
ar
X

iv
:1

70
4.

06
97

9v
1

 [
cs

.S
C

]
 2

3
A

pr
 2

01
7

Efficiently Computing Real Roots of Sparse Polynomials

Gorav Jindal
Max-Planck-Institut für Informatik

Germany
gjindal@mpi-inf.mpg.de

Michael Sagraloff
Max-Planck-Institut für Informatik

Germany
msagralo@mpi-inf.mpg.de

ABSTRACT

We propose an efficient algorithm to compute the real roots
of a sparse polynomial f ∈ R[x] having k non-zero real-
valued coefficients. It is assumed that arbitrarily good ap-
proximations of the non-zero coefficients are given by means
of a coefficient oracle. For a given positive integer L, our al-
gorithm returns disjoint disks ∆1, . . . ,∆s ⊂ C, with s < 2k,
centered at the real axis and of radius less than 2−L to-
gether with positive integers µ1, . . . , µs such that each disk
∆i contains exactly µi roots of f counted with multiplicity.
In addition, it is ensured that each real root of f is con-
tained in one of the disks. If f has only simple real roots,
our algorithm can also be used to isolate all real roots.
The bit complexity of our algorithm is polynomial in k and
log n, and near-linear in L and τ , where 2−τ and 2τ consti-
tute lower and upper bounds on the absolute values of the
non-zero coefficients of f , and n is the degree of f . For root
isolation, the bit complexity is polynomial in k and log n,
and near-linear in τ and log σ−1, where σ denotes the sepa-
ration of the real roots.

1. INTRODUCTION

1.1 Problem Definition and Contribution
In this paper, we study the problem of computing the real
roots of a sparse polynomial

f(x) =
∑k

i=1
fix

ei ∈ R[x], (1.1)

where ei are non-negative integers, with 0 ≤ e1 < e2 < . . . <
ek ≤ n, and 2−τ ≤ |fi| ≤ 2τ for all i. We call such a polyno-
mial f an (n, k, τ)-nomial or simply a k−nomial if n and τ
are either not specified or clear from the context. We may
assume that k ≥ 2 and e1 = 0 as 1−nomials do not have
any real root different from 0 and as f ·x−e1 has exactly the
same roots as f except for a possible root at 0. We further
assume that, as input, we receive the exponents ei as well
as approximations f̃i of the non-zero coefficients fi. More
specifically, we assume the existence of a coefficient oracle
that, for any positive integer κ, provides dyadic approxima-
tions f̃i = mi

2κ+1 , with mi ∈ Z and |fi − f̃i| < 2−κ for all

i. We call such an approximation f̃ =
∑k

i=1 f̃ix
ei an (abso-

lute) κ−bit approximations of f . Notice that the numbers n
and k are directly part of the input, whereas this is not the
case for τ . However, we may easily compute (i.e. for a cost

bounded by Õ(kτ)) a good approximation τ̃ ∈ Z of τ with
τ < τ̃ < τ + 2 by asking the oracle for an κ-bit approxima-
tions f̃ of f for κ = 1, 2, 4, . . . until |f̃i| > 2−κ+1 for all i.

Then, τ̃ := maxi⌈| log |f̃i||⌉ fulfills the above inequality.
Within recent years, the problem of isolating all (real) roots
of a (square-free) polynomial has attracted a lot of interest
in the literature; e.g. consider [3, 9, 16] and the references
therein. The most efficient algorithms [3, 10, 11, 16] for
root isolation achieve running times that are considered to
be near-optimal for dense polynomials (i.e. if k is of com-
parable size as n) f ∈ R[x]. For polynomials with integer
coefficients, the best known bound on the bit complexity of
this problem is of size Õ(n2τ). The additional cost for refin-
ing isolating intervals to a size less than 2−τ , and thus for
computing L-bit approximations of all real roots, is Õ(nτ);
e.g. see [7, 10, 13, 16]. Notice that, for k−nomials with
integer coefficients, the above bounds are not polynomial in
the size of the sparse input representation of f̃ , which is
bounded by O(k(log n + τ)) as we need log n bits to store
each exponent ei and τ + 1 bits to store each fi. Hence, it
is natural to ask whether there exists an algorithm for ei-
ther root isolation or approximation that runs in polynomial
time in the size of the sparse input representation. In [6],
Cucker et al. showed how to compute all integer roots of a
sparse integer polynomial in polynomial time. Lenstra [8]
further improves upon this result giving a polynomial time
algorithm to compute all rational factors of f of a fixed con-
stant degree. Furthermore, for polynomials with only a very
few non-zero coefficients, there exist polynomial time algo-
rithms to approximate (and also count) the real roots of f.
Rojas and Ye [14, 18] propose an algorithm for 3-nomials
that uses only O(log n) arithmetic operations in the field
over Q generated by the coefficients of f . Bastani et al. [2]
propose a polynomial time algorithm to count the number
of real roots for most 4−nomials.
For isolating the roots of a sparse integer polynomial, we
recently proposed a method [15] that has polynomial arith-

metic complexity and whose bit complexity is Ω̃(nτ · k4).
The latter bound is also near-optimal for small k as there
exists a family of Mignotte-like 4−nomials, for which the
output complexity is always lower bounded by O(nτ). This
result already rules out the existence of a polynomial time
algorithm for isolating the roots of a sparse polynomial, how-
ever, it remains an open question whether counting the real
roots or computing L−bit approximations of the real roots
can be achieved in polynomial time.
In this paper, we give a positive answer for a slight relaxation
of the latter problem. That is, we give a polynomial time
algorithm to compute a partial clustering of the roots that
contains all real roots of f . For a more precise statement,
we need the following definitions, where ∆r(m) ⊂ C denotes

http://arxiv.org/abs/1704.06979v1

the open disk in complex space with center m and radius r.

Definition 1 ((L, I)-covering). For a polynomial f as in
(1.1), an integer L ∈ N, and an interval I ⊂ R, we call a list
((∆r1(m1), µ1), (∆r2(m2), µ2), . . . , (∆rt(mt), µt)) an (L, I)-
covering for f if the following conditions are fulfilled:

1. The disks ∆ri(mi) are pairwise disjoint, mj are real
values with m1 < · · · < mt, and rj ≤ 2−L for all j.

2. ∆rj (mj) contains exactly µj roots of f for all j.

3. For every real root ξ of f in I, there exists some disk
∆rj (mj) that contains ξ.

We further introduce a weaker version of L-covering:

Definition 2 (Weak (L, I)-covering). A weak (L, I)-covering
for f is a list (I1, . . . , , It) of open disjoint and sorted real
intervals that fulfills the following conditions:

1. The width of each interval Ij is at most 2−L.

2. For every real root ξ of f in I , there exists an interval
Ij that contains ξ.

If I = R, we omit I and just call a (weak) (L,R)-covering for
f a (weak) L-covering for f. Then, our main contribution is
a polynomial-time algorithm for computing an L−covering:

Theorem 3. For an (n, k, τ)-nomial, we can compute an L-

covering L of size |L| < 2k in time Õ(poly(k, log n)·(τ+L)).

Notice that our algorithm computes L−bit approximations
of all real roots but might also return (real-valued) L−bit
approximations of some non-real roots with a small imagi-
nary part. Further notice that unless µj is odd, we also do
not know whether mj actually approximates a real root, and
unless µj = 1, we cannot conclude that a disk ∆rj (mj) in an
L-covering is isolating for a root of f . Hence, in general, our
algorithm does not yield the correct number of distinct real
roots. However, if f has only simple roots, we may compute
an L−covering for f for L = 2, 4, 8, . . . until µj = 1 for all
j. Then, the disks ∆ri(mi) isolate all real roots.

