
A Position-Aware Deep Model
for Relevance Matching in Information Retrieval

Kai Hui
Max Planck Institute for Informatics

Saarbrücken Graduate School of Computer Science
Saarbrücken, Germany
khui@mpi-inf.mpg.de

Andrew Yates
Max Planck Institute for Informatics

Saarbrücken, Germany
ayates@mpi-inf.mpg.de

Klaus Berberich
Max Planck Institute for Informatics

htw saar
Saarbrücken, Germany

kberberi@mpi-inf.mpg.de

Gerard de Melo
Rutgers University

New Brunswick, New Jersey
gdm@demelo.org

ABSTRACT

In order to adopt deep learning for information retrieval, models are
needed that can capture all relevant information required to assess
the relevance of a document to a given user query. While previous
works have successfully captured unigram term matches, how to
fully employ position-dependent information such as proximity and
term dependencies has been insu�ciently explored. In this work,
we propose a novel neural IR model named PACRR (Position-Aware
Convolutional-Recurrent Relevance Matching), aiming at be�er mod-
eling position-dependent interactions between a query and a docu-
ment via convolutional layers as well as recurrent layers. Extensive
experiments on six years’ Trec Web Track data con�rm that the
proposed model yields be�er results under di�erent benchmarks.

CCS CONCEPTS

•Information systems →Retrieval models and ranking;Web
searching and information discovery;

1 INTRODUCTION

Despite the widespread use of deep neural models across a range
of linguistic tasks, whether such models can improve information
retrieval (IR) and what components an IR retrieval model should
include remain open questions. In standard ad-hoc IR, the goal is
to produce a ranking of relevant documents given an open-domain
(“ad hoc”) query and a document collection. Many early neural IR
models can be categorized as semantic matching models, as they
embed both queries and documents into a low-dimensional space,
and then compute matching signals based on such dense represen-
tations, o�en via cosine similarity. Examples in this regard include
DSSM [8] and C-DSSM [18]. �e notion of relevance is inherently
asymmetric, however, making it di�erent from well-studied seman-
tic matching tasks such as semantic relatedness and paraphrase

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
arXiv preprint, 2017
© 2017 Copyright held by the owner/author(s). .

detection. Instead, relevance matching models such as MatchPyra-
mid [14] and DRMM [6] resemble traditional IR retrieval measures
in that they directly consider the relevance of the document con-
tents with respect to the query. �e two classes of models are fairly
distinct, and in this work we focus on relevance matching mod-
els. �e more recent Duet model [13] is a hybrid approach that
combines signals from a local model for relevance matching and a
distributed model for semantic matching.

Given that relevance matching approaches mirror ideas from
traditional retrieval models, the decades of research on ad-hoc IR
can guide us with regard to the speci�c kinds of relevance signals
a model ought to capture. Unigram matches are the most obvious
signals to be modeled, as a counterpart to the term frequencies
that appear in almost all traditional retrieval models. Beyond this,
positional information, including where query terms occur and
how they depend on each other, can also be exploited, as demon-
strated in retrieval models that are aware of term proximity [19]
and term dependencies [9, 12]. �ery coverage is another factor
that can be used to ensure that, for queries with multiple terms,
documents contain di�erent query terms rather than emphasizing
only one query term. For example, given the query “dogs adoption
requirements”, unigram matching signals correspond to the occur-
rences of the individual terms “dogs”, “adoption” or “requirements”.
When considering positional information, text passages with “dogs
adoption” or “requirement of dog adoption” are highlighted, distin-
guishing them from text that only includes individual terms. �ery
coverage, meanwhile, further emphasizes that matching signals for
“dogs”, “adoption” and “requirements” should all be included in a
document.

Unigram signals are directly taken as input by DRMM [6] and
subsequently summarized as histograms. �e experiments in [6]
suggest that DRMM compares favorably to previously proposed
Neural IR retrieval models, and that unigram matching signals are
well-exploited. As for positional information, both the MatchPyra-
mid [14] and local Duet [13] models account for it by incorpo-
rating convolutional layers based on similarity matrices between
queries and documents. Although this leads to more complex mod-
els, MatchPyramid performs signi�cantly worse than DRMM [6],
while Duet’s local model performs similarly to DRMM [13]. �is in-
dicates the di�culty of going beyond unigrams to utilize positional

ar
X

iv
:1

70
4.

03
94

0v
2 

 [
cs

.I
R

] 
 7

 M
ay

 2
01

7



arXiv preprint, 2017 K. Hui et al.

information in deep neural IR models. Intuitively, unlike in stan-
dard sequence-based models, the interactions between a query and
a document are sequential along the query axis as well as along the
document axis, making the problem multi-dimensional in nature.
In addition, this makes it non-trivial to combine matching signals
from di�erent parts of the documents and over di�erent query
terms. In fact, we argue that both MatchPyramid and local Duet
models fail to fully account for one or more of the aforementioned
factors. For example, MatchPyramid’s pooling sizes disregard the
query dimensions, thus neglecting query coverage. Meanwhile,
local Duet’s CNN �lters match entire documents against individ-
ual query terms, but neglect proximity and possible dependencies
among di�erent query terms. To address these shortcomings, we
conjecture that a suitable combination of convolutional kernels
and recurrent layers can lead to a model that be�er accounts for
these factors. In particular, we present a novel re-ranking model
called PACRR (Position-Aware Convolutional-Recurrent Relevance
Matching). Our approach �rst produces similarity matrices that
record the semantic similarity between each query term and each
individual term occurring in a document. �ese matrices are then
fed through a series of convolutional, max-k-pooling, and recurrent
layers so as to capture interactions corresponding to, for instance,
bigram and trigram matches, and �nally to aggregate the signals
in order to produce global relevance assessments. In our model,
the convolutional layers are designed to capture both unigram
matching and position information over text windows with di�er-
ent lengths; k-max pooling layers are along the query dimension,
preserving matching signals over di�erent query terms; a recurrent
layer combines signals from di�erent query terms to produce a
query-document relevance score.
Organization. �e rest of this paper unfolds as follows. Section 2
describes our approach for computing similarity matrices and the
architecture of our deep learning model. �e setup and results of
our extensive experimental evaluation can be found in Section 3. We
discuss related works in Section 4, before concluding in Section 5.

2 METHOD

We now describe our novel PACRR approach, which consists of
two main parts: a relevance matching component that converts
each query-document pair into a similarity matrix sim |q |× |d | and
a deep architecture that takes a given query-document similarity
matrix as input and produces a query-document relevance score
rel(q,d). �e pipeline is summarized in Figure. 1. First, the rele-
vance matching component transforms each query q and document
d into a query-document similarity matrix sim |q |× |d | by compar-
ing each query term to each document term and recording the
similarity scores. Given such a similarity matrix, our deep model
then applies convolutional (CNN) layers to compare query n-grams
with document n-grams, followed by max pooling operations to
identify the strongest signals for each query term and n-gram size.
Finally, a recurrent (RNN) layer aggregates the available relevance
signals across di�erent query terms into an overall query-document
relevance score rel(q,d).

