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Abstract 

A set of analytical solutions are presented for a model describing the transport of a solute in a fixed-bed reactor of cylindrical 

geometry subjected to the first (Dirichlet) and third (Danckwerts) type inlet boundary conditions. Linear sorption kinetic process 

and first order decay are considered. Cylindrical geometry allows the use of large columns to investigate dispersion, 

adsorption/desorption and reaction kinetic mechanisms. The finite Hankel and Laplace transform techniques are adopted to solve 

the model equations. For further analysis, statistical temporal moments are derived from the Laplace transformed solutions. The 

developed analytical solutions are compared with the numerical solutions of high resolution finite volume scheme. Different case 

studies are presented and discussed for a series of numerical values corresponding to a wide range of mass-transfer and reaction 

kinetics. A good agreement was observed in the analytical and numerical concentration profiles and moments. The developed 

solutions are efficient tools for analyzing numerical algorithms, sensitivity analysis and simultaneous determination of the 

longitudinal and transverse dispersion coefficients from a laboratory-scale radial column experiment. 

Key words: Two-dimensional model, equilibrium transport, reactive adsorption/desorption, first order decay, analytical solutions, 

moment analysis. 

 

1.   Introduction 

Packed-bed reactors have wide range applications in gas, oil, 

and petrochemical industries, especially for solid-catalyzed 

heterogeneous reactions in which the packing serves as a 

catalyst. Fixed-bed absorbers/desorbers have high demand 

in various process industries, for example chromatography, 

where traditional separation operations like distillation, 

solvent extraction, crystallization and evaporation are not 

applicable due to physicochemical limitations.  

Inside a chromatographic reactor the conversion of reactants 

and the separation of components take place simultaneously. 

The technique is useful to effectively reduce capital 

investment, energy and operating cost, equipment size, 

waste and pollution, as well as improves selectivity, purity, 

and productivity. This process has gained industrial 

popularity in the past few decades. For further details about 

the principles and applications of chromatographic reactors 

see [1–5].  The main motivation of this field of research is to 

provide profound insights into all aspects to scale up the 

process for industrial applications. 

Mathematical modeling plays an important role in 

describing dynamical processes inside packed-bed reactors. 

It provides a procedure for predicting the dynamical 

behavior of solute in the reactor without extensive 

experiments. Because of different considerations of 

simplifications, several types of models have been 

developed and applied to illustrate the behavior of profiles 

inside the packed bed-reactors. Such models include the 

general rate model, the lumped kinetic model, the linear 

driving force model, the linear model, and the equilibrium 

dispersive model [6-8].  Each model has its own level of 

complexity to describe the process. 

Analytical studies of the packed-bed reactor models are 

useful to understand the transport mechanism and to 

estimate chemical-physical parameters by the analysis of 

experimental data. Analytical solutions not only could shed 

some light on the physics of the problems, but also could be 

used for validation of numerical solutions for more elaborate 

and complex models, particularly in lack of experimental 

data. 

A number of analytical solutions for one-, two- and three-

dimensional advection-dispersion equations (ADEs) have 

been developed for predicting the transport of various 

contaminants in the subsurface. For example, several 

analytical solutions of the one-dimensional ADE were 

formulated in [9] subjected to various initial and boundary 

conditions. In [10–12] the authors have presented analytical 

solutions of the two-dimensional ADE with various source 

boundary conditions. The analytical solutions for three-

dimensional ADE were derived in [13, 14]. However, these 

models were mostly limited to ADE in Cartesian coordinates 

with steady uniform flow [14]. Analytical solutions for two 

dimensional ADE in cylindrical coordinates are particularly 

useful for analyzing problems of the two-dimensional solute 

transport in a porous medium system with steady uniform 

flow [14–20].  

The considered model could be efficiently applied when 

laboratory-scale experiment is performed in a cylindrical 

column. This is a practicable way of estimating transversal 

and longitudinal dispersion coefficients simultaneously. 
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Transverse dispersion coefficient is usually evaluated by 

interpreting steady-state transverse concentration profiles of 

conservative solutes in parallel flow [21, 22]. It has been 

inferred also from transient transport in column and parallel 

flow [23, 24]. In [23] the authors haves used the solution of 

the concentration profile computed on the column axe under 

the hypothesis that the edge of the column is so distant from 

its axes that it does not affect the profile. 