Theorem 4. Let f be an (n, k, τ)-nomial with only simple
real roots, and let σ be the minimal distance between any
two (complex) distinct roots of f (i.e. the separation of f).
Then, we can compute isolating intervals for all real roots in
Õ(poly(k, log n)(τ + logmax(1, 1/σ))) bit operations.

We improve upon [15] in several ways. Namely, [15] only
applies to integer polynomials, whereas our novel approach
applies to polynomials with arbitrary real coefficients. In
addition, the running time of the algorithm in [15] does
not adapt to the actual hardness of the roots, whereas the
complexity of our novel approach rather depends on the ac-
tual separation than on the worst-case bound [17] of size

2−O(n(τ+logn)) for the separation of an integer polynomial.
In the worst case, our method isolates all real roots of a
very sparse integer polynomial (i.e. k = (log(nτ))O(1)) in

time Õ(nτ), and is thus near optimal.; see [15]

1.2 Overview of the Algorithm
Before we go into detail, we give a brief overview of our
algorithm, where we omit technical details. We first re-
mark that the problem of computing an (L, [1,∞))-covering

can be reduced to the problem of computing an (L, [0, 1])-
covering (in fact, we are computing an (L, [0, 1 + 1/n])-
covering but this for technical reasons only) by means of the
coordinate transformation x 7→ 1

x
followed by multiplication

with xn. We may also reduce the problem of computing
an (L, (−∞, 0])-covering of f to the problem of computing
an (L, [0,∞))-covering by means of the coordinate transfor-
mation x 7→ −x. Hence, we are eventually left with merg-
ing (L, [0, 1])-coverings for the polynomials f, xn · f(1/x),
f(−x), and xn · f(−1/x) in a suitable manner. We give de-
tails for this step in Section 7. Notice that the considered
coordinate transformation preserves the sparseness of the
input polynomial, hence we may concentrate on the prob-
lem of computing an (L, [0, 1])-covering for f only. For this,
we first compute a weak (L, [0, 1])-covering of f , which is
achieved by recursively computing weak (L, [0, 1])-coverings
of the so-called fractional derivatives of f .

Definition 5 (Fractional Derivatives). Let f be a polyno-

mial as in (1.1). Then, we define f [1] := f ′

xe2−1 as the (first)
fractional derivative of f . In other words, we divide the
first derivative f ′ of f by the highest possible power of x
that divides f ′. The i−th fractional derivative f [i] of f is
then recursively defined as the first fractional derivative of
f [i−1]. Notice that, for i ≤ k − 1, f [i] is an (n, k − i, τ + k ·

log n)−nomial with a non-zero constant term and f [i] ≡ 0 for
i ≥ k. We further use the notation Df to denote the tuple of

all non-zero fractional derivatives f, f [1], f [2], f [2], . . . , f [k−1],
i.e, Df = (f, f [1], f [2], f [3], . . . , f [k−1]).

The general idea of recursively computing the real roots of
f from the real roots of its fractional derivatives has already
been considered in previous work; e.g. [1, 4, 5, 8, 12, 14,
15]. The simple idea is that, given a weak (L, [0, 1])-covering

(I ′1, . . . , I
′
t′) for f [1], we already know that in between two

consecutive intervals Ij = (a, b) and Ij+1 = (c, d), the poly-
nomial f is monotone, and thus there can be at most one real
root in between b and c, which then must be simple. In order
to check for the existence of such a root, it suffices to check
whether f changes signs at the points b and c. In case of a
sign change, we may then refine the interval (a, b), which is
known to be isolating for a real root of f , to a width less than
2−L. If we proceed in this way for all intervals in between
two consecutive intervals as well as with the leftmost inter-
val, whose endpoints1 are 0 and the left endpoint of I ′1, and
the rightmost interval, whose endpoints are the right end-
point of I ′t′ and 1, then we obtain a set of intervals I ′′j of size

at most 2−L that cover all real roots of f that are contained
in [0, 1] but in none of the intervals I ′j . Hence, the union
of the intervals I ′j and I ′′j constitutes an (L, [0, 1])-covering
for f . This shows how to compute an (L, [0, 1])-covering
for f from recursively computing (L, [0, 1])-coverings for its
fractional derivatives.
We remark that, in this simplistic description, we have omit-
ted several key problems one faces when formalizing the al-
gorithm: Evaluating the sign of a polynomial f at given
points b, c may require a very high precision, which should
be avoided to ensure a polynomial bit complexity. In addi-
tion, we need an efficient refinement method that uses only
a polynomial number of iterations. For the latter problem,
we use a slightly modified variant of our algorithm from [15,

1For technical reasons, we will indeed consider slight pertur-
bations of 0 and 1 in our algorithm.

16]. For the computation of the sign of f (and its higher or-
der fractional derivatives) at certain points, we consider an
approach that allows us to slightly perturb the evaluation
points such that the absolute value of each of the consid-
ered polynomials does not become too small. One major
contribution of this paper, when compared to our previous
work [15], is to show that this can be done in way such that
the precision always stays polynomial in log n, k, τ, and L.
In the second step, we derive an (L, [0, 1])−covering from a
weak (L′, [0, 1])−covering, where L′ has been chosen suffi-
ciently large. A straight forward approach would be to use
a method for computing the number of roots in the one-
circle region ∆(I) = ∆r(m) of each interval I in the weak
(L′, [0, 1])−covering. Here, ∆(I) is defined as the disk cen-
tered at the midpoint m = m(I) of I and passing through
the endpoints of the interval. In the literature, several meth-
ods have been proposed to count the number of roots in a
disk in complex space. Unfortunately, these algorithm are
not sparsity aware, which rules out a straight-forward ap-
plication of them. Recent work [3] introduces the so-called
Tl-test, a method for root counting based on Pellet’s Theo-
rem. The method only needs to compute approximations of
the coefficients of the polynomial f(m + r · x), however, we
cannot afford to compute all coefficients. Fortunately, in our
situation, only the first k2 coefficients are actually needed to
determine the outcome of the test. In order to guarantee suc-
cess of the test, it may further be necessary to merge some of
the intervals in the weak covering and to consider disks that
are larger than the one-circle regions of the merged inter-
vals. This explains why we need a weak (L′, [0, 1])−covering
with a sufficiently large L′ > L. We consider our method for
counting the roots of a sparse polynomial in a disk as the
second main contribution of our paper.

2. ON THE GEOMETRY OF ROOTS
Descartes’ Rule of Signs states that the number var(F) of
sign changes in the coefficient sequence of a polynomial F ∈
R[x] constitutes an upper bound on the number of real roots
(counted with multiplicity). Hence, it follows immediately
that a k−nomial f as in (1.1) has at most k−1 negative and
at most k−1 positive real roots. Apart from this simple fact,
k-nomials have indeed much more structure on their roots,
which we will briefly survey in this section.

Let I = (a, b) be an interval, FI(x) := (x + 1)n · F
(

ax+b
x+1

)

,

and vI := var(F, I) be the number of sign changes in the
coefficient sequence of the polynomial FI . Notice that there
is a one-to-one correspondence between the roots of F in I
and the positive real roots of FI via the Möbius transforma-
tion that maps a point x ∈ C \ {−1} to ax+b

x+1
∈ C. Thus,

vI constitutes an upper bound on the number of roots of
F in I. In fact, vI also constitutes a lower bound on the
number of roots in the so called Obreshkoff lens Ln of the
interval I . Ln is defined as the intersection Ln := Cn ∩ Cn

of the two open disks Cn, Cn ⊂ C that intersect the real
axis in the endpoints a and b of I , and whose centers see
the line segment (a, b) under the angle 2π

n+2
. For an il-

lustration, see [16, Fig. 1]. It further holds [15, 16]) that
var(F, I) ≤ var(F) ≤ k − 1 for any interval I ⊂ R+, hence
we conclude that the Obreshkoff lens Ln of any such interval
contains at most k−1 roots. For b 7→ ∞, the Obreshkoff lens
Ln of the interval I = (0, b) converges to the cone Cn whose
boundary are the two half-lines starting at the origin and

π
n+2

This
regi

on con
tain

s at most
k −

1 root
s of f

x-axis

y
-a

x
is

Figure 2.1: The cone Cn contains at most k − 1 roots of f .

intersecting the real axis at an angle ± π
n+2

; see Figure 2.1.
Hence, it follows that the interior of Cn contains at most
k − 1 roots of any given k−nomial of degree n.