2.1 Relevance Matching

We propose encoding the query-document relevance matching via
query-document similarity matrices sim |q |× |d | that encode the sim-
ilarity between query and document terms. In particular, given a
document d and a query q, the similarity between every term pair
from d and q is encoded as a similarity matrix sim |q |× |d | , where
simi j corresponds to the similarity between the i-th term from
the query q and the j-th term from the document d . When using
cosine similarity, we have sim ∈ [−1, 1] |q |× |d | . Our similarity ma-
trix approach retains a richer signal than the similarity histogram
approach used in prior work [6], which is limited to performing
relevance matching against unigrams. Our matrices preserve both
n-gram relevance signals and query coverage information. In par-
ticular, n-gram matching corresponds to consecutive document
terms that are highly similar to at least one of the query terms,
while query coverage is re�ected in the number of rows in sim that
include at least one cell with high similarity. As in [6], the similar-
ity between a query term q and document term d is calculated by
taking the cosine similarity between the terms’ word2vec vectors.

�e subsequent processing in PACRR’s convolutional layers re-
quires that each query-document similarity matrix have the same
dimensionality. Given that the lengths of queries and documents
vary, we �rst transform the raw similarity matrices sim |q |× |d | into
simlq×ld matrices with uniform lq and ld as the number of rows
and columns. We unify the query dimension lq by zero padding
it to the maximum query length. With regard to the document
dimension ld , we describe two strategies: �rstk and kwindow.
PACRR-�rstk. �e simplest approach is to zero pad the document
dimension of each similarity matrix to the maximum document
length. Akin to [13], the �rstk distillation method simply keeps the
�rst k columns in the matrix, which correspond to the �rst k terms
in the document. If k > |d | the remaining columns are zero padded.
�e �rstk method is equivalent to zero padding if k is set to the
maximum document length.
PACRR-kwindow. As mentioned in [6], relevance matching is
local. Document terms that have a low query similarity relative
to a document’s other terms cannot contribute to the document
relevance score, so ignoring them has no e�ect on the �nal rele-
vance score. Put di�erently, relevance matching can be extracted in
terms of phrases, sentences or pieces of text that include relevant
information. �erefore, one can segment the documents according
to relevance relative to the given query, only retaining the text that
is highly relevant to the given query. Given this observation, we
prune query-document similarity cells with a low similarity score.
In the case of unigrams, we simply choose the top ld terms with
the highest similarity to query terms. In the case of n-grams, we
produce a similarity matrix simn

lq×ld
for each query-document pair

and each n-gram size, because the n-gram size must be considered
when the top n-term windows are chosen. For each n-term win-
dow in the document, kwindow calculates the maximum similarity
between each term and the query terms, and then calculates the
average similarity over each n-term window. It then selects the top
k = bld/nc windows by average similarity and discards all other
terms in the document. �e document dimension is zero padded if
bld/nc is not a multiple of k . When the convolutional layer later



A Position-Aware Deep Model for Relevance Matching in IR arXiv preprint, 2017

𝑠𝑖𝑚|%|×|'|

𝐶𝑁𝑁*×*⋯𝐶𝑁𝑁,-×,-

𝐶,.×,/×01
* ⋯𝐶,.×,/×01

,-

𝑚𝑎𝑥	𝑝𝑜𝑜𝑙𝑖𝑛𝑔	𝑓𝑖𝑙𝑡𝑒𝑟𝑠 𝑛>-𝑚𝑎𝑥	𝑝𝑜𝑜𝑙𝑖𝑛𝑔

	𝑃,.×,-×0@

𝑠𝑖𝑚,.×,/

𝐶,.×,/×A
A

𝐶,.×,/×A
A ⋯ 𝐶,.×,/×A

,-

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐼𝐷𝐹,.×A)

𝑅𝑒𝑐𝑢𝑟𝑟𝑒𝑛𝑡	𝐿𝑎𝑦𝑒𝑟

𝑅𝑒𝑙(𝑞, 𝑑)

𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑖𝑜𝑛

⋯
⋯
⋯

Figure 1: �e pipeline of PACRR. �e relevance matching component �rst transforms each query q and document d into a

query-document similaritymatrix sim |q |× |d | . Next, a distillationmethod transforms the raw similaritymatrix into a similarity

matrix with uni�ed dimensions simlq×ld . �e �rstk distillation method is displayed, and the same uni�ed similarity matrix is

used for all n-gram sizes. lд − 1 convolutional layers (CNN) are applied to the distilled similarity matrices, lд = 3 is displayed

thus CNN with kernel size 2 and 3 are applied. Next, max pooling is applied, ending up with lд matrices C1 · · ·Clд . Following

this, ns -max pooling captures the strongest ns signals over each query term and n-gram size, and the case when ns = 2 is

displayed. Finally, the similarity signals from di�erent n-gram sizes are concatenated together, the query terms’ normalized

IDFs are added, and a recurrent layer combines these signals for each query term into a query-document relevance score

rel(q,d).

operates on a similarity matrix produced by kwindow, the model’s
stride is set to n (i.e., the sliding window moves ahead n terms at a
time rather than one term at a time) so that it only considers con-
secutive n-grams that were present in the original document. �is
variant’s output is a similarity matrix simn

lq×ld
for each n-gram size.

�ese matrices support n-gram relevance matching by retaining
the context around each high-similarity term.
Distillation example. Suppose that we target ld = 4 and lq =
3, given a two term query and a document with six terms. �e
similarity is computed among query-document term pairs, resulting
in a corresponding sim2×6 similarity matrix such as

sim |q |× |d | =
(
0.9 0 0.7 0.1 0.2 0
0.1 −0.1 −0.5 0.8 0 0

)
Regardless of the chosen strategy, we zero pad the query dimension
because lq > |q |. �e �rstk variant then distills the similarity matrix
by simply taking the �rst ld columns regardless of the n-gram size:

simlq×ld =
©­«
0.9 0 0.7 0.1
0.1 −0.1 −0.5 0.8
0 0 0 0

ª®¬
We �rst illustrate the output of kwindow in the unigram case
(i.e., n = 1). Recall that each column corresponds to a docu-
ment term. �us the max similarity for each document term is
[0.9, 0, 0.7, 0.8, 0.2, 0]. We have ld = 4, so the columns correspond-
ing to the top four terms are kept and the rest discarded. �is results
in the document columns 1, 3, 4, and 5 being retained:

sim1
lq×ld =

©­«
0.9 0.7 0.1 0.2
0.1 −0.5 0.8 0
0 0 0 0

ª®¬
In the n-gram case, we must preserve n-term windows. Suppose we
set n = 2. Taking the max query term similarity for each document

term and using it to calculate the average similarity over each two
term window, we obtain [0.45, 0.35, 0.75, 0.5, 0.1]. bld/nc = 2, so
the top two windows are selected for inclusion in the similarity
matrix. �ese correspond to the windows beginning at positions 3
and 4:

sim2
lq×ld =

©­«
0.7 0.1 0.1 0.2
−0.5 0.8 0.8 0

0 0 0 0

ª®¬
Note that the term in position 4 of the original similarity matrix ap-
pears twice; this preserves the n-grams encountered in the original
similarity matrix. �e window over positions 3 and 4 corresponds
to the �rst occurrence of term 4, and the window over positions
4 and 5 accounts for the second occurrence of term 4. While the
term in position 1 of the original similarity matrix has the highest
similarity of any query term (0.9), it is not useful for n-gram match-
ing because the window that includes this term has a comparably
low similarity. It will still be considered by the model, however,
because it is present in the unigram matrix.