It was concluded in [25] that kinematic waves can be 

partially characterized by mean and variance. This method, 

called moment analysis, has successfully quantified the 

physical properties of several products. It is an effective 

method for deducing important information about the 

retention equilibrium and mass transfer kinetics in a 

chromatographic column. Provided analytical solutions of 

the column mass balances are available, condensed 

information in the form of moments of the outlet profiles 

can be easily obtained. Moment analysis has been 

comprehensively discussed in the literature [26–39].  

This manuscript presents a set of comprehensive analytical 

solutions for a two-dimensional model describing the 

transport of a single solute in a fixed-bed reactor. The 

current solutions extend our recent solutions of two-

dimensional models for non-reactive flows inside fixed-bed 

columns [20, 40]. General solutions are derived for the 

solute concentration by applying finite Hankel transform 

together with Laplace transform [18, 19]. The finite Hankel 

transform technique is utilized to eliminate the radial 

coordinate, followed by the application of the Laplace 

transform to solve the resulting partial differential equation 

assuming both first (Dirichlet) and third-type (Danckwerts) 

inlet boundary conditions (BCs), linear sorption kinetic 

process, and first order decay or desorption-like reaction. 

Danckwerts BC is the more general BC and is important for 

large values of the axial dispersion coefficient, as it accounts 

for back mixing at the column inlet. On the other hand, 

Dirichlet BC is the simplest one and is useful when axial 

dispersion is small. The solutions of both BCs coincide for 

small axial dispersion (or large Peclet number). For further 

analysis, statistical temporal moments are derived from the 

Laplace transformed solutions. Typical examples of 

concentration profiles and moments resulting from different 

sets of inlet conditions are presented and briefly discussed. 

The analytical solutions are validated against the numerical 

solutions of high resolution finite volume scheme [41]. 

Good agreements in the results verify the correctness of 

analytical solutions and accuracy of the proposed numerical 

algorithm.  

The complex interplay between thermodynamic and kinetic 

parameters renders the prediction of the reactor performance 

and the identification of suitable operating conditions is very 

difficult. The derived analytical solutions and moments 

could be very useful for further developments of fixed-bed 

reactors. In many situations sample sizes are small and 

diluted conditions hold. Therefore, linear assumptions are 

valid. Thus, our results can be used to study the effects of 

mass transfer and reaction kinetics on the elution profiles, 

for sensitivity analysis, for determining longitudinal and 

radial dispersion coefficients, and for determining reaction 

rate parameters from experimentally determined moments, 

among others. The studied 2D-model is more general and 

flexible compared to the classical 1D-models [39]. 

The current 2D model and solutions could be useful in 

various scenarios, for instance (a) the injection at the column 

inlet is not perfect (i.e. a radial profile is introduced at the 

column inlet), (b) the column is not homogeneously packed 

(which is more probable in the case of larger columns), (c) 

radial temperature gradients exist, also related to radial 

concentration gradients. All such situations can happen in 

reality. Often they might be minor and even negligible, then, 

1D are justified. However, for their relevance and effects 2D 

models are required. With current isothermal model we 

could just study case (a) by assuming injections in inner 

cylinders or outer annuli. Cases (b) and (c) are more 

complicated and require further model extensions 

(considering non-constant column porosities and an energy 

balance).  

The structure of the article is as follows: The two-

dimensional mathematical model for reactive-sorption 

columns of cylindrical geometry is described in Section 2. 

Section 3 presents the derivation of analytical solutions. 

Section 4 presents the temporal moments. Numerical test 

problems are presented in Section 5. Concluding remarks 

are given in Section 6. 

 

2. Mathematical Model 

This study considers the transport of a solute in a two-

dimensional chromatographic reactor of radial geometry as 

illustrated schematically in Figure 1.  

The injected solute migrates in the z-direction by advection 

and axial dispersion, spreads in the r-direction by radial 

dispersion, and decays due to first order chemical reaction. 

