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We discuss a Krylov subspace projection method for model reduction of a special class of quadratic-bilinear descriptor
systems. The goal is to extend the two-sided moment-matching method for quadratic-bilinear ODEs to descriptor systems
in an efficient and reliable way. Recent results have shown that the direct application of interpolation based model reduction
techniques to linear descriptor systems, without any modifications, may lead to poor reduced-order systems. Therefore,
for the analysis, we transform the quadratic-bilinear descriptor system into an equivalent quadratic-bilinear ODE system
for which the moment-matching is performed. In view of implementation, we provide algorithms that identify the required
Krylov subspaces without explicitly computing the projectors used in the analysis. The benefits of our approach are
illustrated for the quadratic-bilinear descriptor systems corresponding to semi-discretized Navier–Stokes equations.
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1 Introduction

We discuss model order reduction for a single-input single-output (SISO) quadratic-bilinear descriptor system of the form

E11v̇(t) = A11v(t) +A12p(t) +H1v(t)⊗ v(t) +N1v(t)u(t) + b1u(t), (1a)

0 = A21v(t) + b2u(t), v(0) = α, (1b)

y(t) = c1v(t) + c2p(t) +Du(t), (1c)

for time t > 0 and an initial value α ∈ Rn1 , where E11, A11, N1 ∈ Rn1×n1 , A21, A
T
12 ∈ Rn2×n1 , H1 ∈ Rn1×n2

1 ,
b1, c

T
1 ∈ Rn1 , b2, cT2 ∈ Rn2 , D ∈ R; v(t) ∈ Rn1 and p(t) ∈ Rn2 are the state vectors, and u(t) ∈ R and y(t) ∈ R denote

the input and output of the system. It is assumed that E11 is invertible as is A21E
−1
11 A12. This means that the system in (1)

reduces to an index-2 linear system, cf. [19], if N1 = 0 and H1 = 0. The somewhat particular structure of (1) arises in
semi-discretization of Navier–Stokes equations and reflects the divergence free constraint and the quadratic nonlinearity in
the velocity.

It is an appealing task in the field of numerical analysis to identify efficient numerical methods that can be used to
analyze and study engineering problems for complex dynamical processes. These dynamical processes are often described
by ordinary differential equations (ODEs) or partial differential equations (PDEs). Spatial discretization of such governing
equations leads to large scale systems of ODEs or the more general differential algebraic equations (DAEs). Simulation or
design of these large scale systems often is computationally cumbersome, and it is hardly possible to get fast and accurate
solutions. A remedy to this problem is model reduction, which can play an important role in improving the simulation time.
For linear systems, well-established model reduction techniques have been proposed in the literature [2, 10, 26]. Some of
these techniques have already been extended to nonlinear systems; however, there are many open questions that need further
research.

Model reduction techniques for nonlinear systems with quadratic-bilinear nonlinearities can be classified broadly into
two classes – trajectory-based methods and moment-matching methods. The proper orthogonal decomposition method [3,
12–14, 23] is a well-known trajectory-based method, where a set of snapshots of the state trajectory is used to compute
a Galerkin projection of the nonlinear system. Another approach is the so-called trajectory piecewise linear (TPWL)
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method [24], in which the nonlinear state equation is written as a weighted combination of the linear systems, which
allows us to employ linear reduction techniques. We refer to [2, 17] for details on these trajectory-based methods, which
can identify highly accurate reduced-order systems though depending strongly on the training input. This means that the
reduced-order systems obtained from these methods may not be suitable for applications in control or in optimization,
where input variation is the main goal.

On the other hand, moment-matching methods tend to approximate the input-output behavior of the system well and
therefore, unlike trajectory-based methods, these methods are not bound to a specific input. Extending well-known results
for linear ODEs, the moment-matching problem has been considered in [5, 16] for quadratic-bilinear ODEs for one-sided
moments. The latest extension was to two-sided moment-matching for SISO quadratic-bilinear ODEs [7].

In this paper, we study a two-sided moment-matching technique for model reduction of Navier–Stokes type quadratic-
bilinear descriptor systems (1). This class of quadratic-bilinear descriptor systems is different from the one considered
in [15] where the vorticity formulation of the Navier–Stokes equations was used. Here, we propose a structured approach
for Navier–Stokes type quadratic-bilinear descriptor systems, since the direct implementation of [5, 7, 16] might lead to an
unbounded error in some norm, cf., in particular, [18], where it was shown that the direct extension of moment-matching
techniques for linear ODEs to linear DAEs may lead to unbounded H2 or H∞ error. An extension of the ideas presented
in [18] to a special class of bilinear descriptor systems is presented in [1, 8].

The first contribution of this paper is to transform the system in (1) into an equivalent quadratic-bilinear ODE system.
This is done by introducing projectors similar to those used in [18, 21] for linear systems. The second contribution is to
reduce the equivalent ODE system by constructing basis matrices for Krylov subspaces without explicitly computing the
projectors.

The paper is organized as follows: Section 2 contains the background theory on the two-sided moment-matching tech-
nique for model reduction of quadratic-bilinear ODEs; Section 3 presents the transformation of the system (1) to an equiva-
lent ODE system, and shows how two-sided moment-matching can be used to obtain a reduced-order system and discusses
the implementation issues of the two-sided moment-matching technique for the equivalent system; Section 4 shows how
the general case with b2 6= 0 can be treated with the same technique; Section 5 provides a detailed analysis of the quality
of the reduced systems obtained via direct and the proposed modified methods. Finally, in Section 6, we provide results of
numerical tests for semi-discretized Navier–Stokes equations with quadratic-bilinear nonlinearities.

2 Quadratic-Bilinear DAEs and Background Work

In this section, we briefly review some properties of general quadratic-bilinear differential algebraic equations (QBDAEs),

ΣQB :

{
Eẋ(t) = Ax(t) +Hx(t)⊗ x(t) +Nx(t)u(t) + bu(t),

y(t) = cx(t), x(0) = 0,
(2)

with E,A,N ∈ Rn×n, H ∈ Rn×n2

, b, cT ∈ Rn, and where x(t) ∈ Rn, u(t) ∈ R, and y(t) ∈ R are the state, input,
and output of the system, respectively. It is assumed that E is nonsingular. Notice that the system (2) can be seen as a
combination of a purely quadratic system and a bilinear control system, and it is shown in [16] that a large class of nonlinear
systems can be transformed to this kind of representation, allowing it to be used for many applications.