2.2 Deep Retrieval Model

Given a query-document similarity matrix simlq×ld as input, our
deep architecture then relies on convolutional layers to match query
n-grams and document n-grams to produce a similarity signal for
each query term, document term, and n-gram size n. Subsequently,
max pooling layers extract the document’s strongest similarity
cue for each query term and each n. Finally, a recurrent layer
aggregates these individual query term signals to predict a global
query-document relevance score rel(q,d).
Convolutional n-gram relevance matching. �e purpose of
this step is to match query n-grams with document n-grams given
a query-document similarity matrix as input. �is is accomplished
by applying multiple two-dimensional convolutional layers with



arXiv preprint, 2017 K. Hui et al.

di�erent kernel sizes to the input similarity matrix. Each convolu-
tional layer is responsible for a speci�c n-gram size; by applying
its kernel on n × n windows, it produces a similarity signal for
each window. When the �rstk method is used, each convolutional
layer receives the same similarity matrix simlq×ld as input because
�rstk produces the same similarity matrix regardless of the n-gram
size. When the kwindow method is used, each convolutional layer
receives a similarity matrix simn

lq×ld
corresponding to the convo-

lutional layer’s n-gram size. We use lд − 1 di�erent convolutional
layers with kernel sizes 2 × 2, 3 × 3, . . . , lд × lд , corresponding to
bi-gram, tri-gram, . . . , lд-gram matching, respectively, where the
maximum n-gram size to consider is governed by a hyper-parameter
lд . �e original similarity matrix corresponds to unigram matching,
while a convolutional layer with kernel size n × n is responsible
for capturing n-gram matching for an n ×n square within simn

lq×ld
.

Each convolutional layer applies nf di�erent �lters to its input,
where nf is another hyper-parameter. We use a stride of size (1, 1)
for the �rstk distillation method, meaning that the convolutional
kernel advances one step at a time in both the query and document
dimensions. For the kwindow distillation method, we use a stride
of (1, n) to move the convolutional kernel one step at a time in
the query dimension, but n steps at a time in the document di-
mension. �is ensures that the convolutional kernel only operates
over consecutive terms that existed in the original document. �us,
we end up with lд − 1 matrices Cnlq×ld×nf , where n indicates the
corresponding n-gram size. �e original similarity matrix will be
used to handle unigrams.
Maxpooling. �e purpose of this step is to capture thens strongest
similarity signals for each query term. Measuring the similarity
signal separately for each query term allows the model to consider
query term coverage, while capturing the ns strongest similarity
signals for each query term allows the model to consider signals
from di�erent kinds of relevance matching pa�ern, e.g., n-gram
matching and non-contiguous matching. In practice, we use a small
ns to prevent the model from being biased by document length;
while each similarity matrix contains the same number of document
term scores, longer documents have more opportunities to contain
terms that are similar to query terms. To capture the strongest ns
similarity signals for each query term, we �rst perform max pooling
over the �lter dimension nf to keep only the strongest signal from
the nf di�erent �lters. We then perform k-max pooling [11] over
the query dimension lq (corresponding to rows in the original
similarity matrix) to keep the strongestns similarity signals for each
query term. Both pooling steps are performed on each of the lд − 1
matrices Ci from the convolutional layer (corresponding to each
n-gram size) and on the original similarity matrix (corresponding
to unigrams) to produce the 3-dimensional tensor Plq×lд×ns . �is
tensor contains the ns strongest similarity signals for each query
term and for each n-gram size across all nf �lters.
Recurrent layer for global relevance. Finally, our model trans-
forms the query term similarity signals in Plq×lд×ns into a single
document relevance score rel(q,d). It achieves this by applying a
recurrent layer to P, taking a sequence of vectors (i.e., one vector
per query term) as input and learning weights to transform them
into the �nal relevance score. In more detail, we �rst calculate the

IDF of each query term qi on the document collection and pass the
IDFs through a so�max layer to normalize them relative to each
other. Next, we split up the query term dimension to produce a
matrix Plд×ns for each query term qi . Finally, we form the recur-
rent layer’s input by �a�ening each matrix Plд×ns into a vector
by concatenating the matrix’s rows together and appending query
term qi ’s normalized IDF onto the end of the vector. �is sequence
of vectors for each query term qi is passed into a Long Short-Term
Memory (LSTM) recurrent layer [7] with an output dimensionality
of one. �at is, the LSTM’s input is a sequence of query term vectors
where each vector is composed of the query term’s normalized IDF
and the similarity signals for the unigram case and for each n-gram
size. �e LSTM’s output is then used as our document relevance
score rel(q,d).
Training objective and prediction. Our model is trained on
triples consisting of a query q, relevant document d+, and non-
relevant document d− using stochastic gradient descent (SGD) to
minimize a loss function. We use a standard pairwise max margin
loss as in Eq. 1.

L(q,d+,d−;Θ) = max(0, 1 − rel(q,d+) + rel(q,d−)) (1)

At each training step, we perform SGD on a mini-batch of 32 triples.
For the purpose of choosing the triples, we consider all documents
that are judged with a label more relevant than Rel1 as highly rel-
evant, and put the remaining relevant documents into a relevant
group. To pick each triple, we sample a relevance group with proba-
bility proportional to the number of documents in the group within
the training set, and then we randomly sample a document with
the chosen label to serve as the positive document d+. If the chosen
group is the highly relevant group, we randomly sample a docu-
ment from the relevant group to serve as the negative document
d−. If the chosen group is the relevant group, we randomly sample
a non-relevant document as d−. �is sampling procedure ensures
that we di�erentiate between highly relevant documents (i.e., those
with a relevance label of HRel, Key or Nav) and relevant documents
(i.e., those are labeled as Rel). �e training continues until a given
number of epochs is reached. �e model is saved at every epoch.
We use the model with the best Err@20 on the validation set to
make predictions.

3 EVALUATION

In this section, we empirically evaluate our novel PACRR models us-
ing manual relevance judgments by re-ranking search results from
the standard Trec Web Track. We compare them against both tra-
ditional query-likelihood (QL) and the current state-of-the-art deep
retrieval models: DRMM [6], Duet [13], and MatchPyramid [14]. As
our focus is on the deep relevance matching model as mentioned
in Section 1, we only compare against Duet’s local model, denoted
as Duet-local. To put our model in context, we follow previous
work in re-ranking search results from query-likelihood relevance
models akin to [6]. Additionally, we scrutinize the models in more
detail by re-ranking a wide range of runs from Trec Web Track
participants from 2009–14. In practice, individual runs only cover
a small subset of judged documents. �us, we further provide a

1Judgments from Trec include junk pages (Junk), non-relevance (NRel), relevance
(Rel), high relevance (HRel), key pages (Key) and navigational pages (Nav).



A Position-Aware Deep Model for Relevance Matching in IR arXiv preprint, 2017

Figure 2: �e loss on training data and the Expected recip-

rocal rank (Err@20) and nDCG@20 per epoch on validation

data when training on Web Track 2010–14. �e x-axis de-

notes the epoch. �e y-axis indicates the Err@20/nDCG@20

on the le� and the training loss on the right. �e best perfor-

mance appears on 109th epoch with Err@20=0.242. �e low-

est loss (0.767) on the training data occurs a�er 118 epochs.

further examination of predictions based on all available judgments
by deriving pairwise comparisons between documents from Trec
judgments.