We neglect in this study flow rate variations and keep the 

interstitial velocity u as constant. It is further assumed that 

solute undergoes linear adsorption and chemical reaction is 

represented by first order kinetics. To trigger and amplify 

the effect of possible rate limitations of the mass transfer in 

the radial direction, the following specific injection 

conditions are assumed. By introducing a parameter r~ the 

inlet cross section of the column is divided into an inner 

cylindrical core and an outer annular ring (see Figure 1). 

The injection profile is formulated in a general way allowing 

for injection either through an inner core, an outer ring or 

through the whole cross section. The latter case results if r~

is set equal to the radius of the column denoted by R . Since 

in the latter case no initial radial gradients are provided, the 

solutions should converge into the solution of the simpler 

one-dimensional model [39]. 

Based on the above setup, the governing equation of a 

single-solute two-dimensional linear reactive equilibrium 
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dispersive model (EDM) for a fixed bed chromatographic 

column can be expressed as  
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Here, εε /)1( −=F is phase ratio based on the porosity

( )  ,1,0∈ε µ is the first order decay constant, ( )tzrc ,,  

denotes concentration of the solute, t  is time, and 
zD

and
rD represent the longitudinal and radial dispersion 

coefficients, respectively.  

To simplify the analysis, let us define some dimensionless 
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Here L is the length of the column. Using these variables in 

Eq. (1), we have 
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The corresponding initial condition is given by

 (4)                       ,10    ,10      ,)0,,( ≤≤≤≤== ρτρ xcxc init

     
                   

 

where initc is the initial concentration of the solute in the 

column. The boundary conditions subjected to the above 

equation at 0=ρ  and 1=ρ  are given as 
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Moreover, the two sets of boundary condition at the column 

inlet and outlet are summarized below. 

Case 1: Concentration pulse of finite width injected as 

Dirichlet inlet BCs: 

For injection in the inner circular region, it is expressed as 
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while, for injection in the outer annular zone, we have
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Here, injc is the concentration of injected solute solution, 

in jτ is the time of injection and 

R

r~~ =ρ ,                                                                (8)  

where r~ represents the radius of inner spherical core as 

shown in Figure 1.For injection over the whole inlet cross 

section of the column, either 1~ =ρ in Eq. (6) or 0~ =ρ in Eq. 

(7). 

At the column outlet, the useful and realistic Neumann BCs 

for hypothetically infinite column length (Neumann at 

infinity) is given as  
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Case 2: Concentration pulse of finite width injected as 

Danckwerts inlet BCs: 

For the inner zone injection, this boundary condition is 

expressed as 
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while, for injection in the outer annular zone, we have 
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together with Neumann condition at the outlet of the column  
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3. Derivation of analytical solution 

The chromatographic model in Eq. (3) and its associated 

initial and boundary conditions are analytically solved by 

successive implementation of the finite Hankel transform 

and the Laplace transform, see [18, 19]. The Hankel 

transformation of Eq. (3) with respect to ρ  gives 
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where
nλ is the finite Hankel transform parameter as 

determined by the transcendental equation
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Accordingly, the initial condition in Eq. (4) after the finite 

Hankel transform becomes 
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For injection at the inner cylindrical core, we have 
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While, for injection at the outer annular ring, it becomes 
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The value of ρ~ is given by Eq. (8). By applying Laplace 

transformation on Eq. (13) with respect to t , we have 
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The general solution of this equation comes out to be 
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The constants 0A  and 0B  are to be determined from the 

boundary conditions. 

Case 1: Concentration pulse of finite width injected as 

Dirichlet inlet BCs: 

The Hankel transformations of Eq. (6)(or Eq. (7)) and Eq. 

(9) are given as 
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where ),( nF λ  for inner and outer annular injections, are 

given by Eqs. (17) and (18). After applying Laplace 

transformation on the boundary conditions in Eqs. (22) and 

(23), we obtain 
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Using Eq. (24) in Eq. (20), we obtain    
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After using the values of 0A and 0B , the solution of Eq. (20) 

becomes 
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where the value of 
2m is given in Eq. (21). Using the 

inverse Laplace transformation on Eq. (26), the solution in 

actual time domain is given as 





≥−−

≤≤
=

,,),,(),,(

,0,),,(
),,(

injinjnn

injn

nH xAxA

xA
xc

ττττλτλ
τττλ

τλ

(27) 

where, for ( )κλ ++=
r

n

Pezz PePev
2

42
, 

( )