In frequency domain, the system (2) can be represented by a nonlinear input-output map that involves an infinite set of
multivariate functions [25], often called the generalized transfer functions of the subsystems associated with ΣQB . These
multivariate transfer functions can be explicitly identified, for example, via the growing exponential approach [7,25]. In its
symmetric form, the first two generalized transfer functions are:

G(1)(s1) = c (s1E −A)−1b︸ ︷︷ ︸
L(s1)

,

G(2)(s1, s2) =
1

2
c ((s1 + s2)E −A)

−1 [
N (L(s1) + L(s2)) +H (L(s1)⊗ L(s2) + L(s2)⊗ L(s1))

]
.

A goal of interpolation based model reduction for ΣQB is to find a reduced quadratic-bilinear DAE of similar form whose
leading k generalized transfer functions interpolate the original one. That is

G(i)(σ1, . . . , σi) = G(i)
r (σ1, . . . , σi), i = 1, . . . , k,

where the σis are the interpolation points for the generalized transfer function corresponding to si. In the literature, cf.,
e.g., [7, 16], often k is set to 2, meaning that the interpolation concept is analyzed for the first two transfer functions. We
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will also restrict ourself to this setting. Note that for i = 1, the problem reduces to the well known interpolation concept
for linear systems [2]. Thus, a series expansion of G(1)(s1) at an interpolation point σ provide us the so-called moments
of G(1) and if we construct a reduced-order system G

(1)
r (s1) whose first q moments coincide with the original system

moments, then G(1)
r (s1) is locally close to G(1)(s1). The issue is, however, to identify a reduced-order system which in

addition also achieves moment-matching for G(2)(s1, s2) so that G(2)
r (s1, s2) also locally approximates G(2)(s1, s2). To

achieve this, a one-sided projection technique has been introduced in [16], which was then extended in [7] to a two-sided
projection framework.

Similar to the linear case, the projection scheme involves identifying suitable basis matrices V ∈ Rn×r andW ∈ Rn×r,
approximating the state vector as x(t) ≈ Vxr(t) and ensuring the Petrov-Galerkin condition:

WT (EVẋr(t)−AVxr(t)−HVxr(t)⊗ Vxr(t)−NVxr(t)u(t)− bu(t)) = 0,

yr(t) = cVxr(t), xr(0) = 0.

This means that the reduced-order system matrices are of the form

Er =WTEV, Ar =WTAV, Hr =WTHV ⊗ V,
Nr =WTNV, br =WT b, cr = cV.

(3)

Recall that, in case of one-sided projection, W = V , and therefore, moment-matching is related only to the choice of V .
However, in case of two-sided projection, both V andW play an important role for matching more moments of G(1)(s1)
and G(2)(s1, s2). Next, we outline a theorem, preceded by some definitions, which suggests a choice of V and W that
ensures the required moment-matching criteria.

Definition 2.1 (Matricization, cf., e.g., [7, 22]) By X(k), we denote the matrix that is obtained by unfolding the K-
dimensional tensor X ∈ RI1×I2×···×IK along the k-th dimension, k ∈ 1, 2, . . . ,K. This k-matricization is formally
obtained via the mapping of the tensor indices (i1, i2, . . . , iK) onto the matrix indices (ik, j) via

j = 1 +

K∑
l=1,l 6=k

(il − 1)Jl, where Jl :=

l−1∏
m=1,m6=l

Im.

We observe that the matrix H ∈ Rn×n2

in (2) can be interpreted as a 1-matricization of a 3-dimensional tensor H ∈
Rn×n×n and the remaining two matricizations H(2) and H(3) are related to H as follows. Without loss of generality [7],
we can assume that H(w1 ⊗ w2) = H(w2 ⊗ w1), which implies that

wT3 H(w1 ⊗ w2) = wT1 H
(2)(w2 ⊗ w3) = wT1 H

(3)(w2 ⊗ w3), (4)

where w1, w2, w3 ∈ Rn are arbitrary vectors and H is such that it holds H(2) = H(3). The above relation is used in
Theorem 2.2, which explains the appearance of H(2) in the provided algorithm. For later reference, we state the main
results and the basic algorithm on two-sided moment-matching for general DAEs as developed in [7].

Theorem 2.2 ( [7], Thm. 4.1) Let E,A,H,N, b, c be the coefficient matrices of a quadratic-bilinear DAE as in (2).
Suppose F (s) := (sE − A)−1 and σi ∈ C be the interpolation points such that F (σ̃i) exists for σ̃i ∈ {σi, 2σi}, i =
1, . . . , r. Assume that a reduced quadratic-bilinear DAE is constructed by using a Petrov-Galerkin projection, resulting in
Er, Ar, Hr, Nr, br and cr as defined in (3). If the basis matrices V andW are constructed as follows:

span{V} =
⋃

i=1,...,r

span{V(i)} and span{W} =
⋃

i=1,...,r

span{W(i)},

where Vi andW(i) are

span{V(i)} = span {F (σi)b, F (2σi) [H(F (σi)b⊗ F (σi)b) +NF (σi)b]} ,

span{W(i)} = span
{
F (2σi)

T cT , F (σi)
T
[
H(2)(F (σi)b⊗ F (2σi)

T cT ) + 1
2N

TF (2σi)
T cT

]}
,

then the following moments are matched:

G(1)(σi) = G(1)
r (σi), G(1)(2σi) = G(1)

r (2σi),

G(2)(σi, σi) = G(2)
r (σi, σi),

∂

∂sj
G(2)(σi, σi) =

∂

∂sj
G(2)
r (σi, σi), j = 1, 2,

for i = 1, . . . , r.

(5)
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This theoretical result gives rise to the following algorithm:

Algorithm 1 Model Reduction for general quadratic-bilinear DAEs
1: Input: E,A,H,N, b, c, σ1, . . . , σr.
2: Construct the projection matrices V andW using Theorem 2.2.
3: Determine the reduced-order system as:
Er =WTEV, Ar =WTAV, Hr =WTHV ⊗ V, Nr =WTNV, br =WT b, cr = cV .

Note that, in general, V is a dense matrix and the computation of V ⊗ V can be numerically infeasible. However, one
can rely on concepts used in tensor theory to computeWTH(V ⊗ V) efficiently [7].

Remarks 2.3 Theorem 2.2 does not differentiate between E singular and E nonsingular. As long as the inverse (sE −
A)−1 evaluated at s = σi and s = 2σi exists, the reduced quadratic-bilinear system will satisfy (5). However, if E is
singular, the application of Theorem 2.2 may lead to a reduced-order system with an unbounded approximation error, i.e.,
‖G(1) − G(1)

r ‖H2
= ∞ or ‖G(2) − G(2)

r ‖H2
= ∞, cf. the discussion of model reduction for linear descriptor systems

in [18]. Turning the arguments around, in the ODE case, i.e., if E is not singular, we can expect a good performance of
Algorithm 1.