Theorem 6. The cone Cn contains at most k − 1 roots of
any k-sparse polynomial of degree n.

3. POLYNOMIAL ARITHMETIC
Our algorithm only needs to perform basic operations on
polynomials. In particular, we need to evaluate the sign of
a given sparse polynomial at some points x. As we already
mentioned in the overview of our algorithm, the complex-
ity of this operation becomes too large if the value of the
polynomial at a given point x is almost zero as then one
needs to perform computations with a very high precision.
Also, exact evaluation of a sparse polynomial at a rational
point (even of small bitsize) is expensive as the output has
bitsize linear in n. Instead, we consider approximate evalu-
ation, which allows us to evaluate a sparse polynomial f as
in (1.1) at an arbitrary point x ∈ (0, 1+1/n) to an absolute
error less than 2−L in a time that is polynomial2 in log n, k,
τ, and L. More precisely, we derive the following result:

Lemma 1. Let f ∈ R[x] be an (n, k, τ)-nomial, c be a pos-
itive real number, and L a non-negative integer. Then, we
can compute an L-bit approximation λ of f(c) (i.e. |λ −
f(c)| < 2−L) in a number of bit operations bounded by

Õ((k + log n) · (L+ n logmax(1, |c|) + log n+ τ + k)).

Proof. In essence, we follow the same approach as in [7].
That is, for a fixed non-negative integer K, we perform each
occurring operation ◦ (i.e. either addition or multiplication)
with fixed precision K. More precisely, the input is initially
rounded after the K-th bit after the binary point. Then,
in each of the following steps, we replace each exact oper-
ation ◦ between two numbers a and b by a corresponding
approximate operation ◦̃, where we define a◦̃b to be the re-
sult obtained by rounding a ◦ b after the K-th bit after the
binary point. Suppose that we have computed approxima-
tions ã = a+ ε1 and b̃ = b+ ε2 of two intermediate results a
and b, where we assume that ε := max(|ε1|, |ε2|, 2

−K) < 1.

Then, we have |a ·b− ã̃·̃b| < |a| · |ε1|+ |b| ·ε2+ |ε1ε2|+2−K <

4 · ε · max(1, |a|, |b|) and |a + b − ã+̃b̃| < |ε1| + |ε2| + 2−K .
Hence, when evaluating one term fi · x

ei of f at the point
x = c with absolute precision K > L + log k + 1 + τ +
(2 log n+ 1) · (n · logmax(1, |c|) + 2) via repeated squaring,
we induce a total error εi for the computation of fi · c

ei of
size less than 2τ cn(2 log n+1) ·42 log n+1 ·2−K−L < (2k)−1 ·2−L

as there are at most 2 log n + 1 multiplications, and each
(exact) intermediate result has absolute value bounded by
max(2τ , cn). When eventually summing up the approxima-
tions of all terms fi ·x

ei , we thus induce an error of size less
than

∑

i εi + k · 2−K < 2−L for the computation of the final

2Notice that, for c ∈ (0, 1+1/nO(1)), we may omit the term
n logmax(1, |c|) in the bounds stated in Lemma 1.

result. The bound on the bit complexity follows from the
fact that we need O(k + log n) arithmetic operations on in-
tegers of bitsize O(K+τ+log k+n logmax(1, |c|)) = O(K),

and each such operation uses Õ(K) bit operations.

We already mentioned that evaluating the sign of a polyno-
mial f at a point x might be costly if f(x) has a small abso-
lute value. In order to avoid such undesired computations,
we first perturb x in a suitable manner. That is, instead
of evaluating the sign of f at x, we evaluate its sign at a
nearby point, where f becomes large enough. This can be
done in a way such that the actual behavior of the algorithm
does not change. We will call such points “admissible”. We
remark that we already used this concept in previous work
[15, 16]. Here, we modify the approach to choose an admis-
sible point, where the sign of each fractional derivative of a
sparse polynomial f can be evaluated in polynomial time.

Definition 7 (Admissible point). Let g : R → R be a func-
tion and m[t; δ] = {mi := m+ (i− k) · δ; i = 0, 1, . . . , 2t} be
a multipoint. We call a point m∗ ∈ m[t; δ] to be (g,m[t; δ])-
admissible if |g(m∗)| ≥ 1

8
·maxx∈m[t;δ] |g(x)|.

If t and δ (or even m and g) are clear from the context, we
simply call a (g,m[t; δ])-admissible point (g,m)-admissible
(or just admissible). Since the value of a polynomial g at
an admissible points is “relatively large”, we expect that g
has no root in a neighborhood of an admissible point. The
following lemma formalizes this intuition.

Lemma 2. Suppose that m ∈ R+ and m∗ ∈ m[t; δ] is an
(f,m[t; δ])-admissible point for an (n, k, τ)-nomial f with
k ≥ 2 and k ≤ t ≤ k2. Further assume that m

δ
> 4k2n2.

Then, the disk ∆ δ

k4k
(m∗) does not contain any root of f .

Proof. Let z1, . . . , , zn denote the complex roots of f. Since
f(x) has at most k−1 roots in the cone Cn (see Figure 2.1)
and t ≥ k, there exists a point b ∈ m[t; δ] such that ∆δ/2(b)
does not contains any of these k − 1 roots.
By way of contradiction assume that there is a root zl of f
in the ball of radius δ

k4k around m∗.
We have

f(m∗)

f(b)
=

n
∏

i=1

m∗ − zi
b− zi

By using the triangle inequality for the distance between
m∗ and zi, one can see that, for the roots zi 6= zl that are
contained in Cn, we have

m∗ − zi
b− zi

≤ 2t+ 1 ≤ 2k2 + 1,

whereas m∗−zl
b−zl

< 2 · k−4k. Now, consider the roots zi of f

that are outside of Cn. Since m
δ

> 4k2n2 , it follows that

the distance of m∗ to any such b is at at least 32k2δn.
Again using the triangle inequality for distance between m∗

and zi, this implies that

m∗ − zi
b− zi

≤ 1 +
2t

2k2n
≤ 1 +

1

n

Hence

f(m∗)

f(b)
≤

(

1 +
1

n

)n−k+1

· (2k2 + 1)k−2 ·
2

k4k

<

(

1 +
1

n

)n−k+1

· (
2k2 + 1

k4
)k−2 ·

2

k8

≤
2e

k8
<

1

8
.

This contradicts the fact that m∗ is an admissible point.

Definition 8. Let G = (g1, g2, . . . , gt) be a tuple of t func-
tions gi : R → R. Then, MG(x) is defined as follows:

MG(x) := min(|g1(x)| , |g2(x)| , , . . . , |gt(x)|).

For a fixed real x, we call G̃(x) = (g̃1(x), g̃2(x), . . . g̃t(x)) an
L-approximation of G(x) if |g̃i(x)− gi(x)| ≤ 2−L for all i.

We first show how to compute an admissible point m∗ ∈
m[t; δ] for MG(x) under the assumption that we can compute
an L-approximation of G(x) for any x ∈ m[t; δ] in time T (L).

Lemma 3. Let G = (g1, g2, . . . , gt) be as in Definition 8,
m[t; δ] a multipoint and mi := maxa∈m[t;δ] |MG(a)|. Sup-
pose that for for a point x ∈ m[t; δ] we can compute an L-
approximation of G(mi) in time T (L, x), then we can com-
pute an (MG ,m[t; δ])-admissible point m∗ ∈ m[t; δ] in time

O(t · log logmax(λ−1, 1) · (T (logmax(λ−1, 1))).