( )

.2

2

  erfc

2

  erfc
2

)(
  

2
  erfc

2

)( 

2
  erfc

2

)( 
 ),,(

2

2

2





















−





















+
+





















−
−













 +
+













 −
=









+−

+

−

z

xPe

z

ninit

z

z

xvPe
ninj

z

z

xvPe
ninj

n

Pe

x
e

Pe

xeFc

Pe

vxPe
e

Fc

Pe

vxPe
e

Fc
xA

z

rPe

n

z

z

τ

τ

τ

τλ

τ

τλ

τ

τλ
τλ

τκ
λ

(28) 

Case 2: Concentration pulse of finite width injected as 

Danckwerts inlet BCs: 

The Hankel transformations of Eq. (10) (or Eq. (11)) and 

Eq. (12) are given as 
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together with the Neumann condition at the outlet of the 

column 
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Once again )( nF λ , for inner and outer annular injections, are 

given by Eq. (17) and Eq. (18). 

After applying the Laplace transformation on these 

boundary conditions, we get 
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Now using Eqs. (31) and (32) in Eq.(20), we obtain                    
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Thus the solution in Eq. (20) takes the form 
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No analytical inverse Laplace transformation is possible to 

bring back the solution in the actual time domain 

). , ,( τρ xc For that reason numerical Laplace inversion 

will be used to get the solution in actual time domain, see 

[42]. In this method the integral of inverse Laplace 

transform is replaced by Fourier series. 

 

4.   Moment Analysis 

Moment analysis is known to be an effective method for 

deducing important information about the retention 

equilibrium and mass transfer kinetics in a chromatographic 

column. It can be applied in various ways, namely (a) to 

describe in a simpler manner essential features of the 

chromatograms, (b) to estimate efficiently free model 

parameters by matching measured and predicted moments, 

(c) to efficiently predict performance parameters of the 

separations and, thus, (d) to optimize more easily the 

process. In this study, we addressed essentially just the 

aspect (a). The zeroth moment describes the peak area 

(mass), the first moment corresponds to the retention time, 

the second central moment or variance provides significant 

information related to mass transfer processes in the column, 

while the third central moment analyzes the fronts 

asymmetries (skewness). The experimental values measured 

for these moments can be compared with their theoretical 

expressions to estimate dispersion and other mass transfer 

coefficients. Normalized averaged i-th moments of the band 

profile at any position in the column can be obtained 

through the following expression 
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Due to mass balance consideration for this zeroth moment 

holds 
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When mass transfer in the radial direction is assumed 

hypothetically to be infinitely fast, ),,(),( τρτ xcxcav = , 

that corresponds to the 1D case presented in [39]. Due to its 

moment generating properties the Laplace transformation 

can be used as a basic tool to derive analytical expressions 

for the moments. In this study, analytical temporal moments 

are derived as functions of radial coordinate ρ at the outlet 

of the column )1( =x considering 0=initc . Afterwards, 

these moments are used to obtain the aforementioned 

averaged moments by integrating over ρ . The following 

property of the Laplace transform was used to determine the 

analytical moments from the Laplace and Hankel 

transformed concentration Hc in Eq. (26) or Eq. (35): 
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The actual moments )(ρµ i are generated from Eq. (15) 

by taking moments of the concentrations on both sides 

of that relation. On multiplying both sides of Eq. (15) 
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iτ and integrating over τ  from 0 to ∞ , we obtain 
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From the above moments, the averaged non-normalized 

temporal moments 
aviM ,

can be calculated as 
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Finally, the normalized averaged temporal moments (c.f. Eq. 

(36)) which are widely used in chemical engineering are 

available as [39] 
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For evaluation of the solute transport behaviour, the above 

averaged temporal moments avi ,µ up to the fourth order are 

derived. These moments can be used to get finally also the 

first three averaged central moments defined below (see 

[39]): 

 



6 

 

.364

.23

.

