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1 INTRODUCTION

Telling cause from e�ect is one of the core problems in science. It is o�en di�cult, expensive, or impossible to obtain
data through randomized trials, and hence we o�en have to infer causality from, what is called, observational data [20].
We consider the se�ing where, given data over the joint distribution of two random variables X and Y , assuming no
hidden confounders, we have to infer the most likely causal direction between X and Y . In other words, our task is to
identify whether it is more likely that X causes Y , or vice versa, that Y causes X , or that the two are merely correlated.

In practice, X and Y do not have to be of the same type. �e altitude of a location (real-valued), for example,
determines whether it is a good habitat (binary) for a mountain hare . In fact, whether a location is a good habitat or
not for an animal is not caused by a single aspect, but by a combination of conditions. We are therefore interested in the
general case where X and Y may be of any cardinality, i.e. univariate or multivariate, and may be single or mixed-type.
�at is, both X and Y may consist of a mix of binary, categorical, discrete numeric, or continuous real-valued a�ributes.

To the best of our knowledge there exists no method for this general se�ing. Causal inference based on conditional
independence tests, for example, requires three variables, and cannot decide between X → Y and Y → X [20]. All
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2 Alexander Marx and Jilles Vreeken

existing methods that consider two variables are only de�ned for single-type pairs. Additive Noise Models (ANMs),
for example, have only been proposed for univariate pairs of real-valued [23] or discrete variables [22], and similarly
so for methods based on the independence of P(X ) and P(Y | X ) [16, 27]. Trace-based methods require both X and Y

to be strictly multivariate real-valued [2, 9], and whereas Ergo [32] also works for univariate pairs, these have to be
real-valued. We refer the reader to Sec. 6 for a more detailed overview of related work.

Our approach is based on algorithmic information theory. �at is, we follow the postulate that if X → Y , it will be
easier—in terms of Kolmogorov complexity—to �rst describe the data of X , and then describe the data of Y given X ,
than vice-versa [1, 11, 32]. In other words: causal inference by compression. Kolmogorov complexity is not computable,
but can be approximated through the Minimum Description Length (MDL) principle [5, 25], by which we can instantiate
this framework in practice [1].

To this end, we de�ne an MDL score for coding forests, a model class where a model consists of classi�cation and
regression trees. By allowing dependencies from X to Y , or vice versa, we can measure the di�erence in complexity
between X → Y and Y → X . Discovering a single optimal decision tree is already NP-hard [18], and hence we cannot
e�ciently discover the coding forest that describes the data most succinctly. We therefore propose Crack, an e�cient
greedy algorithm for discovering good models from data.

�rough extensive empirical evaluation on synthetic, benchmark, and real-world data we show that Crack performs
very well in practice. It infers the correct causal direction with high accuracy, even for weak dependencies. It performs
at least as well as existing methods for univariate single-type pairs, and outperforms the state of the art on multivariate
pairs. It is also very fast, taking less than 4 seconds over any pair in our experiments.

�e main contributions of this paper are as follows.

(a) we propose the �rst framework for causal inference on univariate and multivariate mixed-type data,
(b) de�ne an MDL score for the model class of coding trees,
(c) give the e�cient Crack algorithm,
(d) provide extensive experimental results, and
(e) make our implementation and all used data available.

�e paper is structured as usual. We introduce our notation in Sec. 2, and give a brief primer to causal inference
by Kolmogorov complexity and the Minimum Description Length principle in Sec. 3. We formalize our MDL score in
Sec. 4, and present the e�cient Crack algorithm for �nding good models in Sec. 5. Related work is discussed in Sec. 6,
and we evaluate Crack empirically in Sec. 7. We round up with discussion in Sec. 8 and conclude in Sec. 9.

2 NOTATION

In this work we consider data D over the joint distribution of random variables X and Y . �e database D contains
n records and a set of A of |A| = |X | + |Y | = m a�ributes, a1, . . . ,am ∈ A. An a�ribute a has a type type(a) where
type(a) ∈ {binary, categorical, numeric}. We will o�en refer to binary and categorical a�ributes as nominal a�ributes.
�e size of the domain of an a�ribute a is de�ned as

|dom(a)| =


#values if type(a) is nominal
max(a)−min(a)

res(a) + 1 if type(a) is numeric ,
Manuscript submi�ed to ACM



Causal Inference on Multivariate Mixed Type Data 3

where res(a) ∈ (0, 1] is the resolution at which the data over a�ribute a was recorded. For example, a resolution of 1
means that we consider integers, and a resolution of 0.01 means the data of a was recorded with a precision of up to a
hundredth.

We will consider decision and regression trees. In general, a tree T consist of |T | nodes. We identify internal nodes
as v ∈ int(T ), and leaf nodes as l ∈ lvs(T ). A leaf node l contains |l | data points.

All logarithms are to base 2, and by convention we say 0 log 0 = 0.

3 CAUSAL INFERENCE BY COMPRESSION

In this paper we pursue the goal of causal inference by compression. Below we give a short introduction to the key
concepts we use.

