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Abstract Linear compartmental models are commonly used in different areas of sci-
ence, particularly inmodeling the cycles of carbon and other biogeochemical elements.
The representation of these models as linear autonomous compartmental systems
allows different model structures and parameterizations to be compared. In particular,
measures such as system age and transit time are useful model diagnostics. However,
compact mathematical expressions describing their probability distributions remain to
be derived. This paper transfers the theory of open linear autonomous compartmental
systems to the theory of absorbing continuous-timeMarkov chains and concludes that
the underlying structure of all open linear autonomous compartmental systems is the
phase-type distribution. This probability distribution generalizes the exponential dis-
tribution from its application to one-compartment systems to multiple-compartment
systems. Furthermore, this paper shows that important system diagnostics have nat-
ural probabilistic counterparts. For example, in steady state the system’s transit time
coincides with the absorption time of a related Markov chain, whereas the system age
and compartment ages correspond with backward recurrence times of an appropriate
renewal process. These relations yield simple explicit formulas for the system diagnos-
tics that are applied to one linear and one nonlinear carbon-cycle model in steady state.
Earlier results for transit-time and system-age densities of simple systems are found
to be special cases of probability density functions of phase-type. The new explicit
formulas make costly long-term simulations to obtain and analyze the age structure
of open linear autonomous compartmental systems in steady state unnecessary.
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1 Introduction

Compartmental models are widely used to describe a range of biological and phys-
ical processes that rely on mass conservation principles (Anderson 1983; Jacquez
and Simon 1993). In particular, most models that describe the carbon cycle can be
generalized as compartmental models (Luo and Weng 2011; Sierra and Müller 2015;
Rasmussen et al. 2016). These models are very important for predicting interactions
between ecosystems and the global climate. However, the predictions of these models
diverge widely (Friedlingstein et al. 2006, 2014) since models have different struc-
tures and parameter values. To compare diverse models, key quantities such as system
age and transit time can be considered. These quantities provide relevant informa-
tion about the time scales at which material is cycled in compartmental systems and
facilitate comparisons among different model structures and parameterizations. For-
mulas for their means were recently provided by Rasmussen et al. (2016) for linear
nonautonomous compartmental systems. For autonomous systems, that is, systems
with constant coefficients, the existence of explicit solutions raises hope for explicit
formulas not only for the means, but also for the densities of system age and transit
time.

A first attempt in this direction was started by Nir and Lewis (1975) who estab-
lished formulas for transit-time and age densities in dependence on a not explicitly
known system response function. This response function was the basis for Thompson
and Randerson (1999) to compute the desired densities numerically by long-term sim-
ulations in two carbon-cycle models. Impulsive inputs and how systems respond to
them were later investigated by Manzoni et al. (2009) to obtain explicitly the system
response function for a set of carbon-cycle models of very simple structure. Despite
the simple structure of these systems, the derivation of the according density formulas
is involved, because the system’s response needs to be transformed from the phase
domain to the Laplace domain and back. In this manuscript, the dynamics of linear
autonomous compartmental systems are considered as a stochastic process to show
that the impulse response function is the probability density function of a phase-type
distribution. To this end, open linear autonomous compartmental systems are related
to absorbing continuous-time Markov chains.

This manuscript is organized as follows. In Sect. 2, linear autonomous compart-
mental systems are introduced, and the idea of looking at them from the perspective
of one single particle is framed. The transit time of this particle through the system
coincides with the absorption time of a continuous-time Markov chain. A short pre-
sentation of the basic ideas of continuous-time Markov chains follows in Sect. 3.
The probability distribution of the absorption time is shown to be an example of a
phase-type distribution, and its cumulative distribution function, probability density
function, and moments are computed. In Sect. 4, concepts from renewal theory are
used to construct a regenerative process, which is the basis for the computation of the
system- and compartment-age densities. The relationship of Markov chains and lin-
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ear autonomous compartmental systems is established in Sect. 5, where the previous
probabilistic results are used to obtain simple explicit formulas for the densities of
the system age, compartment age, and transit time. In Sect. 6, the derived formulas
are applied to two autonomous terrestrial carbon-cycle models. Both models are con-
sidered in steady state, which allows the treatment of a linear model (Emanuel et al.
1981), as well as a nonlinear one (Wang et al. 2014) within the proposed framework.
Relations to earlier work and some other aspects are discussed in Sect. 7, and in Sect. 8
conclusions are presented. “Appendix A” contains the proof of the main theorem from
Sect. 4, and “Appendix B” covers some examples for systems with simple structure.

2 Linear Autonomous Compartmental Systems

Compartmental differential equations are useful tools to describe flows of material
between units called compartments under the constraint of mass conservation. Fol-
lowing Jacquez and Simon (1993), a compartment is an amount of some material that
is kinetically homogeneous. This means that the material of a compartment is at all
times homogeneous; any material entering the compartment is instantaneously mixed
with the material already there. Hence, compartments are always well-mixed.

Consider the d-dimensional linear system of differential equations

d

dt
x(t) = B x(t) + u, t > 0,

x(0) = x0 ∈ R
d . (1)

This equation system represents how mass flows at time t = 0 into a set of compart-
ments, flows and cycles among the compartments, and eventually leaves the system.
Therefore, the vector x0 of initial contents and the constant input vector u are required
to have nonnegative entries only. The law of conservation of mass imposes restrictions
on the d × d-matrix B.

Definition 1 A matrix B = (bi j ) ∈ R
d×d is called a compartmental matrix if

(i) 0 ≤ bi j for all i �= j ,
(ii) 0 ≤ −b j j < ∞ for all j ,
(iii)

∑d
i=1 bi j ≤ 0 for all j .

If now B is a compartmental matrix, (1) is called a linear autonomous compartmental
system. The term autonomous refers to the fact that both B and u are independent of
time t . A detailed treatment of such systems can be found in Anderson (1983) and
Jacquez and Simon (1993).

For t ≥ 0 the vector x(t) ∈ R
d represents the contents of the different compartments

at time t . The off-diagonal entries bi j of B are called fractional transfer coefficients.
They are the rates at which mass moves from compartment j to compartment i . For
j = 1, . . . , d, the nonnegative value z j = −∑d

i=1 bi j is the rate at which mass
leaves the system from compartment j . If at least one of these output or release rates
is greater than zero, system (1) is called open, otherwise it is called closed. This
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paper is concerned with open systems only, since closed systems with positive input
accumulate mass indefinitely.

2.1 The One-Particle Perspective

Looking at the behavior of the entire system, the initial content x0 distorts what can be
seen happening to the system content. There are two ways to get rid of this disturbing
influence of the initial content. One way is to consider the system after it has run for
an infinite time such that all the initial content has left. Another way is to look at one
single particle that just arrives at the system through new input u.

Since all compartments are well-mixed, this particle’s way through the system is
not influenced by the presence or absence of any other particles. It enters the system
at a compartment according to u and then, at each time step, whether it stays or moves
on is decided on the basis of its current position and its schedule. If the decision is
to move on, then it can move to another compartment or leave the system, depending
only on the connections of the current compartment. The particle follows a schedule
and a map given by the matrix B. Its diagonal entries govern how long the particle
stays in a certain compartment, and the off-diagonal entries provide the connections
to other compartments. By leaving the system, the particle finishes a cycle and starts
a new one by reentering the system. At each cycle, the sequence of compartments to
which the particle belongs at successive time steps constitutes a stochastic process
called discrete-time Markov chain. Letting the size of the time steps tend to zero, the
particle’s future becomes continuously uncertain. The path of the particle traveling
through the system is then represented by a continuous-time Markov chain (Norris
1997).