3 Model Reduction of Navier–Stokes Type Quadratic-Bilinear DAEs

In view of the issues raised in Remark 2.3, in this section, we discuss the transformation of the Navier–Stokes type
quadratic-bilinear DAE (1) to an equivalent ODE system. In addition, we address some computational aspects related
to the intended model reduction procedure.

3.1 Transformation of the Navier–Stokes type quadratic-bilinear DAEs

We consider the Navier–Stokes type quadratic-bilinear DAE (1), which can be transformed into an equivalent quadratic-
bilinear ODE system. We consider the system equations (1) with b2 = 0 and α = 0:

E11v̇(t) = A11v(t) +A12p(t) +H1v(t)⊗ v(t) +N1v(t)u(t) + b1u(t), (6a)

0 = A21v(t), v(0) = 0, (6b)

y(t) = c1v(t) + c2p(t) +Du(t). (6c)

For the analysis, we consider a decoupling, cf. [20, Thm. 8.6], of (6) into an algebraic and a differential part as

p(t) = −(A21E
−1
11 A12)−1A21E

−1
11

(
A11v(t) +H1v(t)⊗ v(t) +N1v(t)u(t) + b1u(t)

)
(7)

and

E11v̇(t) = ΠA11v(t) + ΠH1v(t)⊗ v(t) + ΠN1v(t)u(t) + Πb1u(t), v(0) = 0,

y(t) = Cv(t) + CHv(t)⊗ v(t) + CNv(t)u(t) +Du(t),
(8)

where

C = c1 − c2(A21E
−1
11 A12)−1A21E

−1
11 A11, CH = −c2(A21E

−1
11 A12)−1A21E

−1
11 H1, (9a)

CN = −c2(A21E
−1
11 A12)−1A21E

−1
11 N1, D = D − c2(A21E

−1
11 A12)−1A21E

−1
11 b1, (9b)

and

Π = I −A12(A21E
−1
11 A12)−1A21E

−1
11 . (10)

In what follows, we assume that A21 = AT12. The arguments for the unsymmetric case are presented in [18] and can be
readily applied in the current nonlinear setting as well.

Note that Π is the discrete Helmholtz projector that is commonly used [18,20,21] to transform Navier–Stokes type DAEs
into ODEs and that has the following properties:

Π2 = Π, E11Π = ΠTE11, ker(Π) = range (A12) , and range (Π) = ker(AT12E
−1
11 ).
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Using these properties of Π, one can derive that

AT12z = 0 if and only if ΠT z = z. (11)

By construction, a solution v(t) of (8) fulfillsAT12v(t) = 0, so that in (8), we can replace v(t) by ΠT v(t), and using Π = Π2

and E11Π = ΠTE11, we obtain the following equivalent system:

ΠE11ΠT v̇(t) = ΠA11ΠT v(t) + ΠH1

(
ΠT v(t)⊗ΠT v(t)

)
+ ΠN1ΠT v(t)u(t) + Πb1u(t), (12a)

y(t) = CΠT v(t) + CH
(
ΠT v(t)⊗ΠT v(t)

)
+ CNΠT v(t)u(t) +Du(t), (12b)

with v(0) = 0. The above dynamical system (12) lies in the n1−n2 dimensional null space of Π. Therefore, as in [21], we
can decompose the projector Π as

Π = φ1φ
T
2 , (13)

with φ1, φ2 ∈ Rn1×n1−n2 , satisfying

φT1 φ2 = I.

This decomposition allows us to write (12) in the following form:

φT2 E11φ2
˙̃v(t) = φT2 A11φ2ṽ(t) + φT2 H1

(
φ2ṽ(t)⊗ φ2ṽ(t)

)
+ φT2 N1φ2ṽ(t)u(t) + φT2 b1u(t), (14a)

y(t) = Cφ2ṽ(t) + CH
(
φ2ṽ(t)⊗ φ2ṽ(t)

)
+ CNφ2ṽ(t)u(t) +Du(t), (14b)

with ṽ(t) = φT1 v(t) and ṽ(0) = 0. Thus, model reduction of the original quadratic-bilinear DAE is equivalent to the
reduction of (12) and (14). However, the equivalent system in (14) has the advantage that the matrix φT2 E11φ2 is nonsingular
(φ2 has full column rank). Therefore, the standard Krylov subspace technique for model reduction of a quadratic-bilinear
system, discussed in Section 2, can be employed to the system (14) in order to obtain a reduced-order system.

Note that the output equation of the system (14) involves nonlinear terms in the state and input. It is still an open
problem to consider the nonlinear terms in the output equations in order to compute the projection matrices, and it needs
further research in this direction. In this paper, we restrict ourself to the linear relation between the state and the output by
neglecting the nonlinear terms in the output as far as the computation of the projection matrices V andW are concerned.
Having neglected these terms in (14), we consider the following equation:

φT2 E11φ2
˙̃v(t) = φT2 A11φ2ṽ(t) + φT2 H1

(
φ2ṽ(t)⊗ φ2ṽ(t)

)
+ φT2 N1φ2ṽ(t)u(t) + φT2 b1u(t),

ỹ(t) = Cφ2ṽ(t),
(15)

for the definition of the projection matrices by applying Theorem 2.2 in order to identify the reduced quadratic-bilinear
system.

Remarks 3.1 Algorithm 1 may safely be applied (cf. Remark 2.3) to the system (8), which is an equivalent quadratic-
bilinear ODE system, too. To avoid the projector Π and to stay in line with [18, 21], we rather consider the condensed
projected formulation (15).

The following subsection shows how the computation of φ2 or Π can be avoided in an implementation.

3.2 Computational Issues

We will use the ODE system (15) to compute the projection matrices V andW , which we will apply to reduce the original
coefficients E11, A11, H1, N1, b1, C, CH , and CN to give

Er =WTE11V, Ar =WTA11V, H1r =WTH1V ⊗ V, N1r =WTN1V,
br =WT b1, Cr = CV, CHr = CHV ⊗ V, CNr = CNV.

Thus, the reduced system will be independent of φ2. However, the definition of V and W will involve φ2, as defined in
(13), which might not be easily accessible.
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Corollary 3.2 Let F(s) be defined as

F(s) := φ2(sφT2 E11φ2 − φT2 A11φ2)−1φT2 .

