observed events that do not obey the prescribed frequency bounds for the respective
block. Thus, the faulty block either generates (possibly inconsistent) pulses within the prescribed
frequency bounds only, or its influence is suppressed entirely (for sufficiently long time). Either
way, the correctly operating block will eventually succeed in generating a resynchronisation
pulse.

5.4 Structure of the remainder of this paper

The rest of the paper is dedicated to detailed discussion, implementation, and analysis of the
techniques discussed in this section. Section 6 starts with the formal definition of the model
of computation, Section 7 described and analyses the non-self-stabilising pulse synchronisation
algorithm, Sections 8 and 9 show Theorems 2 and 3, respectively. Finally in Section 10, we
discuss the details of how to adapt the constructions to use randomised consensus routines.
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Figure 4: Example of the resynchronisation construction for 8 nodes tolerating 2 faults. We
partition the network into two parts, each running a pulse synchronisation algorithm Ai. The
output of Ai is fed into the respective filter and any pulse that passes the filtering is used as a
resynchronisation pulse. The filtering consists of (1) having all nodes in the network participate
in a threshold vote to see if anyone thinks a pulse from Ai occurred (i.e. enough nodes running
Ai generated a pulse) and (2) keeping track when was the last time a pulse from Ai occurred to
check that the accuracy bounds of Aiare respected: pulses that appear too early or too late are
ignored.

6 The model of computation

In this section, we give a full formal definition of our model of computation and define notation
used in the subsequent sections. Recall that the problem definitions were given in Section 3.

6.1 Reference time and clocks

Let R+ = [0,∞) denote the set of non-negative real numbers and R+∪{∞} = [0,∞]. Throughout
this work, we assume a global reference time that is not available to the nodes in the distributed
system. The reference time is only used to reason about the behaviour of the system. A clock is
a strictly increasing function C : R+ → R+ that maps the reference time to the local (perceived)
time. That is, at time point t clock C indicates that the current time is C(t). We say that a
clock C has drift at most ϑ− 1 > 0 if for any t, t′ ∈ R+, where t < t′, the clock satisfies

t′ − t ≤ C(t′)− C(t) ≤ ϑ(t′ − t).
Throughout the paper, we assume that ϑ ∈ Θ(1).

6.2 The communication model

We consider a bounded-delay message-passing model of distributed computation. The system is
modelled as a fully-connected network of n nodes, where V denotes the set of all nodes. We
assume that each node has a unique identifier from the set [n] = {0, 1, . . . , n− 1}. Each node
v ∈ V has local clock C(v) : R+ → R+ with maximum drift ϑ− 1 for a global constant ϑ > 1.
We assume that the nodes cannot directly read their local clock values, but instead they can
setup local timeouts of predetermined length. That is, a node can request to be signalled after t
time units have passed on the node’s own local clock.

For communication, we assume sender authentication, that is, each node can distinguish the
sender of the messages it receives. In other words, every incoming communication link is labelled
with the identifier of the sender. Unlike in fully-synchronous models, where communication and
computation proceeds in lock-step at all nodes, we consider a model in which each message has
an associated delay in (0, d). For simplicity, we assume that the maximum delay d ∈ Θ(1) is a
known constant, i.e., essentially we measure time in units of d. We assume that messages arrive
in the order they are sent, i.e., the nodes communicate via first-in, first-out channels. We note
that even though we assume continous, real-valued clocks, any constant offset in clock readings,
e.g. due to discrete clocks, can be modelled by increasing d if needed.
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6.3 Configurations and executions

An algorithm is a tuple A = (S, T ,M,P, g,m), where S is a finite set of states, T ⊆ R+×2S is a
finite set of h timers, g : [n]×S ×Mn×{0, 1}h → S is the state transition function, m : S →M
is a message function, and P ⊆ S defines the set of states that trigger a pulse event.

Local configuration. The local configuration x(v, t) of a node v at time t consists of its
own state s(v, t) ∈ S, the state of its input channels m(v, t) ∈ Mn, its local clock value
C(v, t) ∈ R+, its memory flags M(v,m, t) ⊆ [n], and timer states Tk(v, t) ∈ [0, Tk] for each
(Tk, S) ∈ T and k ∈ [h]. For convenience, we define expiration flags ek(v, t) ∈ {0, 1}, where
ek(v, t) = 1⇔ Tk(v, t) = 0, i.e., ek(v, t) is a shorthand indicating whether Tk is expired at time t
at node v.

We assume that the transient faults have ceased at time 0, but the system is left in an
arbitrary initial state. This entails that the initial values of the local clock C(v, 0), input channels
m(v, 0), memory flags M(v,m, 0), and timer states Tk(v, 0) (and thus expiration flags) are
arbitrary. Moreover, we assume that some of the nodes in the system may be faulty, that is,
they have arbitrary (mis)behaviour and do not necessarily follow the given protocol A. In the
following, we use F ⊆ [n] to denote an arbitrary set of faulty nodes and G = [n] \ F the set
of correct nodes. Once the algorithm has been fixed, the adversary can choose the set F as it
pleases.

If at time t the value of either m(v, t) or e(v, t) changes, that is, node v ∈ G receives a message
or one of its local timers expires, the node sets its new local state to s = g(v, s(v, t),m(v, t), e(v, t)),
where s(v, t) is the node’s previous state. In case s(v, t) 6= s, then we say that node v transitions
to state s at time t. For convenicence, let us define the predicate ∆(v, s, t) = 1 if v ∈ G
transitions to s at time t and ∆(v, s, t) = 0 otherwise.

Local timers and timeouts. Each correct node v ∈ G has a timer (Tk, S) ∈ T , where Tk
gives the duration of the timer and S ⊆ S is the set of states that reset the timer. The idea is
that when node v transitions to state s ∈ S, node v resets all timers associated with state s. For
all t > 0, we define the timer state as

Tk(v, t) = max{0, Tk(v, treset)− (C(v, t)− C(v, treset)},

where treset is the last time node v reset the timer Tk or time 0, that is,

treset = max({0} ∪ {t′ ≤ t : ∆(v, s, t′) = 1, s ∈ S}).

Note that Tk(v, treset) = Tk unless treset = 0, since with the exception of the arbitrary initial states
the timer state is reset to Tk at time treset. Thus, at all times the timer state Tk(v, t) ∈ [0, Tk]
indicates how much time needs to pass on the node’s local clock C(v, ·) until the timer expires.

Communication. Let the communication delay function duv : R+ → R+ be a strictly increas-
ing function such that 0 < duv(t)− t < d. The input channels of node u ∈ G satisfy

mv(u, duv(t)) =

{
m(s(v, t)) if v ∈ G
b(u, v, t) otherwise,

where b(u, v, t) ∈M is the message a faulty node v ∈ F decides to send to a correct node u ∈ G
at time t. We assume the adversary can freely choose the communication delay functions duv.
Thus, the adversary can control what correct nodes receive from faulty nodes and how long
the messages sent by correct nodes traverse (up to the maximum delay bound d). Intuitively,
mv(u, t) ∈ M denotes what was the last message received by node v from node u at time t.
Again due to transient failures, we assume that mv(u, t) ∈M is arbitrary t < duv(0).
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Adversaries and executions. After fixing f, n ∈ N and an algorithm A, we assume that
the adversary chooses (1) the set F ⊆ [n] of faulty nodes such that |F | ≤ f , (2) the initial
configuration x(v, 0) for each v ∈ G, (3) the local clock values C(v, t), (4) the message delays
duv(t), and (5) the messages b(u, v, t) sent by faulty nodes for all t ≥ 0.

Note that if the algorithm A is deterministic, then the adversary’s choices for (1)–(5) together
with A determine the execution, that is, local configurations x(v, t) for all v ∈ G and t ≥ 0.
Randomisation may be used in black-box calls to a consensus subroutine only. For the sake
of a straightforward presentation, we therefore postpone the discussion of randomisation to
Appendix 10, which covers the results obtained by utilising randomised consensus routines.

Memory flags. Nodes use memory flags to store which messages they have received. For a
message of type m ∈M, we denote by H(v,m, t) ⊆ [n] the nodes for which node v has enabled
the flag for message m at time t. Similarly to resetting the local timers, a node can choose to
clear the memory flags when transitioning to some prespecified states. Thus, if v clears the
memory flags for message m at time t, then we have H(v,m, t) = ∅.

In our algorithms and their analysis, we are only interested in how many messages of a
certain type have been observed. Hence, we use |H(v,m, t)| gives the number of type m messages
memorised by node v at time t. Finally, we write K(v,m, t) = H(v,m, t) ∩ G to denote the
correct nodes that send a message m; this is only used for the analysis of the algorithms, as the
nodes do not know the set of correct nodes.

Sliding windows and timed buffers. We often resort to the use of sliding windows in our
transition guards instead of checking how many flags in total have been stored. A sliding window
of length T is essentially a T -buffer that remembers from which nodes a certain message has been
received within time T on the nodes local clock. Implementing such behaviour with timeouts
and additional states is straightforward.

The behaviour of the timed buffers are as follows. Since the state of communication channels
and timed buffers might be arbitrary at the initial state at time 0, we have that by time T + d
the contents of the timed buffer are guaranteed to be valid: if the buffer of v ∈ G contains a
message m from u ∈ G at time t ≥ T + d, then u must have sent an m message to v during the
interval (t− T − d, t) of reference time. Vice versa, if u sends a message m at time t to v, the
buffer is guaranteed to contain the message during the interval (t+ d, t+ T/ϑ) of reference time.

Logical state machines. We will mostly describe our algorithms using relatively simple state
machines, where state transitions are conditioned on the expiration flags and the number of
set memory flags. In these state machines, instead of representing each state s ∈ S explicitly,
we define a set X of logical states and identify each state s ∈ S to some logical state `(s) ∈ X .
That is, we have a surjective projection ` : S → X that maps each state s onto its equivalence
class `(s), i.e., the logical state. For example, the algorithm in Appendix 7 uses the logical
states X = {reset, start,ready,propose,pulse} and the transitions between these states
are conditioned on the number of set memory flags and expiration flags. In addition, all timers
will be associated to some logical state, that is, for every (Tk, S) ∈ T we have that S ∈ `−1(X )
is an equivalence class of states. The logical states are being heavily utilised in the presentation
of the algorithm in Appendix 8.

7 Byzantine-tolerant pulse synchronisation

We now describe the non-self-stabilising pulse synchronisation algorithm we utilise later in our
construction of the self-stabilising algorithm. The non-self-stabilising algorithm is a variant of
the Byzantine fault-tolerant clock synchronisation algorithm by Srikanth and Toeug [33] that
avoids transmitting clock values in favor of unlabelled pulses.
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Figure 5: The state machine for the non-self-stabilising pulse synchronisation algorithm. State
transitions occur when the condition next to the edge is satisfied. All transition guards involve
checking whether a local timer expires or a node has received sufficiently many messages from
nodes in state propose. The only communication that occurs is when a node transitions to state
propose; when this happens a node broadcasts this information to all others. The notation 〈T 〉
indicates that T time units have passed on the local clock since the transition to the current
state. The box labelled “propose” indicates that a node clears its propose memory flags when
transitioning from pulse to ready. That is, the node forgets who they have “seen” in propose
the previous iteration. The same holds true for the transition from reset to start. The
algorithm assumes that during the interval [0, τ) all nodes transition to reset. This starts the
initialisation phase of the algorithm. Eventually, all nodes transition to pulse within a short
time window and start executing the algorithm. Whenever a node transitions to state pulse it
generates a local pulse event. Table 2 lists the constraints imposed on the timeouts.

Instead of a synchronous start, we assume that all nodes receive an initialisation signal during
the time window [0, τ). In other words, nodes can start executing the algorithm at different
times, but they all do so by some bounded (possibly non-constant) time τ . When a node receives
the initialisation signal, it immediately transitions to the reset state, whose purpose is to
consistently clear up local memory and wait for other nodes to start executing the algorithm.
However, nodes may behave arbitrarily before they receive the initialisation signal.

Later, when we make use of the algorithm as a subroutine for a self-stabilising algorithm, we
need to consider the possibility that there are still messages from earlier (possibly corrupted)
instances in transit, or nodes may be executing a previous instance in an incorrect way. Given
the initialisation signal, this is easily overcome by waiting for sufficient time before leaving
the starting state: waiting ϑ(τ + d) ∈ O(τ) local time guarantees that (i) all correct nodes
transitioned to the starting state and (ii) all messages sent before these transitions have arrived.
Clearing memory when leaving the starting state thus ensures that no obsolete information from
previous instances is stored by correct nodes.

The algorithm is illustrated in Figure 5. In the figure, the circles denote the basic logical
states (reset, start, ready, propose, pulse) of the state machine for each node. The two
states reset and start are only used during the initialisation phase of the algorithm that occurs
when all nodes receive the initialisation signal during [0, τ). In Figure 5, directed edges between
the states denote possible state transitions and labels give the conditions (transition guards)
when the transition is allowed to (and must) occur. The notation is as follows: 〈Tk〉 means that
timer Tk has expired, that is, the expiration flag satisfies ek(v, t) = 1. Here, it is assumed that a
timer is associated with the logical state which is left when it is expired. The constraints we
impose on the timeouts are given in Table 2. The expression “> f propose propose flags set”
denotes the condition |H(v,propose, t)| > f . For simplicity, we assume in all our descriptions
that every time a node transitions to a logical state, it broadcasts the name of the state to
all other nodes. Given that we use a constant number of logical states per node (and in our
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(1) T0/ϑ ≥ τ + d
(2) T1/ϑ ≥ (1− 1/ϑ)T0 + τ
(3) T2/ϑ ≥ 3d
(4) T3/ϑ ≥ (1− 1/ϑ)T2 + 2d

Table 2: The list of conditions used in the non-self-stabilising pulse synchronisation algorithm
given in Figure 5. Recall that d, ϑ ∈ O(1) and τ is a parameter of the algorithm.

algorithms nodes can only undergo a constant number of state transitions in constant time), this
requires O(1) bits per time unit. In fact, closer inspection reveals that 1 bit per iteration of the
cycle suffices here: the only relevant information is whether a node is in state propose or not.

The boxes labelled with “propose” indicate that when a node transitions to the designated
state, it clears its memory flags for message propose. For example, if node v transitions to state
ready at time t, then it explicitly clears its propose flags and it holds that K(v,ready, t) = ∅.

The algorithm relies heavily on the property that there are at most f < n/3 faulty nodes.
This allows the use of the following “vote-and-pull” technique. If some correct node receives a
propose message from at least n− f different nodes at time t, then we must have that at least
n− 2f > f of these originated from correct nodes during the interval (t− d, t), as every message
has a positive delay of less than d. Furthermore, it follows that before time t + d all correct
nodes receive more than f propose messages.

In particular, this “vote-and-pull” technique is used in the transition to states propose
and pulse. Suppose at some point all nodes are in ready. If some node transitions to pulse,
then it must have observed at least n− f nodes in propose by Guard G3. This in turn implies
that more than f correct nodes have transitioned to propose. This in turn will (in short time)
“pull” nodes that still remain in either state ready into state propose. Thus, Guard G3 will
eventually be satisfied at the all nodes. The same technique is also used in the transition from
start to propose during the initialisation phase of the algorithm. More formally, we have the
following property.

Remark 2. Suppose f < n/3. Let u, v ∈ G, t ≥ d and I = (t− d, t+ d). If |H(v, t,propose)| ≥
n− f , then |K(u, t′,propose)| > f for some t′ ∈ I assuming u does not clear its propose flags
during the interval I.

For all v ∈ G and t > 0, let p(v, t) ∈ {0, 1} indicate whether v transitions to state pulse
at time t. That is, we have p(v, t) = 1 if node v ∈ G transitions to state pulse at time t and
p(v, t) = 0 otherwise.

Lemma 2. There exists t0 < τ + T0 + T1 + d such that for all v ∈ G it holds that p(v, t) = 1 for
t ∈ [t0, t0 + 2d).

Proof. Let v ∈ G. Node v receives the initialisation signal during some time treset(v) ∈ [0, τ)
and transitions to state reset. From reset node transitions to start at some time tstart(v) ∈
[treset(v) + T0/ϑ, treset(v) + T0] when the timer T0 in Guard G1 expires. Since T0/ϑ ≥ τ + d by
Constraint (1), we get that tstart(v) ≥ τ+d. Thus, for all u, v ∈ G we have treset(u)+d ≤ tstart(v).

Moreover, v transitions to propose at some time tpropose(v) ∈ [tstart(v), tstart(v) + T1] when
Guard G2 is satisfied. Hence, any v ∈ G transitions to state propose by latest at time
tstart(v) + T1 ≤ treset(v) + T0 + T1 ≤ τ + T0 + T1. Let tpropose ≥ τ + d be the minimal time some
node v ∈ G transitions to state propose after transitioning to reset during [0, τ). From our
earlier argument, we get that for any t ∈ [tstart(v), tpropose) ⊆ [τ + d, tpropose) node v satisfies
K(v,propose, t) = ∅, that is, node v will not observe a propose message from any correct
node u ∈ G before time tpropose.