In Sect. 2.2, the structure and properties of continuous-time Markov chains are
introduced, and the reader should always have in mind the traveling particle. When
the Markov chain changes its state from j to i , the particle is considered to move from
compartment j to compartment i . When the Markov chain is absorbed, the particle
leaves the system. The time that elapses from themoment the particle enters the system
to the moment of its exit is called the particle’s transit time. To get a grasp on it, from
the beginning of the cycle only a look into the future is necessary.

While the particle is still in the system, the time that has passed since the particle’s
entry is called its system age. If the age of the particle is considered at a random time,
a look into the past of the particle is needed, not knowing when it entered the system
the last time. Consequently, it has to be assumed that the particle has ran through
the system already infinitely often. Otherwise the existence of a maximum age of the
particle would be implied, but any choice of this maximum value would be arbitrary
and ill-founded. Therefore, a particular regenerative process will be considered: a
sequence of absorbing continuous-time Markov chains.

2.2 From One Particle to All Particles in the System

Assume that the system at time t ≥ 0 contains n particles with system ages represented
by n independent and identically distributed random variables. Hence, the system age
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Ak of particle k is assumed to have the cumulative distribution function FA for all
k = 1, 2, . . . , n. The share of particles with system age less than or equal to y ≥ 0
equals

Fn(y) = 1

n

n∑

k=1

1(−∞,y](Ak).

Here,1S(s) denotes the indicator function. It equals 1 if s ∈ S and it equals 0 otherwise.
The function Fn is called empirical distribution function of A1, A2, . . . , An , and from
the Glivenko–Cantelli theorem (Dudley 1999) it is known that it converges almost
surely uniformly to FA if the number n of particles goes to infinity. Consequently,
if the system contains an infinite amount of particles, the share of the total system
content x(t) that has system age less than or equal to y is

FA(y) =
y∫

0

f A(τ ) dτ,

where f A is the common probability density function of the particles’ ages.

3 Continuous-Time Markov Chains

Markov chains are the most important examples of random processes. Given their
simple structure and high diversity, they are applied to many different scientific prob-
lems. In particular, they are the simplest mathematical models for random phenomena
evolving in time. Their characteristic property is that they retain no memory on the
states of the system in the past. Only the current state of the process can influence
where it goes next. If the process can assume only a finite or countable set of states, it
is called a Markov chain. Discrete-time Markov chains are usually defined on a set of
integers, whereas continuous-time Markov chains live on a subset of the real line. In
the following, the basic theory of continuous-time Markov chains is introduced along
the line of Norris (1997), from which also most unproven results are taken.

A vector λ ∈ R
d is called a distribution if all its components are nonnegative and

sum to one. Furthermore, a matrix P = (pi j )i, j∈J is called stochastic on a finite
set J if every column (pi j )i∈J is a distribution. Note that in standard literature on
Markov chains row sums are considered. Here, column sums are used instead, because
thereby the connection to compartmental matrices will become more obvious later.
The definition of a Markov chain can best be formalized in terms of its corresponding
transition rate matrix. A transition rate matrix is a special compartmental matrix where
all columns sum to zero.

Definition 2 Let J be a finite state space. A transition rate matrix on J is a matrix
Q = (qi j )i, j∈J satisfying the conditions

(i) 0 ≤ qi j for all i �= j ,
(ii) 0 ≤ −q j j < ∞ for all j ,
(iii)

∑
i∈J qi j = 0 for all j .
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Each off-diagonal entry qi j can be interpreted as the rate of going from state j to state
i and the diagonal entries q j j as the rate of leaving state j .

Definition 3 Let Q be a transition rate matrix and λ a distribution on a finite state
space J . A stochastic process X = (Xt )t≥0 is a continuous-time Markov chain on J
with initial distribution λ and transition rate matrix Q if

(i) P(X0 = j) = λ j for all j ∈ J ;
(ii) for all n = 0, 1, 2, . . ., all times 0 ≤ t0 ≤ t1 ≤ · · · ≤ tn+1, and j0, j1, . . . , jn+1 ∈

J ,

P
(
Xtn+1 = jn+1 | Xt0 = j0, . . . , Xtn = jn

) =
(
e(tn+1−tn)Q

)

jn+1 jn
,

where for any quadratic matrixM the expression eM denotes the matrix exponen-
tial

eM =
∞∑

k=0

Mk

k! .

Since Q does not depend on time, X is called homogeneous. Property (ii) states that
the future evolution of a Markov process depends only on its current state and not on
its history. This is called Markov property.

Let X be a continuous-time Markov chain on J with initial distribution λ and
transition rate matrix Q. Then, for i, j ∈ J , the probability of being in state i at time
t having started in state j is equal to

P(Xt = i | X0 = j) =
(
et Q

)

i j
,

and the probability of being in state i at time t (conditioned on the initial distribution
λ) is

P(Xt = i) =
(
et Q λ

)

i
.

3.1 Absorbing Continuous-Time Markov Chains

Consider a continuous-time Markov chain X = (Xt )t≥0 with a special structure. Its
finite state space J is assumed to be equal to {1, 2, . . . , d, d + 1} for some natural
number d ≥ 1, and its transition rate matrix has the shape

Q =
(
B 0
zT 0

)

∈ R
(d+1)×(d+1). (2)

Here, 0 is the d-dimensional column vector containing only zeros. Let S :=
{1, 2, . . . , d} ⊆ J . The d × d-matrix B = (bi j )i, j∈S is assumed to meet the require-
ments (i) and (ii) of a transition rate matrix, but instead of property (iii) of Definition
2 it fulfills only the weaker condition
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∑

i∈S
bi j ≤ 0 for all j ∈ S.

Since Q is required to be a transition rate matrix, the vector z ∈ R
d must contain

the missing parts to make the columns sum to zero. Consequently, z j = −∑
i∈S bi j ,

which in matrix notation is written as

zT = −1T B, (3)

where 1T denotes the d-dimensional row vector comprising ones. This means that the
z j are nonnegative and denote the transition rates from j to d+1. The (d+1)st column
ofQ contains only zeros. Consequently, the process X cannot change its state anymore
once it has reached state d + 1. For that reason, d + 1 is called the absorbing state
of X . The trivial case in which the process starts in its absorbing state is excluded by
considering only initial distributionsλwith λd+1 = 0. Then the new initial distribution
of X is defined as

β := (λ1, λ2, . . . , λd)
T . (4)

A standard linear algebra argument shows that

et Q =
(
et B 0
∗ 1

)

, t ≥ 0,

where the asterisk ∗ is a place holder for a d-dimensional row vector. This means for
i, j ∈ S that

P(Xt = i | X0 = j) =
(
et B

)

i j
,

and
P(Xt = i) =

(
et B β

)

i
. (5)

3.2 The Absorption Time

The absorption time

T := inf{t ≥ 0 : Xt = d + 1} (inf ∅ := ∞),

is a random variable that tells the time when the absorbing state is reached. Another
name for it is hitting time of the absorbing state.

It is an interesting question whether the absorbing state will always be reached
no matter in which state the process starts. The following lemma (Neuts 1981,
Lemma2.2.1) provides an answer to this question.

Lemma 1 If B is nonsingular, then the absorption time T is finite with probability
one.
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Definition 4 A Markov chain X on J = {1, 2, . . . , d, d + 1} whose transition rate
matrixQ has the structure of Eq. (2) and that will eventually be absorbed to d+1 with
probability one is called absorbing. The matrix B is called its transition rate matrix,
S = {1, 2, . . . , d} its state space, and d + 1 its absorbing state. If λ denotes the initial
distribution of X , then β as defined in Eq. (4) is called the initial distribution of the
absorbing chain.

The following results related to absorbing continuous-time Markov chains will be
used in the forthcoming.

Remark 1 For an absorbing continuous-time Markov chain eventual absorption is
certain, independent of the initial state. Hence,

lim
t→∞ P(Xt = i | X0 = j) = lim

t→∞
(
et B

)

i j
= 0, i, j ∈ S.