Also, let V andW be such that

span{V} =
⋃

i=1,...,r

span{V(i)} and span{W} =
⋃

i=1,...,r

span{W(i)}, (16)

in which for i = 1 : r

span{V(i)} = span {F(σi)b1,F(2σi) [H1(F(σi)b1 ⊗F(σi)b1) +N1F(σi)b1]} , (17)

span{W(i)} = span
{
F(2σi)

TCT ,F(σi)
T
[
H

(2)
1 (F(σi)b1 ⊗F(2σi)

TCT ) + 1
2N

T
1 F(2σi)

TCT
]}
. (18)

Then, the following moments are matched:

G(1)(σi) = G(1)
r (σi), G(1)(2σi) = G(1)

r (2σi),

G(2)(σi, σi) = G(2)
r (σi, σi),

∂

∂sj
G(2)(σi, σi) =

∂

∂sj
G(2)
r (σi, σi), j = 1, 2,

for i = 1, . . . , r.

(19)

Here, G(1)(s1) and G(2)(s1, s2) are the first two generalized transfer functions of the equivalent system (15). Similarly,
G(1)
r (s1) and G(2)

r (s1, s2) are the first two generalized transfer functions of the reduced-order system.

P r o o f. We first define the state matrices in (15) as:

Ē11 = φT2 E11φ2, Ā11 = φT2 A11φ2, H̄1 = φT2 H1(φ2 ⊗ φ2)

N̄1 = φT2 N1φ2, b̄1 = φT2 b1, C̄ = Cφ2

(20)

For these matrices, if the projection matrices V̄ and W̄ are computed according to Theorem 2.2, then we can relate them to
V andW as

V = φ2V̄ , and W = φ2W̄ , (21)

respectively. Together with the results required for the proof of Theorem 2.2, we can easily prove (19) by using the above
relations. In the following, we only prove the first equation in (19) and the remaining equations follow analogously. Since

V̄ (σiW̄
T Ē11V̄ − W̄T Ā11V̄ )−1W̄T b̄1 = (σiĒ11 − Ā11)−1b̄1, (22)

we use (20) and (21) to obtain

V̄ (σiWTE11V −WTA11V)−1WT b1 = (σiφ
T
2 E11φ2 − φT2 A11φ2)−1φT2 b1, (23)

Pre-multiplying Cφ2 on both sides of the above equation, one finds that G(1)(σi) = G(1)
r (σi) holds. Similarly, we can prove

the other three equalities in (19).

The procedure of Corollary 3.2 and that of Theorem 2.2 if applied to the transformed QB system (15) will result in
just the same reduced QB system. However, through Corollary 3.2 the reduced-order system is obtained via projecting the
original system matrices rather than projecting the matrices of the transformed system (15). We will make use of this in the
remaining part of the paper when arguing that the transformation involving, e.g., φ2, can be realized implicitly.

Furthermore, Corollary 3.2 is based on a moment-matching framework that matches the generalized transfer functions
and their first partial derivatives. However, it is also possible to use an interpolation scheme, as suggested in [6], that also
matches higher derivatives of the first two generalized transfer functions. The following corollary shows the results for (15)
with higher moments matched.
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Corollary 3.3 Let F(s) be as defined in Corollary 3.2 and let V andW be such that

span{V} =
⋃

i=1,...,r

span{V(i)
1 , . . . ,V(i)

q }, span{W} =
⋃

i=1,...,r

span{W(i)
1 , . . . ,W(i)

q },

in which V(i)
1 andW(i)

1 are the same as V(i) andW(i) in Corollary 3.2 and V(i)
2 , . . . ,V(i)

q are of the form

span{V(i)
2 } = span

{
F(σi)E11F(σi)b1,F(2σi)E11F(2σi) [H1(F(σi)b1 ⊗F(σi)b1) +N1F(σi)b1]

}
,

span{V(i)
q } = span

{
(F(σi)E11)q−1F(σi)b1, (F(2σi)E11)q−1F(2σi) [H1(F(σi)b1 ⊗F(σi)b1) +N1F(σi)b1]

}
.

Similarly, we can defineW(i)
2 , . . . ,W(i)

q . With these projection matrices, the reduced system not only ensures (19), but also
the matching of higher moments, i.e., the following equations also hold:

∂p

∂sp1
G(1)(σi) =

∂p

∂sp1
G(1)
r (σi),

∂p

∂sp1
G(1)(2σi) =

∂p

∂sp1
G(1)
r (2σi),

∂i+j

∂si1s
j
2

G(2)(σi, σi) =
∂i+j

∂si1s
j
2

G(2)
r (σi, σi)

for p = 1, . . . , q − 1 and i+ j < 2q − 1.

Note that the projection matrices V andW in Corollary 3.2 (and also V andW in Corollary 3.3) are projections for the
original subsystems G(1)(s1) = C(sE11 − A11)−1b1 and G(2)(s1, s2), that are independent of φ2. Now, as a second step,
we need to show that the matrices V(i)andW(i) can also be constructed such that they do not require the computation of
φ2.

We start with the subspace associated with V(i). As shown in (17), the column vectors of V(i), for i = 1, . . . , r can be
written as

V(i) = {F(σi)b1,F(2σi) [H1(F(σi)b1 ⊗F(σi)b1) +N1F(σi)b1]} . (24)

The first column of V(i), which is F(σi)b1, can be identified by solving a linear system that does not resort to φ2 [18, 21].
Lemma 3.4 ( [18], Lem. 6.3) Let φ2(σ̃φT2 E11φ2 − φT2 A11φ2)−1φT2 exist for σ̃ = σ or σ̃ = 2σ. Then, v = F(σ̃)f

solves [
σ̃E11 −A11 A12

AT12 0

] [
v
z

]
=

[
f
0

]
, (25)

and w = F(σ̃)T g solves[
σ̃ET11 −AT11 A12

AT12 0

] [
w
q

]
=

[
g
0

]
, (26)

where f and g are arbitrary vectors or matrices of appropriate sizes.

This means that for Ẽ :=

[
E11 0
0 0

]
and Ã :=

[
A11 A12

A21 0

]
, the relation (25) implies that the first column of V(i) can

be given by
[
In1

0
]

(σẼ − Ã)−1b̃, where In1
is the identity matrix of size n1 × n1 and b̃T =

[
bT 0

]
.

Lemma 3.4 can also be used to construct the second column of V(i) as well via setting f = H1(Vi1(:, 1) ⊗ Vi(:
, 1)) + N1V(i)(:, 1), where V(i)(:, 1) is the first column of V(i). Thus, we can identify V without explicitly computing
φ2. Similarly,W can also be identified from such settings. The framework can also be extended to V andW , such that they
are also independent of φ2. Algorithm 2 summarizes all the steps for the reduction of the system in (15).