3.1 Experimental Setup

We rely on the 2009–2014 Trec Web Track ad-hoc task bench-
marks2, which are widely used in the IR community. �e bench-
marks are based on the ClueWeb09 and ClueWeb12 datasets as
document collections. In total, there are 300 queries and more than
100k judgments (qrels). �ree years (2012–14) of query-likelihood
baselines (Terrier version) provided by Trec3 serve as baseline
runs in Section 3.2. In particular, two runs based on QL in each
year are used: one based on all documents, referred to as QL-ALL,
and one that relies on spam-�ltering before ranking, referred to
as QL-NOSPAM [5]. In Section 3.3, the search results from runs
submi�ed by participants from each year are also employed: there
are 71 (2009), 55 (2010), 62 (2011), 48 (2012), 50 (2013), and 27 (2014)
runs. Err@20 [4] and nDCG@20 [10] serve as evaluation measures,
and both are computed with the script from Trec4.
Training. All models are trained and tested based on years in a
robin manner, fully utilizing the judged data, and making each year
as unit to make comparison, as a result of the fact that the runs
from Trec employed for re-ranking are on a per-year basis. For
be�er comparisons and a more �ne-grained analysis, we evaluate
each year of Trec data separately. In particular, the available judg-
ments are considered in accordance with the individual years of the
Web Track, with 50 queries per year. Proceeding in a round-robin
order, we report test results on one year by exploiting the respec-
tive remaining �ve years (250 queries) for training. From these
250 queries, we reserve 50 random queries as a held-out set for
validation and hyper-parameter tuning, while the remaining 200
2h�p://trec.nist.gov/tracks.html
3h�ps://github.com/trec-web/trec-web-2014
4h�p://trec.nist.gov/data/web/12/gdeval.pl

queries serve as the actual training set. As mentioned in Section 2,
model parameters and training epochs are chosen by maximizing
the Err@20 on the validation set. �e selected model is then used
to make predictions on the separate test data. One example for
this training procedure is displayed in Figure 2. �ere are four
hyper-parameters that govern the behavior of the proposed PACRR-
kwindow and PACRR-�rstk: the uni�ed length of the document
dimension ld , the k-max pooling size ns , the maximum n-gram
size lд , and the number of �lters used in convolutional layers nf .
Due to limited computational resources, we determine the range of
hyper-parameters to try based on pilot experiments and domain
intuitions. In particular, we evaluate ld ∈ [256, 384, 512, 640, 768],
ns ∈ [1, 2, 3, 4] and lд ∈ [2, 3, 4]. Given the limited possible match-
ing pa�erns given a small kernel size, e.g., lд = 3, the nf is �xed
to 32. For PACRR-�rstk, we intuitively desire to retain as much
information as possible from the input, and thus the ld is always
set to 768. �e DRMM (DRMMLCH×IDF ), the Duet-local, as well as
the MatchPyramid [14] are trained similarly. For the purposes of
choosing the triples, we group the relevance labels HRel, Key, and
Nav into a highly relevant group and the relevance label Rel into a
relevant group.

3.2 Re-Ranking�ery-Likelihood Results

We �rst examine the proposed model by re-ranking the search re-
sults from the QL baselines from Trec, which are only available on
2012–14. �e results are summarized in Table 1. As reported in [6],
DRMM signi�cantly outperforms QL-ALL on WT12 and WT14.
However, it only performs signi�cantly be�er on WT12 when re-
ranking QL-NOSPAM. Overall, we observe a 32% improvement on
average with DRMM relative to either QL baseline. Meanwhile,
Duet-local and MatchPyramid performs close to DRMM on all years.
As for the proposed models, we observe signi�cant improvements
with PACRR-kwindow on all three years when re-ranking QL-ALL,
and signi�cant improvements on 2012 and 2013 when re-ranking
QL-NOSPAM, whereas PACRR-�rstk improves both runs on all three
years. More remarkably, by solely re-ranking the search results
from QL-ALL, PACRR-�rstk can already rank within the top-3 par-
ticipating systems on all three years; and the re-ranked search
results from PACRR-kwindow is also ranked within the top-5 based
on nDCG@20. Moreover, from Table 1, when mixing the results
from QL-ALL and QL-NOSPAM together, both PACRR-kwindow and
PACRR-�rstk provide around 60% improvements on average among
years.

3.3 Re-Ranking Search Results

Di�erent models based on di�erent methodologies lead to di�erent
initial document rankings, and QL is only one of them. In this
section, we would like to examine the performance of the proposed
models in re-ranking di�erent sets of search results. �us, we
extend our analysis to re-rank search results from all submi�ed
runs in six years of the Trec Web Track ad-hoc task. In particular,
we only consider the judged documents from Trec, which loosely
corresponds to top-20 documents in each run. �e tested models
make predictions for individual documents, which are used to re-
rank the documents within each submi�ed run. Given that there
are about 50 runs for each year, it is no longer feasible to list the

http://trec.nist.gov/tracks.html
https://github.com/trec-web/trec-web-2014


arXiv preprint, 2017 K. Hui et al.

Table 1: Err@20 and nDCG@20 on Trec Web Track 2012–14 when re-ranking search results from QL. �e comparisons are

conducted in between two variants of PACRR and DRMM (D/d), Duet-local (L/l), as well as MatchPyramid (M/m). And all

methods are compared against originalQL (Q/q) baseline. �eupper/lower-case characters in the brackets indicate a signi�cant

di�erence under two-tailed paired Student’s t-tests at 95% or 90% con�dence levels relative to the corresponding approach. For

example, in wt12 the PACRR-�rstk method signi�cantly outperforms all four baselines at 95% con�dence levels when using

nDCG@20. In addition, the relative ranks among all runs within the respective years according to Err@20 and nDCG@20 are

also reported directly a�er the absolute scores.

Measure Year PACRR-�rstk Rank PACRR-kwindow Rank Duet-local Rank DRMM Rank MatchPyramid Rank QL Rank

QL-ALL

ERR@20
wt12 0.318 (mQ) 2 0.313 (MQ) 4 0.281 (Q) 10 0.289 (Q) 10 0.227 16 0.177 26
wt13 0.166 (DQ) 3 0.139 (Q) 14 0.147 (Q) 12 0.124 25 0.141 (q) 13 0.101 38
wt14 0.221 (LMQ) 2 0.208 (Q) 3 0.179 (Q) 12 0.193 (Q) 10 0.176 (Q) 12 0.131 25

nDCG@20
wt12 0.243 (DLMQ) 2 0.250 (DLMQ) 2 0.186 (Q) 11 0.197 (Q) 8 0.164 (Q) 16 0.106 39
wt13 0.295 (DLQ) 3 0.279 (DQ) 4 0.248 (q) 11 0.228 20 0.258 (Q) 7 0.190 36
wt14 0.339 (LMQ) 1 0.331 (LMQ) 1 0.267 (q) 11 0.300 (Q) 6 0.278 (Q) 10 0.231 23