Note that tpropose ∈ [(T0+T1)/ϑ, τ+T0+T1) by Guard G1 and Guard G2. By Constraint (2)
and our previous bounds we have that tpropose ≥ T0/ϑ+ (1− 1/ϑ)T0 + τ = T0 + τ ≥ tstart(u) for
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any u ∈ G. Hence, after time T0 + τ , no u ∈ G clears its propose flags before transitioning to
pulse at time tpulse(u). In particular, we now have that tpropose(v) ≤ τ + T0 + T1 and hence
all nodes transition to pulse by some time tpulse(v) < τ + T0 + T1 + d, as each u ∈ G must
have received a propose message by this time from least n− f of correct nodes satisfying the
condition of Guard G3.

Let t0 = inf{tpulse(v) : v ∈ G} < τ + T0 + T1 + d be the minimal time some correct node
transitions to state pulse. It remains to argue that tpulse(v) ∈ [t0, t0 + 2d). Since some node
v ∈ G transitioned to pulse at time t0, we must have that its condition in Guard G3 was
satisfied. That is, we have |H(v, t0,propose)| ≥ n − f implying that for any u ∈ G we have
|K(u, t′0,propose)| > 0 for some t′0 < t0 + d. Since t0 ≥ tpropose ≥ T0 + τ ≥ tstart(u), we get
that tpropose(u) ≤ t′0 < t0 + d for all u ∈ G. It now follows that at time t′′0 < t′0 + d < t0 + 2d we
have |K(u, t′′0,propose)| ≥ n− f for all u ∈ G implying that Guard G2 is satisfied for u. Thus,
tpulse(u) ∈ [t0, t

′′
0) ⊆ [t0, t0 + 2d). Finally, observe that we can satisfy the constraints in Table 2

by having each of the timers to be O(τ). Hence, t0 < τ + T0 + T1 + d.

Let us now fix t0 as given by the previous lemma. For every correct node v ∈ G, we define

p0(v) = inf{t ≥ t0 : p(v, t) = 1} and pi+1(v) = pnext(v, pi(v)),

where pnext(v, t) = inf{t′ > t : p(v, t′) = 1} is the next time after time t node v generates a pulse.

Lemma 3. For all i ≥ 0, there exist

ti+1 ∈ [ti + (T2 + T3)/ϑ, ti + T2 + T3 + 3d) such that pi(v) ∈ [ti, ti + 2d) for all v ∈ G.

Proof. We show the claim using induction on i. For the case i = 0, the claim p0(v) ∈ [t0, t0 + 2d)
follows directly from Lemma 2. For the inductive step, suppose pi(v) ∈ [ti, ti + 2d) for all v ∈ G.
Each v ∈ G transitions to state ready at a time tready(v) ∈ [ti +T2/ϑ, ti +2d+T2) by Guard G4.
Moreover, by Constraint (4) we have that tready(v) > ti + T2/ϑ ≥ ti + 3d. As no correct node
transitions to propose during [ti + 2d, ti + (T2 + T3)/ϑ), this implies that no node receives a
propose message from a correct node before time tpropose(u) when some node u transitions
to propose from ready. Observe that now tpropose(u) > ti + (T2 + T3)/ϑ > ti + 2d + T2 by
Guard G5 and Constraint (4). We have tready(v) < ti + 2d + T2 < tpropose(u) for all u, v ∈ G.
Therefore, there exists a time tready < ti + 2d+T2 such that all correct nodes are in state ready
and |H(v, tready,propose)| = 0 for all v ∈ G.

Next observe that tpropose(v) ≤ ti + 2d + T2 + T3 for any v ∈ G. Hence, every u ∈ G will
receive a propose message from every v ∈ G before time tpropose(v)+d ≤ ti +3d+T2 +T3. Thus,
by Guard G3 we have that u transitions to pulse yielding that pi+1(v) ∈ [ti + tready, ti + 3d+
T2 +T3) ⊆ [ti + (T2 +T3)/ϑ, ti +T2 +T3 + 3d). Let ti+1 = inf{pi+1(v) : v ∈ G}. We have already
established that ti+1 ∈ [ti + (T2 + T3)/ϑ, ti + T2 + T3 + 3d). Now using the same arguments as
in Lemma 2 it follows that tpropose(u) < ti+1 + d for any u ∈ G, as u must have received at least
n− 2f propose messages before time ti+1 + d triggering the condition in Guard G5 for node u.
Thus, Guard G3 will be satisfied before time ti+1 + 2d implying that pi+1(u) ∈ [ti+1, ti+1 + 2d)
for any u ∈ G.

Theorem 4. Let n > 1, f < n/3, and τ > 0. If every correct node receives an initialisation
signal during [0, τ), then there exists a pulse synchronisation algorithm P such that:

• all correct nodes generate the first pulse (after initialisation) within time O(ϑ2dτ),
• the pulses have skew 2d,
• the accuracy bounds are Φ− ∈ Ω(ϑd) and Φ+ ∈ O(ϑ2d), and
• the algorithm communicates at most one bit per time unit.
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Proof. The constraints in Table 2 can be easily satisfied by setting T0 = ϑ(τ + d), T1 =
ϑ2(1− 1/ϑ)(τ + d) + τ , T2 = ϑ3d and T3 = ϑ2(1− 1/ϑ)3d+ 2d. By Lemma 2 we get that there
exists t0 ∈ O(ϑ2dτ) such that all nodes generate the first pulse during the interval [t0, t0 + 2d).
Applying Lemma 3 we get that for all i > 0, we have that nodes generate the ith pulse during
the interval [ti, ti + 2d), where ti ∈ [ti−1 + (T2 + T3)/ϑ, ti−1 + T2 + T3 + 3d) ⊆ [Φ−,Φ+). Note
that T2 + T3 ∈ Θ(ϑ2d) and ϑ, d ∈ O(1). These observations give the first two properties. For the
final property, observe that nodes only need to communicate when they transition to propose.
This follows by observing that node cannot transition to propose again before T2/ϑ > 3d time
has passed due to Guard G4. Thus, nodes need to communicate one bit every Ω(d) time.

8 Self-stabilising pulse synchronisation

In this section, we show how to use a resynchronisation algorithm and a synchronous consensus
routine to devise self-stabilising pulse synchronisation algorithms. More precisely, we establish
the following result:

Theorem 2. Let f ≥ 0, n > 3f and (1 +
√

5)/3 > ϑ > 1. Suppose for a network of n nodes
there exist

• an f -resilient synchronous consensus algorithm C, and
• an f-resilient resynchronisation algorithm B with skew ρ ∈ O(d) and sufficiently large

separation window Ψ ∈ O(R) that tolerates clock drift of ϑ,

where C runs in R = R(f) rounds and lets nodes send at most M = M(f) bits per round. Then
a ϕ0(ϑ) ∈ 1 +O(ϑ−1) exists so that for any constant ϕ > ϕ0(ϑ) and sufficiently large T ∈ O(R),
there exists an f -resilient pulse synchronisation algorithm A for n nodes that

• has skew σ = 2d and satisfies the accuracy bounds Φ− = T and Φ+ = Tϕ,
• stabilises in T (B) +O(R) time and has nodes broadcast M(B) +O(M) bits per time unit.

8.1 Overview of the ingredients

The pulse synchronisation algorithm presented in this section consists of two state machines
running in parallel:

1. the so-called main state machine that is responsible for pulse generation, and
2. an auxiliary machine, which assists in initiating consensus instances and stabilisation.

The main state machine indicates when pulses are generated and handles all the communica-
tion between nodes except for messages sent by simulated consensus instances. The latter are
handled by the auxiliary state machine. The transitions in the main state machine are governed
by a series of threshold votes, local timeouts, and signals from the auxiliary state machine.

As we are interested in self-stabilising algorithms, the main and auxiliary state machines
may be arbitrarily initialised. To handle this, a stabilisation mechanism is used in conjunction
to ensure that, regardless of the initial state of the system, all nodes eventually manage to
synchronise their state machines. The stabilisation mechanism relies on the following three
subroutines which are summarised in the latter part of Figure 1:

(a) a resynchronisation algorithm,
(b) the non-self-stabilising pulse synchronisation algorithm from Section 7,
(c) a silent, synchronous consensus algorithm.
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Resynchronisation pulses. Recall that resynchronisation algorithm is a weak variant of a
pulse synchronisation algorithm: it guarantees that eventually, within some bounded time T , all
correct nodes generate a pulse such that no new pulse is generated for sufficiently long time Ψ.
We call such pulses resynchronisation pulses. Note that at all other times, the algorithm may
generate pulses at arbitrary frequencies and not necessarily at all correct nodes. Nevertheless,
at some point all correct nodes are bound to generate a synchronised pulse. We leverage this
property to cleanly re-initialise the stabilisation mechanism from time to time.

Throughout this section, we simply assume that during the time interval [0, ρ) every correct
node v ∈ V \ F receives a single resynchronisation pulse. Moreover, we assume that no correct
node receives a new resynchronisation pulse for at least Ψ time of this, where Ψ is sufficiently
large value we determine later. In Section 9, we show how to devise efficient resynchronisation
algorithms that produce such resynchronisation pulses.

Simulating synchronous consensus. The latter two subroutines (b) and (c) are used in
conjunction as follows. We use our variant of the Srikanth–Toueg pulse synchronisation algorithm
described in Section 7 to simulate a synchronous consensus algorithm (in the bounded-delay
model). Note that while this pulse synchronisation algorithm is not self-stabilising, it works
properly even if non-faulty nodes initialise the algorithm at different times as long as they do so
within a time interval of length τ .

Assuming that the nodes initialise the non-self-stabilising pusle synchronisation algorithm
within at most time τ apart, it is straightforward to simulate round-based (i.e., synchronous)
algorithms: a pulse of the non-self-stabilising algorithm indicates that a new round of the
synchronous algorithm can be started. By setting the delay between two pulses large enough,
we can ensure that all nodes have (1) time to execute the local computations of the synchronous
algorithm and (2) any messages related to a single round arrive at their destinations before a
new pulse occurs.

Employing silent consensus. For convenience, we utilise so-called silent consensus routines.
Silent consensus routines satisfy exactly the same properties as usual consensus routines (validity,
agreement, and termination) with the addition that correct nodes send no messages in executions
in which all nodes have input 0.

Definition 1 (Silent consensus). A consensus routine is silent, if in each execution in which all
correct nodes have input 0, correct nodes send no messages.

Any synchronous consensus routine can be converted into a silent consensus routine essentially
for free. In our prior work [26], we showed that there exists a simple transformation that induces
only an overhead of two rounds while keeping all other properties of the algorithm the same.

Theorem 5 ([26]). Any consensus protocol C that runs in R rounds can be transformed into a
silent consensus protocol C′ that runs in R+ 2 rounds. Moreover, the resilience and message
size of C and C′ are the same.

Thus, without loss of generality, we assume throughout this section that the given consensus
routine C is silent. Moreover, this does not introduce any asymptotic loss in the running time
or number of bits communicated.

8.2 High-level idea of the construction

The high-level strategy used in our construction is as follows. We run the resynchronisation
algorithm in parallel to the self-stabilising pulse synchronisation algorithm we devise in this
section. The resynchronisation algorithm will send the resynchronisation signals it generates to
the pulse synchronisation algorithm.
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Figure 6: The main state machine. When a node transitions to pulse state (blue circle) it will
generate a local pulse event and send a pulse message to all nodes. When the node transitions
to wait state it broadcasts a wait message to all nodes. Guard G1 employs a sliding window
memory buffer, which stores any pulse messages that have arrived within time T1. When a
correct node transitions to pulse it resets a local T1 timeout. Once this expires, either Guard G1
or Guard G1’ become satisfied. Similarly, the timer Twait is reset when node transitions to wait.
Once it expires, Guard G2’ is satisfied and node transitions from wait to recover. The node
can transition to pulse state when Guard G2 is satisfied, which requires an “output 1” signal
from the auxiliary state machine given in Figure 7.

The pulse synchronisation algorithm consists of the main state machine given in Figure 6
and the auxiliary state machine given in Figure 7. The auxiliary state machine is responsible for
generating the output signals that drive the main state machine (Guard G2 and Guard G2’).

The auxiliary state machine employs a consensus routine to facilitate agreement among the
nodes on whether a new pulse should occur. If the consensus simulation outputs 1, then the
auxiliary state machine signals the main state machine to generate a pulse. Otherwise, if the
consensus instance outputs 0, then this is used to signal that something is wrong and the system
has not stabilised. We carefully set up our construction so that once the system stabilises, any
consensus instance run by the nodes is guaranteed to always output 1 at every correct node.

As we operate under the assumption that the initial state of the system is arbitrary, the
non-trivial part in our construction is to get all correct nodes synchronised well enough to even
start simulating consensus jointly. This is where the resynchronisation algorithm comes into
play. We make sure that the algorithm either stabilises or all nodes get “stuck” in a recovery
state recover. To deal with the latter case, we use the resynchronisation pulse to let all nodes
synchronously reset a local timeout. Once this timeout expires, nodes that are in state recover
start a consensus instance with input “1”. By the time this happens, either

• the algorithm has already stabilised (and thus no correct node is in state recover), or

• all correct nodes are in state recover and jointly start a consensus instance that will
output “1” (by validity of the consensus routine).

In both cases, stabilisation is guaranteed.

Receiving a resynchronisation signal. The use of the resynchronisation signal is straight-
forward: when a correct node u ∈ G receives a resynchronisation signal from the underlying
resynchronisation algorithm B, node u resets its local timeout Tactive used by the auxiliary state
machine in Figure 7. Upon expiration of the timeout, Guard G3 in the auxiliary state machine
is activated only if the node is in state recover at the time.

Main state machine. The main state machine, which is given in Figure 6, is responsible for
generating the pulse events. It operates as follows. If a node is in state pulse, it generates a
local pulse event and sends a pulse message to all other nodes. Now suppose a node u ∈ G
transitions to state pulse. Two things can happen:
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• If a node u ∈ G is in state pulse and observes at least n − f nodes also generating a
pulse within a short enough time window (Guard G1), it is possible that all correct nodes
generated a pulse in a synchronised fashion. If this happens, then Guard G1 ensures that
node u proceeds to the state wait. As the name suggests, the wait state is used to wait
before generating a new pulse, ensuring that pulses obey the desired frequency bounds.

• Otherwise, if a node is certain that not all correct nodes are synchronised, it transitions to
from pulse to state recover (Guard G1’).

Once a node is in either wait or recover, it will not leave the state before the consensus
algorithm locally outputs “1”, as Guard G2 needs to be satisfied in order for a transition to
pulse to take place. The simulation of consensus is handled by the auxiliary state machine,
which we discuss below. The nodes use consensus to agree whether sufficiently many nodes
transitioned to the wait state within a small enough time window. If the system has stabilised,
all correct nodes transition to wait almost synchronously, and hence, after stabilisation every
correct node always uses input “1” for the consensus instance.

Once a node transitions to state wait, it keeps track of how long it has been there. If the
node observes that it has been there longer than it would take for a consensus simulation to
complete under correct operation (proving that the system has not yet stabilised), it transitions
to state recover. Also, if the consensus instance outputs “0”, the node knows something is
wrong and transitions to recover. During the stabilisation phase, nodes that transition to
recover refrain from using input “1” for any consensus routine before the local timeout Tactive
expires; we refer to the discussion of the auxiliary state machine.

Once the system stabilises, the behaviour of the main state machine is simple, as only
Guard G1 and Guard G2 can be satisfied. This implies that correct nodes alternate between
the pulse and wait states. Under stabilised operation, we get that all correct nodes:

• transition to pulse within a time window of length 2d,

• observe that at least n−f nodes transitioned to pulse within a short enough time window
ensuring that Guard G1 is satisfied at every correct node,

• transition to wait within a time window of length O(d),

• correctly initialise a simulation of the consensus algorithm C with input “1”, as correct
nodes transitioned to wait in a synchronised fashion (see auxiliary state machine),

• all correct nodes remain in wait until Guard G2 or Guard G2’ become satisfied.

Finally, we ensure that (after stabilisation) all correct nodes remain in state wait in the
main state machine longer than it takes to properly initialise and simulate a consensus instance.
This is achieved by using the Twait timeout in Guard G2’. Due to the validity property of the
consensus routine and the fact that all correct nodes use input 1, this entails that Guard G2 is
always satisfied before Guard G2’, such that all correct nodes again transition to pulse within
a time window of length 2d.