3.1 Kolmogorov Complexity, a brief primer

�e Kolmogorov complexity of a �nite binary string x is the length of the shortest binary program p∗ for a Universal
Turing machineU that generates x , and then halts [13, 15]. Formally, we have

K(x) = min{|p | | p ∈ {0, 1}∗,U(p) = x} .

Simply put, p∗ is the most succinct algorithmic description of x , and the Kolmogorov complexity of x is the length of its
ultimate lossless compression. Conditional Kolmogorov complexity, K(x | y) ≤ K(x), is then the length of the shortest
binary program p∗ that generates x , and halts, given y as input. For more details see [15].

3.2 Causal Inference by Complexity

�e problem we consider is to infer, given data over two correlated variables X and Y , whether X caused Y , whether Y
caused X , or whether X and Y are only correlated. As is common, we assume causal su�ciency. �at is, we assume
there exists no hidden confounding variable Z that is the common cause of both X and Y .

�e Algorithmic Markov condition, as recently postulated by Janzing and Schölkopf [11], states that factorizing the
joint distribution over cause and e�ect into P(cause) and P(e�ect | cause), will lead to simpler—in terms of Kolmogorov
complexity—models than factorizing it into P(e�ect) and P(cause | e�ect). Formally, they say that if X causes Y ,

K(P(X )) + K(P(Y | X )) < K(P(Y )) + K(P(X | Y )) .

�is model-driven postulate reasons about the complexity of given true distributions P(·). In practice we do not have
access to these distributions, however, and only to empirical data.

Budhathoki & Vreeken [1] showed that we can de�ne causality in terms of Kolmogorov complexity over the observed
data. Loosely speaking, this postulate says that it will be simpler to �rst describe the data over cause, and then describe the
data over e�ect given the data over cause, than vice versa. �at is, we do not reason about complexities of distributions
alone, but rather on the complexities K(X ) and K(Y | X ) of observed data X and Y over X and Y .

Vreeken [32] proposed to consider the relative conditional complexity of the data over X and Y as causal indicator
δX→Y , with

δX→Y =
K(Y | X )
K(Y ) , (1)

Manuscript submi�ed to ACM



4 Alexander Marx and Jilles Vreeken

where we normalize by K(Y ) to avoid bias towards simple objects, i.e. those with low K(X ) or K(Y ). Intuitively the
score corresponds to the remaining complexity of Y knowing X . It will be 1 when X contains no information towards
Y , i.e. when X is algorithmically independent of Y , and will be close to 0 if X contains all information of Y . We infer
that X is a likely algorithmic cause for Y , denoted by X → Y . Alternatively, if δY→X < δX→Y we infer Y → X as the
most likely direction.

Budhathoki & Vreeken [1] show that δX→Y has merit, yet is biased towards the more complex object. To alleviate,
they propose to consider the relative joint complexity,

∆X→Y =
K(X ) + K(Y | X )
K(X ) + K(Y ) , (2)

While in general the symmetry of information, K(x) +K(y | x) = K(y) +K(x | y), holds up to an additive constant [15],
Janzing and Schölkopf [11] showed it does not hold when X causes Y , or vice versa. �is asymmetry allows us to infer
that X → Y as the most likely causal direction if ∆X→Y < ∆Y→X , and vice versa.

Due to the halting problem, Kolmogorov complexity is not computable. We can approximate it, however, via the
Minimal Description Length (MDL) principle [5, 15].

3.3 MDL, a brief primer

�e Minimum Description Length (MDL) principle [5, 25] is a practical variant of Kolmogorov Complexity. Intuitively,
instead of all programs, it considers only those programs that we know that output x and halt. Formally, given a model
classM, MDL identi�es the best model M ∈ M for data D as the one minimizing

L(D,M) = L(M) + L(D | M) ,

where L(M) is the length in bits of the description of M , and L(D | M) is the length in bits of the description of data D

given M . �is is known as two-part MDL. �ere also exists one-part, or re�ned MDL, where we encode data and model
together. Re�ned MDL is superior in that it avoids arbitrary choices in the description language L, but is computable
only for certain model classes. Note that in either case we are only concerned with code lengths — our goal is to measure
the complexity of a dataset under a model class, not to actually compress it [5].

3.4 Causal Inference by MDL

For causal inference by MDL, we will need to approximate both K(X ) and K(Y | X ). For the former, we need to consider
the classMX of models MX that describe data X without knowledge of Y , while for the la�er we need to consider
classMY |X of models MY |X that describe the data of Y knowing the data of X .