4

,1,2

2

,1,3,1,4

'

,4

3

,1,2,1,3

'

,3

2

,1,2

'

,2

avavavavavavav

avavavavav

avavav

µµµµµµµ

µµµµµ

µµµ

−+−=

+−=

−=

             

(44) 

The corresponding i-th central moments of the band profile 

at the outlet of a column of length 1=x  are numerically 

obtained using the expression 
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where, 
av.0µ for 1=x  is given by Eq. (38). The trapezoidal 

rule is applied to numerically approximate the integrals in 

Eqs. (36)-(38) and (45). The central moments are well 

known in chemical engineering due to their physical 

meanings [39]. Hereby the zeroth moment corresponds to 

mass balance (peak areas), the first to mean retention times, 

the second to variance around the mean resentence time, the 

third to peak asymmetry (skewness) and the forth to 

kurtosis. The values of these moments should be in 

agreement with those provided in[39] based on an analysis 

of the 1D case, in which 
zD  has an effect on their values. 

Case 1: Dirichlet inlet BC (Eq. (6) or (7) and (9)) 

The moments of Hc  in Eq. (26) are given below. 

The zeroth moment: According to Eq. (26) and Eq. (40) for 

� = 0, the zeroth moment is given as 
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Here, )( nF λ is given by Eq. (17) for inner zone injection 

and by Eq. (18) for outer annular zone injection. 

 

 

First moment: The first moment is calculated from Eq. (26) 

and Eq. (40) for 1=i  and is expressed as    
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Second moment: The second moment is given as 
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Third moment: The third moment of Eqs. (26) is given as 
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Fourth moment: Similarly the fourth moment comes out to 

be 
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Case 2: Dankwerts inlet BC (Eqs. (10) or (11) and (12)) 

The temporal moments of concentration profile given by Eq. 

(35) are calculated using Eq. (40). 

The zeroth moment: It is given as 
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and v  is given by Eq. (46). Moreover,  
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Similarly the second moment comes out to be  
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The expressions of H,3µ  and H,4µ  were very lengthy. 

Therefore, only plots of these moments will be presented in 

the considered test problems. 

 

5.   Numerical Test Problems 

In this section, several case studies are carried out to 

validate the derived analytical solutions. For comparison, a 

second-order accurate finite volume scheme (FVS) is 

applied to numerically approximate the model equations (3)-

(12) [41]. All parameters used in the test problems are given 

in Table 1, except the last problem in which experimental 

and analytical results are compared. It is import to mention 

that this study deals with dimensionless quantities in the 

model equations. Therefore, the general trends identified 

and discussed below also hold for larger column dimensions 

and additional calculations for a large scale would not bring 

new insight. 

 

Rectangular concentration profiles 

This series of calculations analyzes the influences of 

boundary conditions, types of injections, dispersion 

coefficients, and first order decay on the concentration 

profiles. The sample is either injected through the inner 

cylindrical core or the outer annular ring. In the calculations 

described here, the radius of inner cylindrical core r~  is 

chosen in such a manner that the inner and outer annular 

zones have the same areas. Thus, for a column of radius 

2.0=R  the inner zone radius comes out to be

)707.0~(or  1414.0~ == ρr . For validation, analytical 

solutions are compared with the numerical solutions of finite 

volume scheme [41]. 

A comparison of analytical and numerical solutions for 

different values of dimensionless reaction rate constant κ
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and 
zPe  is given in Figure 2 at 1=x  for the case that the 

sample is injected at 0=x  through the inner cylindrical 

core. In Figure 2 (top: left), Danckwerts BCs are considered 

with 20=zPe and 5.0=rPe are kept fixed. The local elution 

profiles in the centre ( )0=ρ  are plotted for different values 

of reaction rate constants. Comparison of these results 

indicates that the presence of reaction in the mobile phase 

could result in enhanced desorption and cleanup of the 

packing from species in a shorter period of time. Figure 2 

(top: right) analyze the effects of boundary conditions for

53.0=κ . For the sake of generality 
zPe is taken as 

parameter. For the relatively large axial dispersion 

coefficients (or small
zPe ), there is a clear difference 

between the profiles obtained using the Dirichlet or 

Danckwerts boundary conditions. The more realistic 

Danckwerts conditions quantify the unavoidable back 

mixing at the column inlet and predict broader profiles. Due 

to the rapid radial transport, the profiles are almost identical 

along the radial coordinate. The sample elutes over the 

complete cross section with no visible radial concentration 

dependence, see Figure 2 (bottom: left and right). 