Within the same time, we may compute an integer ℓ∗ with
2ℓ

∗−1 ≤ |MG(m
∗)| ≤ λ ≤ 2ℓ

∗+1.

Proof. We proceed in the same fashion as in Lemma 8 of
[16]. For L = 1, 2, 4, . . . ,, we compute L-approximations

G̃L
i = (g̃L1 (mi), g̃

L
2 (mi), . . . ,̃ g

L
t (mi)) of G(mi) for all points

mi ∈ m[t; δ] until the following condition is satisfied for at
least one mi:

ML
i := min(g̃Li (mi)|, |g̃

L
2 (mi)|, . . . , |g̃

L
t (mi)|) ≥ 4·2−L = 2−L+2.

Then, let i0 be the index such thatML
i0 is maximal among all

ML
i , and let ℓ∗ be an integer such that

∣

∣ℓ∗ − logML
i0

∣

∣ ≤ 1
2
.

We output ℓ∗ and m∗ := mi0 . It is now straight-forward

(cf. the proof of Lemma 8 in [16]) to show that 2ℓ
∗−1 ≤

MG(m
∗) ≤ λ ≤ 2ℓ

∗+1.
Following the above approach, we must succeed for an L ≤
2 logmax(1

λ
, 1). Since we double L at mostO(log logmax(1

λ
, 1))

many times and since we approximately evaluate the func-
tions gi at t points, the stated complexity bound follows.
We now apply the above lemma to the special case where
G = Df is the sequence of fractional derivatives of f . Then,
Lemma 1 yields a bound of the bit complexity of computing
L-approximations of Df (mi) for all points mi ∈ m[t; δ].

Corollary 9. Assume that f(x) is a (n, k, τ)-nomial, m[t; δ]
a multipoint and λ := maxmi∈m[t;δ]

∣

∣MDf
(mi)

∣

∣. Further as-
sume that m[t; δ] ⊂ (0, α) for some positive real number α.
Then, we can determine an (MDf

,m[t; δ])-admissible point
m∗ and an integer ℓ∗ with

2ℓ∗−1 ≤
∣

∣MDf
(m∗)

∣

∣ ≤ λ ≤ 2ℓ
∗+1

using Õ(t · k · (k + log n) · (τ + k log n + n logmax(1, α) +
logmax(1, λ−1))) many bit operations.

Notice that the running time of the above algorithm depends
on the value λ := maxmi∈m[t;δ]

∣

∣MDf
(mi)

∣

∣. We will now

derive a bound on λ that shows that, for a sufficiently large
t and suitably chosen m and δ, we can always compute an
(MDf

,m[t; δ])-admissible point m∗ in polynomial time.

Lemma 4. Let f ∈ R[x] be a (n, k, τ)-nomial as in (1.1),
and let a, r be positive real numbers with r < a and such that
(a− r, a+ r) does not contain any real root of any fractional
derivative of f(x). Then, it holds that

|MDf
(a)| = 2−O(k(k log n+τ+logmax(1, 1

r
)+n log max(1,a+r))).

Proof. We may assume that r is small enough to guarantee
that a

r
> 2n. This implies that, for any two points x, x′ ∈

I1 := (a− r, a+ r), we have that x/x′ ∈ (1− 1/n, 1 + 1/n).
Now, let us write f = c+xj ·g with a constant c of absolute
value at least 2−τ and g an (n− j, k − 1, τ + log n)−nomial

that is not divisible by x. Then, it holds that f [1] = j·g+x·g′,
and thus f ′ = xj−1 ·f [1]. In addition, since I1 := (a−r, a+r)

does not contain any root of f and f [1], it follows that f is
monotone on I and only takes positive or negative values.
This implies that |f(t) − f(t′)| = ||f(t)| − |f(t′)|| for all
t, t′ ∈ I . In addition, for any t ∈ I2 := (a − r/2, a + r/2),
we can choose a point t′ = t± r/2 such that |f(t)| > |f(t′)|.
Now, according to the mean value theorem, there exists a
ξ in between t and t′ with f(t) − f(t′) = (t − t′) · f ′(ξ) =
r
2
· ξj−1 · f [1](ξ). Hence, we obtain |f(t)| > |f(t)| − |f(t′)| =

||f(t)|− |f(t′)|| = |f(t)− f(t′)| ≥ r
2
· ξj−1 · f [1](ξ) ≥ r

8
· tj−1 ·

f [1](ξ), where the latter inequality follows from (ξ/t)j−1 >
(1−1/n)n > 1/2. Also, |f(t)| ≥ |c|−tj ·|g(t)| ≥ 2−τ−tj−1 ·k·

2τ+log n ·max(1, a+ r)n. With ε := min(1, infx∈I1 |f
[1](x)|),

the above inequalities thus imply that

|f(t)| > max(
rε

8
· tj−1, 2−τ − tj−1k2τ+log n ·max(1, a+ r)n)

Now, if tj−1 < 2−τ−1(k2τ+logn · max(1, a + r)n)−1, then
the second argument in the above term becomes larger than
2−τ−1. Otherwise, the first term becomes larger than rε

8
·

2−τ−1(k2τ+log n ·max(1, a+r)n)−1. Hence, we conclude that

inf
x∈I2

|f(x)| > r · ε · 2−2τ−1−2 logn−n log max(1,a+r).

We now recursively apply the above result to the fractional
derivatives f [k−i] and the intervals Ii := (a− r

2i−1 , a+
r

2i−1),
where i = 1, 2, . . . , k. Notice that each of the polynomials is
an (n, k, τ + k log n)−nomial and that infx∈I1 |f

[k−1](x)| >

2−τ as f [k−1] is a constant of absolute value at least 2−τ .
Hence, it follows that

inf
x∈Ii

|f [k−i](x)| > 2−τ−i·(2τ−1−2k log n−n log max(1,a+r))·
i−1
∏

j=1

r

2j
.

Combining the above lemma and Corollary 9 now yields

Theorem 10. Let f be a (n, k, τ)-nomial as in (1.1), and
let m[t; δ] be a multipoint with t ≥ k2 and m[t; δ] ⊂ (0, α)
for some for some real number α. Then, we can compute an
(MDf

,m[t; δ])-admissible point m∗ using Õ(t·k2 ·(k+log n)·

(k log n+τ+logmax(1, 1
δ
)+n logmax(1, α))) bit operations.

Proof. Since each fractional derivative of f has at most k−1
positive real roots and since t ≥ k2, there exists an a ∈
m[t; δ] such that (a − δ/2, a + δ/2) does not contain any
real root of any of fractional derivative. Hence, Lemma 4

implies that λ := maxx∈m[t;δ] |MDf
(x)| ≥ |MDf

(a)| is lower

bounded by 2−O(k(k log n+τ+log 1
δ
+n log max(1,a+δ))). Corollary

9 then yields the claimed bound on the running time.