Auxiliary state machine. The auxiliary state machine given in Figure 7 is slightly more
involved. However, the basic idea is simple: (a) nodes try to check whether at least n− f nodes
transition to the wait state in a short enough time window (that is, a time window consistent
with correct operation) and (b) then use a consensus routine to agree whether all nodes saw this.
Assuming that all correct nodes participate in the simulation of consensus, we get the following:

• If the consensus algorithm C outputs “0”, then some correct node did not see n− f nodes
transitioning to wait in a short time window, and hence, the system has not yet stabilised.
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Figure 7: The auxiliary state machine. The auxiliary state machine is responsible for initialising
and simulating the consensus routine. The gray boxes denote states which represent the
simulation of the consensus routine C. When transitioning to either exec 0 or exec 1, the
node locally initialises the (non-self-stabilising) pulse synchronisation algorithm and a new
instance of C. If the node transitions to exec 0, it uses input 0 for the consensus routine. If
the node transitions to exec 1, it uses input 1, unless it is in state recover when it locally
starts the simulation. When the consensus simulation declares an output, the node transitions to
either output 0 or output 1 (sending the respective output signal to the main state machine)
and immediately into state listen. The timeouts Tlisten, T2, and Tconsensus are reset when
node transitions to the respective states that use a guard referring to them. The timeout
Tactive in Guard G3 (dashed line) is reset by the resynchronisation signal from the underlying
resynchronisation algorithm B. Both input 0 and input 1 have a self-loop that is activated if
Guard G4 is satisfied. This means that if Guard G4 is satisfied while in these states, the timer
T2 is reset.

• If the consensus algorithm C outputs “1”, then all correct nodes agree that a transition to
wait happened recently.

In particular, the idea is that when the system operates correctly, the consensus simulation will
always succeed and output “1” at every correct node.

The above idea is implemented in the auxiliary state machine as follows. Suppose that a
correct node u ∈ G is in the listen state and the local timeout Tactive is not about to expire
(recall that Tactive is only reset by the resynchronisation signal). Node u remains in this state
until it is certain that at least one correct node transitions to wait in the main state machine.
Once this happens, Guard G4 is satisfied and node u transitions to the read state. In the read
state, node u waits for a while to see whether it observes (1) at least n− f nodes transitioning
to wait in a short time window or (2) less than n− f nodes doing this.

In case (1), node u can be certain that at least n − 2f > f correct nodes transitioned to
wait. Thus, node u can also be certain that every correct node observes at least f + 1 correct
nodes transitioning to wait; this will be a key property later. In case (2), node u can be certain
that the system has not stabilised. If case (1) happens, we have that Guard G5 is eventually
satisfied once a local time out of length Θ(d) expires. Once this occurs, node u transitions to
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Figure 8: The overall structure of the proof. The bold rectangles denote results that are
informally discussed in Section 8.3.

input 1 indicating that node u is willing to use input “1” in the next simulation of consensus
unless it is in the recoverstate in the main state machine. In case (2), we get that Guard G5’
becomes satisfied and u transitions to input 0. This means that u insists on using input “0” for
the next consensus simulation.

Once node u ∈ G transitions to either input 0 or input 1, it will remain there until the local
timeout of length T2 expires (see Guard G6, Guard G6’ and Guard G7). However, if Guard G4
becomes satisfied while node u is in either of the input states, then the local timeout is reset
again. We do this because if Guard G4 becomes satisfied while u is in one of the input states,
(i) the same may be true for other correct nodes that are in state listen and (ii) node u can
be certain that the system has not stabilised. Resetting the timeout helps in ensuring that
all correct nodes jointly start the next consensus instance (guaranteeing correct simulation),
if Guard G4 is satisfied at all correct nodes at roughly the same time. In case this does not
happen, resetting the timeout at least makes sure that there will be a time when no correct
node is currently trying to simulate a consensus instance. These properties are critical for our
proof of stabilisation.

8.3 Outline of the proof

We now give a high-level outline of our proof strategy. The structure of the proof is summarised
in Figure 8. The key difficulty in achieving stabilisation is to ensure the proper simulation of a
consensus routine despite the arbitrary initial state. In particular, after the transient faults cease,
we might have some nodes attempting to execute consensus, whereas some do not. Moreover,
nodes that are simulating consensus might be simulating different rounds of the consensus
routine, and so on. To show that such disarray cannot last indefinitely long, we use the following
arguments:

• if some correct node attempts to use input “1” for consensus, then at least f + 1 correct
nodes have transitioned to wait in the main state machine (Lemma 4), that is, all correct
nodes see if some other correct node might be initialising a new consensus instance with
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input “1” soon,

• if some correct node transitions to wait at time t, then there is a long interval of length
Θ(T2) during which no correct node transitions to wait (Lemma 5), that is, correct nodes
cannot transition to wait state too often,

• if some correct node attempts to use input “1” for consensus, then all correct nodes
initialise a new consensus instance within a time window of length τ ∈ Θ((1 − 1/ϑ)T2)
(Lemma 6),

• if all correct nodes initialise a new consensus instance within a time window of length τ ,
then all correct nodes participate in the same consensus instance and succesfully simulate
an entire execution of C (Lemma 7).

The idea is that the timeout T2 will be sufficiently large to ensure that consensus instances are
well-separated: if a consensus instance is initialised with input “1” at some correct node, then
there is enough time to properly simulate a complete execution of the consensus routine before
any correct node attempts to start a new instance of consensus.

Once we have established the above properties, then it is easy to see that if synchronisation
is established, then it persists. More specifically, we argue that if all correct nodes transition to
pulse at most time 2d apart, then all correct nodes initialise a new consensus instance within
time τ using input “1” (Lemma 8). Thus, the system stabilises if all correct nodes eventually
generate a pulse with skew at most 2d.

Accordingly, a substantial part of the proof is arguing that all nodes eventually transition to
pulse within time window of 2d. To see that this is bound to occur eventually, we consider an
interval [α, β] of length Θ(R) and use the following line of reasoning:

• if all correct nodes are simultaneously in state recover at some time before timeout
Tactive expires at any correct node, then Guard G3 in the auxiliary state machine becomes
satisfied at all correct nodes and a new consensus instance with all-1 input is initialised
within time τ (Lemma 9),

• if some correct node attempts to use input “1” within some time interval [α, β′] ⊂ [α, β],
then either (a) all correct nodes end up in recover before timeout Tactive expires at any
node or (b) all correct nodes eventually transition to pulse within time 2d (Lemma 10),

• if no correct node attempts to use input “1” during the time interval [α, β], all correct
nodes will be in state recover before the timeout Tactive expires at any node (Lemma 14).

In either of the latter two cases, we can use the first argument to guarantee stabilisation
(Corollary 4 and Corollary 5). Finally, we need to argue that all the timeouts employed in the
construction can be set so that our arguments work out. The constraints related to all the
timeouts are summarised in Table 3 and Lemma 16 shows that these can be satisfied. We now
proceed to formalise and prove the above arguments in detail.

8.4 Analysing the state machines

First let us observe that after a short time, the arbitrary initial contents of the sliding window
message buffers (implemented by simple state machines) have been cleared.

Remark 3. By time t = max{T1, Tlisten}+ d ∈ O(ϑ2d) the sliding window memory buffers used
in Guard G2, Guard G4, and Guard G5 for each u ∈ G are valid: if the buffer of Guard G2
contains a message m from v ∈ G at any time t′ ≥ t, then v ∈ G sent the message m during
(t−T1− d, t); similarly, for Guard G4 and Guard G5 this holds for the interval (t−Tlisten− d, t).
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(5) d, ϑ ∈ O(1)

(6) T1 = 3ϑd
(7) Tlisten = (ϑ− 1)T1 + 3ϑd
(8) T2 > ϑ(Tlisten + 3T1 + 3d)
(9) (2/ϑ− 1)T2 > Tlisten + Tconsensus + 5T1 + 4d
(10) τ = max {(1− 1/ϑ)T2 + Tlisten + d+ max{Tlisten + d, 3T1 + 2d}, (1− 1/ϑ)Tactive + ρ}
(11) Tconsensus = ϑ(τ + T (R))
(12) Twait = T2 + Tconsensus
(13) Tactive ≥ 4T2 + Tlisten + ϑ(Tlisten + Twait − 5T1 − 4d+ ρ)
(14) Tactive ≥ 2T2 + Tconsensus + ϑ(3Tlisten + 2Twait + 3d+ 2T2 + 2Tconsensus)

Table 3: The timeout conditions employed in the construction of Section 8.

Without loss of generality, we assume that this has happened by time 0. Moreover, we
assume that every correct node received the resynchronisation signal during the time interval
[0, ρ). Thus, the memory contents of the message buffers are valid from time 0 on and every
node has reset its Tactive timeout during [0, ρ). Hence, the timeout Tactive expires at any node
u ∈ G during [Tactive/ϑ, Tactive + ρ).

We use T (R) ∈ O(ϑ2dR) to denote the maximum time a simulation of the R-round consensus
routine C takes when employing the non-stabilising pulse synchronisation algorithm given in
Section 7. We assume that the consensus routine C is silent, as by Theorem 5 we can convert
any consensus routine into a silent one without any asymptotic loss in the running time.

First, we highlight some useful properties of the simulation scheme implemented in the
auxiliary state machine.

Remark 4. If node v ∈ G transitions to exec 0 or exec 1 at time t, then the following hold:

• node v remains in the respective state during [t, t+ τ),
• node v does not execute the first round of C before time t+ τ ,
• node v leaves the respective state and halts the simulation of C by time [t+τ, t+Tconsensus).

Now let us start by showing that if some node transitions to input 1 in the auxiliary state
machine, then there is a group of at least f + 1 correct nodes that transition to wait in the
main state machine in rough synchrony.

Lemma 4. Suppose node v ∈ G transitions to input 1 at time t ≥ Tlisten + d. Then there is a
time t′ ∈ (t− Tlisten − d, t) and a set A ⊆ G with |A| ≥ f + 1 such that each w ∈ A transitions
to wait during [t′, t].

Proof. Since v transitions to input 1, it must have observed at least n−f distinct wait messages
within time Tlisten in order to satisfy Guard G5. As f < n/3, we have that at least f + 1 of
these messages came from nodes A ⊆ G, where |A| ≥ f + 1. The claim follows by choosing t′ to
be the minimal time during (t− Tlisten − d, t) at which some w ∈ A transitioned to wait.

Next we show that if some correct node transitions to wait, then it is followed by a long
time interval during which no correct node transitions to wait. Thus, transitions to wait are
well-separated.

Lemma 5. Suppose node v ∈ G transitions to wait at time t ≤ (Tactive − T2)/ϑ. Then no
u ∈ G transitions to wait during [t+ 3T1 + d, t+ T2/ϑ− 2T1 − d).

Proof. Since v ∈ G transitioned to wait at time t, it must have seen at least n − f nodes
transitioning to pulse during the time interval (t − 2T1, t). Since f < n/3, it follows that
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n − 2f ≥ f + 1 of these messages are from correct nodes. Let us denote this set of nodes by
A ⊆ G.

Consider any node w ∈ A. As node w transitioned to pulse during (t − 2T1 − d, t), it
transitions to state recover or to state wait at time tw ∈ (t− 2T1 − d, t+ T1). Either way, as
it also transitioned to listen, transitioning to pulse again requires to satisfy Guard G3 or one
of Guard G6, Guard G6’, and Guard G7 while being in states input 0 or input 1, respectively.
By assumption, Guard G3 is not satisfied before time Tactive/ϑ ≥ t+T2/ϑ, and the other options
require a timeout of T2 to expire, which takes at least time T2/ϑ. It follows that w is not in
state pulse during [t+ T1, t+ T2/ϑ− 2T1 − d).

We conclude that no w ∈ A is observed transitioning to pulse during [t+ T1 + d, t+ T2/ϑ−
2T1 − d). Since |A| > f , we get that no u ∈ G can activate Guard G1 and transition to wait
during [t+ 3T1 + d, t+ T2/ϑ− 2T1 − d), as n− |A| < n− f .

Using the previous lemmas, we can show that if some correct node transitions to state input 1
in the auxiliary state machine, then every correct node eventually initialises and participates
in the same new consensus instance. That is, every correct node initialises the underlying
Srikanth–Toueg pulse synchronisation algorithm within a time interval of length τ .

Lemma 6. Suppose node u ∈ G transitions to input 1 at time t ∈ [Tlisten + d, (Tactive − T2)/ϑ].
Then each v ∈ G transitions to state exec 0 or state exec 1 at time tv ∈ [t0, t0 + τ), where
t0 = t− Tlisten − d+ T2/ϑ. Moreover, Guard G4 cannot be satisfied at any node v ∈ G during
[t+ 3T1 + 2d, t∗ + T1/ϑ), where t∗ := minv∈G{p(v, t+ d)}.

Proof. By Lemma 4 there exists a set A ⊆ G such that |A| ≥ f + 1 and each w ∈ A transition
to wait at time tw ∈ (t− Tlisten − d, t). This implies that Guard G4, and thus also Guard G9,
becomes satisfied for v ∈ G at time t′v ∈ [t − Tlisten − d, t + d). Thus, every v ∈ G transitions
to state read, input 0, or input 1 at time t′v; note that if v was in state input 0 or input 1
before this happened, it transitions back to the same state due to Guard G4 being activated
and resets its local T2 timer. Moreover, by time t′v ≤ rv < t′v + Tlisten < t+ d+ Tlisten node v
transitions to either input 0 or input 1, as either Guard G5 or Guard G5’ becomes activated
in case v transitions to state read at time t′v.

Now we have that node v remains in either input 1 or input 0 for the interval [rv, rv+T2/ϑ),
as Guard G6, Guard G6’, or Guard G7 are not satisfied before the local timer T2 expires.
Moreover, by applying Lemma 5 to any w ∈ A, we get that no v ∈ G transitions to wait during
the interval

[tw + 3T1 + d, tw + T2/ϑ− 2T1 − d) ⊇ (t+ 3T1 + d, t+ T2/ϑ− 2T1 − Tlisten − 2d).

Recall that for each v ∈ G, t′v < t + d. After this time, v cannot transition to pulse again
without transitioning to exec 0 or exec 1 first. Since t+ T2/ϑ− 2T1− Tlisten− 2d > t+ T1 + d
by Constraint (8), we get that every w ∈ G has arrived in state wait or recover by time
t+T2/ϑ−2T1−Tlisten−2d. Thus, no such node transitions to state wait during [t+T2/ϑ−2T1−
Tlisten − 2d, t∗ + T1/ϑ): first, it must transition to pulse, which requires to satisfy Guard G2,
i.e., transitioning to state output 1, and then a timeout of T1 must expire; here, we use that we
already observed that t+T2/ϑ− 2T1−Tlisten− 2d > t+d, i.e., by definition the first node w ∈ G
to transition to pulse after time t+ T2/ϑ− T1 − Tlisten − 2d does so at time t∗. We conclude
that Guard G4 cannot be satisfied at any v ∈ G during the interval [t+ 3T1 + 2d, t∗ + T1/ϑ),
i.e., the second claim of the lemma holds.

We proceed to showing that each v ∈ G transitions to state exec 0 or state exec 1 at
time tv ∈ [t0, t0 + τ), i.e., the first claim of the lemma. To this end, observe that w transitions
to either state exec 0 or exec 1 at some time t′ ∈ (t′w, t

∗). By the above observations,
t′ ≥ rw + T2/ϑ ≥ t− Tlisten − d+ T2/ϑ = t0. Node w initialises the Srikanth-Toueg algorithm
given in Figure 5 locally at time t′. In particular, by the properties of the simulation algorithm

29



given in Remark 4, we have that w waits until time t′ + τ before starting the simulation of C,
and hence, w remains in exec 0 or exec 1 at least until time t′ + τ before the simulation of C
produces an output value. Thus, we get that t∗ ≥ t′ + τ ≥ t0 + τ .

Recall that each v ∈ G resets timeout T2 at time rv ∈ [t′v, t + d + Tlisten) ⊆ [t − Tlisten −
d, t + Tlisten + d) and does not reset it during [t + 3T1 + 2d, t∗ + T1/ϑ), as it does not satisfy
Guard G4 at any time from this interval. When T2 expires at v, it transitions to exec 0 or
exec 1. Because t∗ + T1/ϑ > t0 + τ ≥ t+ max{Tlisten + d, 3T1 + 2d}+ T2 by Constraint (10),
this happens at time tv ∈ [t− Tlisten − d+ T2/ϑ, t0 + τ ] = [t0, t0 + τ ], as claimed.

Next, we show that if all correct nodes initialise a new instance of the Srikanth–Toueg pulse
synchronisation algorithm within a time interval of length τ , then every correct node initialises,
participates in, and successfully completes simulation of the consensus routine C.

Lemma 7. Suppose there exists a time t0 such that each node v ∈ G transitions to exec 0 or
exec 1 at some time tv ∈ [t0, t0 + τ). Let t′ be the minimal time larger than t0 at which some
u ∈ G transitions to either output 0 or output 1. If Guard G4 is not satisfied at any v ∈ G
during [t0, t

′ + 2d), then t′ ≤ t0 + Tconsensus/ϑ− 2d and there are times t′v ∈ [t′, t′ + 2d), v ∈ G,
such that:

• each v ∈ G transitions to output 1 or output 0 at time t′v (termination),
• this state is the same for each v ∈ G (agreement), and
• if each v ∈ G transitioned to state exec 1 at time tv, then this state is output 1 (validity).