QL-NOSPAM

ERR@20
wt12 0.334 (DMQ) 2 0.300 (DmQ) 7 0.286 (q) 10 0.239 16 0.235 16 0.190 25
wt13 0.143 (DQ) 13 0.124 (Q) 25 0.133 (DQ) 14 0.105 (LM) 35 0.133 (DQ) 15 0.095 46
wt14 0.213 (mq) 2 0.193 10 0.179 12 0.188 11 0.178 12 0.159 21

nDCG@20
wt12 0.240 (DLMQ) 2 0.229 (DLMQ) 3 0.178 (q) 12 0.184 (Q) 11 0.163 16 0.132 24
wt13 0.261 (DQ) 7 0.241 (Q) 14 0.232 (Q) 19 0.212 (m) 25 0.245 (dQ) 14 0.180 40
wt14 0.295 (dL) 7 0.287 (d) 9 0.254 17 0.253 17 0.268 11 0.261 14

0.05 0.10 0.15 0.20

Err@20 of Trec runs

0.05

0.10

0.15

0.20

E
rr

@
2
0
 a

ft
e
r 

re
-r

a
n
ki

n
g

Test on wt09

PACRR-kwindow

PACRR-firstk

DRMM

DUET-Local

MatchPyramid

0.00 0.05 0.10 0.15 0.20

Err@20 of Trec runs

0.00

0.05

0.10

0.15

0.20

Test on wt10

PACRR-kwindow

PACRR-firstk

DRMM

DUET-Local

MatchPyramid

0.05 0.10 0.15 0.20

Err@20 of Trec runs

0.05

0.10

0.15

0.20
Test on wt11

PACRR-kwindow

PACRR-firstk

DRMM

DUET-Local

MatchPyramid

0.05 0.10 0.15 0.20 0.25 0.30 0.35

Err@20 of Trec runs

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Test on wt12

PACRR-kwindow

PACRR-firstk

DRMM

DUET-Local

MatchPyramid

0.040.060.080.100.120.140.160.18

Err@20 of Trec runs

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

Test on wt13

PACRR-kwindow

PACRR-firstk

DRMM

DUET-Local

MatchPyramid

0.05 0.10 0.15 0.20 0.25

Err@20 of Trec runs

0.05

0.10

0.15

0.20

0.25

Test on wt14

PACRR-kwindow

PACRR-firstk

DRMM

DUET-Local

MatchPyramid

0.050.100.150.200.250.300.350.40

nDCG@20 of Trec runs

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

n
D

C
G

@
2
0
 a

ft
e
r 

re
-r

a
n
ki

n
g

PACRR-kwindow

PACRR-firstk

DRMM

DUET-Local

MatchPyramid

0.0 0.1 0.2 0.3 0.4

nDCG@20 of Trec runs

0.0

0.1

0.2

0.3

0.4

PACRR-kwindow

PACRR-firstk

DRMM

DUET-Local

MatchPyramid

0.050.100.150.200.250.300.350.40

nDCG@20 of Trec runs

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

PACRR-kwindow

PACRR-firstk

DRMM

DUET-Local

MatchPyramid

0.05 0.10 0.15 0.20 0.25 0.30

nDCG@20 of Trec runs

0.05

0.10

0.15

0.20

0.25

0.30

PACRR-kwindow

PACRR-firstk

DRMM

DUET-Local

MatchPyramid

0.10 0.15 0.20 0.25 0.30 0.35

nDCG@20 of Trec runs

0.10

0.15

0.20

0.25

0.30

0.35

PACRR-kwindow

PACRR-firstk

DRMM

DUET-Local

MatchPyramid

0.10 0.15 0.20 0.25 0.30 0.35

nDCG@20 of Trec runs

0.10

0.15

0.20

0.25

0.30

0.35

PACRR-kwindow

PACRR-firstk

DRMM

DUET-Local

MatchPyramid

Figure 3: Re-ranking search results fromTrecWebTrack 2009–14 runswithPACRR-kwindow, PACRR-�rstk,DRMM,Duet-local
and MatchPyramid respectively. �e x-axis represents the ranking score of the original Trec runs and the y-axis represents

the score of the corresponding re-ranked runs. �e dashed line is y=x. Err@20 is used in the upper row and nDCG@20 is used

in the lower row.

measure scores for each re-ranked run. �us, we summarize the
results by comparing the performance of each run before and a�er
re-ranking as in Figure 3. We also provide concrete statistics over
each year to compare the methods under consideration in Table 2.
In Figure 3, each column corresponds to one year and the top row
is based on Err@20, while the six plots at the bo�om are based on
nDCG@20. �e axes represent the metric scores before (x-axis)
and a�er (y-axis) re-ranking. �e dashed line separating them is
y = x , indicating when no change is observed from the re-ranking.
�erefore, the points in the upper le� correspond to the ones show-
ing improved performance when re-ranking, and vice versa for the
lower right region. In Table 2, we provide statistics for the relative
changes of measures before and a�er re-ranking and report them

in terms of percentages (“average ∆ measure score”). �e number
of systems whose results on individual years has increased a�er
re-ranking with a tested model is reported in the bo�om part of
Table 2. Note that these results assess two di�erent aspects: the
average ∆ measure score in Table 2 captures the degree to which a
model can improve an initial run, while the number of runs indicate
to what extent an improvement can be achieved across di�erent
systems. In other words, the former measures the strength of the
models, and the la�er demonstrates the adaptability of the models.
We �rst consider the bo�om le� three plots in Figure 3, correspond-
ing to results on 2009–11 under nDCG@20, similar to the ones
reported in [6]. It can be observed that all baselines perform fare
well. For example, the nDCG@20 of QL from [6] is 0.224 (cf. Table 2



A Position-Aware Deep Model for Relevance Matching in IR arXiv preprint, 2017

Table 2: �e average statistics when re-ranking all runs from the Trec Web Track 2009–14 based on Err@20 and nDCG@20.

�e average di�erences of the measure score for individual runs are reported in the 1st part. �e comparisons are conducted

in between two variants of PACRR and DRMM (D/d), Duet-local (L/l), as well as MatchPyramid (M/m). �e upper/lower-case

characters in the brackets indicate a signi�cant di�erence under two-tailed paired Student’s t-tests at 95% or 90% con�dence

levels relative to the corresponding approach. For example, in wt12 the PACRR-�rstk method signi�cantly outperforms all

three baselines at 95% con�dence levels when using both measures. �e number of runs that show improvements in terms of

a measure is summarized at the bottom.