�at is, we are a�er the causal model MX→Y = (MX ,MY |X ) from the classMX→Y = MX × MY |X that best
describes the data over X and Y . By MDL, we identify the optimal model MX→Y ∈ MX→Y for data D over X and Y as
the one minimizing

L(D,MX→Y ) = L(X ,MX ) + L(Y ,MY |X | X ) ,
where the encoded length of X and model MX is de�ned as

L(X ,MX ) = L(MX ) + L(X | MX ) ,

and we de�ne accordingly
L(Y ,MY |X | X ) = L(MY |X ) + L(Y | MY |X ,X )

Manuscript submi�ed to ACM
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Fig. 1. E�ect of the domain size of X on ∆̂ and δ̂ by keeping L(Y ) and the gains in compression constant. If s(X → Y ) − s(Y → X )
of the corresponding score is < 0 it infers X → Y and for < 0 it infers Y → X .

as the encoded length of data Y and model MY |X given data X .
To identify the most likely causal direction between X and Y by MDL we can now simply rewrite Eq. (3.2) and

Eq. (3.2) as

δ̂X→Y =
L(Y ,MY |X | X )

L(Y ,MY )
, and

∆̂X→Y =
L(X ,MX ) + L(Y ,MY |X | X )

L(X ,MX ) + L(Y ,MY )
.

Similar to the original scores, we infer that X is a likely cause of Y if δ̂X→Y < δ̂Y→X , and vice versa, and analogue for
and the relative joint complexities ∆̂X→Y and ∆̂Y→X .

To use these causal indicators in practice, we need to de�ne a casual model classMX→Y , how to encode a model
M ∈ M in bits, and how to encode a dataset D using a model M . �is we will do in Section 4. First, we discuss the
merits of both scores.

3.5 Robustness of the δ̂ and ∆̂

Vreeken & Budhathoki [1] observed that δ̂ is biased towards objects of higher complexity, and show that the relative joint
complexity score, ∆̂, performs be�er for binary X and Y with asymmetric cardinality. We observe that the complexity
of the distribution of a continuous real-valued a�ributes also plays a role, and that ∆̂ is close to invariant to this.

To illustrate, let us consider the following example. Suppose L(X ) = L(Y ) = 0.5, and let the gain in compression
for X → Y be L(Y ) − L(Y | X ) = 0.1, and the gain in compression for Y → X be 0.15. Since, X can be expressed most
succinctly as an e�ect of Y , both scores will infer Y → X . Next, let us consider a di�erent se�ing, where we adjust the
complexity of X , for example by adjusting the resolution, such that L(X ) = 1.0, but keeping all other complexities the
same. �is means relative to the initial size of X the gain in compression X → Y drops from 0.3 to 0.15. In contrast,
the relative gain for Y → X is 0.2 in both examples. Whereas δ̂ now infers X → Y , ∆̂ still infers Y → X . We plot this
relation in Figure 1, using the values as discussed and varying L(X ) from 0.5 to 1. �e y-axis shows the di�erence
between the scores.

In sum, both scores have merit. ∆̂ is more robust to asymmetries in the cardinality of X and Y , and δ̂ is more robust
to unbalanced domain sizes of symmetric, e.g. univariate, real-valued X and Y .
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x1

x2

y1

y2

X Y

(a) M ∈ MX ,Y (D)

x1

x2

y1

y2

X Y

(b) M ∈ MX→Y (D)

x1

x2

y1

y2

X Y

(c) M ∈ MY→X (D)

Fig. 2. Toy examples of valid models M for di�erent model classesM. An edge from a node u to a node v means that v depends on

u .

4 MDL FOR TREE MODELS

As models we consider tree models, or, coding forests. A coding forest M contains per a�ribute ai ∈ A one coding tree
Ti . A coding tree Ti is simply a binary tree that encodes the values of ai in its leaves, spli�ing or regressing the data of
ai on a�ribute aj (i , j) in its internal nodes to encode the data of ai more succinctly.

We encode the data over every a�ribute ai with its corresponding coding tree Ti . �e total encoded length of data D

and M then is
L(D,M) =

∑
ai ∈A

L(Ti ) ,

which corresponds to the sum of costs of the individual trees.
To ensure lossless decoding, there needs to exist an order on the trees T ∈ M such that we can transmit these one by

one. In other words, in a valid tree model there are no cyclic dependencies between the trees T ∈ M , and a valid model
can hence be represented by a DAG. LetM(D) be the set of all valid tree models for D, that is, M ∈ M(D) is a set of |A|
trees such that the data types of the leafs in Ti corresponds to the data type of a�ribute ai , and its dependency graph is
acyclic.

We writeMX (D) to denote the subset of valid coding forests for D where we only allow dependencies between
a�ributes in X ⊆ A, that isMX (D) ⊆ MA(D) =M(D). Similar, we identify byMX ,Y (D) that subset of valid coding
forests for D where we allow dependencies between a�ributes X , and between a�ributes Y , but not in between. An
example model M ∈ MX ,Y (D) is plo�ed in Figure 2 (a). �ird, we de�neMY |X (D) as the set of valid models for D
where we allow a�ributes of Y to a-cyclically depend on each other, as well as on a�ributes from X . Last, but not least,
as we are concerned with causal models, we writeMX→Y (D) for the set of all valid models for D where we allow
a�ributes of X to depend on each other, and a�ributes from Y to depend on either X or Y . Example models that are
valid forMX→Y (D) or for its reverseMY→X (D) are given in Figures 2 (b) and (c).