Proof. When v ∈ G transitions to either exec 0 or exec 1, it sends an initialisation signal to
the non-self-stabilising Srikanth–Toueg algorithm described in Section 7. Using the clock given
by this algorithm, nodes simulate the consensus algorithm C. If node v ∈ G enters state exec 0,
it uses input “0” for C. Otherwise, if v enters exec 1 it uses input “1”.

Note that Theorem 4 implies that if all nodes initialise the Srikanth–Toueg algorithm within
time τ apart, then the simulation of C takes at most τ + T (R) ∈ O(ϑ2d(τ +R)) time. Moreover,
all nodes will declare the output on the same round, and hence, declare the output within a
time window of 2d, as the skew of the pulses is at most 2d.

Now let us consider the simulation taking place in the auxiliary state machine. If Guard G4
is not satisfied during [t0, t

′ + 2d) and the timer Tconsensus does not expire at any node v ∈ G
during the simulation, then by time t′ + 2d ≤ t0 + τ + T (R) ∈ O(ϑ2d(τ +R)) the nodes have
simulated R rounds of C and declared output. By assumption, Guard G4 cannot be satisfied
prior to time t′ + 2d. At node v ∈ G, the timer Tconsensus is reset at time tv ≥ t0. Hence, it
cannot expire again earlier than time t0 +Tconsensus/ϑ ≥ t0 +τ +T (R) by Constraint (11). Hence,
the simulation succeeds.

Since the simulation of the consensus routine C completes at each v ∈ G at some time
t′v ∈ [t′, t′ + 2d), we get that Guard G8 or Guard G9 is satisfied at time t′v at node v. Hence,
v transitions to either of the output states depending on the output value of C. The last two
claims of the lemma follow from the agreement and validity properties of the consens routine
C.

Now we can show that if the main state machine stabilises, it remains stabilised. More
precisely, the following lemma shows that it is sufficient to have all correct nodes transition
to pulse within a time window of length 2d: once this happens, all correct nodes remain
synchronised with skew 2d and controlled accuracy bounds.

Lemma 8. Suppose there exists an interval [t, t + 2d) such that for all v ∈ G it holds that
p(v, tv) = 1 for some tv ∈ [t, t+ 2d). Then there exists t′ ∈ [t+T2/ϑ, t+ (T2 +Tconsensus)/ϑ− 2d)
such that pnext(v, tv) ∈ [t′, t′ + 2d) for all v ∈ G.
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Proof. First, observe that if any node v ∈ G transitions to pulse at time tv, then node v will be
in state listen in the auxiliary state machine at time tv. To see this, note that node v must have
transitioned to output 1 in the auxiliary state machine at time tv in order to satisfy Guard G2
leading to state pulse. Furthermore, once this happens, node v transitions immediately from
output 1 to listen in the auxiliary state machine.

Next, note that v ∈ G will not transition to recover before time tv + T1/ϑ ≥ t + 3d by
Guard G1 and Constraint (6). By assumption, every u ∈ G transitions to pulse by time t+ 2d,
and thus, node v observes a pulse message from at least n − f correct nodes u ∈ G by time
t + 3d. Thus, all correct nodes observe a pulse message from at least n − f nodes during
[t, t+ T1/ϑ) = [t, t+ 3d) satisfying Guard G1. Hence, every correct node v ∈ G transitions to
wait during the interval [t+ T1/ϑ, t+ T1 + 2d) and remains there until Guard G2 or Guard G2’
is activated.

Now let us consider the auxiliary state machine. From the above reasoning, we get that
every node v ∈ G will observe at least n− f nodes transitioning from pulse to wait during the
interval [t+ T1/ϑ, t+ T1 + 3d). As we have Tlisten/ϑ ≥ (1− 1/ϑ)T1 + 3d by Constraint (7), both
Guard G4 and Guard G5 are satisfied for v during the same interval. Thus, node v transitions
to state input 1 during the interval [t+ T1/ϑ, t+ T1 + 3d). It also follows that v transitions to
exec 1 during [t+ (T1 + T2)/ϑ, t+ T1 + T2 + 3d) ⊆ [t+ T2/ϑ, t+ T2/ϑ+ τ) by Constraint (10).

Note that t+T1+4d < t+T2/ϑ by Constraint (6) and Constraint (8) and that no correct node
transitions to wait again after time t+ T1 + 3d before transitioning to output 1 and spending,
by Constraint (6), at least T1/ϑ > 2d time in pulse. Therefore, we can apply Lemma 7 with
t0 = t+T2/ϑ, yielding a time t′ < t+T2/ϑ+Tconsensus/ϑ−2d such that each v ∈ G transitions to
output 1 in the auxiliary state machine at time t′v ∈ [t′, t′ + 2d). Hence, Guard G2 is satisfied
at time t′v. Note that Guard G2’ cannot be satisfied: no correct node transitions to output 0
and the timer Twait expires after time t+ Twait/ϑ ≥ t′ by Constraint (12).

8.5 Ensuring stabilisation

We showed above that if all correct nodes eventually generate a pulse with skew 2d, then the
pulse synchronisation routine stabilises. In this section, we show that this is bound to happen.
The idea is that if stabilisation does not take place within a certain interval, then all nodes end
up being simultaneously in state recover in the main state machine and state listen in the
auxiliary state machine, until eventually timeout Tactive expires. This in turn allows the “passive”
stabilisation mechanism to activate by having timer Tactive expire at every node and stabilise
the system as shown by the lemma below.

Lemma 9. Let t < Tactive/ϑ and t∗ = minv∈G{pnext(v, t)}. Suppose the following holds for every
node v ∈ G:

• node v is in state recover and listen at time t, and
• Guard G4 is not satisfied at v during [t, t∗ + 2d),

Then t∗ < Tactive+ρ+Tconsensus/ϑ and every v ∈ G transitions to pulse at time tv ∈ [t∗, t∗+2d).

Proof. Observe that Guard G3 is not satisfied before time Tactive/ϑ. As Guard G4 is not satisfied
during [t, t∗), no correct node leaves state Tlisten before time Tactive/ϑ. Since no v ∈ G can
activate Guard G2 during [t, t∗), we have that every v ∈ G remains in state recover during
this interval. Let t0 ∈ [Tactive/ϑ, Tactive + ρ) be the minimal time (after time t) when Guard G3
becomes satisfied at some node v ∈ G. From the properties of the simulation algorithm given in
Remark 4, we get that no w ∈ G transitions away from exec 1 before time t0 + τ ≥ Tactive/ϑ+ τ .

Since τ ≥ (1− 1/ϑ)Tactive + ρ by Constraint (10), we conclude that no w ∈ G transitions to
output 1 (and thus pulse) before time Tactive+ρ. Therefore, each w ∈ G transitions to exec 1
at some time rw ∈ [Tactive/ϑ, Tactive + ρ) ⊆ [t0, t0 + τ). Recall that Guard G4 is not satisfied
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during [t0, t
∗ + 2d). Hence, we can apply Lemma 7 to the interval [t0, t0 + τ), implying that

every w ∈ G transitions to output 1 at some time tw ∈ [t∗, t∗ + 2d). Thus, node each w ∈ G
transitions from recover to pulse at time tw, when Guard G2 becomes satisfied. Finally,
Lemma 7 also guarantees that t∗ < t0 + Tconsensus/ϑ ≤ Tactive + ρ+ Tconsensus/ϑ.

We will now establish a series of lemmas in order to show that we can either apply Lemma 8
directly or in conjunction with Lemma 9 to guarantee stabilisation. In the remainder of this
section, we define the following abbreviations:

α = Tlisten + d

β = α+ Twait + γ + 4T1 + 3d+ 2δ

β′ = (Tactive − T2 − Tconsensus)/ϑ
δ = max{T1 + Twait, T1 + d+ Tlisten + T2 + Tconsensus}
γ = T2/ϑ− 5T1 − 3d.

Remark 5. We have that γ < δ < β ≤ β′ < Tactive/ϑ, where the inequality β ≤ β′ is equivalent
to Constraint (14).

In the following, we consider the time intervals [α, β] and [α, β′]. We distinguish between
two cases and show that in either case stabilisation is ensured. The cases are:

• no correct node transitions to input 1 during [α, β], and
• some correct node transitions to input 1 during [α, β′].

We start with the latter case.

Lemma 10. Suppose node v ∈ G transitions to input 1 at time t ∈ [α, β′). Then there exists a
time t′ ∈ [t, Tactive/ϑ− 2d) such that one of the following holds:

1. every u ∈ G satisfies p(u, tu) = 1 for some tu ∈ [t′, t′ + 2d), or
2. every u ∈ G is in state recover and listen at time t′+ 2d and Guard G4 is not satisfied

at u during [t′ + 2d, t∗ + 2d], where t∗ := minw∈G{p(w, t′ + 2d)}.

Proof. By Constraint (6), we have T1/ϑ > 2d. As α ≤ t < β′ < (Tactive − T2)/ϑ, we can
apply Lemma 6 to time t. Due to Constraint (8), we can apply Lemma 7 with time t0 =
t− Tlisten − d+ T2/ϑ, yielding a time t′ < β′ − Tlisten − 3d+ T2/ϑ+ Tconsensus/ϑ < Tactive/ϑ− 2d
such that each u ∈ G transitions to the same output state output 0 or output 1 in the
auxiliary state machine at time tu ∈ [t′, t′+2d). If this state is output 1, each u ∈ G transitions
to output 1 at time tu ∈ [t′, t′+ 2d). This implies that Guard G2 is activated and u transitions
to pulse so that p(u, tu) = 1. If this state is output 0, Guard G2’ implies that each u ∈ G
either remains in or transitions to state recover at time tu. Moreover, node u immediately
transitions to state listen in the auxiliary state machine. Finally, note that Lemma 6 also
states that Guard G4 cannot be satisfied again before time t∗ + T1/ϑ > t∗ + 2d.

Corollary 4. Suppose node v ∈ G transitions to input 1 at time t ∈ [α, β′]. Then there exists
t′ < Tactive+ρ+Tconsensus/ϑ such that every u ∈ G satisfies p(v, tu) = 1 for some tu ∈ [t′, t′+2d).

Proof. We apply Lemma 10. In the first case of Lemma 10, the claim immediately follows. In
the second case, it follows by applying Lemma 9.

We now turn our attention to the other case, where no node v ∈ G transitions to input 1
during the time interval [α, β].

Lemma 11. If no v ∈ G transitions to input 1 during [α, β], then no v ∈ G transitions to
state exec 1 during [α+ T1 + Twait, β).
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Proof. Observe that any v ∈ G that does not transition to pulse during [α, α+T1 +Twait] must
transition to recover at some time from that interval once Guard G2’ is satisfied. Note that
leaving state recover requires Guard G2 to be satisfied, and hence, a transition to output 1
in the auxiliary state machine. However, as no node v ∈ G transitions to input 1 during
[α, β), it follows that each v ∈ G that is in state input 1 in the auxiliary state machine at time
t ∈ [α + T1 + Twait, β) is also in state recover in the main state machine. Thus, Guard G6
cannot be satisfied. We conclude that no correct node transitions to state exec 1 during the
interval [α+ T1 + Twait, β).

We now show that if Guard G4 cannot be satisfied for some time, then there exists an interval
during which no correct node is participating in or attempting to simulate a consensus instance.

Lemma 12. Let t ∈ (d, β − 2δ) and suppose Guard G4 is not satisfied during the interval
[t, t+γ]. Then there exists a time t′ ∈ [t, β− δ] such that no v ∈ G is in state exec 0 or exec 1
during (t′ − d, t′].

Proof. Observe that Guard G3 cannot be satisfied before time t+ γ + T2/ϑ < Tactive/ϑ at any
correct node, and by the assumption, Guard G4 is not satisfied during the interval [t, t+ γ]. We
proceed via a case analysis.

First, suppose v ∈ G is in state listen at time t. As Guard G3 or Guard G4 cannot be
satisfied during [t, t+ γ] node v remains in listen until time t+ γ. Moreover, if v leaves listen
during [t+ γ, t+ γ + T2/ϑ], it must do so by transitioning to read. Hence, it cannot transition
to exec 0 or exec 1 before Guard G6, Guard G6’ or Guard G7 are satisfied. Either way, v
cannot reach states exec 0 or exec 1 before time t+ γ + T2/ϑ. Hence, in this case, v is not in
the two execution states during I1 = [t, t+ γ + T2/ϑ) = [t, t+ 2T2/ϑ− 3(T1 + d)).

Let us consider the second case, where v is not in listen at time t. Note that the timer T2
cannot be reset at v during the interval [t+ Tlisten, t+ γ], as this can happen only if v transitions
to input 0 or input 1 and Guard G4 cannot be satisfied during [t, t+ γ]. Hence, the only way
for this to happen is if v transitions from read to either input 0 or input 1 during the interval
[t, t+ Tlisten].

It follows that v cannot transition to exec 0 or exec 1 during the interval (t + Tlisten +
T2, t + γ + T2/ϑ). Moreover, if v transitions to these states before t + Tlisten + T2, then v
must transition away from them by time t+ Tlisten + T2 + Tconsensus, as Guard G8 or Guard G9
become satisfied. Therefore, node v is in listen, read, input 0 or input 1 during I2 =
[t+ Tlisten + T2 + Tconsensus, t+ γ + T2/ϑ). Applying Constraint (9), we get that

Tlisten + T2 + Tconsensus < 2T2/ϑ− 5T1 − 4d,

and hence, by setting t′ = t+Tlisten +T2 +Tconsensus + d < β− δ, we get that (t′− d, t′] ⊆ I1 ∩ I2.
That is, in either case v is not in state exec 0 or exec 1 during this short interval.

Lemma 13. There exists t ∈ [α+ T1 + Twait + d, α+ 4T1 + Twait + 3d+ γ) ⊂ (d, β − 2δ) such
that Guard G4 is not satisfied during [t, t+ γ] at any v ∈ G.

Proof. Let t′ ∈ [α+ T1 + Twait, α+ T1 + Twait + d+ γ] be a time when some v ∈ G transitions
to state wait. If such t′ does not exist, the claim trivially holds for t = α + T1 + Twait + d.
Otherwise, since t′ ≤ Tlisten + T1 + Twait + 2d+ γ ≤ (Tactive − T2)/ϑ by Constraint (13), we can
apply Lemma 5 to time t′, which yields that no u ∈ G transitions to wait during

[t′ + 3T1 + d, t′ + T2/ϑ− 2T1 − d) = [t− d, t+ γ),

where t = t′ + 3T1 + 2d. Thus, Guard G4 is not satisfied at any v ∈ G during [t, t+ γ].

Lemma 14. Suppose no v ∈ G transitions to input 1 during [α, β]. Then no v ∈ G transitions
to pulse during [β − δ, β].
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Proof. First, we apply Lemma 13 to obtain an interval [t, t+ γ] ⊆ [α+ T1 + Twait + d, β − 2δ]
during which Guard G4 cannot be satisfied at any v ∈ G. Applying Lemma 12 to this interval
yields an interval (t′−d, t′] ⊂ (t, β−δ] during which no v ∈ G is in state exec 0 or exec 1. This
implies that no node is running a consensus instance during this time interval, and moreover, no
messages from prior consensus instances are in transit to or arrive at any correct node at time t′.
In particular, any v ∈ G that (attempts to) simulate a consensus instance at time t′ or later
must first reinitialise the simulation by transitioning to exec 0 or exec 1 first.

Next, let us apply Lemma 11, to see that no v transitions to exec 1 during the interval
[α + T1 + Twait, β] ⊃ [t′, β]. Thus, if any node v ∈ G attempts to simulate C, it must start
the simulation by transitioning to exec 0. This entails that any correct node attempting to
simulate C does so with input 0. Because C is a silent consensus routine (see Definition 1), this
entails that v does not send any message related to C unless it receives one from a correct node
first, and in absence of such a message, it will not terminate with output 1. We conclude that
no v ∈ G transitions to output 1 during [t′, β] ⊆ [β − δ, β]. The claim follows by observing
that a transition to pulse in the main state machine requires a transition to output 1 in the
auxiliary state machine.

Lemma 15. Suppose no v ∈ G transitions to pulse during [β−δ, β]. Then at time β every v ∈ G
is in state recover in the main state machine and state listen in the auxiliary state machine.
Moreover, Guard G4 is not satisfied during [β, t∗ + 2d), where t∗ = maxv∈G{pnext(v, β)}.