Figures 3 and 4 provide a comparison of the analytical and 

numerical solutions considering injections through the inner 

and outer zones for less axial back mixing 

min/01.0( 2cmDz = or )600=zPe and slower radial 

transport ( )15or  min/001.0 2 == rr PecmD . Both analytical 

and numerical solutions are compared for different values of

κ . Now, significant radial transport limitations lead to still 

visible influence of the injection conditions at the column 

outlet )1( =x . Also the local )0( =ρ  and averaged 

concentration profiles (Eq. (37)) differ significantly at the 

outlet. However, for the considered high zPe number both 

Dirichlet and Danckwerts BCs produced the same results. 

Once again, the concentration profiles decay rapidly for 

large values of κ . 

The plots of Figure 5 either consider the sample injection 

through inner core or outer ring using .707.0~ =ρ The 

radial concentration profiles are plotted at the middle of the 

column )5.0( =x  for  5.1=τ  using different values of the

r

z

D

D

L

R
ratioPe 2

2

= and 53.0=κ . Hereby, 
zD was fixed at

min/3.0 2cm  and 
rD  was varied in the interval

min/]10,10,10[ 2123 cmDr
−−−= . Inner (left plots) and outer (right 

plots) injections are compared. It can be seen that the 

imposed step profiles deteriorate faster for larger values of 

the radial transport coefficients. The two limiting cases 

corresponding to conservation or elimination of the injection 

profiles are clearly visible. 

 

Moments of the solution profiles 

In this study, plots of moments using the Danckwerts BCs 

are presented. The Dirichlet BCs produced similar results 

and are therefore omitted.  

Figure 6 displays the normalized local moments )(/)( 0 ρµρµi
 

(c.f. Eq. (41)) plotted along the radial coordinate of the 

column for 53.0=κ . The effect of radial dispersion 

coefficient on the first, second, third and fourth moments 

can be clearly seen. Here, min/3.0 2cmDz = and

min/5.1 cmu = were kept fixed and varied was the ratio

rzratio DLDRPe 22 /= , which corresponds to

]10,10,10[ 123 −−−=rD . The plots of this figure show that 

moments approach to constant values along the radial 

coordinate for smallest value of 
ratioPe or largest 

rD . For the 

smallest value of 075.0=ratioPe , the results obtained 

correspond to the 1D case. Since the concentration is 

injected via the inner cylindrical core, all moments do not 

change close to the column center. The changes clearly 

occur in the outer section. Although, trends of the moments 

are similar, on inspecting closer the y -axis, the magnitudes 

reveal that higher moment change more significantly with 

changing the
ratioPe . Similar trends were also observed in 

the case of injection through outer zone. 

Figure 7 displays the local moments )(ρµi
 (c.f. Eq. (41)) 

plotted along the radial coordinate of the column for three 

different values of dimensionless reaction constant κ . The 

effect of radial dispersion coefficient on the first, second, 

third and fourth moments can be clearly seen. Here,

min/01.0 2cmDz = , min/5.1 cmu = and .min/001.0 2cmDr =

The plots of this figure show that values of the moments 

reduces on increasing κ . Since the concentration is injected 

via the inner cylindrical core, all moments have high values 

in the inner zone. Although, trends of the moments are 

similar, on inspecting closer the y -axis, the magnitudes 

reveal that higher moments have large values. Moreover, all 

moments have similar behaviors for all three values of κ
but have different magnitudes. Similar trends were also 

observed in the case of injection through outer zone. 

Figure 8 gives the plots of averaged first, second, third and 

fourth central moments as functions of flow rate. These 

averaged moments are obtained using the relations in Eqs. 

(44) and Eq. (45). The concentration was injected though 

inner zone. The first moment has larger value for higher 

velocity and has smaller value for lower speed. On the other 

hand, central moments shows increasing behavior in certain 

range of interstitial velocity and decreasing behavior in the 

other range of interstitial velocity.  