Lemma 2 If B is nonsingular, then

∞∫

0

et B dt = −B−1. (6)

Remark 2 Since Q is a transition rate matrix, et Q is stochastic. This makes all of its
entries and hence all entries of et B nonnegative. From Eq. (6) it follows that also all
entries of −B−1 are nonnegative.

From now on, let B be the nonsingular transition rate matrix of an absorbing
continuous-time Markov chain X = (Xt )t≥0 on S = {1, 2, . . . , d} with initial distri-
bution β and absorbing state d + 1. As it turns out, the absorption time T follows a
phase-type distribution that depends on the initial distribution β and on the transition
rate matrix B.

3.2.1 Probability Distributions of Phase-Type

Phase-type distributions constitute a highly versatile class of probability distributions
and are closely related to the solutions of systems of linear differential equations with
constant coefficients. As mixtures of exponential distributions, they generalize the
Erlang, hypoexponential, and hyperexponential distribution. These are widely used
in queuing theory and the field of renewal processes. An introduction to phase-type
distributions and the unifying matrix formalism used in this paper can be found in
Neuts (1981).

At time t , the cumulative distribution function FT (t) = P(T ≤ t) of the absorption
time T is equal to the probability of not being in any of the states j ∈ S. Consequently,
using Eq. (5) leads to

FT (t) = 1 −
∑

j∈S
P(Xt = j) = 1 − 1T et B β, t ≥ 0.
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Using zT = −1T B from Eq. (3), the probability density function is

fT (t) = zT et B β, t ≥ 0. (7)

A probability distribution according to this density is called phase-type with initial
distribution β and transition rate matrix B. Neuts (1981) introduced the notation T ∼
PH(β,B).

3.2.2 Moments of the Phase-Type Distribution

Let T ∼ PH(β,B) with nonsingular B and zT = −1T B. Lemma 2 can be used to
calculate the nth moment of the phase-type distribution. Repeated integration by parts
leads to

E
[
T n] =

∞∫

0

tn fT (t) dt = (−1)n n! 1T B−n β.

In particular, the first moment of the phase-type distribution is

E[T ] = −1T B−1 β = ‖B−1 β‖, (8)

where ‖v‖ := ∑d
j=1 |v j | denotes the norm of a vector v ∈ R

d . The last equality holds

since both the matrix −B−1 and the vector β are nonnegative. For −B−1 this follows
from Remark 2 and for β because it is a distribution.

Note that the variance, that is the second central moment, of the phase-type distri-
bution can be obtained from σ 2

T = E[T 2] − (E[T ])2.

3.2.3 A Closure Property of the Phase-Type Distributions

The class of phase-type distributions has several closure properties, one of which is
given by the following lemma (Neuts 1981, Theorem2.2.3).

Lemma 3 If T ∼ PH(β,B), then a random variable with cumulative distribution
function

F(t) = 1

E[T ]
t∫

0

[1 − FT (τ )] dτ,

is phase-type distributed with initial distribution

η = −B−1 β

‖B−1 β‖ ,

and transition rate matrix B.

123



Math Geosci

3.3 Occupation Time

Before its absorption, X takes on different states j ∈ S. Its occupation time of state
j is defined as the time the process spends in state j . It is given as the nonnegative
random variable

Oj :=
∞∫

0

1{Xt= j} dt.

Using E[1Xt= j ] = P(Xt = j) and Eq. (6), its expected value can be computed to

E
[
Oj

] =
(
−B−1 β

)

j
.

In particular, (−B−1)i j is the mean time the Markov chain is in state i before absorp-
tion, under the condition that it started in state j .

3.4 The Last State Before Absorption

Let E denote the state from which X jumps to the absorbing state. From the homo-
geneity of X follows

P(E = j) = z j E[Oj ], (9)

where Oj is the occupation time of state j .

4 A Regenerative Process

Assume that an absorbing continuous-time Markov chain is restarted immediately
every time it hits the absorbing state. The goal of this section is to determine the
distribution of the age of this new process at a random time τ drawn from the positive
half-line (technical details on τ are presented in “Appendix A”). Age means here the
time that has passed since the last restart.

First, the new situation is set up, then the distribution of the age at a random time is
derived, and as a last step the age distribution at a random time under the condition of
being in a fixed state is computed. Important tools are elements from renewal theory
such as renewal and regenerative processes. A comprehensive treatise of this topic can
be found in Asmussen (2003).

4.1 Definition of the Regenerative Process

Let X be an absorbing continuous-time Markov chain on a finite state space J with
transition rate matrix B and initial distribution β. Now, the process X is stopped at its
absorption time T , an immediate restart is executed, and this procedure is repeated
over and over again. This gives an infinite sequence (Xk)k=1,2,... of independent and
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identically distributed cycle processes, where each cycle process behaves like the
process X up to absorption. This sequence constitutes a regenerative process Z =
(Zt )t≥0 with Zt = Xk

t for t ∈ [Tk−1, Tk), where T0 := 0. The process that counts the
number of restarts is called a renewal process.

A regenerative process is called alternating, if it has only the two possible states 1
and 0. Let Y = (Yt )t≥0 be an arbitrary alternating regenerative process with the same
cycle lengths as Z , that is Yt = Y k

t for t ∈ [Tk−1, Tk). The alternating process Y is
called on at time t if Yt = 1, otherwise it is called off. Note that Xk

t and Y
k
t are defined

to be zero if t /∈ [Tk−1, Tk). Such alternating processes together with the following
theorem build the main tool for the computation of the age distributions.

Theorem 1 The probability that an alternating process Y with the same cycle lengths
as Z is on at a random time τ ≥ 0 equals the ratio of expected on-time during the first
cycle to the average cycle length. This leads to

P(Yτ = 1) = 1

E[T ] E
∞∫

0

1{Y 1
t =1} dt.

Despite the intuitive nature of this result, its proof requires quite some technical
effort and it is postponed to “Appendix A”.

4.2 The Age of the Regenerative Process

Consider the age process (At )t≥0 defined such that the random variable At describes
the time that has passed by t since the last restart. It is also called backward recurrence
timeof the renewal process. It can be considered the age of the regenerative process Z at
time t . For y ≥ 0 and a randomly chosen time τ , the probability FAτ (y) = P(Aτ ≤ y)
is to be computed.

To obtain that probability, an alternating process Y is constructed that is on at time t
if and only if the time elapsed since the last restart is less than or equal to y. Obviously,
P(Aτ ≤ y) = P(Yτ = 1). Taking into account that Y 1

t = 1 if and only if t < T1 and
t ≤ y, it follows that

E

∞∫

0

1{Y 1
t =1} dt = E

y∫

0

1{t<T1} dt =
y∫

0

P(T > t) dt =
y∫

0

[1 − FT (t)] dt.

Write A instead of Aτ and apply Theorem 1 to the alternating process Y to obtain the
cumulative distribution function

FA(y) = 1

E[T ]

y∫

0

[1 − FT (t)] dt, y ≥ 0, (10)
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of the age of the regenerative process Z . Hence, this age is again phase-type distributed
by Lemma 3, now with initial probability vector η.

4.3 The Age of the Regenerative Process in a Fixed State

Fix j ∈ S and let a j be the random variable that describes the age of the process Z
given that it is in state j . For y ≥ 0 this means

P(a j ≤ y) = P(Aτ ≤ y | Zτ = j).

The conditional probability on the right hand side can be expressed as

P(Aτ ≤ y | Zτ = j) = P(Aτ ≤ y, Zτ = j)

P(Zτ = j)
. (11)

The numerator and the denominator can be computed using two alternating processes
Y and Ỹ , respectively. The process Y is defined to be on at time t if and only if At ≤ y
and Zt = j , whereas Ỹ is defined to be on if and only if Z is in state j . Invoke Theorem
1 to Y and Ỹ to get

P(Aτ ≤ y, Zτ = j) = 1

E[T ]

y∫

0

P(Xt = j) dt, (12)

and

P(Zτ = j) = E[Oj ]
E[T ] , (13)

respectively.
By plugging Eq. (12) for the numerator and Eq. (13) for the denominator in Eq. (11),

the cumulative distribution function of a j is given by

Fa j (y) = 1

E[Oj ]

y∫

0

P(Xt = j) dt, y ≥ 0.