Proof. As no v ∈ G transitions pulse during [β − δ, β], either Guard G1 or Guard G2’ lead
each v ∈ G to recover. More precisely, every v ∈ G is in state recover of the main state
machine during [β − δ + T1 + Twait, β]. Next, observe that Guard G4 is not satisfied during
[β − δ + T1 + d, β], implying that each v ∈ G is in state listen of the auxiliary state machine
during [β − δ + T1 + d+ Tlisten + T2 + Tconsensus, β]. Recalling that

δ = max{T1 + Twait, T1 + d+ Tlisten + T2 + Tconsensus},

the first claim of the lemma follows. For the second claim, observe that Guard G4 cannot be
satisfied before the next transition to wait by a correct node occurs. This cannot happen before
T1/ϑ time has passed after a correct node transitioned to pulse by Guard G1. Since T1/ϑ > 2d
by Constraint (6), the claim follows.

We can now show that if no input 1 transitions occur during [α, β], then all nodes end up in
the recover state in the main state machine before Tactive timeout expires at any node. This
will eventually activate Guard G3 at every correct node, leading to a correct simulation of C
with all 1 inputs.

Corollary 5. Suppose no v ∈ G transitions to input 1 during [α, β]. Then there exists a time
t < Tactive + ρ+ Tconsensus such that every v ∈ G transitions to pulse at time tv ∈ [t, t+ 2d).

Proof. By Lemma 14 and Lemma 15, the prerequisites of Lemma 9 are satisfied at time
t = β < Tactive/ϑ.

It remains to show that the constraints in Table 3 can be satisfied for some ϑ > 1 such that
all timeouts are in O(R).

Lemma 16. Let 1 < ϑ < (1 +
√

5)/3 ≈ 1.0787. The constraints in Table 3 can be satisfied.
Moreover, all timeouts are O(R).

Proof. Recall that R is the number of rounds the consensus routine needs to declare output and
T (R) is time required to simulate the consensus routine. We parametrize T2 and Tactive using X
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and Y , where we require that X ∈ Θ(R) is chosen so that T (R)/X ≤ ε, for a constant ε > 0 to
be determined later. We then can set

T1 := 3ϑd

Tlisten := 3ϑ2d

T2 := X

τ := max
{

(1− 1/ϑ)X + (3ϑ2 + 9ϑ+ 3)d, (1− 1/ϑ)Y + ρ
}

Tconsensus := ϑ(τ + εX)

Twait := X + Tconsensus

Tactive := Y,

immediately satisfying Constraint (6), Constraint (7), Constraint (10), Constraint (11), and
Constraint (12). Moreover, Constraint (8) holds by requiring that X is at least a sufficiently
large constant.

For the remaining constraints, denote by C(ϑ, d) a sufficiently large constant subsuming
all terms that depend on ϑ and d only and abbreviate T ′consensus := (ϑ− 1) max{X,Y }+ εϑX
(i.e., the non-constant terms of Tconsensus). To satisfy Constraint (9), Constraint (13), and
Constraint (14), it is then sufficient to guarantee that

(2/ϑ− 1)X > T ′consensus + C(ϑ, d)

Y ≥ 5X + T ′consensus + C(ϑ, d)

Y ≥ 2X + T ′consensus + ϑ(4X + 4T ′consensus) + C(ϑ, d),

where the second inequality automatically holds if the third is satisfied. We also note that
Y ≥ X is a necessary condition to satisfy the third inequality, implying that we may assume
that T ′consensus = (ϑ− 1)Y + εX. We rearrange the remaining inequalities, yielding

(2/ϑ− 1− ε)X > (ϑ− 1)Y + C(ϑ, d)

(2 + 3ϑ− 4ϑ2)Y ≥ (2 + 4(1 + ε)ϑ)X + C(ϑ, d). (1)

Recall that ϑ and C(ϑ, d) are constant, and ε is a constant under our control. Hence, these
inequalities can be satisfied if and only if

(2/ϑ− 1)(2 + 3ϑ− 4ϑ2) > (2 + 4ϑ)(ϑ− 1).

The above inequality holds for all ϑ ∈ (1, (1 +
√

5)/3). Note that, as ϑ, ε, C(ϑ, d) ∈ O(1), we can
choose X ∈ Θ(R) as initially stated, implying that all timeouts are in O(R), as desired.

Corollary 6. For ϑ < (1 +
√

5)/3 and suitably chosen timeouts, in any execution there exists
t ∈ O(R) such that every v ∈ G transitions to pulse during the time interval [t, t+ 2d).

Proof. We choose the timeouts in accordance with Lemma 16. If no v ∈ G transitions to input 1
during [α, β], Corollary 5 yields the claim. Otherwise, some node v ∈ G transitions to state
input 1 during the interval [α, β] ⊆ [α, β′] and the claim holds by Corollary 4.

8.6 Proof of Theorem 2

We observe that the accuracy bounds can be set to be within a constant factor apart from each
other.

Corollary 7. Let ϑ < (1+
√

5)/3 and ϕ0(ϑ) = 1+6(ϑ−1)/(2+3ϑ−4ϑ2) ∈ 1+O(ϑ−1). For any
constant ϕ > ϕ0(ϑ), we can obtain accuracy bounds satisfying Φ+/Φ− ≤ ϕ and Φ−,Φ+ ∈ Θ(R).
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Proof. By Lemma 8, the accuracy bounds we get from the constuction are Φ− = T2/ϑ and
Φ+ = (T2 + Tconsensus)/ϑ. Choosing the timeouts as in the proof of Lemma 16, we get that
Φ+/Φ− = 1 + (ϑ− 1)Y/X + ε, where ε is an arbitrarily small constant. Checking Inequality (1),
we see that we can choose Y/X = (2 + 4(1 + ε))/(2 + 3ϑ− 4ϑ2). Choosing ε sufficiently small,
the claim follows.

Now we are ready to prove our main theorem of this section.

Theorem 2. Let f ≥ 0, n > 3f and (1 +
√

5)/3 > ϑ > 1. Suppose for a network of n nodes
there exist

• an f -resilient synchronous consensus algorithm C, and
• an f-resilient resynchronisation algorithm B with skew ρ ∈ O(d) and sufficiently large

separation window Ψ ∈ O(R) that tolerates clock drift of ϑ,

where C runs in R = R(f) rounds and lets nodes send at most M = M(f) bits per round. Then
a ϕ0(ϑ) ∈ 1 +O(ϑ−1) exists so that for any constant ϕ > ϕ0(ϑ) and sufficiently large T ∈ O(R),
there exists an f -resilient pulse synchronisation algorithm A for n nodes that

• has skew σ = 2d and satisfies the accuracy bounds Φ− = T and Φ+ = Tϕ,
• stabilises in T (B) +O(R) time and has nodes broadcast M(B) +O(M) bits per time unit.

Proof. By the properties of the resynchronisation algorithm B, we get that the a good resyn-
chronisation pulse occurs within time T (B). Once this happens, Corollary 6 shows all correct
nodes transition to pulse during [t, t + 2d) for t ∈ T (B) + O(R). By Lemma 8 we get that
the algorithm stabilises by time t and has skew σ = 2d. From Corollary 7 we get that the
accuracy bounds can be set to be within factor ϕ apart without affecting the stabilisation time
asymptotically.

To analyse the number of bits sent per time unit, first observe that the main state machine
communicates whether a node transitions to pulse or wait. This can be encoded using messages
of size O(1). Moreover, as node remains Ω(d) time in pulse or wait, the main state machine
sends only O(1) bits per time unit. Second, the auxiliary state machine does not communicate
apart from messages related to the simulation of consensus. The non-self-stabilising pulse
synchronisation algortihm sends messages only when a node generates a pulse and the time
between pulses is Ω(d). Thus, while simulating C, each node broadcasts at most M(C) +O(1)
bits per time unit.

9 Resynchronisation algorithms

In this section, we give the second key component in the proof of Theorem 1. We show that
given pulse synchronisation algorithms for networks of small size and with low resilience, it
is possible to obtain resynchronisation algorithms for large networks and with high resilience.
More precisely, we show the following theorem.

Theorem 3. Let f, n0, n1 ∈ N, n = n0 + n1, f0 = b(f − 1)/2c, f1 = d(f − 1)/2e, and
1 < ϑ ≤ 1.007. Suppose that for some given Ψ ∈ Ω(1), sufficiently small constant ϕ > ϕ0(ϑ),
and T0 ∈ Θ(Ψ), it holds that for any h ∈ {0, 1} and T0 ≤ T ∈ O(Ψ) there exists a pulse
synchronisation algorithm Ah that

• runs on nh nodes and tolerates fh faulty nodes,
• has skew σ = 2d and accuracy bounds Φ−h = T and Φ+

h = Tϕ.

Then there exists a resynchronisation algorithm with skew ρ ∈ O(d) and separation window of
length Ψ that generates a resynchronisation pulse by time max{T (A0), T (A1)}+O(Ψ), where
nodes broadcast only O(1) additional bits per time unit.
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Figure 9: Idea of the resynchronisation algorithm. We take two pulse sources with coprime
frequencies and output the logical OR of the two sources. In this example, the pulses of the first
source should occur in the blue regions, whereas the pulses of the second source should hit the
yellow regions. The green regions indicate a period where a pulse from either source is followed
by at least Ψ time of silence. Eventually, such a region appears. (a) Two correct sources that
pulse with set frequencies. (b) One faulty source that produces spurious pulses. Here, a pulse
occurs too early (red region), and thus, we then enforce that the faulty source is silenced for
Θ(Ψ) time. Once the faulty source is silenced, the correctly working source has time to produce
a good resynchronisation pulse, that is, a pulse in the output signal that is followed by at least
Ψ time of silence.

9.1 The high-level idea

Our goal is to devise a self-stabilising resynchronisation algorithm with skew ρ ∈ O(d) and
separation window Ψ for n nodes that tolerates f < n/3 faulty nodes. That is, we want an
algorithm that guarantees that there exists a time t such that all correct nodes locally generate a
single resynchronisation pulse during the interval [t, t+ ρ) and no new pulse during the interval
[t+ ρ, t+ ρ+ Ψ). Note that a correct resynchronisation algorithm is also allowed to generate
various kinds of spurious resynchronisation pulses, such as pulses that are followed by a new
resynchronisation pulse too soon (i.e., before Ψ time units have passed) or pulses that are only
generated by a subset of the correct nodes.

The algorithm idea. In order to illustrate the idea behind our resynchronisation algorithm,
let us ignore clock drift and suppose we have two sources of pulses that generate pulses with
fixed frequencies. Whenever either source generates a pulse, then a resynchronisation pulse is
triggered as well. If the sources generate pulses with frequencies that are coprime multiples of (a
sufficiently large) C ∈ Θ(Ψ), then we are guaranteed that eventually one of the sources produces
a pulse followed by at least Ψ time units before a new pulse is generated by either of the two
sources. See Figure 9 for an illustration.

Put otherwise, suppose ph(v, t) ∈ {0, 1} indicates whether node v observe the pulse source
h ∈ {0, 1} generating a pulse at time t. Using the above scheme, the output variable for the
resynchronisation algorithm would be r(v, t) = max{ph(v, t)}. If, eventually, each source h
generates a pulse roughly every Ch time units, setting C0 < C1 to be coprime integer multiples
of C ∈ Θ(Ψ) (we allow for a constant-factor slack to deal with clock drift, etc.), we eventually
have a time when a pulse is generated by one source, but not source will generate another pulse
for at least Ψ time units.

Obviously, if we had such reliable self-stabilising pulse sources for n nodes and f < n/3
faulty nodes, then we would have effectively solved the pulse synchronisation problem already.
However, our construction given in Section 8 relies on having a resynchronisation algorithm.
Thus, in order to avoid this chicken-and-egg problem, we partition the set of n nodes into two
and have each part run an instance of a pulse synchronisation algorithm with resilience almost
f/2. That is, we take two pulse synchronisation algorithms with low resilience, and use these to
obtain a resynchronisation algorithm with high resilience. This allows us to recursively construct
resynchronisation algorithms starting from trivial pulse synchronisation algorithms that do not
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tolerate any faulty nodes.
The final obstacle to this construction is that we cannot guarantee that both instances with

smaller resilience operate correctly, as the total number of faults exceeds the number that can
be tolerated by each individual instance. We overcome this by enlisting the help of all nodes to
check, for each instance, whether its output appears to satisfy the desired frequency bounds. If
not, its output is conservatively filtered out (for a sufficiently large period of time) by a voting
mechanism. This happens only for an incorrect output, implying that the fault threshold for
the respective instance must have been exceeded. Accordingly, the other instance is operating
correctly and, thanks to the absence of further interference from the faulty instance, succeeds in
generating a resynchronisation pulse.

Using two pulse synchronisers. We now overview how to use two pulse synchronisation
algorithms to implement our simple resynchronisation algorithm described above. Let

n0 = bn/2c and n1 = dn/2e
f0 = b(f − 1)/2c and f1 = d(f − 1)/2e.

Observe that we have n = n0 + n1 and f = f0 + f1 + 1. We partition the set V of n nodes into
two sets Vh for h ∈ {0, 1} such that V = V0 ∪ V1, where V0 ∩ V1 = ∅ and |Vh| = nh. We now pick
two pulse synchronisation algorithms A0 and A1 with the following properties:

• Ah runs on nh nodes and tolerates fh faulty nodes,
• Ah stabilises in time T (Ah) and has nodes send M(Ah) bits per time unit, and
• Ah has skew σ ∈ O(d) and accuracy bounds Φh = (Φ−h ,Φ

+
h ), where Φ−h ,Φ

+
h ∈ O(Ψ).

We let the nodes in set Vh execute the pulse synchronisation algorithm Ah.
An optimistic approach would be to use each Ah as a source of pulses by checking whether

at least nh − fh nodes in the set Vh generated a pulse within a time window of (roughly) length
σ = 2d. Unfortunately, we cannot directly use the pulse synchronisation algorithms A0 and
A1 as reliable sources of pulses. There can be a total of f = f0 + f1 + 1 < n/3 faulty nodes,
and thus, it may be that for one h ∈ {0, 1} the set Vh contains more than fh faulty nodes.
Hence, the algorithm Ah may never stabilise and can generate spurious pulses at uncontrolled
frequencies. In particular, the algorithm may always generate pulses with frequency less than Ψ
preventing our simple solution from working. However, we are guaranteed that at least one of
the algorithms stabilises.

Lemma 17. If there are at most f faulty nodes, then there exists h ∈ {0, 1} such that Ah

stabilises by time T (Ah).

Proof. Observe that f0 + f1 + 1 = f . In order to prevent both algorithms from stabilising,
we need to have at least f0 + 1 faults in the set V0 and f1 + 1 faults in the set V1, totalling
f0 + f1 + 2 > f faults in the system.

Once the algorithm Ah for some h ∈ {0, 1} stabilises, we have at least nh − fh correct nodes
in set Vh locally generate pulses with skew σ and accuracy bounds Φh = (Φ−h ,Φ

+
h ). However,

it may be that the other algorithm A1−h never stabilises. Moreover, the algorithm A1−h may
forever generate spurious pulses at arbitrary frequencies. Here, a spurious pulse refers to any
pulse that does not satisfy the skew σ and accuracy bounds of A1−h. For example, a spurious
pulse may be a pulse that only a subset of nodes generate, one with too large skew, or a pulse
that occurs too soon or too late.

In order to tackle this problem, we employ a series of threshold votes and timeouts to filter
out any spurious pulses generated by an unstabilised algorithm that violate timing constraints.
This way, we can impose some control on the frequency at which an unstabilised algorithm
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Figure 10: Example of the resynchronisation construction for 8 nodes tolerating 2 faults. We
partition the network into two parts, each running a pulse synchronisation algorithm Ai. The
output of Ai is fed into the respective filter and any pulse that passes the filtering is used as a
resynchronisation pulse. The filtering consists of (1) having all nodes in the network participate
in a threshold vote to see if anyone thinks a pulse from Ai occurred (i.e. enough nodes running
Ai generated a pulse) and (2) keeping track when was the last time a pulse from Ai occurred to
check that the accuracy bounds of Aiare respected: pulses that appear too early or too late
are ignored. Moreover, if Ai generates pulses at incorrect frequencies, the filtering mechanism
blocks all pulses generated by Ai for Θ(Ψ) time.

may trigger resynchronisation pulses. As long as these frequency bounds are satisfied, it is
inconsequential if a non-stabilised algorithm triggers resynchronisation pulses at a subset of the
nodes only. We want our filtering scheme to eventually satisfy the following properties:

• If Ah has stabilised, then all pulses generated by Ah are accepted.
• If Ah has not stabilised, then only pulses that respect given frequency bounds are accepted.

More precisely, in the first case the filtered pulses respect (slightly relaxed) accuracy bounds Φh

of Ah. In the second case, we enforce that the filtered pulses must either satisfy roughly at the
same accuracy bounds Φh or they must be sufficiently far apart. That is, the nodes will reject
any pulses generated by Ah if they occur either too soon or too late.