4 The General Case b2 6= 0

In the preceding section, we have derived the equivalent representations of the descriptor system (1) under the assumption
that b2 = 0. Now, we consider the general case with b2 6= 0 and show how this can be brought back to the b2 = 0 case.
The approach is similar to the approach for linear DAEs with b2 6= 0 taken in [18, 21]. In the nonlinear setting, some extra
terms need to be considered. Analogously to the linear case, we decompose v(t) as

v(t) = v0(t) + vg(t),
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Algorithm 2 Model Reduction for Navier–Stokes type quadratic-bilinear DAEs
1: Input: E11, A11, H1, N1, b1, C, CH , CN , σ1, . . . , σr.
2: Output: Er, Ar, H1r, N1r, br, Cr, CHr, CNr.
3: Construct V(i) andW(i)

span{V(i)} = span
{
I0F̃ (σi)b̃, I0F̃ (2σi)P

}
,

where b̃ =

[
b1
0

]
, P =

[
H1

(
V(i)(:, 1)⊗ V(i)(:, 1)

)
+N1V(i)(:, 1)

0

]
, F̃ (s) = (sẼ − Ã)−1 and I0 = [In1

, 0].

span{W(i)} = span
{
I0F̃ (2σi)

T C̃T , I0F̃ (σi)
TQ
}
,

where C̃T =

[
CT
0

]
, Q =

[
H

(2)
1

(
V(i)(:, 1)⊗W(i)(:, 1)

)
+ (1/2)NT

1 W(i)(:, 1)
0

]
.

4: span{V} = ∪
i=1,...,r

span{V(i)}, and span{W} = ∪
i=1,...,r

span{W(i)}.
5: Construct the reduced-order system:
Er =WTE11V, Ar =WTA11V, H1r =WTH1V ⊗ V, N1r =WTN1V,
br =WT b1, Cr = CV, CHr = CHV ⊗ V, CNr = CNV.

with

vg(t) = −E−1
11 A12(AT12E

−1
11 A12)−1b2︸ ︷︷ ︸

Υ

u(t) (27)

so that v0(t) satisfies 0 = AT12v0(t). In the state equations (1), we substitute v(t) by its decomposition, which leads to the
following system:

E11v̇0(t) = A11v0(t) +A12p(t) +H1v0(t)⊗ v0(t) +N1v0(t)u(t) + B1u(t) + Buu2(t)

+A12(AT12E
−1
11 A12)−1b2u̇(t), (28a)

v0(0) = α− vg(0), (28b)

0 = AT12v0(t), (28c)

y(t) = c1v0(t) + c2p(t) + (D − c1E−1
11 A12(AT12E

−1
11 A12)−1b2)u(t), (28d)

where

N1 = N1 −H1(Υ⊗ I + I ⊗Υ), B1 = b1 −A11Υ, Bu = H1 (Υ⊗Υ)−N1Υ.

Using (28c) and (28a), we can explicitly compute p(t) as

p(t) = −(AT12E
−1
11 A12)−1AT12E

−1
11

(
A11v(t) +H1v0(t)⊗ v0(t) +N1v0(t)u(t)

+ B1u(t) + Buu2(t) +A12(AT12E
−1
11 A12)−1b2u̇(t)

)
.

(29)

Remarks 4.1 With p given by (29), the system (28) is of the form (6), but with terms containing u(t), u2(t) and
u̇(t). Although these terms are functions of u(t) in a forward simulation, we can consider them as three different inputs.
Accordingly, we can use the transformation steps discussed in Section 3 to obtain an associated ODE system in v0(t).

In fact, substituting p(t) into (28a) and using AT12v0(t) = 0 implies ΠT v0(t) = v0(t), and premultiplying the resulting
system by Π, we arrive at an ODE for v0:

ΠE11v̇0(t) = ΠA11v(t) + ΠH1(v0(t)⊗ v0(t)) + ΠN1v0(t)u(t) + ΠBũ(t), (30a)

v0(0) = ΠT (α− vg(0)), (30b)

y(t) = CΠT v0(t) + CH(Π⊗Π)T (v0(t)⊗ v0(t)) + CNΠT v0(t) +Dũ(t)− c2(AT12E
−1
11 A12)T b2u̇(t),

(30c)

where B = [B1,Bu] with the new input ũ(t) := [u(t), u2(t)]T , and where

C = c1 − c2(AT12E
−1
11 A12)−1AT12E

−1
11 A11,

CH = −c2(AT12E
−1
11 A12)−1AT12E

−1
11 H1,

CN = −c2(AT12E
−1
11 A12)−1AT12E

−1
11 N1
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and D = [D1,D2] with

D1 = D − c1E−1
11 A12A

T
12E

−1
11 A12)−1b2 − c2(AT12E

−1
11 A12)−1AT12E

−1
11 B1, and

D2 = c2(AT12E
−1
11 A12)−1AT12E

−1
11 Bu.

Note that, because of ΠA12(AT12E
−1
11 A12)−1b2 = 0, the term associated with u̇(t) in (28a) vanishes.

In Section 3, we have referred to equivalent systems as systems that have the same solution set. In the current setting,
where v(0) 6= 0 and b2 6= 0, this equivalence is bound to the consistency of the initial value. Bluntly put, if the initial value
is consistent, then the decoupled and the original system have the same solution set. If the initial value is not consistent,
then the decoupled system can have a solution although the original system is not solvable, cf. the following Theorem 4.2.

Theorem 4.2 Consider the state equations (2) and a given input function u ∈ C([0, T ]). A solution

(v, p) ∈ C1((0, T ];Rn1)× C([0, T ];Rn2)

can only exist if the initial value α ∈ Rn1 fulfills

α = α0 + E−1
11 A12(AT12E

−1
11 A12)−1b2u(0) (31)

for an α0 ∈ kerAT12. If this is the case, then (v, p) is defined through v = v0 + vg and p, where v0, vg , and p solve the
decoupled system (30a-c), (27), and (29).

P r o o f. The claim is a direct consequence of [20, Thm. 8.6] considering also [20, Rem. 8.7].

Remarks 4.3 In general, the consistency condition (31) can never hold for all inputs u ∈ C([0, T ]), which is not seen by
the ODE (30a) for v0. In our numerical experiments, for the time being, we will ensure consistency and, thus, equivalence
of the reformulation, by fixing the initial value of the inputs and adjusting the initial value v(0) accordingly.

Considering the issues raised in Remark 4.1 and Remark 4.3, we can employ the system (30) to determine a reduced-
order system. With u(t) and u2(t) being considered as two different inputs, the equivalent system (30) is a multi-input
system and the algorithms for the SISO case of Section 3 do not readily apply. In our numerical examples, for the case with
b2 6= 0, we will consider constant inputs for which the SISO case approach still works.

Remarks 4.4 The extension to a MIMO setup is not straightforward, since the relation (4) holds only for vectors w1,
w2, and w3. One idea to circumvent this, may be to use a one-sided projection approach. The investigation of two-sided
moment-matching for multi-input multi-output (MIMO) Navier-Stokes type quadratic-bilinear systems is ongoing research.