This means that the probability density function of the age of Z in state j is given by

fa j (y) = P(Xy = j)

E[Oj ] =
(
ey B β

)
j

(−B−1 β
)
j

, y ≥ 0. (14)
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5 Compartmental Systems and Markov Chains

Consider again the linear autonomous compartmental system (1) and the (d + 1) ×
(d + 1)-matrix

Q =
(
B 0
zT 0

)

.

Owing to the properties of B and z = (z j ) j=1,2,...,d , the extended matrix Q meets
Definition 2. Consequently, it is the transition rate matrix of a continuous-timeMarkov
chain X = (Xt )t≥0 on the state space J = {1, 2, . . . , d, d + 1}.

Assume that mass u ∈ R
d comes into system (1) at a time t0. Since the system is

linear, the way how the mass will be distributed through it can be modeled by a system
without input and with initial value u given by

d

dt
x̃(t) = B x̃(t), t > t0,

x̃(t0) = u.

(15)

Furthermore, the fractional transfer coefficients of this system are time independent,
so the entire system can be shifted to the left and considered to have started at time
t0 = 0. The content of compartment j at time t ≥ 0 is then given by x̃ j (t) = (

et B u
)
j .

Let

λ := 1

‖u‖ (u1, u2, . . . , ud , 0)
T ,

and β := (λ1, λ2, . . . , λd)
T . Then the probability of the continuous-time Markov

chain X with initial distribution β being in state j ∈ S := {1, 2, . . . , d} at time t is by
an application of Eq. (5) given by

P(Xt = j) =
(
et B β

)

j
= x̃ j (t)

‖u‖ .

P(Xt = j) is the proportion of the initially present mass of system (15) that is in
compartment j at time t . Consequently, the continuous-timeMarkov chain X describes
the stochastic travel of a single particle through the compartmental system. When
the traveling particle leaves the compartmental system, the process X jumps to the
absorbing state d + 1.

5.1 Global Asymptotic Stability

Assume the compartmental matrixB to be nonsingular. Then the constant vector x∗ =
−B−1 u is a steady-state solution or equilibrium of system (1), that is, d x∗/dt = 0.
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Any solution x of the linear system (1) has the form (Anderson 1983)

x(t) = et B x0 +
t∫

0

e(t−τ)B u dτ, t ≥ 0.

If t → ∞, an application of Eq. (6) and Remark1 leads to

lim
t→∞ x(t) = −B−1 u + lim

t→∞B−1 et B u = −B−1 u,

which means that all solutions of system (1) converge to x∗, independently of their
initial value x0. This makes the equilibrium x∗ = −B−1 u globally asymptotically
stable and by the classic Lyapunov theorem (Engel and Nagel 2000, Theorem 2.10)
all eigenvalues of B have negative real part.

It is well known that system (1) is globally asymptotically stable, if B is strictly
diagonally dominant, that is

∑d
i=1 bi j < 0 for all j ∈ S. However, here B is not

strictly diagonally dominant (it is diagonally dominant, though), but it is a nonsingular
compartmental matrix. This means that B is the transition rate matrix of an absorbing
continuous-time Markov chain. For the absorbing state to be reached eventually, at
least one rate z j = −∑d

i=1 bi j of leaving the system from compartment j must be
strictly greater than zero. This makes system (1) an open system (Jacquez and Simon
1993).

5.2 Steady-State Compartment Contents

For j ∈ S the steady-state content of compartment j is x∗
j = − (

B−1 u
)
j . Plugging

in β = u/‖u‖ gives
x∗
j

‖u‖ = −
(
B−1 β

)

j
= E[Oj ]. (16)

Consequently, the steady-state compartment content x∗
j is proportional to the expected

occupation time of state j by the absorbing continuous-time Markov chain X .

5.3 Release from the System

For j ∈ S, the release of mass from compartment j to the environment is denoted by
r j . As a function of time t , it can be computed as product of the rate z j of mass leaving
compartment j toward the environment and the mass x j (t) contained in compartment
j at time t . For a system in steady state, x j (t) = x∗

j remains constant and consequently
r j = z j x∗

j remains constant as well.

Let now r = (r1, r2, . . . , rd)T ∈ R
d be the vector of mass release or output from

the system in steady state. Probabilistically, one would expect r j to be connected
to the probability of the absorbing continuous-time Markov chain X to be absorbed
through state j . From Eq. (9) the probability of j being the last state before absorption
is P(E = j) = −z j

(
B−1 β

)
j . Use β = u/‖u‖ and x∗ = −B−1 u to get

123



Math Geosci

P(E = j) = z j x
∗
j

1

‖u‖ = r j
‖u‖ .

Thismeans that the release through compartment j is proportional to the probability of
X being absorbed through state j . Since absorption is certain,

∑
j∈S P(E = j) = 1,

hence ‖r‖ = ∑
j∈S r j = ‖u‖, reflecting that in steady state total system output equals

total system input.

5.4 Age Distribution of the System in Steady State

Suppose that the total system content in steady state has an unknown age density f A. In
Sect. 4.2, it was already considered a particle that travels over and over again through
the system, and its age at a random time was computed by methods from renewal
theory. The according regenerative process expresses the need for an infinite history.
Consequently, it reflects the behavior of the compartmental system in steady state,
when all initial mass has left the system.

The age random variable A was shown to be phase-type distributed with transition
rate matrix B and initial distribution

η = −B−1 β

‖B−1 β‖ = ‖u‖
‖u‖

−B−1 u
‖B−1 u‖ = x∗

‖x∗‖ .

Thus, the density is given by Eq. (7) with η replacing β. This gives the density

f A(y) = zT ey B η = zT ey B
x∗

‖x∗‖ , y ≥ 0. (17)

The mean age of the system can be obtained from Eq. (8) as

E[A] = −1T B−1 η = ‖B−1 x∗‖
‖x∗‖ . (18)

5.5 Age Distribution of the Compartments in Steady State

Now, suppose that compartment j ∈ S has an unknown age density fa j . In Sect. 4.3
the age of the regenerative process Z was calculated under the condition that its state
equals j . This is the age that a traveling particle has when it is in compartment j . From
Eq. (14) and x∗ = −B−1 u, it follows that

fa j (y) = 1

x∗
j

(
ey B u

)

j
.
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Integration by parts gives then for the mean age in compartment j ∈ S the equation

∞∫

0

y fa j (y) dy = 1

x∗
j

(
B−2 u

)

j
= − 1

x∗
j

(
B−1 x∗)

j
.

Defining X∗ := diag(x∗
1 , . . . , x

∗
d ), this gives a vector valued function of age densities

in the compartments

fa(y) = (X∗)−1 ey B u, y ≥ 0,

and its expectation
E[a] = −(X∗)−1 B−1 x∗, (19)

is the vector of mean ages in the compartments. It is called mean age vector.
For n ≥ 1 let an denote the vector (an1 , . . . , a

n
d )

T . Multiple integration by parts
leads to a formula for the vector whose components contain the nth moments of the
compartment ages. It is given by

E[an] = (−1)n n! (X∗)−1 B−n x∗.

Note that a computation of the average of the components of the mean age vector
weighted by the respective steady-state compartment contents leads to the same equa-
tion for the mean system age as calculating the expected value of PH(η,B) as it was
done to obtain Eq. (18).