4. REFINEMENT
A crucial subroutine of our overall algorithm is an efficient
method for refining an interval I0 = (a0, b0) ⊂ R+, with
max(| log a0|, | log b0|) = O(τ), that is known to be isolating
for a simple real root of a k-nomial f . It is assumed that
the algorithm receives the sign of f at the endpoints of I0 as
additional input. For the refinement, we consider the algo-
rithm NewRefine from Section 3 in [15] (see also Section 5
in [16]), however, we make a single (minor) modification. As
the argument from [15] directly applies, we only state the
main results and refer the reader to [15] for details.
NewRefine recursively refines I0 to a size less than 2−L

using a trial and error approach that combines Newton iter-
ation and bisection. For this, only f and its first derivative f ′

need to be evaluated. More precisely, in each iteration, the
algorithm computes (f,m[⌈k/2⌉; δ])−admissible points m∗

for a constant number of points m ∈ I and a corresponding
δ of size 2−O(τ+logn+L). In addition, f and f ′ are evaluated
at these admissible points to an absolute precision that is
bounded by O(log max(1, |f(m∗)|−1) + log n+L+ τ). Each
endpoint of the interval returned by NewRefine is then ei-
ther one of the admissible points computed in a previous
iteration or one of the endpoints of I0.
We now propose the following modification of NewRefine,
which we denoteNewRefine

∗: WheneverNewRefine asks
for an (f,m[⌈k/2⌉; δ])−admissible point m∗, we compute an

(MDf
,m[k2; δ′])−admissible point m∗, with δ′ = δ · ⌈k/2⌉

k2 ,

instead. Then, the same argument3 as in [15] yields:

Theorem 11. For refining I0 to a size less than 2−L, the
algorithm NewRefine

∗ needs O(k·(log n+log(τ+L))) itera-
tions. In each iteration, we need to compute a constant num-
ber of (MDf

, m[k2; δ′])−admissible points m∗, with m[k2; δ′] ⊂

I0 and δ′ = 2−O(τ+logn+L). In addition, the polynomials
f and f ′ have to evaluated at m∗ to an absolute precision
bounded by O(logmax(1, |f(m∗)|−1) + log n+ L+ τ).

Combining Theorems 11 and 10, we obtain a bound on the
complexity of refining I0 to a size less than 2−L:

Corollary 12. For refining I0 to a size less than 2−L, the
algorithm NewRefine

∗ needs

Õ(k5 · (k+ log n) · log n · (k log n+ τ +L+n logmax(1, b0)))

bit operations. For each endpoint p of the interval returned
by NewRefine, it holds that

MDf
(p) = 2−O(ℓ+k(k log n+τ+L+n log max(1,b0))).

with ℓ := logmin(1,MDf
(a0),MDf

(b0))
−1.

5. COMPUTING A WEAK COVERING
We now describe how to compute a weak (L, [0, 1 + 1/n])-
covering for a given (n, k, τ)-nomial f in polynomial time.
We first compute an upper bound τ̃ ∈ Z for τ with τ ≤
τ̃ ≤ τ + 2, and define δ := min(2−2τ−2, 1/n) · k−2. Then,

3The argument in [15] only uses that, in each iteration, we
choose an arbitrary point m∗ ∈ [m−⌈k/2⌉ · δ, m+ ⌈k/2⌉ · δ].

in the first step, we compute (MDf
,m[k2; δ])−admissible

points a∗ and b∗ for m := 2−2τ−2 and m := 1 + 2/n, re-
spectively. Then, we follow the approach as outlined in
the first part of Section 1.2 to compute a weak (L, [a∗, b∗])-
covering for f , where we use the algorithm NewRefine

∗

from the previous Section to refine isolating intervals for
the roots of the fractional derivatives of f to a size less
than 2−L. The so obtained covering is indeed also a weak
(L, [0, 1 + 1/n])-covering for f , which follows from the fact
that b∗ ≥ 1+1/n and each positive root of f is lower bounded
by (1+maxk

i=1 |fi|/|f1|)
−1 due to Cauchy’s root bound [17].

For details, consider the exact definition of Algorithm 1.

Algorithm 1 Compute a weak (L, [0, 1])-covering of f

Input : An (n, k, τ)-nomial f and a non-negative in-
teger L ∈ N.

Output : A weak (L, [0, 1 + 1/n])-covering of f .

Compute τ̃ ∈ N with τ ≤ τ̃ ≤ τ + 2.

δ := 1
k2 ·min(1

n
, 2−2τ̃−2)

Compute (MDf
,m[k2; δ])−admissible points a∗ and b∗ for

m := 2−2τ̃−2 and m := 1 + 2
n
, respectively. Compute the

sign of f at x = a∗ and x = b∗.

for i = k − 1 to 0 do

if i = k − 1 then
Compute a trivial weak (L, [a∗, b∗])-covering Wk−1

for f [k−1] (f [k−1] has only one monomial).
Wk−1 = {(a∗, a∗), (b∗, b∗)}.

else

Wi+1 = weak (L, [a∗, b∗])-covering for f [i+1] com-
puted in the previous iteration of this loop.

Wi = Wi+1.
for each consecutive intervals (a, b) and (c, d) in
Wi+1 do

Compute signs of f [i](b) and f [i](c)

if f (i)(b)f (i)(c) < 0 then
UseNewRefine

∗ to refine the isolating inter-
val (b, c) to a new interval (b′, c′) of length
at most 2−L.

Compute signs of f [i](b′) and f [i](c′).
Wi = Wi ∪ (b′, c′)

return W0.

Correctness of the algorithm follows directly from our con-
siderations in Section 1.2. Further notice that, for each i
in the outermost for-loop of the algorithm, we add at most
k − i− 1 intervals to Wi to obtain Wi+1 as f [i] has at most
k − i − 1 positive real roots. Hence, each list Wi contains
at most k2 many intervals. It remains to bound the running
time of Algorithm 1. The proof of the following Lemma fol-
lows in a straight forward manner from Theorem 10, Corol-
lary 12, and the fact that we need to call the refinement
algorithm at most k times for each fractional derivative.

Lemma 5. Algorithm 1 computes a weak (L, [0, 1 + 1
n
])-

covering for f consisting of at most k2 many intervals. Its
bit complexity is Õ(k7(k + log n · (k log n+ τ + L)·) log n).

Proof. According to Theorem 10, the cost for computing a∗

and b∗ is bounded by Õ(k4(k + log n)(k log n + τ)). The
refinement algorithm is called at most k2 many times for

refining the roots of the fractional derivatives. Corollary 12
thus yields a bound of size Õ(k7 · (k + log n)(k log n + τ))
for the bit complexity of the refinements. The computations
of the signs of the factional derivative f [i] at the endpoints
of the intervals in Wi+1 is dominated by this bound as the
refinement algorithm returns intervals whose endpoints are
admissible with respect to MDf

. Thus, the computation
of each such admissible point already yields the sign of all
fractional derivative at this point.
In order to further process a weak (L, [0, 1 + 1/n])-covering
for f , we need the intervals in the weak covering to be well
separated. For given L, λ ∈ N0, we say that a list L of
intervals is (L, λ)-separated if the distance dist(I, J) between
I and its neighboring intervals is at least min(2−L, λ ·w(I)).
Notice that, starting from an arbitrary list L of intervals, we
can always deduce an (L, λ)-separated list L′ from L in a way
such that each interval in L is contained in an interval from
L′. Namely, this can be achieved by recursively merging
pairs of intervals I, J ∈ L that violate the above condition
until the actual list is (L, λ)-separated. It is easy to see that

w(L′) ≤ (2 + λ)|L| ·max(2−L, w(L)),

where w(L) and w(L′) denote the maximal width of an in-
terval in L and L′, respectively. Hence, by first computing a
weak (L′, [0, 1+1/n])-covering L, with L′ = L+k2 ·log(2+λ)
and |L| = O(k2), and then recursively merging the intervals,
we obtain a weak (L, [0, 1+1/n])−covering for f that is also
(L, λ)-separating and whose intervals have width at most
2−L. From Lemma 5, we thus conclude:

Corollary 13. For any λ,L ∈ N0, we can compute a (L, λ)-

separating weak (L, [0, 1+1/n])−covering for f in Õ(k7(k+
log n) · (k log n+ τ +L+ k2 log(2+λ)) · logn) bit operations.