5 Analysis of the Direct and the Index-2 Approach

In this section, we provide a detailed analysis of the first generalized transfer function of the Navier–Stokes-type QBDAE
and its approximation via the direct approach through Algorithm 1 and the index-2 specific approach as in Algorithm 2.

In the first generalized transfer function, the nonlinearities do not appear so that we can consider the associated linear
system

[
E11 0
0 0

] ˙[v
p

]
=

[
A11 A21

AT21 0

] [
v
p

]
+

[
b1
b2

]
u, y =

[
c1 c2

] [v
p

]
+Du. (32)

By means of a QR decomposition AT21E
−1/2
11 =

[
R 0

]
Q and a suitable scaling of the equations and variables, we find

that the transfer function of the (E,A, b, c,D) system (32) coincides with the transfer function of a system (Ẽ, Ã, b̃, c̃, D)
of the form

Ẽ =

I 0 0
0 I 0
0 0 0

 , Ã =

A⊥ A0⊥ RT

A⊥0 A0 0
R 0 0

 , b̃ =

b⊥b0
b2

 , c̃ =
[
c⊥ c0 c2,

]
and D = D, (33)

where, in particular,[
b⊥
b0

]
= QM−1/2b1, and

[
c⊥ c0

]
= c1M

−1/2QT .
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Remark 5.1 By construction, it holds that

b⊥ = 0, if and only if Πb1 = Π and b0 = 0, if and only if Πb1 = 0

as well as

c⊥ = 0, if and only if c1ΠT = c1 and c0 = 0, if and only if c1ΠT = 0.

This means that b0 and c0 correspond to control and observation of the purely dynamical parts of the system, namely
the parts of the velocity and the equations associated with the kernel of AT12. Accordingly, b⊥ and c⊥ correspond to the
algebraic parts of the velocity and the equations. The roles of c2 – observation of the pressure – and b2 – control in the
algebraic constraints – are unchanged.

For the realization (33), we can explicitly compute

F̃ (s) = (sẼ−Ã)−1 =

 0 0 R−1

0 (sI −A0)−1 (sI −A0)−1A⊥0R
−1

−R−T −R−TA0⊥(sI −A0)−1 −R−T (A0⊥(sI −A0)−1A⊥0 − (sI −A⊥))R−1


as needed in Algorithm 1. Also, in these coordinates, we have that the coefficients of the equivalent system, cf. (9), are
given as

C̃ =
[
c⊥ c0

]
− c2R−T

[
A⊥ A0⊥

]
and D̃ = D − c2R−T b⊥. (34)

Furthermore, with Π̃ =

[
0 0
0 I

]
and φ̃2 =

[
0
I

]
, we have that

F̃(s) = φ̃2(sφ̃T2 Ẽ11φ̃2 − φ̃T2 A11φ̃2)−1φ̃T2 =

[
0 0
0 (sI −A0)−1

]
as needed in Algorithm 2.

For a given interpolation point σ, we compute the first order approximation by means of the direct approach, that reduces
(33) by a standard two-sided projection with Ṽ = F̃ (σ)b̃ and W̃ = F̃ (2σ)T c̃T . We compare the obtained reduced system
to the reduction of the equivalent system by the projection matrices Ṽ = F̃(σ)b̃ and W̃ = F̃T (2σ)C̃T . We consider some
special cases of control and observation.

In the case that the control acts in the dynamical part and that only the dynamical part is observed, i.e, b̃ =
[
0 bT0 0

]T
and c̃ =

[
0 c0 0

]
, both approaches lead to exactly the same reduced purely dynamical system.

In the case that the control acts in the algebraic part and that only the algebraic part is observed, i.e, b̃ =
[
bT⊥ 0 0

]T
and c̃ =

[
c⊥ 0 0

]
, both approaches lead to a zero system, which exactly matches the zero transfer function of the full

system G(s) = C̃F̃ (s)b̃ ≡ 0.
In the case that the control acts in the algebraic part and that the pressure is observed, i.e, b̃ =

[
bT⊥ 0 0

]T
and

c̃ =
[
0 0 c2

]
, Algorithm 1 leads to Er = 0, Ar = −c2R−1b⊥, br = −c2R−1b⊥, and cr = −c2R−T b⊥. The newly

proposed approach of Algorithm 2 leads to a zero dynamical system but a throughput term D̃ = −c2R−T b⊥, cf. (34).
Thus, both approaches lead to realizations with constant transfer functions which match the actual transfer function exactly.

In the interesting case that the control acts in the dynamical and the algebraic part of the velocity and that the pressure
is observed, i.e, b̃ =

[
b⊥ bT0 0

]T
and c̃ =

[
0 0 c2

]
, the actual transfer function reads

G(s) = c2
[
−R−T −R−TA0⊥(sI −A0)−1

] [b⊥
b0

]
.

Here, the direct aproach leads to Er = −c2R−TA0⊥(2σI−A0)−1(σI−A0)−1b0 which, in general, is not zero and which
means that the associated reduced transfer function is strictly proper unlike the original. On the other side, the modified
approach transforms the system into an equivalent system with D̃ = −c2R−T and D̃ = −c2R−T

[
A0⊥ A0

]
. With the

projection matrices W̃ =
[
0 −c2R−TA0⊥(2σI −A0)−1

]T
and Ṽ =

[
0 (σI −A0)−1b0

]T
as defined in Algorithm 2,

the dynamical part of the reduced system coincides with the same moment-matching reduction of the dynamical system

ẋ = A0x+ b0u, y = −c2R−TA⊥0x.
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Accordingly, in the modified approach, the constant part of the transfer function is matched exactly as are certain moments
corresponding to the underlying dynamical part.

The interpretation in the time domain is as follows. A transfer function with constant and strictly proper parts means that
the output is a sum of algebraic and differential variables. In this case the proposed index-2 specific approach approximates
only the differential part and simply adds the algebraic components to the output through D̃. This is a twofold advantage
over the direct approach. Firstly, the direct approach needs to approximate algebraic behavior by dynamic variables.
Secondly, the directly reduced model has to capture two sets of variables – namely differential and algebraic – rather than
one. The latter means, that apart from the qualitative error due to the unsuitable model structure, one also needs to expect
a quantitatively increased error if compared to a reduced model of the same size obtained by the modified approach.

6 Numerical Results

In this section, we examine the performance of the proposed approach for Navier-Stokes type quadratic-bilinear descriptor
systems by comparing it to the general version of the algorithm. To the newly proposed specification of the moment-
matching algorithm for Navier–Stokes type systems, we refer as ind2QBmm and to the general moment-matching imple-
mentation on the basis of Algorithm 1, we refer as genQBmm.