5.6 Transit Time in Steady State

For compartmental systems two types of transit times can be considered (Nir and
Lewis 1975). The forward transit time (FTT) at time ta is the time t a particle needs to
travel through the system after it arrives at time ta . The backward transit time (BTT)
at time te gives the age y a particle has at the moment it leaves the system, that is,
the time it needed to travel through the system given that it exits at time te. For an
autonomous system in steady state one would expect the two types of transit time to
coincide.

Obviously, the FTT is the absorption time of the absorbing continuous-timeMarkov
chain X . As soon as the traveling particle leaves the system, X hits its absorbing state.
Hence, the FTT is phase-type distributed with initial distribution β and transition rate
matrix B. This makes its density function

fFTT(t) = zT et B β, t ≥ 0,

and its mean

E[FTT] = ‖B−1 β‖ = ‖x∗‖
‖u‖ . (20)
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For the BTT the above constructed regenerative process can be considered. The
BTT is the age of Z at the time of a restart. Hence, it follows the same distribution
as the cycle length and is identically distributed to the absorption time. So, from the
probabilistic point of view, FTT and BTT are obviously the same. But the density of
the BTT can also be calculated as a weighted average of ages of particles that are
leaving the system by

fBTT(y) = 1

‖r‖
∑

j∈S
r j fa j (y) = 1

‖u‖
∑

j∈S

z j x∗
j

x∗
j

(
ey B u

)

j
= zT ey B β, y ≥ 0.

Intuition does not betray in this case: FTT and BTT coincide in steady state. Fur-
thermore, the transit time depends neither on the arrival time ta nor on the exit time
te.

6 Application to Carbon Cycle Models

6.1 A Linear Autonomous Compartmental System in Steady State

As an example, consider the global carbon-cycle model introduced by Emanuel et al.
(1981), for which Thompson and Randerson (1999) numerically calculated age and
transit-time distributions using the impulse response function approach. This model
is therefore a good test-case for the derivations presented above. It comprises five
compartments: non-woody tree parts x1, woody tree parts x2, ground vegetation x3,
detritus/decomposers x4, and active soil carbon x5. The model is given by

d

dt
x(t) = B x(t) + u, t > 0, (21)

where the input vector is given by u = (
77 0 36 0 0

)T PgC year−1 and the compart-
mental matrix by

B =

⎛

⎜
⎜
⎜
⎜
⎝

−77/37 0 0 0 0
31/37 −31/452 0 0 0
0 0 −36/69 0 0

21/37 15/452 12/69 −48/81 0
0 2/452 6/69 3/81 −11/1121

⎞

⎟
⎟
⎟
⎟
⎠

year−1.

The numbers are chosen exactly as in Thompson and Randerson (1999). For compar-
ison of the results, also refer to that paper. The input vector is expressed in units of
petagrams of carbon per year (PgC year−1), and the fractional transfer coefficients in
units of year−1. Because B is a lower triangular matrix with diagonal entries different
from zero, it is nonsingular and all the earlier obtained formulas can be applied to
system (21). The steady-state vector of carbon contents is

x∗ = −B−1 u = (
37.00 452.00 69.00 81.00 1121.00

)T PgC,
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Fig. 1 The probability density function of the transit time T of the model by Emanuel et al. (1981). Its
shape and the low value of fT at mean time μ = 15.58 year are evidence for a long tail of this distribution.
The standard deviation of T is denoted by σ

which results in a vector for the fractions of total carbon storage equal to

(
2.10 25.68 3.92 4.60 63.69

)T %.

The respiration vector in steady state is

r =
(
z j x

∗
j

)

j=1,2,...,5
= (

25.00 14.00 18.00 45.00 11.00
)T PgC year−1.

That gives fractions of total respirations as

(
22.12 12.39 15.93 39.82 9.73

)T %.

The transit time T is phase-type distributed with probability density function (Fig. 1)

fT (t) = 0.31 e−77/37 t + 0.02 e−31/452 t + 0.52 e−36/69 t

− 0.30 e−48/81 t + 0.001 e−11/1121 t .

The expected valueE[T ] = 15.58 year is identical to the value foundbyThompson and
Randerson (1999), and the standard deviation of the transit time is σT = 45.01 year.

Furthermore, the system-age density is given by

f A(y) = 0.01 e−77/37 y + 0.02 e−31/452 y + 0.06 e−36/69 y

− 0.03 e−48/81 y + 0.001 e−11/1121 y .

Its expectation E[A] = 72.83 year is very similar to that reported by Thompson and
Randerson (1999) (72.82year), with standard deviation σA = 94.18 year.

123



Math Geosci

Additionally, the vector that contains the probability density functions for the age
in the compartments can be calculated as

fa(y) =

⎛

⎜
⎜
⎜
⎜
⎝

2.08 0 0 0 0
−0.07 0.07 0 0 0

0 0 0.52 0 0
−0.35 0.03 1.1 −0.76 0
0.0005 −0.003 −0.01 0.004 0.01

⎞

⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎝

e−77/37 y

e−31/452 y

e−36/69 y

e−48/81 y

e−11/1121 y

⎞

⎟
⎟
⎟
⎟
⎠

,

from which the mean age vector is given by

E[a] = (
0.48 15.06 1.92 7.08 107.62

)T year,

and the standard deviation vector by

σ a = (
0.48 14.59 1.92 10.64 102.38

)T year.

From these density functions the system’s and the compartments’ contents can be
plotted with respect to their age (Fig. 2). This gives useful information about the range
of ages for each compartment andhow they contribute to the system-age distribution. In
comparison to the results of Thompson and Randerson (1999), the approach presented
here not only provides mean values for ages and transit times, but also exact formulas
for their probability distribution. In their approach, these authors obtained results that
depended on the simulation time and, therefore, included numerical errors, something
that can be easily avoided with the approach presented here.

6.2 A Nonlinear Autonomous Compartmental System in Steady State

Consider the nonlinear autonomous compartmental system

d

dt
x(t) = B(x(t)) x(t) + u, t > 0, (22)

where B : Rd → R
d×d is amatrix-valuedmapping. In this setup the fractional transfer

coefficients are not constant but depend on the system’s content. Consequently, the
transition rates of the traveling particle are not constant.

Assume now that system (22) is in a steady state x∗. From d x∗/dt = 0 follows that
the compartment contents x j do not change and the mapping B turns into a matrix B
with constant coefficients. Hence, assuming the nonlinear autonomous compartmental
system (22) is in a steady state, it can be treated as a linear autonomous compartmental
system and the entire theory developed for those systems can be applied to it.

As an example, consider the nonlinear two-compartment carbon-cycle model
described by Wang et al. (2014). It is given by

d

dt

(
Cs

Cb

)

=
(−λ(x) μb

ελ(x) −μb

) (
Cs

Cb

)

+
(
Fnpp
0

)

.
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Fig. 2 Carbon content with respect to age in the model of Emanuel et al. (1981). Dotted lines indicate the
mean age μ; the standard deviation is denoted by σ . The first panel is for the entire system, whereas the
other panels correspond to the different compartments

Here, B depends on x = (
Cs Cb

)T through λ’s dependence on x, which is given by

λ(x) = CbVs
Cs + Ks

. (23)

Steady-state formulas for the compartment contents can be computed as

C∗
s = Ks

Vsε
μb

− 1
and C∗

b = Fnpp

μb
(−1 + 1

ε

) .

From Wang et al. (2014) take the parameter values Fnpp = 345 gCm−2 year−1,
μb = 4.38 year−1, ε = 0.39, and Ks = 53,954.83 gCm−2. Since the description of
Vs ismissing in the original publication, let it be equal to 59.13 year−1 to approximately
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Fig. 3 Transit time and age distributions for themodel ofWang et al. (2014).Vertical dashed lines represent
themeanμ; the standard deviation is denoted by σ .All panels show graphs for two different values of carbon
use efficiency

meet the given steady-state compartment contents C∗
s = 12, 650 gCm−2 and C∗

b =
50.36 gCm−2.