Cost of a Tree. �e encoded cost of a tree consists of two parts. First, we transmit the topology of the tree, and then
how the data is separated or transformed. Second, we transmit the data in the leaves of the tree. Formally, we have

L(T ) = |T | +
∑

v∈int(T )
(1 + L(v)) +

∑
l∈lvs(T )

L(l) ,

where per node we need one bit to indicate if it is an internal or a leaf node. An internal node can either split the data,
or apply regression. We identify the type of the node with one bit.
Manuscript submi�ed to ACM



Causal Inference on Multivariate Mixed Type Data 7

Cost of Spli�ing. �e encoded length of a split node v is

Lsplit (v) = log |A| +


log |dom(aj )| if ai is categorical

log |dom(aj ) − 1| else ,

whereas we �rst identify in log |A| which a�ribute aj the node splits the data of ai on, and second the condition aj = x

on which we split the data.
For categorical data, we identify the a�ribute value on which we split without any preference. Hence, the costs are

log |dom(aj )|. For numeric a�ributes we need to identify the cut point on the candidate. A cut point lies between two
consecutive values in the domain of the candidate. As we do not have any preference between which values the split is
set, we encode the costs accordingly using log |dom(aj ) − 1| bits. For binary a�ributes it is invariant whether we split
on x = 1, or x = 0, and hence the cost is log |dom(aj ) − 1| = log |2 − 1| = 0.

Cost of Regressing. For a regression node we also �rst encode the target a�ribute, and then the parameters of the
regression, i.e.

Lreg(v) = log |A| +
∑

ϕ∈Φ(v)
1 + LN

(⌈ |ϕ |
res(ai )

⌉
+ 1

)
,

where Φ(v) denotes the set of parameters for the regression. For linear regression, it consists of α and β , while for
quadratic regression it further contains γ . To describe each parameter ϕ ∈ Φ we �rst encode its sign using one bit, and
then encode its absolute value in the resolution of ai using LN, the MDL optimal encoding for integers z ≥ 1 [26].

Next, we describe how to encode the data in a leaf l . As we consider both nominal and numeric a�ributes, we need
to de�ne Lnom(l) for nominal and Lnum(l) for numeric data.

Cost of a Nominal Leaf. To encode the data in a leaf of a nominal a�ribute, we use Re�ned MDL [14]. �at is, we
encode this data minimax optimal, without having to make design choices [5]. In particular, we encode the data using
the normalized maximum likelihood (NML) distribution,

− log
(

Pr(l | θ∗ ∈ Θ)∑
l ′ Pr(l ′ | θ ′ ∈ Θ)

)
, (3)

which encodes data with a code length proportional to how well the best model in the class �ts the data at hand,
normalized by the sum of maximum likelihoods over all possible data, l ′ ∈ dom(ai ) |l | , each encoded by the best model
in the class.

For nominal data, the NML cost for a leaf l is

Lnom(l) = log ©­«
∑

h1+· · ·+hk= |l |

|l |!
h1!h2! · · ·hk !

ª®¬
− |l |

∑
c ∈dom(ai )

Pr(ai = c | l) log Pr(ai = c | l) ,

where the �rst term corresponds to the denominator in Eq. (4). Kontkanen & Myllymäki [14] proved the correctness
and derived a recursive formula to calculate it in linear time. �e second term corresponds to the numerator in Eq. (4),
which is instantiated based on the entropy of the leaf.

Cost of a Numerical Leaf. For numeric data existing Re�ned MDL encodings sadly have high computational complexity
[14]. Hence, we encode the data in numeric leaves using two-part MDL. In particular, we encode these as point models
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8 Alexander Marx and Jilles Vreeken

assuming Gaussian noise. Note that by this, a split or a regression on an a�ribute aims to reduce the variance in the
leaf. �e encoded cost of the data in a numeric leaf, given mean and variance is

Lnum(l | σ , µ) =
1

2σ 2 ln 2
SSE(l, µ) + |l |2 log 2πσ 2 + |l | log res(ai ) .

As we consider empirical data, σ 2 and µ are estimates over the data in leaf l. Hence, we can replace SSE(l, µ) with |l |σ 2

which simpli�es the formula to

Lnum(l | σ , µ) =
|l |
2

(
1

ln 2 + log 2πσ 2
)
+ |l | log res(ai ) .

To ensure lossless encoding, we additionally have to encode the model parameters. �at is, µ and σ . As we consider
empirical data, we can safely assume that both lie between the minimum and maximum value of the given a�ribute.
Further, we do not set any prior preference and assume a uniform distribution. Using Kra�s inequality [3], the total
cost for a leaf l then is

Lnum(l) = 2 log |dom(aj )| + Lnum(l | σ , µ) .
Pu�ing it all together, we now know how to compute L(D,M), by which we can formally de�ne the Minimal Coding

Forest problem.

Minimal Coding Forest Problem Given a data set D over a set of a�ributes A = {a1, . . . ,am }, andM a valid model

class for A. Find the smallest modelM ∈ M such that L(D,M) is minimal.