Tested Methods Measures year wt09 wt10 wt11 wt12 wt13 wt14
# total runs 71 55 62 50 52 29

average ∆ measure score over each year (%):
re-rank score−original score

original score

Err@20

PACRR-�rstk 66% (DL) 362% (dm) 43% (DLM) 76% (DLM) 37% (DLM) 41% (DLM)
PACRR-kwindow 70% (DLm) 393% (DlM) 10% (LM) 83% (DLM) 21% (DLM) 36% (DLM)

Duet-local 80% (DM) 316% 15% (DM) 64% (M) 26% (DM) 19% (M)
DRMM 54% (LM) 315% 11% (LM) 61% (M) 5% (LM) 19% (M)

MatchPyramid 65% (DL) 313% 2% (DL) 48% (DL) 29% (DL) 14% (DL)

nDCG@20

PACRR-�rstk 69% (DLM) 304% (LM) 56% (DLM) 100% (DLM) 31% (DLM) 31% (DLM)
PACRR-kwindow 63% (Dm) 345% (DLM) 27% (DLM) 113% (DLM) 23% (DL) 30% (DLM)

Duet-local 62% (DM) 237% (D) 17% (DM) 55% (DM) 17% (DM) 10% (DM)
DRMM 49% (LM) 274% (LM) 8% (LM) 70% (LM) 9% (LM) 15% (L)

MatchPyramid 59% (DL) 232% (D) 1% (DL) 37% (DL) 21% (DL) 14% (L)

# runs get higher measure score
a�er re-ranking

Err@20

PACRR-�rstk 67 52 60 46 45 29

PACRR-kwindow 69 55 29 48 34 22
Duet-local 67 52 38 43 36 17
DRMM 58 52 29 43 21 19

MatchPyramid 60 51 25 39 42 17

nDCG@20

PACRR-�rstk 67 55 62 50 48 27

PACRR-kwindow 66 55 52 50 42 25
Duet-local 61 51 43 46 41 17
DRMM 61 55 31 44 32 16

MatchPyramid 54 51 24 40 42 20

therein), and the nDCG@20 a�er re-ranking is 0.258, while in Fig-
ure 3, the re-ranked runs with initial nDCG@20 between 0.2 and
0.25 have nDCG@20 around 0.3, which is especially true on 2009
and 2011. Table 2 further demonstrates that either PACRR variant
can improve by at least 23% on average across di�erent years in
terms of nDCG@20. Beyond that, 80% of submi�ed runs are im-
proved a�er re-ranking by the proposed models. For 2010–12, all
submi�ed runs are consistently improved by PACRR-�rstk in terms
of nDCG@20. Both variants of PACRR can signi�cantly outperform
three baseline models on at least four years out of six years in
terms of average improvements, when employing either ERR@20
or nDCG@20 respectively, where the statistical tests are conducted
between the improvements over individual runs when re-ranked
by di�erent models. From both Figure 3 and Table 2, however, it is
clear that none of the tested models can make consistent improve-
ments over all submi�ed runs along six years. In other words, there
still exist document pairs that are predicted contradicting to the
judgments from Trec. �us, in next Section, we further investigate
the performance in terms of prediction over document pairs.

3.4 Ranking Document Pairs

As pointed out in [16], the ranking of documents can be decom-
posed into rankings of document pairs. In other words, a model’s
retrieval quality can be examined by checking across a range of
individual document pairs how likely it is that the model assigns
a higher score for documents that are more relevant. �us, it is
possible for us to compare di�erent models over the same set of
complete judgments, removing the issue of di�erent initial runs.

Moreover, although ranking is our ultimate task, a direct inspection
of pairwise prediction results can indicate which kinds of docu-
ment pairs a model succeeds at or fails on. We �rst convert the
graded judgments from Trec into ranked document pairs by com-
paring their labels. In particular, document pairs are created among
documents that have di�erent labels. A prediction is counted as
correct if it assigns a higher score to the document from the pair
that is labeled with a higher degree of relevance. �e judgments
from Trec contain at most six relevance levels: junk pages (Junk),
non-relevance (NRel), relevance (Rel), high relevance (HRel), key
pages (Key) and navigational pages (Nav), corresponding to six
graded levels, i.e., -2, 0, 1, 2, 3, 4. Di�erent years have di�erent
levels and di�erent grade assignment policies, so we merge and
unify the original levels from the six years into four grades: Nav,
HRel, Rel and NRel. Given the absence of HRel and Nav on some
queries, we �rst summarize the results by macro-averaging over
each year in Figure 4. Speci�cally, we divide the number of cor-
rectly predicted document pairs by the total number of documents
from a year (for 50 queries). �is captures the average accuracy
as a bar for each label combination. �e statistics are calculated
over all possible combinations of judgment pairs. We further group
accuracy number according to their type of label combination over
individual queries. �e statistics are summarized in Table 3. �e
column named volume is the percentage of the current label combi-
nation out of all document pairs, and the # query column statistics
the number of queries where there exists a label combination. In
Table 3, we observe that PACRR model variants always perform
be�er than the baselines on label combinations HRel vs. NRel, Rel



arXiv preprint, 2017 K. Hui et al.

HRel-N
Rel

HRel-Rel

Rel-N
Rel

0.0

0.2

0.4

0.6

0.8

1.0
#

C
o
rr

e
ct

 d
o
cu

m
e
n
t 

p
a
ir

s/
#

T
o
ta

l 
p
a
ir

s

Test on wt09
PACRR-kwindow

PACRR-firstk

DRMM

Duet-local

MatchPyramid

HRel-N
Rel

HRel-Rel

Rel-N
Rel

Test on wt10
PACRR-kwindow

PACRR-firstk

DRMM

Duet-local

MatchPyramid

HRel-N
Rel

HRel-Rel

Nav-HRel

Nav-NRel

Nav-Rel

Rel-N
Rel

Test on wt11
PACRR-kwindow

PACRR-firstk

DRMM

Duet-local

MatchPyramid

HRel-N
Rel

HRel-Rel

Nav-HRel

Nav-NRel

Nav-Rel

Rel-N
Rel

0.0

0.2

0.4

0.6

0.8

1.0

#
C

o
rr

e
ct

 d
o
cu

m
e
n
t 

p
a
ir

s/
#

T
o
ta

l 
p
a
ir

s

Test on wt12
PACRR-kwindow

PACRR-firstk

DRMM

Duet-local

MatchPyramid

HRel-N
Rel

HRel-Rel

Nav-HRel

Nav-NRel

Nav-Rel

Rel-N
Rel

Test on wt13
PACRR-kwindow

PACRR-firstk

DRMM

Duet-local

MatchPyramid

HRel-N
Rel

HRel-Rel

Nav-HRel

Nav-NRel

Nav-Rel

Rel-N
Rel

Test on wt14
PACRR-kwindow

PACRR-firstk

DRMM

Duet-local

MatchPyramid

Figure 4: Comparison of PACRR-kwindow, PACRR-�rstk, DRMM, andDuet-local over document pairs that are ranked in agree-

ment with the judgments from Trec. �e x-axis is the pair of labels from Trec judgments. �e y-axis is the the ratio between

the number of correctly ranked document pairs and the total number. All judgments from Trec are considered.

Table 3: Comparison among tested methods in terms of accuracy in ranking document pairs with di�erent labels. �e column

named “volume” records the occurrences of each label combination out of the total pairs. �e # queries column records the

number of queries that include a particular label combination. �e comparisons are conducted in between two variants of

PACRR and DRMM (D/d), Duet-local (L/l), as well as MatchPyramid (M/m). �e upper/lower-case characters in the brackets

indicate a signi�cant di�erence under two-tailed paired Student’s t-tests at 95% or 90% con�dence levels relative to the corre-

sponding approach. For example, in the “Rel-NRel” group, both variants signi�cantly outperforms all three baselines at 95%

con�dence levels. In the last row, the average accuracy among di�erent kinds of label combinations is computed, weighted by

their corresponding volume.

label combinations volume (%) # queries tested methods
PACRR-�rstk PACRR-kwindow Duet-local DRMM MatchPyramid

Nav-HRel 0.3% 49 45.8% 45.5% 45.2% 48.2% 47.3%
Nav-Rel 1.1% 65 56.0% (m) 56.3% (M) 54% 57% (M) 53.2% (D)
Nav-NRel 3.6% 67 76.1% (DLM) 76.6% (DLM) 67.1% (M) 71.5% (M) 64.7% (DL)
HRel-Rel 8.4% 257 57.3% 57.0% 55.5% 55.8% 52.8%
HRel-NRel 23.1% 262 76.7% (DLM) 76.4% (DLM) 68.4% 70.1% (M) 65.6% (D)
Rel-NRel 63.5% 290 73.0% (DLM) 72.5% (DLM) 63.9% (DM) 65.9% (LM) 61.4% (DL)

weighted average 72.4% 72.0% 64.2% 66.1% 61.6%

vs. NRel and Nav vs. NRel, which in total cover 90% of all docu-
ment pairs. Meanwhile, apart from Nav-Rel, there is no signi�cant
di�erence when distinguishing Nav from other types. �e three

baselines perform closely, where DRMM and Duet-local perform
slightly be�er than MatchPyramid.