With the given parameters, the steady-state transition rate matrix B = B(x∗) and
the input vector u are given by

B =
(−0.0447 4.38

0.0174 −4.38

)

year−1 and u =
(
345
0

)

gCm−2 year−1.

The derived formulas are then used to calculate mean transit time and mean ages
together with the according densities for different values of the model’s parameters
(Fig. 3). In particular, the effect of different values of the parameter ε on the steady-
state ages and transit times can be explored. This parameter controls the proportion of
carbon that is transferred from the substrate Cs to the microbial biomass compartment
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Fig. 4 Mean transit time (MTT) and mean system age (MSA) in dependence on carbon use efficiency for
the proposed model by Wang et al. (2014). The small figure shows the explosion of the mean transit time
if the carbon use efficiency tends to one

Cb, and it is commonly referred to as the carbon use efficiency. Interestingly, if the
carbon use efficiency ε increases, the mean transit time and mean ages of the model at
steady state decrease (Fig. 4), a behavior that at first glance appears counterintuitive.
It can be explained by two opposing effects. On the one hand, an increase of carbon
use efficiency keeps a higher fraction of carbon in the system due to lower respiration.
This has an increasing effect on the transit time. On the other hand, a higher carbon
use efficiency ε implies a lower steady-state content of compartment Cs and a higher
one of compartment Cb. Consequently, from Eq. (23), an increasing value of

λ(x∗) = FnppVs

μb
(−1 + 1

ε

)
(

Ks + Ks
Vs ε
μb

−1

)

is obtained. This value is the process rate of the Cs compartment in steady state. The
higher it is, the faster the particles travel through the system. The latter effect wins
here and a decrease in the transit time can be observed.

The graph of the mean system age for this model with ε = 0.39 (Fig. 4) lies directly
on the one of the mean transit time. The huge difference in the compartments’ steady-
state contents causes very little difference in the initial distributions β and η for the
traveling particle. This results in very similar distributions of transit time and system
age.

7 Discussion

Simple, explicit, and general formulas for the densities, higher ordermoments, and first
moments for the transit time, system age, and age vector of open linear autonomous
compartmental systems were derived. They can be found in different places in this
manuscript. For convenience, Table 1 provides a quick overview. Furthermore, a
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Table 1 Overview of derived formulas for open linear autonomous compartmental systems d
dt x(t) =

B x(t) + u

Metric Density nth moment First moment

Transit time zT et B u
‖u‖ (−1)n n! 1T B−n u

‖u‖ −1T B−1 u
‖u‖ ,

‖x∗‖
‖u‖

System age zT ey B x∗
‖x∗‖ (−1)n n! 1T B−n x∗

‖x∗‖ −1T B−1 x∗
‖x∗‖ ,

‖B−1 x∗‖
‖x∗‖

Age vector (X∗)−1 ey B u (−1)n n! (X∗)−1 B−n x∗ −(X∗)−1 B−1 x∗

zT = −1T B is the row vector of release rates
x∗ = −B−1 u is the steady-state vector
X∗ = diag

(
x∗
1 , x∗

2 , . . . , x∗
d

)
is the diagonal matrix comprising the components of the steady-state vector

small Python package for linear autonomous compartmental models, called LAPM,
is provided on https://github.com/MPIBGC-TEE/LAPM. It deals with symbolic and
numerical computations of the formulas given in Table 1.

7.1 Relation to Earlier Results

Over many years compartmental models with fixed coefficients have been studied
(Anderson 1983; Bolin and Rodhe 1973; Eriksson 1971) by mainly investigating the
mean age of particles in the system and the mean transit time of particles. The topic
became of increasing interest again with the need for modeling the terrestrial carbon
cycle.

The general situation of linear nonautonomous compartmental models was inves-
tigated by Rasmussen et al. (2016). For the special case of autonomous systems they
provide the formulas (19), (18), and (20) for themean age vector,mean system age, and
mean transit time, respectively. The probabilistic approach used here showed that these
formulas are just expected values of corresponding random variables with according
probability distributions fa(y) = −(X∗)−1 ey B u, A ∼ PH(η,B), and T ∼ PH(β,B).
In particular, the terms mean system age and mean transit time refer to the expected
absorption times of related continuous-time Markov chains. A general formula for
the moments of the distribution of the transit time in a compartmental system without
external inputs is given by Hearon (1972). He also states a formula for the backward
transit-time density in this situation.

Manzoni et al. (2009) (also Priestley 1982; Thompson and Randerson 1999) calcu-
lated a so-called transfer function or impulse response function Ψ that describes the
relative contribution of the input at time t−T to the output at time t . They furthermore
give a survivor function

Ã(t) =
∞∫

t

Ψ (T ) dT,

that describes the probability of the particle to remain in the system for at least a time
t . In the present setup this means
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Ã(t) = 1 − FT (t),

which leads by

1 − FT (t) =
∞∫

t

fT (t) dt

to the conclusion that the impulse response function Ψ is nothing else than the prob-
ability density function fT of a phase-type distribution PH(β,B) given by Eq. (7).
They also formally provided an age density distribution

ϕ(t) = Ã(t)
∞∫

0
Ã(τ ) dτ

= Ã(t)

T
,

which is exactly the probability density function fA of the systemage given byEq. (17).
This becomes obvious fromEq. (10), which perfectly relates the distributions of transit
time and system age.

For special cases of simple compartmental systems, they further provide formulas
for the densities and means of transit time and system age. These formulas were
obtained by simulating an impulsive input and considering the impulse response in
the Laplace space. It turns out that those formulas are special cases of the general shape
of probability density functions of phase-type. Examples are presented in “Appendix
B”.

7.2 Singular Compartmental Matrices

In this paper, only nonsingular compartmental or transition rate matrices were consid-
ered, because they ensure that every particle that enters the systemwill eventually leave
it. It can be shown (Neuts 1981) that the transit time of a continuous-time Markov
chain with singular transition rate matrix does not lead to a certainly finite transit
time. In this case, the system contains traps from which particles are not able to get
out once they have entered them. So, some particles will remain in the system forever.
Although this seems unrealistic, there are successful carbon-cycle models with this
structure.

A famous example is the RothC model (Jenkinson and Rayner 1977). It contains
an inert compartment that has neither inputs nor outputs, but it has a positive constant
content. To apply the stochastic framework of the present paper to that model, it is
necessary to cut this compartment out of the system and to look at the steady state of
the remaining smaller system. The transit time of newly arriving particles will not be
affected. However, the age distribution of the system will depend on time since the
particles in the inert compartment become older and older. A detailed analysis of how
to treat systems with traps can be found in Jacquez and Simon (1993) and references
therein.
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7.3 Stochastic Versus Deterministic Approach

As noted by Purdue (1979), in modeling ecological systems, there are powerful
arguments for the use of stochastic processes. Even if nature is completely determin-
istic, ecological systems are too complex for a complete theoretical understanding or
descriptive tools. This lack of complete knowledge can be accounted for by using prob-
abilistic methods. One of the first authors to integrate stochastic behavior in biological
models was Bartholomay (1958). Purdue (1979) gives an early review on stochastic
compartmental models with ecological applications. He showed how compartmental
models can be considered as a deterministic representation of an underlying stochastic
process by establishing the link to continuous-time Markov chains. While Eisenfeld
(1979) elaborates on this link and applies it to a liver model, the present paper connects
the continuous-time Markov chain approach to the theory of phase-type distributions
(Neuts 1981) and focuses on transit time and ages.