6. TL-TEST
In the previous section, we have shown how to compute a
weak (L, [0, 1 + 1/n))-covering of a given (n, k, τ)-nomial f .
Now, we aim to convert this weak covering to a covering
of f . For this, we need an algorithm to count the number
of roots of f(x) contained in a given disk. Recent work [3]
introduces a simple corresponding algorithm, denoted Tl-
test, which is based on Pellet’s Theorem. More precisely, for
an arbitrary polynomial F ∈ C[x], a disk ∆ = ∆r(m) ⊂ C,
and a parameter K ≥ 1, we consider the inequality

Tl(∆,K, F) :

∣

∣

∣

∣

F (l)(m)rl

l!

∣

∣

∣

∣

−K ·
∑

i6=l

∣

∣

∣

∣

F (i)(m)ri

i!

∣

∣

∣

∣

> 0. (6.1)

Hence, we check whether the absolute value of the l-th co-
efficient al of F∆(x) = f(m + rx) =

∑n
i=0 aix

i dominates
the sum of the absolute values of all remaining coefficients
weighted by the parameter K. We say that Tl(∆,K, F) suc-
ceeds if the above inequality is fulfilled. Otherwise, we say
that it fails. In case of success (for any K ≥ 1), ∆ contains
exactly l roots of F counted with multiplicity, whereas we
have no information in case of a failure. However, in [3], we
derive sufficient conditions on the success of the Tl-test:

Theorem 14. [[3], Corollary 1] Let F ∈ C[x] be a polyno-
mial of degree n, and ∆r(m) be a disk. If ∆r(m) as well as
the enlarged disk ∆256n5r(m) contain l roots of F counted
with multiplicity, then Tl(∆16nr(m), 3

2
, F) succeeds.

Unfortunately, the above test has two major drawbacks when
dealing with sparse polynomials. First, we need to compute

the coefficients F∆ exactly, which we cannot afford as the
bitsize of each coefficient is at least linear in n. Second, an
even more severe, there are n coefficients to be computed.
Hence, using the above approach directly to count the num-
ber of roots of a sparse polynomial f does not work. Instead,
we propose two modifications to overcome these issues. The
first modification, namely to use approximate (in a proper
manner) instead of exact arithmetic, has already been con-
sidered in previous work. However, the second modification
is more subtle. It exploits the fact that, for a suitably cho-
sen disk centered at some admissible point, only the first k2

coefficient are relevant for the outcome of the above test.
We first go into details with respect to our first modification.
Let us define Eℓ := |al| and Er := K ·

∑

i6=l |ai| the expres-

sions on the left and right hand side of the inequality in (6.1).
We aim to check whether Eℓ−Er > 0 or not. In general, if a
predicate P is of the latter form P = (Eℓ−Er > 0) with two
(computable) expressions Eℓ and Er, you can compute ap-

proximations Ẽℓ and Ẽr of Eℓ and Er with |Ẽℓ −Eℓ| < 2−L

and |Ẽr −Er| < 2−L for L = 1, 2, 4, . . . For a certain L, you
may then try to compare Eℓ and Er taking into account
their corresponding approximations and the approximation
error. Eventually (i.e. for a sufficiently large L), you either
succeed, in which case you can return the sign, or assert that
Eℓ and Er are good approximations of each other. In the
latter case, you just return a flag called Undecided. In short,
this is the idea of so-called soft-predicates. For details, we
refer to [3].

Algorithm 2 Soft Predicate P̃

Input : A predicate P defined by non-negative expressions
Eℓ and Er , with Eℓ 6= 0 or Er 6= 0; i.e. P succeeds
if and only if Eℓ > Er. A rational constant δ > 0.

Output: True, False, or Undecided. In case of True (False),
P succeeds (fails). In case of Undecided, we have
1

1+δ
·Eℓ < Er ≤ (1 + δ) · Eℓ

Notice that, in cases where Eℓ considerably differs from Er,
the soft predicate P̃ allows us to compute the sign of P
without the need of exact arithmetic. In all other cases
(i.e. if it returns Undecided), we know at least that Eℓ

and Er are good approximations of each other. We remark
that, in [3], the above soft predicate P̃ was only described
for δ = 1

2
, however, it easily generalizes to any constant δ.

In [3, Lem. 2], it has been shown that, for any constant δ,
Algorithm 2 needs an L0-bit approximation of Eℓ and Er

with L0 bounded by

L0 ≤ 2 · (max(1, logmax(Eℓ, Er)
−1) + 4).

In [3], we considered a soft-variant of the Tl-test, where we
compared the expressions Eℓ := |al| and Er :=

∑

i6=l |ai|.
Now, we apply the above soft-predicate to the expressions

Eℓ := al and Er :=
∑i≤k2

i6=l |ai|, that is, we replace the en-

tire sum
∑

i6=l |ai| by its truncation after the first k2 terms.
However, we will make the assumption that the truncated

sum is upper bounded by |a0|
128

; see Algorithm 3. This might
look haphazardly at first sight, however, we will later see
that the latter condition is always fulfilled for a k-nomial F
and a suitable disk ∆r(m) centered at an admissible point.

Algorithm 3 T̃l-test

Input : An (n, k, τ)-nomial f(x), a disk ∆ := ∆r(m)
in the complex space and an integer l with
0 ≤ l ≤ k. It is required that

∑

i>k2 |ai| ≤
|a0|
128

, where f∆(x) =
∑n

i=0 ai · x
i.

Output : True or False. If the algorithm returns True
then the disk ∆r(m) contains exactly l roots.

Define Eℓ := |al| and Er := 65
64

·
∑i≤k2

i6=l |ai|.

Define predicate P = (Eℓ − Er > 0).
return output of Algorithm 2 on predicate P with δ = 1

128
.

Lemma 6. For a disk ∆ := ∆r(m) ⊂ C, the T̃l-test needs
to compute L-bit approximations of Eℓ and Er with L ≤
L(m, r, f) := 2 · (5 + log n− logmaxi |ai|) . If Tl(∆, 3

2
, f)

succeeds, then the T̃l-test returns True. Running Algorithm
3 for all l = 0, . . . , k uses a number of bit operations upper
bounded by Õ(k2 ·(k+logn)(L(m, r, f)+τ+n logmax(1, m)+
k2 · (log n+ logmax(1, r)))).

Proof. From the assumption, it follows that maxi=0,...,n |ai| =
maxi=0,...,k2 |ai| ≤

1
2
·max(|Eℓ|, |Er|). This yields the claimed

bound on the absolute error to which Eℓ and Er need to be
computed. We now prove correctness. If the algorithm re-

turns True, then Eℓ > Er, and thus |al| >
65
64

·
∑i≤k2

i6=l |ai|. If

l = 0, then
∑

i6=0 |ai| <
64
65

· |a0| +
1

128
· |a0| < |a0|. Other-

wise, we have |al| >
65
64

·
∑i≤k2

i6=l |ai| ≥
∑i≤k2

i6=l |ai|+
1
64

· |a0| ≥
∑i≤n

i6=l |ai|. Hence, in both cases, Tl(∆, 1, f) succeeds, which
implies that ∆ contains exactly l roots.
Now, suppose that Tl(∆, 3

2
, f) succeeds. If the T̃l-test re-

turns Undecided, then 128
129

· Eℓ < Er ≤ 129
128

· Eℓ. On the

other hand, we have |al| >
3
2

∑≤n
i6=l |ai| ≥ 3

2

∑≤k2

i6=l |ai|, and

thusEℓ >
3
2
Er, which contradicts the fact that 128

129
·Eℓ < Er.

If the T̃l-test returns False, a similar argument yields a con-
tradiction as well. This shows that success of Tl implies that
T̃l returns True. It remains to show the claimed bounds
on the bit complexity. It suffices to estimate the cost for
computing an L(m, r, f)-bit approximations of Eℓ and Er.
The i-th coefficient ai, with i ≤ k2, can be computed by
evaluating the (n, k, τ + k2 · (log n + logmax(1, r)))-nomial

gi = f (i)(x)ri/i! at x = m. In order to compute L(m, r, f)-
bit approximations of Eℓ and Er, we need to compute an
(L(m, r, f) + 2 log k)-bit approximation of each gi(m), for
i = 0, . . . , k. According to Lemma 1, this can be done us-
ing Õ(k2 · (k+ log n)(L(m, r, f) + n logmax(1, m) + τ + k2 ·
(log n+ logmax(1, r))) bit operations.