From the fact that both inferring optimal decision trees and structure learning of Bayesian networks—to which our
tree-models reduce when considering nominal-only data and split on all values—are NP-hard [18], it follows that the
Minimal Coding Forest problem is also NP-hard.

Hence, we resort to heuristics.

5 THE CRACK ALGORITHM

Knowing the score L(D,M) and the problem, we can now introduce the Crack algorithm, which stands for classi�cation
and regression based packing of data. Crack is an e�cient greedy heuristic for discovering a coding forest M from
given model classM with low L(D,M). It builds upon the well-known ID3 algorithm [24].

5.1 Greedy algorithm

We give the pseudocode of Crack as Algorithm 1. Crack starts with an empty model consisting of only trivial trees,
i.e. leaf nodes containing all records, per a�ribute (line 1). �e given model classM implicitly de�nes a graph of
dependencies between a�ributes that we are allowed to consider (line 2). �at is, G is a graph with a�ributes ai ∈ A as
nodes, and with a directed edge from ai to aj i� there exists a model M ∈ M where a�ribute aj depends on ai . To
make sure the returned model is valid, we need to maintain a graph representing its dependencies (lines 3–4). We
then proceed to iteratively discover that re�nement of the current model that maximizes compression. To �nd the best
re�nement, we consider every a�ribute (line 6), and every legal additional split or regression of its corresponding tree
(line 10). A re�nement is only legal when the dependency is allowed by the model family (line 8), the dependency graph
remains acyclic, and we do not split or regress twice on the same a�ribute (line 9). We keep track of the best found
re�nement per a�ribute (lines 11–12), greedily selecting the overall best re�nement (line 13), and accepting it only if
Manuscript submi�ed to ACM



Causal Inference on Multivariate Mixed Type Data 9

Algorithm 1: Crack(D,M)
input : data D over a�ributes A, model classM
output : tree model M ∈ M with low L(D,M)

1 Ti ← TrivialTree(ai ) for all ai ∈ A;
2 G ← dependency graph forM;
3 V ← {vi | i ∈ A}, E ← ∅;
4 G ← (V ,E);
5 while L(D,M) decreases do
6 for ai ∈ A do
7 Oi ← Ti ;
8 for l ∈ lvs(Ti ), (i, j) ∈ G do
9 if E ∪ (vi ,vj ) is acyclic and j < path(l) then

10 T ′i ← RefineLeaf(Ti , l , j);
11 if L(T ′i ) < L(Oi ) then
12 Oi ← T ′i , ei ← j;

13 k ← arg mini {L(Oi ) − L(Ti )};
14 if L(Ok ) < L(Tk ) then
15 Tk ← Ok ;
16 E ← E ∪ (vk ,vek )
17 returnM ← ⋃

i Ti

it improves the total encoded length (lines 14–16). If we cannot �nd any such re�nement, we return the best model
discovered so far (line 17).

�e key subroutine of Crack is RefineLeaf, in which we discover the optimal re�nement of a leaf l in tree Ti . �at
is, it �nds the optimal split of l over all candidate a�ributes aj such that we minimize the encoded length. In case both
ai and aj are numeric, RefineLeaf also considers the best linear and quadratic regression and decides for the variant
with the best compression—choosing to split in case of a tie. In the interest of e�ciency, we do not allow spli�ing or
regressing multiple times on the same candidate.

5.2 Algorithmic complexity

Next we consider the algorithmic complexity of Crack. In the worst case, we grow a model of full trees, where each
candidate splits all leaves on the current height. �is means that we have to apply RefineLeaf 2m times. RefineLeaf
is linear in the size of the leaf. For a binary or categorical candidate this follows straightforwardly, as we can compute
the NML cost of a split in linear time [14], or even approximate it in sub-linear time [17]. For a numeric leaf we can
compute the sum of squared errors in constant time by keeping track of the sum of squares [30]. �erefore, the optimal
split can be found in only linear time. �is leads to an overall worst case runtime of Crack of O(2mn). As we only
need to store the nodes of the trees, the worst case memory complexity is in O(2m ).

Although both complexities look intimidating, Crack is very fast in practice, taking only up to a few seconds in our
experiments. �e key reason is that we only consider valid models, and MDL keeps the trees in the models small.
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10 Alexander Marx and Jilles Vreeken

Binary Categoric Numeric Mixed
Crack 3 3 3 3

Origo [1] 3 – – –
Ergo [32] – – 3 –
LTR [9] – – 3 –
KTR [2] – – 3 –

Table 1. Data types per multivariate causal inference method.

5.3 Causal Inference with Crack

To compute our causal indicators we have to run Crack twice on D. First with model classMX→Y to obtain MX and
MY |X , and second withMY→X , to obtain MY and MX |Y . With these models we can trivially compute ∆̂X→Y and
∆̂X→Y , respectively δ̂X→Y and δ̂Y→X , and infer the most likely causal direction. We write Crackδ , correspondingly
Crack∆ to indicate which score we consider.