Once we have the filtering mechanism in place, it becomes relatively easy to implement our
conceptual idea for the resynchronisation algorithm. We apply the filtering mechanism for both
algorithms A0 and A1 and use the filtered outputs as a source of pulses in our algorithm, as
illustrated in Figure 10. We are guaranteed that at least one of the sources eventually produces
pulses with well-defined accuracy bounds. Furthermore, we know that also the other source
must either respect the given accuracy bounds or refrain from generating pulses for a long time.
In the case that both sources respect the accuracy bounds, we use the coprimality of frequencies
to guarantee a sufficiently large separation window for the resynchronisation pulses. Otherwise,
we exploit the fact that the unreliable source stays silent for sufficiently long for the reliable
source to generate a pulse with a sufficiently large separation window.

9.2 Filtering spurious pulses

Our pulse filtering scheme follows a similar idea as our recent construction of synchronous
counting algorithms [26]. However, considerable care is needed to translate the approach from
the (much simpler) synchronous round-based model to the bounded-delay model with clock drift.
We start by describing the high-level idea of the approach before showing how to implement the
filtering scheme in the bounded-delay model considered in this work.

For convenience, we refer to the nodes in set Vh as block h. First, for each block h ∈ {0, 1}
every node v ∈ G performs the following threshold vote:

1. If v observes at least nh − fh nodes in Vh generating a pulse, vote for generating a
resynchronisation pulse.
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2. If at least n− f nodes in V voted for pulse by block h (within the time period this should
take), then v accepts it.

The idea here is that if some correct node accepts a pulse in Step 2, then every correct node
must have seen at least n− 2f ≥ f + 1 votes due to Step 1. Moreover, once a node observes at
least f + 1 votes, it can deduce that some correct node saw at least nh − fh nodes in block h
generate a pulse. Thus, if any correct node accepts a pulse generated by block h, then all correct
nodes are aware that a pulse may have happened.

Second, we have the nodes perform temporal filtering by keeping track of when block h last
(may have) generated a pulse. To this end, each node has a local “cooldown timer” that is reset
if the node suspects that block h has not yet stabilised. If a pulse is accepted by the above
voting mechanism, then a resynchronisation pulse is triggered if the following conditions are met:

1. the cooldown timer has expired, and
2. sufficiently long time has passed since the most recent pulse from h.

A correct node v ∈ G resets its cooldown timer if it

1. observes at least f + 1 votes for a pulse from block h, but not enough time has passed
since v last saw at least f + 1 votes,

2. observes at least f + 1 votes, but not n− f votes in a timely fashion, or
3. has not observed a pulse from block h for too long, that is, block h should have generated

a new pulse by now.

Thus, whenever a block h ∈ {0, 1} triggers a resynchronisation pulse at node v ∈ G, then
each node u ∈ G either resets its cooldown timer or also triggers a resynchronisation pulse.
Furthermore, if v ∈ G does not observe a pulse from block h within the right time window, it
will also reset its cooldown counter. Finally, each node refuses to trigger a resynchronisation
pulse when its cooldown timer is active. Note that if Ah stabilises, then eventually the cooldown
timer for block h expires and is not reset again. This ensures that eventually at least one of the
blocks triggers resynchronisation pulses.

Implementation in the bounded-delay model. We implement the threshold voting and
temporal filtering with two state machines depicted in Figure 11 and Figure 12. For each block
h ∈ {0, 1}, every node runs a single copy of the voter and validator state machines in parallel
(i.e., nodes essentially run a product of the two state machines). In the voter state machine
given in Figure 11, there are two key states, fail and go, which are used to indicate a local
signal for the validator state machine in Figure 12.

The key feature of the voter state machine is the voting scheme: if some node v ∈ G
transitions from vote to go, then all nodes must transition to either fail or go. This is
guaranteed by the fact that a node only transitions to go if it has observed at least n − f
nodes in the state vote within a short time window. This in turn implies that all nodes must
observe at least n− 2f > f nodes in vote (in a slightly larger time window). Thus, any node in
state idle must either transition directly to fail from idle or move on to listen. If a node
transitions to state listen, then it is bound to either transition to go or fail.

The validator state machine in turn ensures that any subsequent go transitions of v are at
least Tmin,h/ϑ or Tcool/ϑ time units apart. Moreover, if any fail transition occurs at time t, then
any subsequent go transition can occur at time t+ Tcool/ϑ at earliest. The voter state machine
also handles generating a fail transition if the underlying pulse synchronisation algorithm does
not produce a pulse within time Tmax,h. This essentially forces the trigger transitions in the
validator state machine to occur between accuracy bounds Λ−h ≈ Tmin,h/ϑ and Λ+

h ≈ Tmax,h or
at least Tcool,h/ϑ time apart. Furthermore, if the underlying pulse synchronisation algorithm
Ah stabilises, then the trigger transitions roughly follow the accuracy bounds of Ah.
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idle listen

go vote

failvote
pulse

awake

G1

G3 G2
G4

G2

G4

G5passG4

A ⌘ � nh � fh pulse messages from Vh

B ⌘ > f vote messages from V within Tatt

G1 ⌘ A or B

G2 ⌘ A

G3 ⌘ ¬A and B

G4 ⌘ hTvote,wake-upi expires

G5 ⌘ � n � f vote messages within time Tvote

G6 ⌘ hTmax,hi expires

Transition guards:
G6

Figure 11: The voter state machine is the first of the two state machines used to trigger
resynchronisation pulses by block h ∈ {0, 1}. Every node runs a separate copy of the voter
machine for both blocks. The voter state machine performs a threshold vote to ensure that if
at some node a resynchronisation pulse is (or might be) triggered by block h, then all correct
nodes see this by observing at least f + 1 vote messages within Tatt local time. The box before
idle indicates that the vote and pulse flags are cleared whenever a node enters the state idle.
In particular, this also explicitly clears the buffers used in the transition guards. Note that the
fail and go transitions are immediate, as there are no transition guards away from these states.
The two states are used to signal the validator state machine given in Figure 12 to generate
resynchronisation pulses or to refrain from doing so until the cooldown timer expires.

hold

waittrigger

ignore
go or fail

go

fail hTcooli

hTmin,hi

fail

Figure 12: The validator state machine is the second of the two state machines used to trigger
resynchronisation pulses by block h ∈ {0, 1}. Every node runs a separate copy of the validator
state machine for both blocks. Here the transitions guards are given next to the edges. The
validator checks that the go and fail transitions in the voter state machine given in Figure 11
satisfy the minimum time bound and that the go transitions occur in a timely manner. Note
that the transition from state ignore to itself resets the timer Tcool.
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(15) Tmin,h = Φ−h − ρ
(16) Tmax,h = ϑ(Φ+

h + Tvote)
(17) Tvote = ϑ(σ + 2d)
(18) Tidle = ϑ(σ + d)
(19) Tatt = ϑ(Tvote + 2d)
(20) ρ = Tvote
(21) Tcool ∈ Θ(max{Φ+

h ,Ψ})
(22) T ∗ = maxh∈{0,1}{T (Ah) + 2Φ+

h }+ Tcool + σ + 2d+ ρ

(23) Φ−h > Ψ + 2ρ
(24) Φ−h ≥ Tvote + Tidle + Tatt + σ + 2d
(25) Tmin,h < Tcool
(26) Tmin,h/ϑ > Ψ + ρ
(27) Tcool/ϑ > 15β
(28) C0 = 4, C1 = 5
(29) Λ+

h = Tmax,h + Tvote
(30) Λ−h = Tmin,h/ϑ
(31) β > 2Ψ + 4(Tvote + d) + ρ
(32) β · (Ch · j) ≤ j · Λ−h < j · Λ+

h + ρ ≤ β · (Ch · j + 1) for 0 ≤ j ≤ 3

Table 4: The conditions employed in the construction of Section 9. Here h ∈ {0, 1}.

We give a detailed analysis of the behaviour of the two state machines later in Sections 9.4.2–
9.4.3. The conditions we impose on the timeouts and other parameters are listed in Table 4. As
before, system of inequalities listed in Table 4 can be satisfied by choosing the timeouts carefully.
This is done in Section 9.4.4.

Lemma 18. Let 1 < ϑ < ϕ be constants that satisfy ϑ2ϕ < 31/30. There exists a constant
Ψ0(ϑ, ϕ, d) such that for any given Ψ > Ψ0(ϑ, ϕ, d) we can satisfy the constraints in Table 4 by
choosing

1. X ∈ Θ(Ψ),
2. Φ−0 = X and Φ+

0 = ϕX,
3. Φ−1 = rX and Φ+

1 = ϕrX for a constant r > 1, and
4. all remaining timeouts are O(X).

The resynchronisation algorithm. We now have described all ingredients of our resynchro-
nisation algorithm. It remains to define what is the output of our resynchronisation algorithm.
First, for each h ∈ {0, 1}, v ∈ G and t ≥ 0, let us define an indicator variable for trigger
transitions:

rh(u, t) =

{
1 if node u transitions to trigger at time t

0 otherwise.

Furthermore, for each v ∈ V0 ∪ V1, we define the output of our resynchronisation algorithm as
follows:

r(v, t) = max{r0(v, t), r1(v, t)}.
We say that block h triggers a resynchronisation pulse at node v if rh(v, t) = 1. That is, node v
generates a resynchronisation pulse if either block 0 or block 1 triggers a resynchronisation pulse
at node v. Our goal is to show that there exists a time t ∈ O(Φ+ + Ψ) such that every node
v ∈ G generates a resynchronisation pulse at some time t′ ∈ [t, t+ ρ) and neither block triggers
a new resynchronisation pulse before time t+ Ψ at any node v ∈ G. First, however, we observe
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that the communication overhead incurred by running the voter and validator state machines is
small.

Lemma 19. In order to compute the values r(v, t) for each v ∈ G and t ≥ 0, the nodes send at
most max{M(Ah)}+O(1) bits per time unit.

Proof. For both h ∈ {0, 1}, we have every v ∈ Vh broadcast a single bit when Ah generates a
pulse locally at node v. Observe that we can assume w.l.o.g. that Ah generates a pulse only
once per time unit even during stabilisation: we can design a wrapper for Ah that filters out
any pulses that occur within e.g. time d of each other. As we have Φ−h > d by Constraint (23),
this does not interfere with the pulsing behaviour once the algorithm has stabilised.

In addition to the pulse messages, it is straightforward to verify that the nodes only need to
communicate whether they transition to states idle, vote or pass in the voter state machine.
Due to the Tvote and Tmax,h timeouts, a node v ∈ G cannot transition to the same state more than
once within d time, as these timeouts are at least ϑd by Constraint (16) and Constraint (17).

9.3 Proof of Theorem 3

We take a top-down approach for proving Theorem 3. We delay the detailed analysis of the
voter and state machines themselves to later sections and now state the properties we need in
order to prove Theorem 3.

First of all, as we are considering self-stabilising algorithms, it takes some time for Ah to
stabilise, and hence, also for the voter and validator state machines to start operating correctly.
We will show that this is bound to happen by time

T ∗ ∈ max{T (Ah)}+O(max{Φ+
h }+ Tcool) ⊆ max{T (Ah)}+O(Ψ).

The exact value of T ∗ is given by Constraint (22) and will emerge later in our proofs. We show
in Section 9.4.1 that the resynchronisation pulses triggered by a single correct block have skew
ρ = Tvote = ϑ(σ + 2d) ∈ O(d) and the desired separation window of length Ψ; we later argue
that a faulty block cannot incessantly interfere with the resynchronisation pulses triggered by
the correct block.

Lemma 20 (Stabilisation of correct blocks). Suppose h ∈ {0, 1} is a correct block. Then there
exist times rh,0 ∈ [T ∗, T ∗ + Φ+

h + ρ) and, for j ≥ 0, rh,j+1 ∈ [rh,j + Φ− − ρ, rh,j + Φ+ + ρ]
satisfying the following properties for all v ∈ G and j ≥ 0:

• rh(v, t) = 1 for some t ∈ [rh,j , rh,j + ρ),
• rh(v, t′) = 0 for any t′ ∈ (t, rh,j + ρ+ Ψ).

We also show that if either block h ∈ {0, 1} triggers a resynchronisation pulse at some
correct node v ∈ G, then for every u ∈ G (1) a resynchronisation pulse is also triggered by h at
roughly the same time or (2) node u refrains from generating a resynchronisation pulse for a
sufficiently long time. The latter holds true because node u observes that a resynchronisation
pulse might have been triggered somewhere (due to the threshold voting mechanism); u thus
resets its cooldown counter, that is, transitions to state ignore in Figure 11. Formally, this is
captured by the following lemma, shown in Section 9.4.2.

Lemma 21 (Grouping lemma for validator machine). Let h ∈ {0, 1} be any block, t ≥ T ∗, and
v ∈ G be such that rh(v, t) = 1. Then there exists t∗ ∈ [t− 2Tvote − d, t] such that for all u ∈ G
we have

rnext(v, t
∗) ∈ [t∗, t∗ + 2(Tvote + d)] ∪ [t∗ + Tcool/ϑ,∞],

where rnext(v, t
∗) = inf{t′ ≥ t∗ : rh(v, t′) = 1}.
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Now with the above two lemmas in mind, we take the following proof strategy. Fix a correct
block k ∈ {0, 1} and let rk,0 be the time given by Lemma 20. Observe that if no node v ∈ G
has r1−k(u, t) = 1 for any t ∈ [rk,0, rk,0 + ρ + Ψ), then all correct nodes succeed in creating a
resynchronisation pulse with separation window Ψ. However, it may be that the other (possibly
faulty) block 1− k spoils the resynchronisation pulse by also triggering a resynchronisation pulse
too soon at some correct node. That is, we may have some v ∈ G that satisfies r1−k(u, t) = 1,
where t ∈ [rk,0, rk,0 + ρ+ Ψ). But then all nodes observe this and the filtering mechanism now
guarantees that the faulty block either obeys the imposed frequency constraints for the following
pulses or nodes will ignore them. Either way, we can argue that a correct resynchronisation
pulse is generated by the correct block k soon enough.

Accordingly, assume that the faulty block interferes, i.e., generates a spurious resynchronisa-
tion pulse at some node u ∈ G at time r1−k,0 ∈ (rk,0, rk,0 + ρ+ Ψ). If there is no such time, the
resynchronisation pulse of the correct block would have the required separation window of Ψ.
Moreover, for all v ∈ G and i ≥ 0 we define

rh,0(v) = inf{t ≥ rh,0 : rh(t, v) = 1}
rh,i+1(v) = inf{t > rh,i(v) : rh(t, v) = 1}.

Furthermore, for convenience we define the notation

Dh(u) =

{
∅ if block h is correct

[rh,0(u) + Tcool/ϑ,∞] otherwise.

For the purpose of our analysis, we “discretise” our time into chunks of length β ∈ Θ(Ψ);
recall that this is similar to what we did in Section 8, where we used chunks of length α ∈ Θ(R).
For any integers Y > X ≥ 0, we define

I0(X) = rk,0 − 2(Tvote + d) +X · β,
I1(X) = rk,0 + 2(Tvote + d) + Ψ +X · β,

I(X,Y ) = [I0(X), I1(Y )) .

We abbreviate Λ−h = Tmin,h/ϑ and Λ+
h = Tmax,h + Tvote (Constraint (29) and Constraint (30)).

The following lemma is useful for proving Theorem 3. We defer its proof to Section 9.4.3.

Lemma 22 (Resynchronisation frequency). For any j ≥ 0 and v ∈ G it holds that

rh,j(v) ∈
[
rh,0 − 2(Tvote + d) + j · Λ−h , rh,0 + 2(Tvote + d) + j · Λ+

h

)
∪Dh(v).

Corollary 8. Let h ∈ {0, 1} and 0 ≤ j ≤ 3. For any v ∈ G we have

rh,j(v) ∈ I(j · Ch, j · Ch + 1) ∪Dh(v).

Proof. Recall that r1−k,0 ∈ (rk,0 − 2(Tvote + d), rk,0 + ρ+ Ψ). By Constraint (32), for all j ≤ 3
and h ∈ {0, 1} it holds that

β · Ch · j ≤ j · Λ−h < j · Λ+
h + ρ ≤ β · (Ch · j + 1).

Using Lemma 22, this inequality, and the above definitions, a straightforward manipulation
shows that rh,j(v) lies in the interval

[rh,0 − 2(Tvote + d) + j · Λ−h , rh,0 + 2(Tvote + d) + j · Λ+
h ) ∪Dh(v)

⊆ [rk,0 − 2(Tvote + d) + j · Λ−h , rk,0 + 2(Tvote + d) + Ψ + ρ+ j · Λ+
h ) ∪Dh(v)

⊆ [rk,0 − 2(Tvote + d) + β · (Ch · j), rk,0 + 2(Tvote + d) + Ψ + β · (Ch · j + 1)) ∪Dh(v)

⊆ [I0(j · Ch), I1(j · Ch + 1)) ∪Dh(v)

⊆ I(j · Ch, j · Ch + 1) ∪Dh(v).
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With the above results, we can now show that eventually the algorithm outputs a good
resynchronisation pulse.