The deterministic theory describes the ideal or average behavior of a system,
whereas stochastic models can examine the deviations from such ideal or average
behavior. The stochastic approach allows to think of key quantities as random vari-
ables. Knowledge of their probability distributions provides a whole new set of tools
not only to study the mean, but also higher order moments of such random variables.
A high variance of the transit time, for example, expresses that it is not the usual
behavior of particles to travel through the system as long as indicated by the mean
transit time. There is rather a large variety of different transit times depending on the
particular path taken by the particle. Long tails of the distribution mean that there are
in fact particles that need very long to travel through the system and hence there are
very old masses in the system.With the probability density functions in hand, it is also
possible to think of quantiles and confidence intervals of transit time and system age,
something not possible with the deterministic approach.

Linear autonomous compartmental carbon-cycle models relate to continuous-time
Markov chains with homogeneous transition probabilities. Turning to nonautonomous
models (Rasmussen et al. 2016), nonhomogeneous Markov chains would have to be
considered in the probabilistic approach. In this situation the Kolmogorov equations
govern the evolution of the transition probabilities. There is plenty of theory available
on continuous-time Markov chains (Norris 1997; Ross 2010), and much of it might
be applied to carbon-cycle models.

8 Conclusions

Open linear autonomous compartmental systems were modeled by absorbing
continuous-timeMarkov chains and it was shown that the behavior of those systems is
governed by the phase-type distribution. It applies for the transit time as well as for the
system age, only with different initial distributions. This knowledge provides simple
general formulas for the densities, means, and higher order moments of transit time,
compartment ages, and system age. Furthermore, it explains the underlying structure
of the intrinsic connection between system age and transit time (Bolin and Rodhe
1973).
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This approach also revealed the potential and opportunities of expressing determin-
istic compartmental models as stochastic processes. For example, important system
diagnostics in reservoir theory such as system ages and transit times have analogous
counterparts in probabilistic terms. The theory of stochastic processes can further help
to address important questions in reservoir theorywith applications in other fields even
beyond global biogeochemical cycles.
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Appendix A: Proof of Theorem 1

Since a random variable cannot be drawn uniformly from the positive half-line, τ is
drawn uniformly from the interval [0, L] for some L > 0. To illustrate τ ’s dependence
on L , it is denoted by τL . The aim is to find P(YτL = 1) and let L tend to infinity.
The existence of a random variable Yτ according to the limiting distribution is then
guaranteed by Skorokhods representation theorem (Billingsley 1968).

Note that the random variable Yτ is stochastic in two ways. The value of Y at
a deterministic time is stochastic and furthermore the time τ itself is stochastic. To
overcome this difficulty, the probability P(YτL = 1) is conditioned on τL = t . By the
law of total probability it can be rewritten as

P(YτL = 1) =
∞∫

0

P(YτL = 1 | τL = t) fτL (t) dt,

where fτL (t) = 1[0,L](t) 1/L denotes the probability density function of the uniform
distribution on [0, L]. Plugging it in brings

P(YτL = 1) = 1

L

L∫

0

P(Yt = 1) dt, y ≥ 0.

Let p(t) := P(Yt = 1). If the existence of lim
t→∞ p(t) were known, concluding

lim
L→∞P(YτL = 1) = lim

L→∞
1

L

L∫

0

p(t) dt = lim
t→∞ p(t), (24)

would be allowed.
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The problem of calculating lim
t→∞ p(t) is left. To solve it, a major result from renewal

theory is needed. Recall that fT denotes the common probability density function of
the cycle durations.

Theorem 2 (Key renewal theorem) Suppose that the function z in the so-called gen-
eral renewal equation

p(t) = z(t) +
t∫

0

p(t − x) fT (x) dx, t ≥ 0, (25)

is directly Riemann integrable. Then

lim
t→∞ p(t) = 1

E[T ]
∞∫

0

z(τ ) dτ.

The proof and the rather technical definition of direct Riemann integrability can be
found in Asmussen (2003, Sect. V.4).

To apply the key renewal theorem to p, it is necessary to show that p satisfies the
general renewal equation (25) for some directly Riemann integrable function z. To
this end, a standard technique from renewal theory is applied by conditioning on the
event that the first restart occurs at time T1 = x . Recall that T1 has the probability
density function fT . Then

p(t) =
∞∫

0

P(Yt = 1 | T1 = x) fT (x) dx .

Now, this integral is split into a period before and a period after t to get

p(t) =
t∫

0

P(Yt = 1 | T1 = x) fT (x) dx +
∞∫

t

P(Yt = 1 | T1 = x) fT (x) dx .

The second integral describes the probability of Y being on during the first cycle,
since t ≤ T1, and is equal to z(t) := P(Y 1

t = 1). The conditional probability P(Yt =
1 | T1 = x) under the first integral equals P(Yt−x = 1) = p(t − x), since the process
restarts at the end T1 = x of the first cycle. Hence,

p(t) =
t∫

0

p(t − x) fT (x) dx + z(t), t ≥ 0,
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satisfies the general renewal equation (25). Furthermore, the function z can be shown
to be directly Riemann integrable. Therefore, the key renewal theorem states that

lim
t→∞ p(t) = 1

E[T ]
∞∫

0

P(Y 1
t = 1) dt. (26)

The integral can be rewritten to

∞∫

0

P(Y 1
t = 1) dt =

∞∫

0

E1{Y 1
t =1}(t) dt = E

∞∫

0

1{Y 1
t =1}(t) dt,

and hence describes the expected time of Y being on during the first cycle. The equality
of the limits in Eq. (24) finishes the proof.

Appendix B: Examples

Appendix B.1: One Single Compartment

Consider the one-compartment model represented by the ordinary linear differential
equation

d

dt
x(t) = −λ x(t) + u, t > 0,

for λ > 0. In this simplest possible framework, B = −λ, z = λ, B−1 = −1/λ, and
β = 1. The according phase-type distribution is just the exponential distribution. The
cumulative distribution function of the transit time T is

FT (t) = 1 − e−λ t , t ≥ 0,

its probability density function is

fT (t) = λ e−λ t , t ≥ 0,

and the expected absorption time or mean transit time is E[T ] = 1/λ. The mean age
vector a coincides with the system age A and its probability density function is

f A(y) = λ e−λ y, y ≥ 0,

which leads to the mean age of E[A] = 1/λ. The fact that transit time and age have
the same distribution reflects the memorylessness of the exponential distribution.
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Appendix B.2: Two Compartments Without Feedback

A more interesting example is a two-compartment system given by

d

dt
x1(t) = −λ1 x1(t) + u1,

d

dt
x2(t) = α λ1 x1(t) − λ2 x2(t) + u2,

with λ1 > 0, λ2 > 0, and 0 ≤ α ≤ 1. Then

B =
(−λ1 0

αλ1 −λ2

)

, B−1 =
(

− 1
λ1

0
− α

λ2
− 1

λ2

)

,

and z = (−αλ1 + λ1 λ2
)T , u = (

u1 u2
)T , β = ( u1

u1+u2
u2

u1+u2

)T
.

If λ1 �= λ2, then the matrix exponential is

et B =
(

e−λ1t 0
αλ1

λ1−λ2

(
e−λ2t − e−λ1t

)
e−λ2t

)

,

and the cumulative distribution function of the transit time T is

FT (t) = −αλ1u1
(
e−λ2t − e−λ1t

)

(λ1 − λ2) (u1 + u2)
− u1e−λ1t

u1 + u2
− u2e−λ2t

u1 + u2
+ 1.

The probability density function is

fT (t) = λ2u2e−λ2t

u1 + u2
+ u1

u1 + u2

(
αλ1λ2

λ1 − λ2

(
e−λ2t − e−λ1t

) + (−αλ1 + λ1) e
−λ1t

)

and the expected absorption time

E[T ] =
u1

(
α
λ2

+ 1
λ1

)

u1 + u2
+ u2

λ2 (u1 + u2)
.