A Position-Aware Deep Model for Relevance Matching in IR arXiv preprint, 2017

3.5 Discussion

Hyper-parameters. As mentioned in Section 3.1, models are se-
lected based on the Err@20 over validation data. Hence, it is su�-
cient to to use a reasonable and representative validation dataset,
rather than handpicking a speci�c set of parameter se�ings. How-
ever, to have a be�er understanding of the in�uence of di�er-
ent hyper-parameters, we explore PACRR-kwindow’s e�ectiveness
when several hyper-parameters are varied. �e results when re-
ranking QL-ALL search results are given in Figure 5. �e results are
reported based on the models with the highest validation scores
a�er �xing certain hyper-parameters. For example, the Err@20 in
the le�most �gure is obtained when �xing ld to the values shown.
�e crosses in Figure 5 correspond to the models that were selected
for use on the test data, based on their validation set scores. It can
be seen that the selected models are not necessarily the best model
on the test data, as evidenced by the di�erences between validation
and test data results, but we consistently obtain scores within a
reasonable margin. Owing to space considerations, we omit the
plots for PACRR-�rstk.
Choice between kwindow and �rstk approaches. As men-
tioned, both PACRR-kwindow and PACRR-�rstk serve to address the
variable-length challenge for documents and queries, and to make
the training feasible and more e�cient. In general, if both training
and test documents are known to be short enough to �t in memory,
then PACRR-�rstk can be used directly. Otherwise, PACRR-kwindow
is a reasonable choice to provide comparable results. Alternatively,
one can regard this choice as another hyper-parameter, and make
a selection based on held-out validation data.
Accuracy in sorting document pairs. Beyond the observations
from Section 3.4, we further examine the methods’ accuracy over
binary judgments by merging the Nav, HRel and Rel labels. �e
accuracies become 73.5%, 74.1% and 67.4% for PACRR-kwindow,
PACRR-�rstk, and DRMM, respectively. Note that the manual judg-
ments that indicate a document as relevant or non-relevant relative
to a given query includes disagreements [3, 20] and errors [2]. In
particular, a 64% agreement (cf. Table 2 (b) therein) is observed
over the inferred relative order among document pairs based on
graded judgments from six trained judges [3]. When reproducing
Trec judgments, AI-Maskari et al. [1] reported a 74% agreement
(cf. Table 1 therein) with the original judgments from Trec when
a group of users re-judged 56 queries on the Trec-8 document
collections. Meanwhile, Alonso and Mizzaro [2] observed a 77%
agreement relative to judgments from Trec when collecting judg-
ments via crowdsourcing. �erefore, the 74% agreement achieved
by both PACRR methods is close to the aforementioned agreements
among di�erent human assessors. However, when distinguishing
Nav, HRel and Rel, the tested models still fall signi�cantly short of
human-level results. �ese distinctions are important for a success-
ful ranker, especially when measuring with graded metrics such
as Err@20 and nDCG@20. Hence, further research is needed for
be�er discrimination among relevant documents with di�erent de-
grees of relevance. In addition, as for the distinction between Nav
documents and Rel or HRel documents, we argue that since Nav
actually indicates that a document mainly satis�es a navigational
intent, this makes such documents qualitatively di�erent from Rel
and HRel documents. Speci�cally, a Nav is more relevant for a

user with navigational intent, whereas for other users it may in
some cases be less useful than a document that directly includes
highly pertinent information content. �erefore, we hypothesize
that further improvements can be obtained by introducing a clas-
si�er for navigational documents before employing our proposed
deep retrieval model.

4 RELATEDWORK

Ad-hoc retrieval systems aim at ranking documents with respect
to their relevance relative to given queries. Recently, the promise
of deep learning as a potential driver for new advances in retrieval
quality has a�racted signi�cant a�ention. Early works like Deep
Structured Semantic Models [8] (DSSM) learned low-dimensional
representations of queries and documents in a shared space and
performed ranking by comparing the cosine similarity between a
given query’s representation and the representations of documents
in the collection. Similar approaches such as C-DSSM [18] relied on
alternative means of learning document representations. Severyn
and Moschi�i [17] further combined learned semantic representa-
tions with external features to rank question answers and tweets. In
addition, other approaches to learning representation of documents
or queries can also be deployed for retrieval, by taking the similarity
between such representations as relevance scores. Models of this
sort include ARC-I and ARC-II by Pang et al. [15], which performed
text classi�cation by producing representations of documents and
queries separately (ARC-I), or, alternatively, produced represen-
tations that also considered the interactions between queries and
documents jointly (ARC-II). �e experiments from [6] (as well as
our own pilot experiments) showed that none of the above deep
models can consistently improve traditional retrieval models such
as QL on the long-established Trec benchmarks.

Guo et al. [6] highlighted that the matching needed for infor-
mation retrieval di�ers from the kind that is used in NLP tasks,
which typically aim at semantic matching. Information retrieval
ranking models, in contrast, are concerned with relevance matching.
�e former focuses on comparing the meaning of two input texts,
while the la�er focuses on the inherently asymetric goal of repre-
senting the text and determining its relevance to a user query. �e
overall semantics of the document needn’t be similar to the user
intent expressed by the query. Indeed, traditional retrieval models
such as query-likelihood (QL) [21] are heavily based on this notion
of relevance matching, capturing it via unigram occurrences of
query terms. DRMM learns the same sort of unigram matches as in
traditional retrieval models, but with more advanced instruments
from deep learning. In particular, DRMM takes a sequence of �xed-
length query term similarity histograms as input; each histogram
hj represents the matches between one query term qj in a given
query q and the terms in a given document. �e query similarity
histograms are each fed through a series of fully connected layers
to produce a similarity signal for each query term. �e document’s
relevance score rel(q,d) is a weighted summation of each query
term’s similarity signal. More recently, Duet [13] employs a deep
ranking model that considers both exact matches between docu-
ment and query terms (the local model) and the similarity between
low-dimensional representations of the query and document (the
distributed model). As mentioned in Section 1, we propose a novel



arXiv preprint, 2017 K. Hui et al.