Notice that, in order to actually use the T̃l-test for counting
the roots in a disk ∆, we need two conditions to be satisfied.

First, we need the condition
∑

i>k2 |ai| ≤
|a0|
128

to be true.
Second, we need to satisfy the preconditions of the Tl-test.

Theorem 15. Let f be a (n, k, τ)-nomial as in (1.1), let
∆ := ∆r(m) be a disk centered at some m ∈ R>0 with m

r
>

n16, and let f∆(x) =
∑n

i=0 ai · x
i. Further suppose that

∆ r

k4k+2
(m) does not contain any roots of f . Then, it holds

that
∑

i>k2 |ai| ≤
|a0|
128

.

Proof. Let z1, z2, . . . , zn be the complex roots of F (x), then
ai

a0
= F (i)(m)

F (m)·i!
· ri = ri

i!
·
∑

(j1,j2,...,ji)
1∏

i
ℓ=1

(m−zjℓ
)
, where we

sum over all tuples (j1, j2, . . . , ji) with distinct entries js,
1 ≤ js ≤ n. For a fixed tuple (j1, j2, . . . , ji), at most k of the
i roots zj1 , zj2 , . . . , zji can appear in the corresponding term
of the above sum. At most k of these roots are contained in
the code Cn as defined in Figure 2.1, whereas the remaining
i − k roots are located outside of Cn. Since m

r
> n16, the

distance from m to any of these roots is at least n15r. Also,
since ∆ r

k4k
(m) does not contain any roots of F (x), distance

of m from the roots in Cn is at least r
k4k . Thus, we get

∑

(j1,j2,...,ji)
1∏

i
ℓ=1

|m−zjk
|
≤
(

n
i

)

· k4k2

rk·(n5r)i−k . Hence, for i >

k2, we get

|ai|

|a0|
≤

ri

i!
·

(

n

i

)

·
k4k2+2k

rk · (n15r)i−k
=

1

i!
·

(

n

i

)

·
k4k2+2k

n15(i−k)

≤
1

i! · i!
·
k4k2+2k

n14i−15k
≤

1

i! · i!
·
k4k2+2k

n6i

(By using the fact that
(

n
i

)

≤ ni

i!
and 15k < 8k2 < 8i)

≤
1

5! · n · i!
·
k4k2+2k

k6k2 ≤
1

120 · n · i!
·

(

1

k2

)k2−2k

<
1

128n

Hence, summing up over all i > k2 proves the claim.

The following Corollary is now an immediate consequence
of the above theorem and Lemma 15.

Corollary 16. Let f(x) ∈ R[x] be as in (n, k, τ)-nomial
as in (1.1). Let m,r ∈ R+. Let m∗ be a (MDf

,m[k2; r
k2])

-admissible point and r∗ = 2r. Define ∆ = ∆r∗(m
∗) ⊇

∆r(m) and f∆(x) =
∑n

i=0 ai · x
i. Further assume that m

r
≥

2(1 + n16), then
∑

i>k2 |ai| ≤
|a0|
128

.

In the next step, we show how to satisfy the precondition
of the Tl-test. Theorem 14 says that if ∆256n5r(m) does
not contain any of the roots which are not contained in
∆r(m), then Tl(∆16nr , f) succeeds for some l. Let us define
M = 256n5r, and let ∆i := ∆Mir(m) for i = 0, 1, . . . , k+1.
Further assume that r has been chosen sufficiently small
enough such that each of disks is contained in the cone Cn.
Since Cn contains at most k roots, there must exist a j with
0 ≤ j ≤ k such that ∆j+1 −∆j does not contain any root.
Hence the Tl-test will succeed on ∆16nMjr(m). So instead
of running the Tl-test on some initial disk ∆r(m), we run it
on all disks ∆16nMir(m) for i = 0, 1, . . . , k, and return the
first disk on which the Tl-test succeeds; see Algorithm 4.
Correctness of the algorithm follows immediately from the
above considerations. The condition on m and r guarantees
that each of the disks ∆i is contained in Cn. Lemma 7 gives
a bound on its running time.

Lemma 7. Algorithm 4 returns a disk ∆r′(m
′), with r′ ≤

Rr and m − r ≤ m′ ≤ m + r, together with the number of
roots of f(x) in ∆r′(m

′). Its bit complexity is bounded by

Õ(k5 · (k+ log n) · (k2 log n+n logmax(1, |m|) + τ + log 1
r
)).

Proof. The condition m ≥ r + 2Rnr with R = 28k+4n5k+16

implies that all the disks considered in the Algorithm 4 are
contained in the cone Cn. In addition, the condition of
Corollary 16 is fulfilled.
One iteration of the inner for loop uses a number of bit
operations bounded by Õ(k2 · (k+log n) · (L(m′, R′, f)+ τ +
n logmax(1, m′) + k2(log n+ logmax(1, R′)); see Lemma 6.
Here, R′ ≤ R and m − r ≤ m′ ≤ m + r. In addition,
L(m′, R′) := L(m′, R′, f) := 2 · (5 + log n− log ‖f∆‖∞) .

Algorithm 4 Wrapper T̃l-test

Input : A (n, k, τ)-nomial f(x), a disk ∆ := ∆r(m)
in the complex space. We assume m ≥ r +
2Rnr with R = 28k+4n5k+16.

Output : A disk ∆r′(m
′) such that ∆r(m) ⊆ ∆r′(m

′)
along with number of roots of f(x) contained
in ∆r′(m

′)

1. Compute an (MDf
,m[k2; r

k2])-admissible point m∗.

2. Let m′ = m∗ and r′ = 2r.

3. Let M = 256n5r′.

for each 0 ≤ i ≤ k do

for each 0 ≤ l ≤ k do

Perform the T̃l-test, that is Algorithm 3, on
∆16nMir′(m

′). if T̃l-test succeeded in the previous
step then

return ∆16nMir′(m
′) and l.

Algorithm 5 Computing a (L, [0, 1 + 1
n
])-covering

Input : An (n, k, τ)-nomial f(x) and a positive integer L.
Output: An (L, [0, 1 + 1/n])-covering for f .

1. Let R := 28k+4n5k+16 and L′ = L+ ⌈logR⌉+ 4τ + 5.
Compute a weak (L′, [0, 1 + 1

n
])-covering L for f that

is (L′, 8R)-separated.

2. L′ = ∅

for each interval I = (a, b) ∈ L do

1. ∆ = ∆ b−a
2

(a+b
2

)=one circle region of I .

2. (∆r′(m
′), µ)= output of Algo. 4 on f and ∆.

3. L′ = L′ ∪ {(∆r′(m
′), µ)}

return L′.

If f∆(x) =
∑n

i=0 ai · x
i, then obviously ‖f∆‖∞ ≥ |a0| =

|f(m′)|. Since m′ is an (MDf
,m[k2; r

k2])-admissible point,
Lemma 4 implies that

|MDf
(m′)| ≥ 2−O(k(τ+n log max(1,m′)+k log n+logmax(1, k

2

r
))). Thus,

we conclude that − log ‖f∆‖∞ ≤ k(τ + n logmax(1,m′) +
k log n+log 1

r
), and L(m′, R′) ≤ O(k(τ +n logmax(1, m′)+

k log n + log 1
r
)). It follows that Algorithm 4 runs in time

Õ(k4 · (k+ log n)(k(τ + n logmax(1, m′) + k log n+ log 1
r
) +

τ + k2(logmax(1, R) + log n) + n logmax(1,m′))) = Õ(k5 ·
(k + log n) · (k2 log n+ n logmax(1, m′) + τ + log 1

r
)).