For the age distribution first the steady-state solution and its normalized version
need to be computed by

x∗= − B−1 u= ( u1
λ1

αu1
λ2

+ u2
λ2

)T
, η= x∗

‖x∗‖ =
(

u1
λ1

(
αu1
λ2

+ u2
λ2

+ u1
λ1

)

αu1
λ2

+ u2
λ2

αu1
λ2

+ u2
λ2

+ u1
λ1

)T

.
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Using A ∼ PH(η,B) leads for y ≥ 0 to

FA(y) = − αu1
(
e−λ2 y − e−λ1y

)

(λ1 − λ2)
(

αu1
λ2

+ u2
λ2

+ u1
λ1

) −
(

αu1
λ2

+ u2
λ2

)
e−λ2 y

αu1
λ2

+ u2
λ2

+ u1
λ1

+ 1 − u1e−λ1y

λ1

(
αu1
λ2

+ u2
λ2

+ u1
λ1

) ,

f A(y) =
λ2

(
αu1
λ2

+ u2
λ2

)
e−λ2 y

αu1
λ2

+ u2
λ2

+ u1
λ1

+ u1

λ1

(
αu1
λ2

+ u2
λ2

+ u1
λ1

)

(
αλ1λ2

λ1 − λ2

(
e−λ2 y − e−λ1y

) + (−αλ1 + λ1) e
−λ1y

)

,

E[A] =
αu1
λ2

+ u2
λ2

λ2

(
αu1
λ2

+ u2
λ2

+ u1
λ1

) +
u1

(
α
λ2

+ 1
λ1

)

λ1

(
αu1
λ2

+ u2
λ2

+ u1
λ1

) .

The vector valued function containing the age densities of the compartments is

fa(y) =
(
λ1e−λ1y αλ1λ2u1

(
e−λ2 y−e−λ1 y

)

(λ1−λ2)(αu1+u2)
+ λ2u2e−λ2 y

αu1+u2

)T
.

This leads to the mean age vector

E[a] =
(

1
λ1

αu1
λ1(αu1+u2)

+
αu1
λ2

+ u2
λ2

αu1+u2

)T
.

Appendix B.2.1: Serial Compartments: Hypoexponential Distribution

If u2 = 0 and α = 1, the particle enters the system in compartment 1 and must
travel through compartment 2 before absorption. This leads to the transit time T being
hypoexponentially distributed. That is, T is distributed like the sumof two independent
exponential distributions. Consequently

FT (t) = − λ1

λ1 − λ2

(
e−λ2t − e−λ1t

) + 1 − e−λ1t ,

fT (t) = λ1λ2

λ1 − λ2

(
e−λ2t − e−λ1t

)
,

E[T ] = 1

λ2
+ 1

λ1
.

The steady-state solution and its normalized version are

x∗ = ( u1
λ1

u1
λ2

)T
and η =

(
u1

λ1

(
u1
λ2

+ u1
λ1

) u1
λ2

(
u1
λ2

+ u1
λ1

)
)T

.
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For the system age and for y ≥ 0 follows

FA(y) = − u1
(
e−λ2 y − e−λ1y

)

(λ1 − λ2)
(
u1
λ2

+ u1
λ1

) + 1 − u1e−λ2 y

λ2

(
u1
λ2

+ u1
λ1

) − u1e−λ1y

λ1

(
u1
λ2

+ u1
λ1

) ,

f A(y) = λ2u1
(
e−λ2 y − e−λ1y

)

(λ1 − λ2)
(
u1
λ2

+ u1
λ1

) + u1e−λ2 y

u1
λ2

+ u1
λ1

,

E[A] = u1

λ22

(
u1
λ2

+ u1
λ1

) +
u1

(
1
λ2

+ 1
λ1

)

λ1

(
u1
λ2

+ u1
λ1

) .

For u1 = 1 this turns into

FA(y) = − α
(
e−λ2 y − e−λ1y

)

(λ1 − λ2)
(

α
λ2

+ 1
λ1

) − αe−λ2 y

λ2

(
α
λ2

+ 1
λ1

) + 1 − e−λ1y

λ1

(
α
λ2

+ 1
λ1

) ,

f A(y)=αe−λ2 y

α
λ2

+ 1
λ1

+ 1

λ1

(
α
λ2

+ 1
λ1

)

(
αλ1λ2

λ1−λ2

(
e−λ2 y − e−λ1y

) + (−αλ1 + λ1) e
−λ1y

)

,

E[A] = α

λ22

(
α
λ2

+ 1
λ1

) + 1

λ1
.

The vector valued function containing the age densities of the compartments is

fa(y) =
(
λ1e−λ1y λ1λ2

λ1−λ2

(
e−λ2 y − e−λ1y

))T
,

which leads to the mean age vector E[a] =
(

1
λ1

1
λ2

+ 1
λ1

)T
.

If furthermore λ1 = λ2, then the hypoexponential distribution turns into an Erlang
distribution, which is the convolution of two independent and identically distributed
exponential distributions.

Appendix B.2.2: Parallel Compartments: Hyperexponential Distribution

The case of α = 0 is a purely parallel system and the transit time T is hyperexponen-
tially distributed. For t ≥ 0 this means

FT (t) = − u1e−λ1t

u1 + u2
− u2e−λ2t

u1 + u2
+ 1,

fT (t) = λ1u1e−λ1t

u1 + u2
+ λ2u2e−λ2t

u1 + u2
,

E[T ] = u2
λ2 (u1 + u2)

+ u1
λ1 (u1 + u2)

.
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The steady-state solution and its normalized version are

x∗ = ( u1
λ1

u2
λ2

)T
and η =

(
u1

λ1

(
u2
λ2

+ u1
λ1

) u2
λ2

(
u2
λ2

+ u1
λ1

)
)T

.

For the system age and for y ≥ 0 follows

FA(y) = 1 − u2e−λ2 y

λ2

(
u2
λ2

+ u1
λ1

) − u1e−λ1y

λ1

(
u2
λ2

+ u1
λ1

) ,

f A(y) = u1e−λ1y

u2
λ2

+ u1
λ1

+ u2e−λ2 y

u2
λ2

+ u1
λ1

,

E[A] = u2

λ22

(
u2
λ2

+ u1
λ1

) + u1

λ21

(
u2
λ2

+ u1
λ1

) .

The vector valued function containing the age densities of the compartments is

fa(y) = (
λ1e−λ1y λ2e−λ2 y

)T
. This leads to the mean age vector E[a] =

(
1
λ1

1
λ2

)T
.

Appendix B.3: Two Compartments With Feedback

Manzoni et al. (2009) considered also the simple two-compartment system with feed-
back

d

dt
x1(t) = −λ1 x1(t) + λ2 x2(t) + u1,

d

dt
x2(t) = α x1(t) − λ2 x2(t),

in whichmass enters and leaves the system only through the first compartment, but can
in between spend some time in the second compartment. The compartmental matrix
and the input vector are

B =
(−λ1 λ2

αλ1 −λ2

)

and u =
(
u1
0

)

.

Manzoni et al. (2009) provide the Laplacian of the density function of the transit time
and the system age. The Laplacian of a PH(β,B) distribution is given by

L(s) = zT (s I − B)−1 β,

where I denotes the identity matrix. Consequently, the Laplacian of the transit time is

LT (s) = λ1 (α − 1) (λ2 + s)

αλ1λ2 − (λ1 + s) (λ2 + s)
,
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and the Laplacian of the system age is

L A(s) = λ1λ2 (α − 1) (αλ1 + λ2 + s)

(αλ1 + λ2) (αλ1λ2 − (λ1 + s) (λ2 + s))
.

The expected values are given by

E[T ] = − αλ1 + λ2

λ1λ2 (α − 1)
,

and

E[A] = −αλ1 (λ1 + λ2) + λ2 (αλ1 + αλ2 − λ2 (α − 1))

λ1λ2 (α − 1) (αλ1 + λ2)
,

respectively.
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