6.1 Lid Driven Cavity

As a first test case, we consider a lid driven cavity on the unit square Ω = (0, 1)2, with the boundary Γ, for time t ∈ (0, 2],
modelled by the Navier–Stokes equations for the velocity v and the pressure p

v̇ + (v · ∇)v− 1

Re
∆v +∇p = 0, (35a)

∇ · v = 0, (35b)

v
∣∣
Γ

= g, (35c)

v
∣∣
t=0

= v0, (35d)

where the Reynolds number Re is a parameter depending on the geometry, a characteristic velocity, and the kinematic
viscosity, where g is the Dirichlet condition that models the driven lid, i.e. v =

[
1 0

]
at the upper boundary and v = 0

elsewhere at the boundary, and where v0 is an initial condition. We apply a finite element discretization to (35) using the
Taylor-Hood scheme on a uniform mesh which leads to a system for the discretized velocity v and pressure p of the form

E11v̇ = A11v +Hv ⊗ v +A12p+ f, v(0) = vs (36a)

0 = AT12v, (36b)

where E11 is the mass matrix and, thus, positive definite, A11 models the discrete diffusion, H models the discretized
convection, and A12 is the discrete gradient operator with its transpose modelling the divergence. The source term f
contains the Dirichlet boundary conditions. For the initial value we choose the associated steady-state solution. The chosen
spatial discretization results in a state space dimension of n1 + n2 = 1681 + 255 = 1936.

The system (36) is extended to a descriptor system as follows. To model the input, we add b1u := fu to (36a). This is an
ad hoc approximation of a Dirichlet boundary control vδ(x, t)

∣∣
Γ

= g(x)u(t), cf. (35c), avoiding the difficulties that come
with finite-element approximations of time dependent Dirichlet conditions, cf. [11]. As the output, we take the average
pressure in the subdomain Ωo = [0.45, 0.55]× [0.7, 0.8], i.e.

y(t) = c2p(t) :=
1

|Ωo|

∫
Ωo

p(t, x)dx (37)

evaluated in the corresponding finite element space. See Figure 1 for an illustration of the problem and its discretization.
We consider the input to output behavior for an actuation b1u(t).

Remark 6.1 As in the setup of (35) the pressure is only defined up to a constant, to make sense of (37), the pressure
should be normalized, e.g., by considering p̄(t, x) = p(t, x) −

∫
Ω
p(t, x)dx. In the numerical realization (36), we pin the

pressure by enforcing p = 0 at one node of the discretization. In the setup of the cylinder wake considered below, the
pressure is uniquely defined by the outflow boundary conditions.
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Ωo

0 0.45 1
0

0.7
0.8

1

x0
x
1

0

1
|v|

Fig. 1 Illustration of the driven cavity for Re = 10, the grid used for the Taylor-Hood discretization, and the domain of observation Ωo.

Model reduction for lid driven cavity was also considered in [15], where the quadratic-bilinear DAE was approximated
as a bilinear DAE via Carleman bilinearization to determine a reduced-order system, employing an H2 optimal model
reduction strategy. However, unlike in this paper, in [15], the driven cavity was modelled using the Navier–Stokes equations
in vorticity-stream function formulation.

We rephrase the model by considering the deviation from a steady state, solving the associated steady-state system
without control, instead of the actual state. Technically this is just a change of variables that can be undone after the
reduction. However, if we further assume that the considered steady state is also the initial value, the resulting system has
zero initial conditions and no drift terms which is always assumed in model reduction approaches that approximate the
transfer function.

Therefore, we decompose v = vs + vδ and p = ps + pδ , where (vs, ps) is the associated steady state solution of (36),
and obtain the system for the deviations (vδ, pδ) as

E11v̇δ = (A11 + L)vδ +Hvδ ⊗ vδ +A12pδ + b1u, (38a)

0 = AT12vδ, vδ(0) = 0, (38b)

y(t) = c2pδ, (38c)

whereL := H(vs⊗I+I⊗vs). Note that no parts of the equations have been discarded as it is typically done in stabilization
setups [4, 9]. We use ind2QBmm to approximate the system described through (38) and compare the results to the results
obtained via genQBmm for two Reynolds numbers Re = 10 and Re = 75.

Reynolds number Re = 10

We first consider the low Reynolds number problem and seek to determine the reduced-order systems via both approaches.
The interpolation points σ are identified by using IRKA on the linear part of the quadratic-bilinear DAE, cf. [18]. The
number of interpolation points is set to 10, which leads to a reduced-order system of order 20. The time domain simulations
for the original and the reduced systems via one-sided projection (by settingW = V) for u(t) = e−t(2 + sin(2πt)) and
the absolute error are shown in Figure 2.

In order to match more moments, we setW 6= V and identify them by using Algorithm 2. In case of two-sided moment-
matching, we compare results for the full state vectors which are shown in Figure 3 for the same u(t) and the absolute error
in the velocity on the full grid is shown in Figure 4.

These figures clearly show that the specific approach ind2QBmm captures the dynamics of the original system way
much better than the general approach.

Reynolds number Re= 75

As for the previous example, also for the higher Reynolds number Re = 75 setup, we determine the interpolation points
by applying the IRKA on the linear part. We determined reduced-order systems of order 20 using the newly developed
approach ind2QBmm and the generally valid approach genQBmm using one-sided projection. The results of the time
domain simulations for the original and the reduced systems for u(t) = 0.5e−t(2 + sin(2πt)) as well as the absolute error
between the approximations are shown in Figure 5. We observe that unlike the general implementation genQBmm, the

Copyright line will be provided by the publisher



ZAMM header will be provided by the publisher 13

Original System genQBmm ind2QBmm

0 0.5 1 1.5 2

−1

0

1

2

Time [s]

Response, y(t)

0 0.5 1 1.5 2
10−6

10−3

100

Time [s]

Relative error

Fig. 2 Comparison of the reduced-order systems obtained from the genQBmm and ind2QBmm implementation for one-sided moment-
matching for the input u(t) = e−t(2 + sin(2πt)).

(a) (b) (c)

0.5

1

0

1.74

|v|

Fig. 3 Comparison of |v| obtained from full (Figure (a) and reduced-order (Figure (b) is ind2QBmm and Figure (c) is genQBmm) for
two-sided moment-matching at t = 2s for the input u(t) = e−t(2 + sin(2πt)).

(a) 0

0.0008

0.0019

|v − vr|

(b) 0

0.2

0.36

|v − vr|

Fig. 4 Absolute error of velocity |v − vr| obtained from full and reduced-order systems (Figure (a) is ind2QBmm and Figure (b) is
genQBmm) for two-sided moment-matching at t = 2s.

specific approach ind2QBmm well captures the input-output behavior of the original system, see the plot of the relative
error in Figure 5. In the case of two-sided projections, we were unable to determine a stable reduced-order system using
either approach.