 

Comparison of theoretical and experimental results 

To test the applicability of our derived analytical solutions, 

we use the experimental data of [43]. Only a brief 

description of the experiment is given here, full details can 

be found in [43].  A conservative tracer, tritium, was 

injected into a saturated column over a finite period of time 

and relative (�/����) profile was obtained at 	 = 8 � 

downstream. In our analytical solutions, we have used 

 = 8 �,  � = 1.15 �/ℎ�, � = 2.3, ���� = 0.217 ℎ�, 
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�� = 0.031 �/ℎ��, �� = 0.03 �/ℎ��, � = 0.25, � =

0 ℎ� !, ���� = 7 "/#, and inner zone injection. The Dirichlet 

BCs are used in this case study. A comparison of analytical 

and experimental results at the center of the column is 

shown in Figure 9. The nearly symmetrical profiles suggest 

that packing material inside the column was uniform. Our 

analytical solution is in good agreement with the 

experimental results. Moreover, our analytical solution is 

also in good agreement with the theoretical predications 

presented in [43,44].  

 

6.   Conclusions 

We have derived general analytical solutions of a two-

dimensional model describing the transport of a solute in a 

fixed-bed reactor of cylindrical geometry. General analytical 

solutions were derived through successive implementation 

of the finite Hankel and Laplace transforms assuming 

constant flow rates, linear adsorption isotherms, two sets of 

boundary conditions, first order decay or desorption-like 

reaction, and injections through inner and outer regions of 

the column inlet cross section. The developed analytical 

solutions illustrate the influence of longitudinal and radial 

dispersions and linear reaction. For further analysis of the 

solute transport behavior, the temporal moments up to the 

fourth order were derived from the Laplace-transformed 

solutions. The analytical solutions were compared for 

validation with the numerical solutions using a high 

resolution flux-limiting finite volume scheme. Typical 

examples of calculated concentration distributions and 

moments for the considered two sets of boundary conditions 

were presented and briefly discussed. The suggested 

mathematical model and derived analytical solutions could 

be used to describe, at a laboratory scale, desorption process 

in chromatography, experimental practices adopted for soil 

characterization, as well as transport parameters estimation 

and kinetic studies. Since the model takes into account 

dispersion, advection and a first-order chemical reaction, it 

is possible to use this model to estimate both the 

longitudinal and transverse dispersion coefficient and other 

parameters by fitting the data coming from experiments. 

Furthermore, the available analytical solutions could be used 

to perform sensitivity analysis and to validate numerical 

algorithms. 
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Figure 1: Schematic representation of a chromatographic 
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Figure 1: Schematic representation of a chromatographic column of cylindrical geometry
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column of cylindrical geometry 
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Figure 2: Injection through inner zone. Comparison of solutions for different values of κ and
zPe with fixed

5.0=rPe . Other parameters are given in Table 1. 

 

 

Figure 3: Injection through inner zone. Comparison of solutions for different values of κ  with fixed 

.15 and 600 == rz PePe Other parameters are given in Table 1. 
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Figure 4: Injection through outer annular zone. Comparison of solutions for different values of κ with fixed 

600=zPe and 15=rPe . Other parameters are given in Table 1. 

 

 

Figure 5: Comparison of solutions for different values of  / 22
rzratio DLDRPe =  with fixed  600=zPe and 

.53.0=κ Left: inner zone injection, right: outer zone injection. Other parameters are given in Table 1. 
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Figure 6: Inner zone injection: Effect of 
rD  on the local moments )(41) Eq. c.f.( )(ρµi

 for fixed 

53.0 and )20( min/3.0 2 === κzz PecmD . Varied is the ratio  /
22

rzratio DLDRPe = . Table 1 gives 

other parameters. 

 

Figure 7: Inner zone injection: Comparison of analytical and numerical moments for different values of  κ  and 

fixed .min/ 001.0  and  min/ 01.0 2
r

2 cmDcmDz == Other parameters are given in Table 1. 
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Figure 8: Inner zone injection: Comparison of analytical and numerical averaged central moments for

12
r

2 min2.0 and min/ 03.0 and  min/ 3.0 −=== µcmDcmDz . Other parameters are given in Table 1. 

 

 

Figure 9: A comparison of analytical and numerical experimental results. 

 