6 RELATEDWORK

Causal inference on observational data is a challenging problem as the data at hand was not obtained through controlled
randomized experiments. Recently, it has a�racted a lot of a�ention [1, 11, 20, 28]. Most proposals are highly speci�c in
the type of causal dependency and, or type of variables they can consider.

Traditional constrained-based approaches, such as conditional independence tests, require three observed random
variables [20, 29], cannot distinguish Markov equivalent causal DAGs [31] and therefore cannot decide between X → Y

and Y → X .
Recently, methods have been proposed that can infer the causal direction from only two random variables. Generally,

they exploit certain properties of the joint distribution.
Additive Noise Models (ANMs) [28], for example, assume that the e�ect is a function of the cause and cause-

independent additive noise. Causal inference is then done by �nding the direction that admits such a model. ANMs exist
for univariate real-valued [8, 23, 28, 34] and discrete data [21]. It is unclear how to extend this model for multivariate or
mixed type data.

A related approach considers the asymmetry in the joint distribution of cause and e�ect for causal inference. �e
linear trace method (LTR) [9] and the kernelized trace method (KTR) [2] aim to �nd a structure matrix A and the
covariance matrix ΣX to express Y as AX . Both methods are only applicable to multivariate continuous valued data. In
addition, KTR assumes a deterministic, functional and invertible causal relation.

Sgouritsa et al. [27] show that the marginal distribution P(cause) of the cause does not contain any information
about the conditional distribution P(e�ect | cause) of the e�ect. �e opposite direction is more likely to contain
information. �ey proposed Cure, which measures this dependency through unsupervised reverse regression for
univariate continuous pairs. Liu et al [16] use distance correlation to identify the weakest dependency between
univariate pairs of discrete data.

�e algorithmic information-theoretic approach views causality in terms of Kolmogorov complexity. �e key idea
is that if X causes Y , the shortest description of the joint distribution P(X ,Y ) is given by the separate descriptions
of the distributions P(X ) and P(Y | X ) [11]. It has also been used in justifying the additive noise model based causal
Manuscript submi�ed to ACM
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discovery [12]. However, as Kolmogorov complexity is not computable [15], causal inference using algorithmic
information theory requires practical implementations, or notions of independence. For instance, the information-
geometric approach [10] de�nes independence via orthogonality in information space for univariate continuous pairs.
Janzing & Schölkopf [11] sketch how comparing marginal distributions, and resource bounded computation could be
used to infer causation, but do not give practical instantiations. Vreeken [32] instantiates it with the cumulative entropy
to infer the causal direction in continuous univariate and multivariate data. Vreeken and Budhathoki approximate K(X )
and K(Y | X ) through MDL, and propose Origo, a decision tree based approach for causal inference on univariate and
multivariate binary data [1].

All above univariate methods only consider one data type, but do not combine nominal and numeric data. Table 2 we
give an overview of which data types the existing methods for causal inference on multivariate data consider. To the
best of our knowledge, Crack is the �rst method for causal inference on pairs of univariate or multivariate mixed-type
data.

7 EXPERIMENTS

In this section, we evaluate Crack empirically. We implemented Crack in C++, and provide the source code including
the synthetic data generator along with the tested datasets for research purposes.1 All experiments were executed
single-threaded on a MacBook Pro with 2.6 GHz Intel Core i7 processor and 16 GB memory running Mac OS X. All
tested data sets could be processed within seconds; over all pairs the longest runtime for Crack was 3.8 seconds. When
applying Crack to real valued data, we set the resolution parameter globally to that of the a�ribute with the highest
data resolution.

We compare Crack to DC [16], IGCI [10], LTR [9], Origo [1] and Ergo [32], using their publicly available imple-
mentations.

7.1 Synthetic data

We �rst evaluate Crackδ and Crack∆ on generated synthetic data with known ground truth. Concretely, we generate
univariate or multivariate X with |X | and Y with |Y | a�ributes such that Y depends probabilistically on X . In the la�er,
we call this probabilistic relationship dependency. As standard setup, we select X and Y with the dimensions 5000-by-3
and use mixed-type data – meaning that we choose the type per a�ribute (binary, categorical, and real valued) uniformly
at random.

Over all a�ributes we assume an order such that the a�ributes of X are followed by Y . With the split probability we
decide whether to re�ne and a�ribute by either spli�ing or regressing on a candidate. We do not allow a�ributes of X
to depend on Y . Further, we control the probability for a�ributes of Y to depend on X (dependency). �e stronger the
dependency, the higher the probability that the induced ground truth X → Y holds.

Using the trees, we generate the data randomly per leaf. For binary data we choose the percentage of ones uniformly
at random. Categorical data is restricted to three to four values, the frequencies for which we again generate uniformly
at random. Real valued data is generated with a normal distribution by choosing a random mean and standard deviation.
We restrict ourselves to the domain [0, 5], as larger values lead to overly obvious dependencies.