6.2 Cylinder Wake

As a second test case, we consider the cylinder wake. The continuous model equations are the same as (35), but with a
spatial domain Ω as illustrated in Figure 6 and different boundary conditions. Namely, we prescribe a parabolic inflow
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Original System genQBmm ind2QBmm

0 0.5 1 1.5 2
0

0.1

0.2

Time [s]

Response

0 0.5 1 1.5 2

10−4

10−2

100

Time [s]

Relative error

Fig. 5 Comparison of reduced-order systems obtained from the two implementations for one-sided moment-matching for the input
u(t) = 0.5e−t(2 + sin(2πt)).

profile at the left boundary, do nothing boundary conditions for the outflow at the right boundary, and no-slip conditions,
i.e., v = 0, elsewhere. An application of the Taylor-Hood finite element scheme yields a system of type (36) of state space
dimensions n1 + n2 = 5812 + 805 = 6617.

Again, as the actuation, we add another instance of the source terms, accounting for the Dirichlet boundary conditions,
scaled by the constant scalar value β to the system. The output was defined as in (37) with the domain of observation
Ωo = [0.6, 0.64] × [0.18, 0.22]. Here b2 6= 0, because of the normal component of the parabolic inflow profile at the left

Ωo

0 0.15 0.25 0.6 2.2
0

0.18
0.22

0.4

x0

x
1

Fig. 6 Illustration of the cylinder wake for ν = 10−1, the grid used for the Taylor-Hood discretization, and the domain of observation
Ωo.

boundary. So, the discretized system looks as follows:

E11v̇(t) = A11v(t) +A12p(t) +Hv(t)⊗ v(t) + f1 + b1β, v0 = vs −X ,
0 = A21v(t) + f2 + b2β,

y(t) = c2p(t),

where vs is the steady-state solution and X accounts for b2β as defined below. Analogously to the previous example, here
we also consider the system for the deviation (vδ, pδ) from the steady-state solution (vs, ps) with β = 0 which is given as
follows:

E11v̇δ(t) = (A11 + L)vδ(t) +A12pδ(t) +Hvδ(t)⊗ vδ(t) + b1β, vδ(0) = −X ,
0 = A21vδ(t) + b2β,

y(t) = c2pδ(t),

where L = H(vs⊗I+I⊗vs). As discussed in Section 4, the b2 6= 0 case can be appropriately transformed into b2 = 0 by
substituting vδ(t) = v0(t)−X where X = (E−1

11 A12)(AT12E
T
11A12)−1b2β. This results in the following equivalent system

E11v̇0(t) = Ã11v0(t) +A12p(t) +H1v0(t)⊗ v0(t) + B̃, v0(0) = 0, (39a)

0 = A21v0(t), (39b)

y(t) = c2pδ(t), (39c)
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Original System genQBmm ind2QBmm
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Fig. 7 Comparison of the reduced-order systems obtained through the general approach genQBmm and through the specific
ind2QBmm implementation for one-sided moment-matching for the cylinder wake at Reynolds number Re = 10.

where Ã11 = A11 + L −H(I ⊗ X + X ⊗ I) and B̃ = b1β + H(X ⊗ X ) − Â11X . Note that v0(0) = vδ(0) + X = 0.
We set the number of interpolation points to 15 and identify their location by employing IRKA on the linear part of the
quadratic-bilinear DAE, cf. [18]. This gives us a reduced-order systems of order r = 30 using both methods. For these
settings, we compare the time-domain simulations for two different Reynolds numbers.

Reynolds number Re=10

For small Reynolds number (Re = 10), we determine the reduced-order systems using both approaches for one-sided
projection (by settingW = V). We plot the time-domain simulations obtained with both reduced-order systems in Figure 7
for β = 0.5.

We observe that the reduced-order system, determined by the Navier–Stokes type specific approach ind2QBmm with
one-sided projections, replicates the input-output dynamics of the original system very well, whereas the general imple-
mentation genQBmm fails to do so. For this example, we were not able to get stable reduced-order systems in case of
two-sided projections for any of the two approaches.

Reynolds number Re= 100

Analogously, we determine reduced-order systems for higher Reynolds number (Re= 100) and compare the time-domain
simulations of the reduced-order system obtained via both approaches in Figure 8 for β = 0.1. Again, we observe that
ind2QBmm outperforms the general approach genQBmm. However, we also observed that as β increases, for one-sided
moment-matching, also the specific approach ind2QBmm fails to replicate the input-output behavior of the original system.

A visual comparison is performed through plotting the velocity approximations computed via the original system and
the reduced-order system obtained by the specific approach ind2QBmm (Figure 9) as well as the absolute error (Figure 10)
on the full grid. One can see that the reduced-order system also captures the dynamics on the full grid quite accurately.

7 Conclusions

We have proposed a two-sided moment-matching method for a special class of SISO quadratic-bilinear descriptor systems.
We have applied two-sided moment-matching to an equivalent quadratic-bilinear ODE, so that a growing unbounded error
due to the systems differential-algebraic nature will not occur. In view of efficient implementation, we have provided
an algorithm that avoids the explicit computation of the projectors used for decoupling the DAEs into ODEs and purely
algebraic equations. For the example of semi-discretized Navier–Stokes equations, we have shown the efficiency of the
proposed method by comparing it to the approach to reduce quadratic-bilinear systems that was taken in [7]. For both two-
sided and one-sided moment-matching, we could report significant improvements in the approximations by our proposed
approach.
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Original System genQBmm ind2QBmm
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Fig. 8 Comparison of reduced-order systems obtained from both implementations for one-sided moment-matching for the cylinder
wake at Reynolds number Re = 100.
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1

0

1.45

|v|

Fig. 9 Comparison of |v| obtained from full-order (top) and reduced-order (below) models on the full grid.

·10−2

0

0.0002

Fig. 10 Absolute error in |v| obtained from the full-order and reduced-order systems on the full grid.

As we have observed in the numerical results, the two-sided moment-matching does not guarantee the stability of the
reduced-order systems. Therefore, as a future avenue it is very important to address the stability of reduced-order systems
obtained via moment-matching. Moreover, in our tests, we have chosen the interpolation points as they are obtained by
applying IRKA [18] to the linear part that fulfill the optimality properties for linear systems. It is still an open question how
to choose the optimal interpolation points which minimize the error system in some measure for quadratic-bilinear systems.
Also, an interesting follow-up is the extension of the two-sided moment-matching to the MIMO case.
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