7. COMPUTING A COVERING
We now show to compute an (L, [0, 1+1/n])-covering from a
weak (L′, [0, 1 + 1

n
])-covering, For this, we apply Algorithm

4 to the one-circle regions of the intervals in the weak cov-
ering. The following Lemma shows that the requirements
in Algorithm 4 are fulfilled if we choose L′ large enough. In
addition, by ensuring that the intervals in the weak covering
are well separated from each other, we can ensure that the
corresponding disks returned by Algorithm 4 are disjoint.

Lemma 8. Algorithm 5 computes an (L, [0, 1+ 1
n
])-covering

L′ for f using Õ(k7 · (k + log n)(k3 log n+ τ +L)) bit oper-
ations. The distance between any two disks of L′ is at least
32 · 2−L, and ∆ ∩ R ⊂ (2−3τ , 2) for any disk ∆ in L′.

Proof. The output L′ surely covers all the real roots of f in
the interval [0, 1 + 1

n
]. Since the weak covering L computed

in Algorithm 5 is (L′, 8R)-separated and since Algorithm 4
only blows up any disk by a factor of R, we conclude that

disks in L′ are still separated by at least 4R2−L′

≥ 32 · 2−L .

In addition, the radius of each disks in L′ is at most R2−L′

≥
2−L.
Notice that the left endpoint of any interval in L is at least
2−2τ−3. Thus, for any disk ∆ from L′ the left endpoint of

the interval ∆ ∩ R is at least 2−2τ−3 −R2−L′

≥ 2−2τ−5. A
similar argument yields the claimed bound on the right end
points of ∆ ∩ R.
The running time bounds follow from the stated upper bound
on L′ and R and the fact thatm′ ≤ 1+O(1

n
+2−L)) is always

satisfied.
It remains to show how to compute an (L, [0,∞))-covering
for f from an (L, [0, 1+ 1

n
))-coveringL1 for f and an (L, [0, 1+

1
n
))-coveringL2 for x

nf(1
x
). We first derive an (L, [n

n+1
,∞))-

covering for f from L2 by inverting the disks ∆ in L2. The
proof of the following lemma is straight forward.

Lemma 9. Let L be an (L, [0, 1+ 1
n
])-covering of xnf(1

x
) as

computed by Algorithm 5, and L′ := {(∆−1, µ) : (∆, µ) ∈ L}
be the list obtained from L by inverting the disks in L (i.e.
∆r(m)−1 = ∆r′(m

′) with r′ = 2r
m2−r2

and m′ = m
m2−r2

).

Then, L′ is an (L′, [n
n+1

,∞))-covering of f with L′ ≥ L−6τ

and the distance between two disks in L′ is at least 8 · 2−L.

Finally, we merge an (L, [0, 1 + 1/n))-covering L1 and an
(L, [n

n+1
,∞))-covering L2 for f . Here, we assume that L >

3 + log n, and that the coverings are computed using Algo-
rithm 5 and by inverting the (L, (0, 1 + 1/n))-covering for
xn · f(1/x) to obtain L2. This guarantees that the distance
between any two disks in either L1 or L2 is at least 8 · 2−L.
For the merging, we keep each disk from L1 that has no inter-
section with a disk from L1, and vice versa. For each pair of
elements (∆1, µ1) ∈ L1 and (∆2, µ2) ∈ L2 with ∆1∩∆2 6= ∅,
we keep (∆1, µ1) (and omit (∆2, µ2)) if the center of ∆1 is
not larger than 1. Otherwise, we keep (∆2, µ2) (and omit
(∆1, µ1)). Following this approach, we might loose some of
the complex roots that are contained in the union of ∆1 and
∆2, however, we will not loose any real root. Thus, the so
obtained list constitutes an (L, (0,∞))-covering for f .
Notice that any two (L, (0,∞))- and (L, (−∞, 0))-coverings
for f can be trivially merged by taking their union. In addi-
tion, since the final covering contains a list of disjoint disks
contained in the union of the cone Cn and its reflection on
the imaginary axis, and since the union of these two cones
contains at most 2k − 1 roots of f , the number of disks is
also bounded by 2k−1. Hence, our main Theorem 3 follows.

8. REFERENCES
[1] Maria Emilia Alonso Garçia and André Galligo. A

root isolation algorithm for sparse univariate
polynomials. In ISSAC, pages 35–42, 2012.

[2] Osbert Bastani, Christopher J. Hillar, Dimitar Popov,
and J. Maurice Rojas. Randomization, Sums of
Squares, Near-Circuits, and Faster Real Root
Counting. Contemp. Mathematics, 556:145–166, 2011.

[3] Ruben Becker, Michael Sagraloff, Vikram Sharma, and
Chee-Keng Yap. A near-optimal subdivision algorithm
for complex root isolation based on the pellet test and
newton iteration. J. Symb. Comput., 2015. In press.

[4] George E. Collins and Rüdiger Loos. Polynomial real
root isolation by differentiation. In SYMSAC, pages
15–25, 1976.

[5] Michel Coste, Tomás Lajous-Loaeza, Henri Lombardi,
and Marie-Francoise Roy. Generalized Budan-Fourier
theorem and virtual roots. J. Complexity, 21(4):479 –
486, 2005.

[6] F. Cucker, P. Koiran, and S. Smale. A polynomial
time algorithm for diophantine equations in one
variable. J. Symb. Comput., 27(1):21 – 29, 1999.

[7] Michael Kerber and Michael Sagraloff. Root
refinement for real polynomials using quadratic
interval refinement. Journal of Computational and
Applied Mathematics, 280:377 – 395, 2015.

[8] Hendrik W. Lenstra (Jr.). Finding small degree factors
of lacunary polynomials. Number Theory in Progress,
1:267–276, 1999.

[9] J.M. McNamee and Victor Y. Pan. Numerical Methods
for Roots of Polynomials. Number 2 in Studies in
Computational Mathematics. Elsevier Science, 2013.

[10] K. Mehlhorn, M Sagraloff, and P. Wang. From
Approximate Factorization to Root Isolation with
Application to Cylindrical Algebraic Decomposition.
J. Symb. Comput., 66(1):34 – 69, 2015.

[11] V. Pan. Univariate Polynomials: Nearly Optimal
Algorithms for Numerical Factorization and Root
Finding. J. Symb. Comput., 33(5):701–733, 2002.

[12] Victor Y. Pan, Brian Murphy, Rhys Eric Rosholt,
Guoliang Qian, and Yuqing Tang. Real root-finding.
In SNC, pages 161–169, 2007.

[13] Victor Y. Pan and Elias P. Tsigaridas. On the boolean
complexity of real root refinement. In ISSAC, pages
299–306, 2013.

[14] J. Maurice Rojas and Yinyu Ye. On solving univariate
sparse polynomials in logarithmic time. J. Complexity,
21(1):87–110, 2005.

[15] Michael Sagraloff. A near-optimal algorithm for
computing real roots of sparse polynomials. In ISSAC,
pages 359–366, 2014.

[16] Michael Sagraloff and Kurt Mehlhorn. Computing real
roots of real polynomials. Journal of Symbolic
Computation, 73:46 – 86, 2016.

[17] C.K. Yap. Fundamental Problems of Algorithmic
Algebra. Oxford University Press, 2000.

[18] Yinyu Ye. Combining Binary Search and Newton’s
Method to Compute Real Roots for a Class of Real
Functions. J. Complexity, 10(3):271 – 280, 1994.

	1 Introduction
	1.1 Problem Definition and Contribution
	1.2 Overview of the Algorithm

	2 On the Geometry of Roots
	3 Polynomial arithmetic
	4 Refinement
	5 Computing a Weak Covering
	6 Tl-test
	7 Computing a Covering
	8 References