As it has been shown in Origo [1] and discussed in Section 3 the ∆̂X→Y score is more balanced with regard to
multivariate data. We therefore use Crack∆ for the performance tests and later compare both scores.

1h�p://eda.mmci.uni-saarland.de/crack/
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Fig. 3. (le�) Fraction of correct, incorrect and indecisive decisions.

(right) Correct decisions for binary, categorical and real valued

data.
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Fig. 4. [Higher is be�er] Accuracy of Crack on synthetic data of

di�erent tree heights (le�) and with di�erent split probabilities

(right).

Performance. First, we investigate the performance of Crack∆ on data with varying dependency. To this end, we
generate for each dependency level (0.0, 0.1, . . . , 1.0) 200 random data sets �xing the split probability to 1.0. Further,
we allow the trees to have maximum height. We report the fraction of correct inferences (accuracy), the fraction of
incorrect inferences and the fraction of indecisive inferences and plot them in Figure 3. We see that at a dependency
level of 0 we correctly infer there is no causal direction. �e fraction of correct inferences rises steeply if the dependency
increases while we almost make no incorrect inferences. A�er a dependency of 0.6, the precision is over 90%.

Looking more closely at the performance per data type, we observe in Figure 3 that the accuracy for categorical
and real valued data is very similar, exceeding 90% accuracy at 0.65 dependency. For binary data, we observe a slower
increase in the accuracy, which is due to the lower diversity (smaller domain) of binary data compared to categorical
and real valued data.

Robustness. To evaluate the robustness of Crack we perform two tests. First, we restrict the height of the trees, but
keep the other parameters as before. Figure 4 shows that Crack works already well when the generating trees have
only one split. For two splits Crack performs comparable to when we do not bound the number of splits.

Second, we compare Crack∆ and Crackδ on real valued data of 2 000 rows, with dependency 1, and varying the
split probability. We report the average accuracy over 100 trials in Figure 4. We see that when the generating model �ts
our score, Crack∆ outperforms Crackδ , reaching an accuracy of 78% at a split probability of 0.3.

Dimensionality. �e next tests are designed to evaluate both Crackδ and Crack∆ performs pairs of varying dimen-
sionality. We �x the split probability and the dependency to 1.0 and set the number of data points per a�ribute to 5 000.
We �rst test symmetric pairs of real-valued a�ributes, where |X | = |Y |, varying the dimensions (1 to 10). We plot the
results in Figure 5. We see that both scores work well, with Crack∆ leading at a small margin. More speci�cally, for
univariate pairs Crack∆ has about 0.8 accuracy, whereas if 3 or more dimensions are considered it approaches perfect
accuracy.

Next, we consider pairs of asymmetric cardinality, keeping all other parameters the same. In particular, we �x |X | = 5
and vary |Y | as before. To avoid any bias towards the dimensionality of the e�ect, we perform both 100 runs with
the consequent having the smaller dimension and 100 runs with the cause having the smaller dimension. We plot the
results in Figure 5. As expected, we see that Crack∆ does not su�er from the asymmetry, whereas Crackδ performs
worse the larger the asymmetry.
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7.2 Real world data

To evaluate Crackδ and Crack∆ on real world data, we consider �rst univariate and second multivariate pairs.

Univariate pairs. We �rst evaluate Crack on all 99 univariate pairs available in version 1.0 of the Tübingen database.2

We compare Crack to IGCI [10], DC [16], and Origo [1]. For each method we sort the pairs descending according to
their decision strength. If an algorithm did not decide for a causal direction, we weighted the results as 0.5. To apply
Origo, we discretized the data with IPD [19] as proposed by the authors. For DC we discretized the data as described in
the paper.

We plot the corresponding decision rate—the percentage of correct decisions over the top-k pairs with highest
di�erence in scores X → Y and Y → X—together with the 95% con�dence interval for a random coin �ip in Figure 6.
Many of these pairs have rather unbalanced domain sizes. As discussed in Section 3.5 we expect Crackδ to perform
be�er on these data, and indeed found this to be the case. To avoid clu�er, we only show the curve for Crackδ .

We see that Crackδ performs rather favourably compared to its competitors. At one third of all pairs its accuracy
is 83%, and overall its performance is signi�cantly be�er than random for 90% of decisions. Comparing between the
methods, we �nd that Crackδ beats IGCI signi�cantly over 29.3%, and beats DC signi�cantly over 21.2% of all pairs,
with regard to the 95% con�dence interval over the decision rate of Crack. Over all pairs IGCI or DC perform on par
with Crackδ , but never outperform us signi�cantly.