256 384 512 640 768

unified document dimension: ld

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

E
rr

@
2
0
 o

f 
re

-r
a
n
ke

d
 Q

L-
A

LL

wt12

wt13

wt14

1 2 3 4

k-max pooling: ns

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

wt12

wt13

wt14

2 3 4

maximum n-gram size: lg

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

wt12

wt13

wt14

Figure 5: �e Err@20 of re-rankedQL-ALLwith PACRR-kwindow when applying di�erent hyper-parameters: ld , ns and lд . �e

x-axis re�ects the parameter settings for di�erent hyper-parameters, and the y-axis the Err@20. Points covered with crosses

correspond to the ones reported in Table 1.

model to be�er encode positional information with a neural IR
approach.

5 CONCLUSION

In this work, we have highlighted and demonstrated the importance
of preserving positional information for deep retrieval models by
incorporating insights from traditional information retrieval mod-
els into our PACRR novel deep retrieval model. In particular, our
model captures term dependencies and proximity among query
term occurrences through the use of convolutional layers that con-
sider document and query n-grams of di�erent sizes. Our model
considers document relevance across di�erent query terms through
the use of a recurrent layer that combines relevance signals across
query terms. Extensive experiments on Trec Web Track ad-hoc
data show that the proposed model both substantially outperforms
the state-of-the-art deep model on these data and can dramatically
improve search results as a re-ranker.

REFERENCES

[1] Azzah Al-Maskari, Mark Sanderson, and Paul Clough. 2008. Relevance judg-
ments between TREC and Non-TREC assessors. In Proceedings of the 31st annual
international ACM SIGIR conference on Research and development in information
retrieval. ACM, 683–684.

[2] Omar Alonso and Stefano Mizzaro. 2012. Using crowdsourcing for TREC rele-
vance assessment. Information Processing &Management 48, 6 (2012), 1053–1066.

[3] Ben Cartere�e, Paul N Benne�, David Maxwell Chickering, and Susan T Dumais.
2008. Here or there: Preference Judgments for Relevance. In Advances in
Information Retrieval. Springer, 16–27.

[4] Olivier Chapelle, Donald Metlzer, Ya Zhang, and Pierre Grinspan. 2009. Expected
reciprocal rank for graded relevance. In Proceedings of the 18th ACM conference
on Information and knowledge management (CIKM ’09). ACM, New York, NY,
USA, 621–630. DOI:h�p://dx.doi.org/10.1145/1645953.1646033

[5] Kevyn Collins-�ompson, Craig Macdonald, Paul Benne�, Fernando Diaz, and
Ellen M Voorhees. 2015. TREC 2014 web track overview. Technical Report. DTIC
Document.

[6] Jiafeng Guo, Yixing Fan, Qingyao Ai, and W Bruce Cro�. 2016. A deep relevance
matching model for ad-hoc retrieval. In Proceedings of the 25th ACM International
on Conference on Information and Knowledge Management. ACM, 55–64.

[7] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long Short-Term Memory.
Neural Computation 9, 8 (Nov. 1997), 1735–1780. DOI:h�p://dx.doi.org/10.1162/
neco.1997.9.8.1735

[8] Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, and Larry
Heck. 2013. Learning Deep Structured Semantic Models for Web Search Using

Clickthrough Data. In Proceedings of the 22Nd ACM International Conference on
Information & Knowledge Management (CIKM ’13). ACM, New York, NY, USA,
2333–2338. DOI:h�p://dx.doi.org/10.1145/2505515.2505665

[9] Samuel Huston and W. Bruce Cro�. 2014. A Comparison of Retrieval Models us-
ing Term Dependencies. In Proceedings of the 23rd ACM International Conference
on Conference on Information and Knowledge Management, CIKM 2014, Shanghai,
China, November 3-7, 2014, Jianzhong Li, Xiaoyang Sean Wang, Minos N. Garo-
falakis, Ian Soboro�, Torsten Suel, and Min Wang (Eds.). ACM, 111–120. DOI:
h�p://dx.doi.org/10.1145/2661829.2661894

[10] Kalervo Järvelin and Jaana Kekäläinen. 2002. Cumulated gain-based evaluation
of IR techniques. ACM Transactions on Information Systems (TOIS) 20, 4 (2002),
422–446.

[11] Nal Kalchbrenner, Edward Grefenste�e, and Phil Blunsom. 2014. A convolutional
neural network for modelling sentences. arXiv preprint arXiv:1404.2188 (2014).

[12] Donald Metzler and W Bruce Cro�. 2005. A Markov random �eld model for
term dependencies. In Proceedings of the 28th annual international ACM SIGIR
conference on Research and development in information retrieval. ACM, 472–479.

[13] Bhaskar Mitra, Fernando Diaz, and Nick Craswell. 2017. Learning to Match Using
Local and Distributed Representations of Text for Web Search. In Proceedings of
WWW 2017. ACM.

[14] Liang Pang, Yanyan Lan, Jiafeng Guo, Jun Xu, and Xueqi Cheng. 2016. A Study
of MatchPyramid Models on Ad-hoc Retrieval. CoRR abs/1606.04648 (2016).
h�p://arxiv.org/abs/1606.04648

[15] Liang Pang, Yanyan Lan, Jiafeng Guo, Jun Xu, Shengxian Wan, and Xueqi Cheng.
2016. Text Matching As Image Recognition. In Proceedings of the �irtieth AAAI
Conference on Arti�cial Intelligence (AAAI’16). 2793–2799.

[16] Kira Radinsky and Nir Ailon. 2011. Ranking from Pairs and Triplets: Information
�ality, Evaluation Methods and �ery Complexity. In Proceedings of the Fourth
ACM International Conference on Web Search and Data Mining (WSDM ’11). ACM,
New York, NY, USA, 105–114. DOI:h�p://dx.doi.org/10.1145/1935826.1935850

[17] Aliaksei Severyn and Alessandro Moschi�i. 2015. Learning to Rank Short Text
Pairs with Convolutional Deep Neural Networks. In Proceedings of the 38th
International ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR ’15).

[18] Yelong Shen, Xiaodong He, Jianfeng Gao, Li Deng, and Grégoire Mesnil. 2014.
Learning Semantic Representations Using Convolutional Neural Networks for
Web Search. In Proceedings of the 23rd International Conference on World Wide
Web (WWW ’14 Companion).

[19] Tao Tao and ChengXiang Zhai. 2007. An exploration of proximity measures in
information retrieval. In Proceedings of the 30th annual international ACM SIGIR
conference on Research and development in information retrieval. ACM, 295–302.

[20] Ellen M Voorhees. 2000. Variations in relevance judgments and the measurement
of retrieval e�ectiveness. Information processing & management 36, 5 (2000),
697–716.

[21] Chengxiang Zhai and John La�erty. 2001. A study of smoothing methods for
language models applied to ad hoc information retrieval. In Proceedings of the
24th annual international ACM SIGIR conference on Research and development in
information retrieval. ACM, 334–342.

http://dx.doi.org/10.1145/1645953.1646033
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1145/2505515.2505665
http://dx.doi.org/10.1145/2661829.2661894
http://arxiv.org/abs/1606.04648
http://dx.doi.org/10.1145/1935826.1935850

	Abstract
	1 Introduction
	2 Method
	2.1 Relevance Matching
	2.2 Deep Retrieval Model

	3 Evaluation
	3.1 Experimental Setup
	3.2 Re-Ranking Query-Likelihood Results
	3.3 Re-Ranking Search Results
	3.4 Ranking Document Pairs
	3.5 Discussion

	4 Related Work
	5 Conclusion
	References