Lemma 23. There exists a time t ∈ max{Ah}+ O(Ψ) such that for all v ∈ G there exists a
time t′ ∈ [t, t+ ρ] satisfying

• r(v, t′) = 1, and
• r(v, t′′) = 0 for h ∈ {0, 1} and any t′′ ∈ (t′, t′ + Ψ).

Proof. Suppose block k ∈ {0, 1} is correct. The lemma follows by proving that we have the
following properties for some t ≤ I1(11) and each v ∈ G:

• rk(v, t′) = 1 for some t′ ∈ [t, t+ ρ], and
• rh(v, t′′) = 0 for h ∈ {0, 1} and any t′′ ∈ (t′, t′ + Ψ).

Recall that r1−k,0 ∈ (rk,0 − 2(Tvote + d), rk,0 + ρ+ Ψ), as otherwise the claim trivially follows for
t = rk,0. Consider any v ∈ G. Corollary 8 and the fact that C0 = 4 by Constraint (28) implies

r0,0(v) ∈ I(0, 1) ∪D0(v)

r0,1(v) ∈ I(4, 5) ∪D0(v)

r0,2(v) ∈ I(8, 9) ∪D0(v)

r0,3(v) ∈ I(12, 13) ∪D0(v).

As Tcool/ϑ ≥ 15β by Constraint (27), it follows for all t ≥ r0,0 that if r0(v, t) = 1, then

t ∈ I(0, 1) ∪ I(4, 5) ∪ I(8, 9) ∪ [I0(12),∞].

Similarly, as C1 = 5, for all t ≥ r1,0 we get that if r1(v, t) = 1, then

t ∈ I(0, 1) ∪ I(5, 6) ∪ I(10, 11) ∪ [I0(15),∞].

Let k be the correct block we have fixed. Recall that Dk(v) = ∅. The claim now follows from a
simple case analysis:

1. If k = 0, then rk,2(v) ∈ I(8, 9) and r1−k(v, t′) = 0 for all t′ ∈ [I1(6), I0(10)) ⊃ [I0(8), I1(9) +
Ψ + ρ) (by Constraint (31)).

2. If k = 1, then rk,2(v) ∈ I(10, 11) and r1−k(v, t′) = 0 for all t′ ∈ [I1(9), I0(12)) ⊃
[I0(10), I1(11) + Ψ + ρ) (by Constraint (31)).

Thus, in both cases t = minv∈G{rk,2(v)} satisfies the claim of the lemma, provided that
t ≤ I1(11) ∈ max{Ah}+O(Ψ). This is readily verified from the constraints given in Table 4.

Theorem 3. Let f, n0, n1 ∈ N, n = n0 + n1, f0 = b(f − 1)/2c, f1 = d(f − 1)/2e, and
1 < ϑ ≤ 1.007. Suppose that for some given Ψ ∈ Ω(1), sufficiently small constant ϕ > ϕ0(ϑ),
and T0 ∈ Θ(Ψ), it holds that for any h ∈ {0, 1} and T0 ≤ T ∈ O(Ψ) there exists a pulse
synchronisation algorithm Ah that

• runs on nh nodes and tolerates fh faulty nodes,
• has skew σ = 2d and accuracy bounds Φ−h = T and Φ+

h = Tϕ.

Then there exists a resynchronisation algorithm with skew ρ ∈ O(d) and separation window of
length Ψ that generates a resynchronisation pulse by time max{T (A0), T (A1)}+O(Ψ), where
nodes broadcast only O(1) additional bits per time unit.
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Proof. Computation shows that for ϑ ≤ 1.007, we have that ϑ2φ0(ϑ) < 31/30 (where φ0(ϑ) =
1 + 6(ϑ− 1)/(2 + 3ϑ− 4ϑ2) is given in Corollary 7). Thus, Lemma 18 shows that for a sufficiently
small choice of ϕ > ϕ0(ϑ) > ϑ we can pick Φ−h ∈ Θ(Ψ), where 1 < max{Φ+

h /Φ
−
h } ≤ ϕ, such that

the conditions given in Table 4 are satisfied. Thus, using our assumption, we can choose the
algorithms Ah with these accuracy bounds Φh; note that here we use sufficiently small ϑ and ϕ
that satisfy both our initial assumption and the preconditions of Lemma 18.

In order to compute the output value r(v, t) ∈ {0, 1} for each v ∈ G and t ≥ 0, Lemma 19
shows that our resynchronisation algorithm only needs to communicate O(1) bits per time unit
in addition to the message sent by underlying pulse synchronisation algorithms A0 and A1. By
Lemma 23, we have that a good resynchronisation pulse with skew ρ ∈ O(d) happens at a time
t ∈ max{Ah}+O(Ψ).

9.4 Proofs of the remaining lemmas

We now give proofs of the missing lemmas.

9.4.1 Proof of Lemma 20

We now show that eventually a correct block h ∈ {0, 1} will start triggering resynchronisation
pulses with accuracy bounds Λh = (Λ−h ,Λ

+
h ). Our first goal is to show that after the algorithm

Ah has stabilised in a correct block h, all correct nodes will start transitioning to go in a
synchronised fashion. Then we argue that eventually the transitions to the state go will be
coupled with the transitions to trigger.

Recall that the pulse synchronisation algorithm Ah has skew σ and accuracy bounds
Φh = (Φ−h ,Φ

+
h ). Let ph(v, t) ∈ {0, 1} indicate whether node v ∈ Vh \ F generates a pulse

according to algorithm Ah at time t. If block h ∈ {0, 1} is corrrect, then by time T (Ah) the
algorithm Ah has stabilised. Moreover, then there exists a time T (Ah) ≤ ph,0 ≤ T (Ah) + Φ+

h

such that each v ∈ Vh \ F satisfies ph(v, t) = 1 for some t ∈ [ph,0, ph,0 + σ). Since block h and
algorithm Ah are correct, there exist for each v ∈ Vh \ F and i ≥ 0 the following values:

ph,i(v) = inf{t ≥ ph,i : ph(v, t) = 1} 6=∞,
ph,i+1 ∈ [ph,i + Φ−h , ph,i + Φ+

h ),

ph,i+1(v) ∈ [ph,i+1, ph,i+1 + σ).

That is, Ah generates a pulse at node v ∈ Vh for the ith time after stabilisation at time ph,i(v).
First, let us observe that the initial “clean” pulse makes every correct node transition to go

or fail, thereby resetting the Tmax,h timeouts, where the nodes will wait until the next pulse.

Lemma 24. Suppose block h ∈ {0, 1} is correct. Each correct node v ∈ G is in state idle at
time ph,1 and its local Tmax,h timer does not expire during the interval [ph,1, ph,1 + σ + d).

Proof. First observe that if the timer Tmax,h is reset at time ph,0 or later, then it will not
expire before time ph,0 + Tmax,h/ϑ > ph,0 + Φ+

h + σ + d ≥ ph,1 + σ + d by Constraint (16) and
Constraint (17). Because every node receives nh − fh pulse messages from different nodes in Vh
during (ph,0, ph,0 +σ+d) and Tidle = ϑ(σ+d) by Constraint (18), every node that is in state idle
at time ph0 transitions leaves this state during (ph0 , ph0 +σ+d). Recall that nodes cannot stay in
states listen, go, or fail. Because nodes leave states awake, vote, and pass when the timeout
〈Tvote, listen〉 expires, any node not in state idle must transition to this state within Tvote
time. Accordingly, each correct node resets its Tmax,h timer during (ph,0, ph,0 + Tvote + σ + d).

Next, note that during (ph0 +Tidle +σ+ d, ph1), no correct node has any pulse messages from
correct nodes in Vh in its respective buffer. Therefore, no correct node can transition to vote
during this time interval. This, in turn, implies that no correct node has any vote messages from
correct nodes in its respective buffer with timeout Tatt during (ph0 + Tidle + Tatt + σ + 2d, ph1).
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Therefore, no correct node can leave state idle during this period. Finally, any correct nodes
not in state idle at time ph0 + Tidle + Tatt + σ + 2d must transition back to idle by time
ph0 + Tvote + Tidle + Tatt + σ + 2d. As Tvote + Tidle + Tatt + σ + 2d ≤ Φ− by Constraint (24), the
claim follows.

Let us define an indicator variable for go transitions:

gh(v, t) =

{
1 if node u transitions to go at time t

0 otherwise.

Similarly to above, we now also define for v ∈ G and i ≥ 1 the values

gh,1 = inf{t ≥ p1 : gh(u, t) = 1, u ∈ G},
gh,1(v) = inf{t ≥ gh,1 : gh(v, t) = 1},

gh,i+1(v) = inf{t > gh,i(v)}.
In words, the time gh,1 is the minimal time that some correct node transitions to state go in the
voter state machine of block h at or after the second pulse of Ah after stabilisation. The two
other values indicate the ith time a correct node v ∈ G transitions to go starting from time gh,1.

We now show that starting from the second pulse ph,1 of a correct block h, the go signals
essentially just “echo” the pulse.

Lemma 25. If block h is correct, then for all v ∈ G and i > 0 it holds that

gh,i(v) ∈ (ph,i + σ + 2d, ph,i + σ + 2d+ ρ),

where ρ = ϑ(σ + 2d) = Tvote. Moreover, node v does not transition to state fail at any time
t ≥ ph,1.

Proof. By Lemma 24 we have that each v ∈ G is in state idle at time p1,h. During (ph,1, ph,1 +
σ+ d), i.e., within Tidle local time by Constraint (18), each node receives nh− fh pulse messages
from different nodes in Vh and thus transitions to vote. Thus, all nodes receive n− f vote
messages from different nodes during (ph,1, ph,1+σ+2d). As Tvote/ϑ = σ+2d by Constraint (17),
each correct node transitions to pass before 〈Tvote, listen〉 expires and transitions to go at
a time from (ph,1 + σ + 2d, ph,1 + σ + 2d + Tvote) = (ph,1 + σ + 2d, ph,1 + σ + 2d + ρ). In
particular, it resets its buffers after all pulse and vote messages from correct nodes are received.
Consequently, correct nodes stay in state idle until the next pulse, which occurs at time
ph,2 > ph,1 + Tatt + σ + 2d > ph,1 + Tvote + σ + 2d by Constraint (19) and Constraint (24).
Repeating this reasoning inductively completes the proof.

We define the following time bound for each h ∈ {0, 1}:
T ∗h = T (Ah) + Tcool + 2Φ+

h + σ + 2d+ ρ.

We now show that by time T ∗h we are guaranteed that transitions to go and trigger have
become coupled if block h is correct.

Lemma 26. Suppose block h ∈ {0, 1} is correct. Then for any v ∈ G and t ≥ T ∗h it holds that

rh(v, t) = 1 if and only if gh(v, t) = 1.

Proof. Note that node u ∈ G can transition to state trigger from wait in the validator state
machine only if the voter state machine transitions to go. Consider the time gh,j(v) for j > 0.
Observe that there are three states in which v may be at this time: wait, hold, or ignore.
We argue that in each case node v eventually is in state wait in the validator state machine
when the voter state machine transitions to state go, and thus, node v transitions to trigger.

First of all, note that by Lemma 25 node v does not transition to the state fail at any time
t′ ≥ gh,j(v) ≥ ph,1. We utilise this fact in each of the three cases below:
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1. In the first case, node v transitions from wait to trigger at time gh,j(v) and hence
we have rh(v, gh,j(v)) = 1. By applying both Lemma 25 and Constraint (15) we get
that gh,j+1(v) ≥ gh,j(v) + Φ−h ≥ gh,j(v) + Tmin,h. Moreover, v does not transition to the
fail state in the voter state machine at any time t′ ≥ gh,j . Hence, by induction, node v
transitions from state wait to trigger at time gh,j′(v) for each j′ ≥ j.

2. In the second case, v transitions from hold to ignore at time gh,j(v). By time r ≤
gh,j(v) + Tcool node v transitions to wait. Hence, for any j′ with gh,j′(v) ≥ r, the first
case applies.

3. In the third case, v remains in state ignore until at a time r ≤ gh,j(v) + Tcool its Tcool
timer expires and v transitions to wait. Again, for any j′ with gh,j′(v) ≥ r, the first case
applies.

Now consider the time gh,1(v) ∈ [ph,1 + σ + 2d, ph,1 + σ + 2d+ ρ) given by Lemma 25. From the
above case analysis we get that node v is in state wait by time

gh,1(v) + Tcool < ph,1 + σ + 2d+ ρ+ Tcool ≤ T ∗h ,

and from then on each transition to go entails a transition to trigger, as claimed.

Lemma 20 (Stabilisation of correct blocks). Suppose h ∈ {0, 1} is a correct block. Then there
exist times rh,0 ∈ [T ∗, T ∗ + Φ+

h + ρ) and, for j ≥ 0, rh,j+1 ∈ [rh,j + Φ− − ρ, rh,j + Φ+ + ρ]
satisfying the following properties for all v ∈ G and j ≥ 0:

• rh(v, t) = 1 for some t ∈ [rh,j , rh,j + ρ),
• rh(v, t′) = 0 for any t′ ∈ (t, rh,j + ρ+ Ψ).

Proof. First, observe that by Constraint (22) we have T ∗ = max{T ∗h}. Let ph,i ∈ [T ∗ − σ −
2d, T ∗ − σ − 2d+ Φ+

h ] for some i > 0. By Lemma 25, we have that for all i′ ≥ i and v ∈ G it
holds that

gh,i′(v) ∈ (ph,i′ + σ + 2d, ph,i′ + σ + 2d+ ρ),

and by Lemma 26, we have rh(v, t) = 1 for all gh,i′(v) = t ≥ T ∗h and rh(v, t) = 0 for all other
t ≥ T ∗. We set rh,j = minv∈G{gh,i+j(v)}. As ph,i′+1 − ph,i′ ∈ [Φ−,Φ+] for all i′ ≥ 0, this shows
all required time bounds but rh(v, t′) = 0 for each v ∈ G, j, and t′ ∈ (gh,i+j(v), rh,j + ρ + Ψ).
The latter follows because Φ− > Ψ + 2ρ by Constraint (23).

9.4.2 Proof of Lemma 21

Lemma 21 (Grouping lemma for validator machine). Let h ∈ {0, 1} be any block, t ≥ T ∗, and
v ∈ G be such that rh(v, t) = 1. Then there exists t∗ ∈ [t− 2Tvote − d, t] such that for all u ∈ G
we have

rnext(v, t
∗) ∈ [t∗, t∗ + 2(Tvote + d)] ∪ [t∗ + Tcool/ϑ,∞],

where rnext(v, t
∗) = inf{t′ ≥ t∗ : rh(v, t′) = 1}.

In order to show Lemma 21, we analyse how the voting and validator state machines given in
Figure 11 and Figure 12 behave. We show that the voter machines for a single block h ∈ {0, 1}
are roughly synchronised in the following sense: if some correct node transitions to go, then
every correct node will transition to either go or fail within a short time window.

Lemma 27. Let t ≥ 2Tvote + d and v ∈ G such that gh(v, t) = 1. Then there exists t∗ ∈
(t − 2Tvote − d, t] such that all correct nodes transition to go or fail during the interval
[t∗, t∗ + 2(Tvote + d)).
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Proof. Note that at any time t′ ≥ Tvote + d, any vote message stored at a correct node
(supposedly) sent by another correct node must actually have been sent at a time greater than
0. Since v ∈ G satisfies gh(v, t) = 1, this means that there is a time t′ ∈ [t − Tvote, t] such
that v received at least n− 2f different vote messages from correct nodes during the interval
[t′ − Tvote, t′]. Hence, every correct u ∈ G must receive at least n− 2f > f vote messages from
different nodes during the interval I = (t′ − Tvote − d, t′ + d).

Let t∗ < t′ be the minimal time a correct node transitions to vote during the interval I.
Consider any node u ∈ G. If u does not clear its vote memory flags (by transitioning to idle)
during the interval I, by the above observations u has memorised at least f + 1 vote messages
in the buffer using timeout Tatt at some time t′′ ∈ [t∗, t′ + d] and must transition to listen in
case it is in state idle. However, any node transitioning to listen will transition to go or fail
within Tvote time. Overall, each correct node must transition to fail of go during the interval
[t∗, t′ + Tvote + d] ⊆ [t∗ + 2(Tvote + d)].

We now show a similar synchronisation lemma for the validator state machines as well: if
some correct node transitions to trigger and triggers a resynchronisation pulse, then every
correct node triggers a resynchronisation pulse or transition to ignore within a short time
window.

Lemma 28. Let t ≥ 2Tvote + d and suppose rh(u, t) = 1 for some v ∈ G. Then there exists a
time t∗ ∈ (t− 2Tvote − d, t] such that all correct nodes transition to trigger or ignore during
the time interval [t∗, t∗ + 2(Tvote + d)).