Multivariate pairs. Second, we evaluate on twelve multivariate cause-e�ect pairs from several sources. �e �rst
�ve (Climate forecast, Ozone, Car e�ciency, Radiation, Symptoms and Brightness) belong to the Tübingen cause-e�ect
pairs. Chemnitz and Precipitation were used before by Janzing et al. [9]. Haberman is a data set on medical case studies
describing the survival of patients who had undergone surgery for breast cancer between 1958 and 1970 [6]. X consists
of the age of the patient at time of operation, the patient’s year of operation and the number of positive axillary nodes
detected. Y is the survival status, which is binary and divided into longer or at most �ve years (X → Y ). �e Iris

data set contains data about three types of the Iris plant (Y ) and four features dependent on which the type can be
determined [4]. Last, we extract two cause-e�ect data sets from the Mammals data set [7], which consists of both
climate data and presence records of 121 mammal species over 2183 areas of 50 × 50km in Europe. We assume that
elevation, precipitation, average temperature and the annual temperature range (X ) cause the presence of a mammal
and not contrarily. For Canis we selected two animals of the canis (wolf) family, and for Lepus three animals from the

2h�ps://webdav.tuebingen.mpg.de/cause-e�ect/
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Decisions per method

Dataset m k l LTR Ergo Origo Crackδ Crack∆

Climate 10 226 4 4 3 3 – 3 –
Ozone 989 1 3 (n/a) 3 3 3 3

Car 392 3 2 – 3 3 – 3

Radiation 72 16 16 – – – 3 3

Symptoms 120 6 2 3 3 – 3 3

Brightness 1 000 9 1 (n/a) (n/a) – 3 –
Chemnitz 1 440 3 7 3 3 3 – 3

Precip. 4 748 3 12 3 – – – 3

Haberman 306 2 2 3 3 – – 3

Iris �ower 150 4 1 (n/a) (n/a) – 3 3

Canis 2 183 6 2 (n/a) (n/a) 3 3 3

Lepus 2 183 6 3 (n/a) (n/a) 3 3 3

Accuracy 0.42 0.50 0.42 0.67 0.83

Table 2. Comparison of LTR, Ergo, Origo, Crackδ and Crack∆ on eleven multivariate data sets. We write (n/a) whenever a method

is not applicable on the pair.

Fig. 7. Presence records in Europe of (le�) Grey Wolf (grey) and Golden Jackal (gold), and (right) Mountain hare (gold), European

hare (grey) and Granada hare (blue).

lepus (hare) family. We plo�ed presence of these animals in Figure 7. Both mammals data sets, as well as the Symptoms

data set contain only binary a�ributes in Y . To avoid bias due to the domain sizes of the real valued features (see
Sec. 3.5), we normalized the real valued features between zero and one.

We compare Crack to LTR [9], Ergo [32], and Origo [1], applying these where applicable. We give the characteristics
of the data sets, as well as the results in Table 2.

Overall, Crack∆ performs best with an accuracy of 83% and Crackδ performs well on the near-symmetric pairs
having an overall accuracy of 67%. LTR and Ergo perform similar on pure numeric pairs but can not deal with those
pairs containing binary or categorical data.
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8 DISCUSSION

�e experiments show that Crack works very well in practice. On synthetic data Crackδ and Crack∆ both identify
the ground truth with high accuracy, even on data with relatively weak and few dependencies. Evaluation on univariate
real-valued benchmark pairs shows that Crackδ outperforms the state of the art signi�cantly over a large interval of
decisions. Over 12 mixed-type multivariate pairs, Crack∆ recovers the ground truth with an accuracy of 83%.

�e performance of Crack is particularly impressive if we take into account its simplicity. In the interest of
computational e�ciency, we only consider binary splits on single a�ribute values, and are restricted to using an
a�ribute only once per path in a tree. At the cost of extra computation, multi-way and interval splits will likely improve
performance. Similarly, it will be interesting to see if e.g. Gaussian-process or kernelized regression will improve
inference accuracy.

Ideally, we would used Re�ned MDL to approximate Kolmogorov complexity. We are, however, not aware of an
e�ciently computable score for coding forests. We therefore constructed a two-part MDL encoding, which involves
choices—alternate choices may be more e�cient, and may lead to be�er models. For example, it will be interesting to
see whether the ideas of Wallace [33] for decision tree encoding can be used to improve Crack, as well as to explore
e�cient ways to compute the NML cost for numeric leafs.

It will be interesting to consider Crack for causal structure learning. �at is, applying Crack to a data set without
knowing X and Y and mine cause e�ect pairs based on the strength of the edges in the DAG. Another interesting
direction to explore is that of time series data, which would require to extend our current framework with temporal
dependencies.

9 CONCLUSION

We considered the problem of inferring the causal direction from the joint distribution of two univariate or multivariate
random variables X and Y consisting of single, or mixed type data. To infer the causal direction we took an information
theoretic approach identifying the most likely causal direction as the one with the most succinct code length. We
proposed a practical encoding scheme based on MDL to describe nominal and numeric data and model dependencies
between X and Y using classi�cation and regression trees. Further, we introduced Crack, a fast greedy heuristic to
infer the causal direction for mixed type data.

Experiments show that Crack reliably infers the correct causal direction with high con�dence. On multivariate real
world data, we outperform the state of the art and on univariate benchmark data Crack performs at least as well as
univariate single type methods. In future work, we are curious to investigate in causal discovery, that is, to directly
identify cause e�ect pairs from a data set in which X and Y are not known.
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