Proof. Suppose some node v transitions to state trigger at time t. Then it must have
transitioned to state go in the voter state machine at time t as well. By Lemma 27 we get
that there exists t∗ such that all correct nodes transition to go or fail during the interval
[t∗, t∗+ 2(Tvote + d)). Once u ∈ G transitions to either of these states in the voter state machine,
this causes a transition in the validator state machine to either trigger or ignore, as can be
seen from Figure 12. Hence, during the same interval, all correct nodes will either transition to
trigger or ignore.

Observe that once v ∈ G transitions to ignore at time t, then it cannot transition back to
trigger before time Tcool time has passed on its local clock, that is, before time t+ Tcool/ϑ.
Thus, Lemma 28 now implies Lemma 21, as T ∗ ≥ 2Tvote + d.

9.4.3 Proof of Lemma 22

We now aim to prove Lemma 22. Hence, let rh,0 be as defined in Section 9.3. We have shown
above that if block h is correct, then the resynchronisation pulses generated by block h are
coupled with the pulses generated by the underlying pulse synchronisation algorithm Ah. We
will argue that any block h ∈ {0, 1}, including a faulty one, must either respect the accuracy
bounds Λh = (Λ−h ,Λ

+
h ) when triggering resynchronisation pulses or refrain from triggering a

resynchronisation pulse for at least time Tcool/ϑ.
First, we note that Lemma 25 and Lemma 26 together imply the following corollary.

Corollary 9. Suppose block h ∈ {0, 1} is correct. For all u ∈ G and i ≥ 0 we get that

rh,i+1(u) ∈ [rh,i(u) + Λ−h , rh,i(u) + Λ+
h ).

Proof. By Lemma 20, we get that

rh,i+1(u) ∈ [rh,i(u) + Φ−h − ρ, rh,i(u) + Φ+
h + ρ).

To see the lower bound holds, note that Λ−h = Tmin,h/ϑ = Φ−h − ρ by Constraint (30) and
Constraint (15). For the upper bound, we have from Constraint (29) that Λ+

h = Tmax,h + Tvote.
Since Tmax,h > Φ+

h +Tvote = Φ+
h +ρ by Constraint (16) and Constraint (20), the claim follows.
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Lemma 29. Let u ∈ G, h ∈ {0, 1}, and i ≥ 0. Then

rh,i+1(u) ∈ [rh,i(u) + Λ−h , rh,i(u) + Λ+
h ] ∪Dh(u).

Proof. First observe that in case rh,i(u) =∞ for any i ≥ 0, by definition rh,i+1(u) =∞ ∈ Dh(u)
and the claim holds.

Hence, let t = rh,i(u) 6= ∞. Since u transitions to trigger at time t, it follows that u
also transitions to state go at time t, that is, gh(u, t) = 1. Therefore, u will transition to
state idle in the voter state machine and state hold in the validator state machine. Observe
that u cannot transition to trigger again before time t+ min{Tmin,h, Tcool}/ϑ, that is, before
either local timer Tmin,h or Tcool expires. Since Tmin,h < Tcool by Constraint (25), we get that
rh,i+1(u) ≥ t+ Tmin,h/ϑ = t+ Λ−h .

Next note that u transitions to fail when (1) the local timer Tmax,h expires when in state
idle or (2) Tvote expires when not in state idle. By time t+Tmax,h node u has to transition from
state idle to listen, and from there to either fail or go via vote, awake, and/or pass. This
implies that by the time t+ Tmax,h + Tvote node u has transitioned to either trigger or ignore
in the validator state machine. Hence, we get that rh,i+1(u) ≤ t+ Tmax,h + Tvote = rh,i(u) + Λ+

h

or rh,i+1(u) ≥ rh,i(u) + Tcool/ϑ ≥ rh,0(u) + Tcool/ϑ. Therefore, the claim follows.

Lemma 22 (Resynchronisation frequency). For any j ≥ 0 and v ∈ G it holds that

rh,j(v) ∈
[
rh,0 − 2(Tvote + d) + j · Λ−h , rh,0 + 2(Tvote + d) + j · Λ+

h

)
∪Dh(v).

Proof. If block h is correct, Corollary 9 shows the claim, so assume that h is faulty. Again
observe that if rh,j(v) =∞, then the claim vacuously holds for all j′ ≥ j. We prove the claim
by induction on increasing j, so w.l.o.g. we may assume that rh,j 6=∞ for all j ≥ 0. The base
case j = 0 follows directly from the definition of rh,0 and Lemma 21. By applying Lemma 29 to
index j, v, and h, and using the induction hypothesis we get that rh,j+1(v) lies in the interval

[rh,j(v) + Λ−h , rh,j(v) + Λ+
h ] ∪ [rh,j(v) + Tcool/ϑ,∞]

⊆ [rh,0 − 2(Tvote + d) + (j + 1) · Λ−h , rh,0 + 2(Tvote + d) + (j + 1) · Λ+
h ) ∪Dh(v).

9.4.4 Proof of Lemma 18

Lemma 18. Let 1 < ϑ < ϕ be constants that satisfy ϑ2ϕ < 31/30. There exists a constant
Ψ0(ϑ, ϕ, d) such that for any given Ψ > Ψ0(ϑ, ϕ, d) we can satisfy the constraints in Table 4 by
choosing

1. X ∈ Θ(Ψ),
2. Φ−0 = X and Φ+

0 = ϕX,
3. Φ−1 = rX and Φ+

1 = ϕrX for a constant r > 1, and
4. all remaining timeouts are O(X).

Proof. Let 1 < ϑ < ϕ be constants that satisfy ϑ2ϕ < 31/30. We show that we can satisfy the
constraints by setting

Φ−0 = X

Φ+
0 = ϕX

Φ−1 = rX

Φ+
1 = rϕX

Ψ = aX

β = bX

Tcool = cX,
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where a = b/3, b = 6/25 · ϑϕ, c = 16ϑb, r = 31/25 and by picking a sufficiently large
X > X0(ϑ, ϕ, d). Here X0(ϑ, ϕ, d) depends only on the given constants. Note that the choice of
Tcool satisfies Constraint (21).

First, let us pick the values for the remaining timeouts and T ∗ as given by Constraints (15)–
(20), (28)–(30), and (22); it is easy to check that these equalities can be satisfied simultaneously.
Regarding Constraint (23), observe that 3/25 · ϑϕ < 1 and

Φ−h ≥ X > 3/25 · ϑϕX + 2ρ = aX + 2ρ = Ψ + 2ρ

when X > 2ρ/(1− 3/25 · ϑϕ), that is, X is larger than a constant. Furthermore, Constraint (24)
is also satisfied by picking the constant bounding X from below to be large enough.

To see that Constraint (25) holds, observe that Tcool = cX = 16ϑ2ρX · 6/25 > 96/25 ·X >
31/25 ·X = rX ≥ Φ−h for both h ∈ {0, 1}. Assuming X > 2ρ · 375/344 = 2ρ/(1− 2/25 · 31/30),
Constraint (26) is satisfied since

Φ−h − ρ ≥ X − ρ > 2/25 · 31/30 ·X + ρ > 2/25 · ϑ2ϕX + ρ > b/3 ·X + ρ = aX + ρ = Ψ + ρ.

Constraint (27) is satisfied as Tcool/ϑ = cX/ϑ = 16bX = 16β > 15β. Having X > 3/b · (5ρ+ 4d)
yields that Constraint (31) is satisfied, since

2Ψ + 4(Tvote + d) + ρ = 2Ψ + 5ρ+ 4d = 2b/3 ·X + 5ρ+ 4d < bX = β.

It remains to address Constraint (32). As Constraint (15) and Constraint (30) hold, the first
inequality of Constraint (32) is equivalent to

ϑβCh = 6/25 · ϑ2ϕXCh ≤ Φ−h − ρ.
We have C0 = 4 by Constraint (28). For X > ρ/(1− 24/25 · ϑ2ϕ),

24/25 · ϑ2ϕX < X − ρ = Φ−0 − ρ
thus shows that the inequality holds. For h = 1, C1 = 5. Recalling that ϑ2ϕ < 31/30, we may
assume that X > ρ/(31/25− 6/5 · ϑ2ϕ), yielding

6/5 · ϑ2ϕX < 31/25 ·X − ρ = rX − ρ = Φ−1 − ρ,
i.e., the first inequality of Constraint (32) is satisfied for h = 1. The middle inequality is trivially
satisfied as Λ−h < Λ+

h . By the already established equalities, the final inequality in Constraint (32)
is equivalent to

jϑΦ+
h + ((ϑ+ 1)j + 1)ρ ≤ β(Ch · j + 1)

for all h ∈ {0, 1} and 0 ≤ j ≤ 3.
Let Aj = ((ϑ+1)j+1)ρ and observe that 25/3 ·A3 > 25/4 ·A2 > 5A1. For any X > 25/3 ·A3

and h = 0, a rudimentary calculation thus shows

ϑϕX +A1 ≤ 30/25 · ϑϕX = 5bX

2ϑϕX +A2 ≤ 54/25 · ϑϕX = 9bX

3ϑϕX +A3 ≤ 78/25 · ϑϕX = 13bX.

Since Φ+
0 = ϕX, β = bX, and C0 = 4, this covers the case of h = 0. Similarly, as r = 31/25 =

1 + b/(ϑϕ), we have

ϑϕrX +A1 ≤ 6bX

2ϑϕrX +A2 ≤ 11bX

3ϑϕrX +A3 ≤ 16bX,

covering the case of h = 1. Overall, we conclude that Constraint (32) is satisfied.
Finally, observe that in all cases we assumed that X is lower bounded below by a function

X0(ϑ, ϕ, d) which depends only on the constants ϑ, ϕ, and message delay d. Thus, the constraints
can be satisfied by picking X > X0(ϑ, ϕ, d) which yields that we can satisfy the constraints for
any Ψ > Ψ0(ϑ, ϕ, d) = aX0(ϑ, ϕ, d).
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10 Randomised algorithms

While we have so far only considered deterministic algorithms, our framework also extends
to randomised algorithms. In particular, this allows us to obtain faster algorithms by simply
replacing the synchronous consensus algorithms used with randomised variants. Randomised
consensus algorithms can break the linear-time lower bound [20] for deterministic algorithms [22,
31]. This in turn allows us to construct the first pulse synchronisation algorithms that stabilise
in sublinear time.

Typically, when considering randomised consensus, one relaxes the termination property:
it suffices that the algorithm terminates with probability 1 and gives probabilistic bounds on
the (expected, w.h.p., etc.) round complexity. However, our framework operates based on
a deterministic termination guarantee, where the algorithm is assumed to declare its output
in R rounds. Therefore, we instead relax the agreement property so that it holds with a
certain probability only. Formally, node v is given an input x(v) ∈ {0, 1}, and it must output
y(v) ∈ {0, 1} such that the following properties hold:

1. Agreement: With probability at least p, there exists y ∈ {0, 1} such that y(v) = y for all
correct nodes v.

2. Validity: If for x ∈ {0, 1} it holds that x(v) = x for all correct nodes v, then y(v) = x for
all correct nodes v.

3. Termination: All correct nodes decide on y(v) and terminate within R rounds.

This modification is straightforward, as the following lemma shows.

Lemma 30. Let C be a randomised synchronous consensus routine that terminates in R rounds
in expectation and deterministically satisfies agreement and validity conditions. Then there
exists a randomised synchronous consensus routine C′ that deterministically satisfies validity
and terminates within 2R rounds, and satisfies agreement with probability at least 1/2. All other
properties, such as message size and resilience, of C and C′ are the same.

Proof. The modified algorithm operates as follows. We run the original algorithm for (up to) 2R
rounds. If it terminates at node v, then node v outputs the decision of the algorithm. Otherwise,
node v outputs its input value so that y(v) = x(v). This deterministically guarantees validity:
if all correct nodes have the same input, the original algorithm can only output that value.
Concerning agreement, observe that by Markov’s bound, the original algorithm has terminated
at all nodes within 2R rounds with probability at least 1/2. Accordingly, agreement holds with
probability at least 1/2.

We remark that the construction from [26] that generates silent consensus routines out of
regular ones also applies to randomised algorithms (as produced by Lemma 30), that is, we can
obtain suitable randomised silent consensus routines to be used in our framework.

Our framework makes use of consensus in the construction underlying Theorem 2 only. For
stabilisation, we need a constant number of consecutive consensus instances to succeed. Thus, a
constant probability of success for each individual consensus instance is sufficient to maintain an
expected stabilisation time of O(R) for each individual level in the stabilisation hierarchy. This
is summarised in the following variant of Theorem 2.

Corollary 10. Let f ≥ 0 and n > 3f . Suppose for a network of n nodes there exist

• an f-resilient resynchronisation algorithm B with skew ρ ∈ O(d) and separation window
Ψ ≥ Ψ0 for a sufficiently large Ψ0 ∈ O(R) and
• an f -resilient randomised synchronous consensus algorithm C,
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where C runs in R = R(f) rounds, lets nodes send at most M = M(f) bits per round, and validity
and agreement hold with constant probability. Then there exists a randomised f-resilient pulse
synchronisation algorithm A for n nodes with skew σ = 2d and accuracy bounds Φ−,Φ+ ∈ Θ(R)
that stabilises in expected T (B) +O(R) time and has nodes send M(B) +O(M) bits per time
unit.

Note that once one of the underlying pulse synchronisation algorithms used in the construction
of Theorem 3 stabilise, the resynchronisation algorithm itself stabilises deterministically, as it
does not make use of consensus or randomisation. Applying linearity of expectation and the
same recursive pattern as before, Theorem 1 thus generalises as follows.

Corollary 11. Let C be a family of randomised synchronous consensus routines satisfying that
(i) for any f0, f1 ∈ N, n(f0 + f1) ≤ n(f0) + n(f1), (ii) both M(f) and R(f) are increasing, and
(iii) agreement holds with constant probability. Then, for any f ≥ 0, n ≥ n(f), and T ≥ T0 for
some T0 ∈ Θ(R(f)), there exists a T -pulse synchronisation algorithm A with skew 2d. Moreover,
A stabilises in expected time

T (A) ∈ O

d+

dlog fe∑
k=0

R(2k)


and has nodes broadcast

M(A) ∈ O

1 +

dlog fe∑
k=0

M(2k)

 ,

bits per time unit, where the sums are empty when f = 0.

However, while randomised algorithms can be more efficient, typically they require addi-
tional restrictions on the model, e.g., that the adversary must not be able to predict future
random decisions. Naturally, such restrictions then also apply when applying Corollary 10 and,
subsequently, Corollary 11. A typical assumption is that communication is via private channels.
That is, the faulty nodes’ behaviour at time t is a function of all communication from correct
nodes to faulty nodes during the interval [0, t], the inputs, and the consensus algorithm only.

We can now obtain pulse synchronisation algorithms that are efficient both with respect
to stabilisation time and communication. For example, we can make use of the randomised
consensus algorithm by King and Saia [22].

Theorem 6 ([22] and Lemma 30). Suppose communication is via private channels. There is a
family of randomised synchronous consensus routines that satisfy the following properties:

• the algorithm satisfies agreement with constant probability,
• the algorithm satisfies validity,
• the algorithm terminates in R(f) ∈ polylog f rounds,
• the number of bits broadcasted by each node in each round is M(f) ∈ polylog f ,
• and n(f) > (3 + ε)f for a constant ε > 0 that can be freely chosen upfront.

We point out that the algorithm by King and Saia actually satisfies stronger bounds on the
total number of bits sent by each node than what is implied by our statement.

Corollary 2. Suppose we have private channels. For any f ≥ 0, constant ε > 0, and n > (3+ε)f ,
there exists a randomised f -resilient Θ(polylog f)-pulser over n nodes with skew 2d that stabilises
in polylog f time w.h.p. and has nodes broadcast polylog f bits per time unit.

Note that it is trivial to boost the probability for stabilisation by repetition, as the algorithm
must stabilise in polylog f time regardless of the initial system state. However, in case of a
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uniform (or slowly growing) running time as function of f , it is useful to apply concentration
bounds to show a larger probability of stabilisation. Concretely, the algorithm by Feldman
and Micali offers constant expected running time, regardless of f ; this translates to constant
probability of success for an O(1)-round algorithm in our setting.

Theorem 7 ([19] and Lemma 30). Suppose that communication is via private channels. There
exists a family of randomised synchronous consensus routines that satisfy the following properties:

• the algorithm satisfies agreement with constant probability,
• the algorithm satisfies validity,
• the algorithm terminates in R(f) ∈ O(1) rounds,
• the total number of bits sent by each node is poly f ,
• and n(f) = 3f + 1.

Employing this consensus routine, every O(1) time units there is a constant probability
that the next level of recursion stabilises. Applying Chernoff’s bound over the (at most) log n
recursive levels of stabilisation, this yields stabilisation in O(log n) time w.h.p.

Corollary 3. Suppose we have private channels. For any f ≥ 0 and n > 3f , there exists a
randomised f -resilient Θ(log f)-pulser over n nodes with skew 2d that stabilises in O(log f) time
w.h.p. and has nodes broadcast polylog n bits per time unit.
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