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Abstract:
Spectroscopic investigations into the abundances of trans-iron elements in stars yield

valuable information about stellar evolution. In order to interpret the emission spec-

trum of these stars, spectral data of trans-iron elements is required. Ruthenium

(Z=44) is particularly interesting as it has a similar atomic structure to that of

technetium (Z=43), the lightest unstable element. The half-life of technetium is

short compared to the life time of a star, allowing a time dependent insight into

stellar evolution. In this work, highly charged ruthenium ions were produced and

investigated in the Heidelberg electron beam ion trap at the Max Planck Institute

of Nuclear Physics in Heidelberg. The fluorescence light emitted by the excited

ions was recorded using a Czerny-Turner monochromator. The 53 measured optical

lines of the charge states Ru9+ to Ru18+ were compared to calculations from atomic

theory, leading to tentative identifications of 30 transitions.

Zusammenfassung:
Spektroskopische Untersuchungen der Häufigkeiten von Trans-Eisen Elementen in

Sternen erbringen wertvolle Informationen über die Sternentwicklung. Um die Emis-

sionsspektren dieser Sterne zu interpretieren, werden spektrale Daten von Trans-

Eisen Elementen benötigt. Ruthenium (Z=44) ist hierbei besonders interessant, da

seine atomare Struktur der von Technetium (Z=43) sehr ähnelt. Technetium ist

das leichteste Element, welches keine stabilen Isotope besitzt und liefert aufgrund

seiner kurzen Halbwertszeit einen zeitabhängigen Einblick in die Sternentwicklung.

In dieser Arbeit wurden hochgeladene Rutheniumionen in der Heidelberger Elek-

tronenstrahl Ionen Falle produziert und untersucht. Das von den angeregten Ionen

emittierte Fluorenszenzlicht wurde mit Hilfe eines Czerny-Turner Monochromators

aufgenommen. Die 53 gemessenen optischen Linien der Ladungszustände Ru9+ bis

Ru18+ wurden mit theoretisch berechneten Werten verglichen, was eine vorläufige

Bestimmung von 30 Übergängen ermöglicht hat.
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1 Introduction

Since the first astronomical observations, stars have always played a major role in

giving us insight into the evolution of the Universe. A star is a spherical body con-

sisting of plasma, held together by its own gravity, while a gravitational collapse is

prevented by the pressure resulting from its radiation. Over the course of its lifetime

a star undergoes significant changes, including variations in its size and radiation.

The emitted spectrum of a star thus yields information about the evolutionary stage

of the star and the elements of which it is composed. The stellar evolution, describ-

ing the birth, life and death of a star is understood in principle, but there are still

many unanswered questions, one of which is the nucleosynthesis of trans-iron el-

ements (elements with a higher atomic number Z than iron) in stars. There are

multiple nucleosynthesis processes occurring in a star, but the most prominent one

is nuclear fusion, where two nuclei are merged to form a new element of a higher

Z. This process, however, cannot produce heavier elements than iron, since iron

has the highest binding energy per nucleon. The trans-iron elements are products

of the s-process (slow neutron capture process) in the intershell region of the star,

where they are hidden from our telescopes. However due to high radiation pressure,

the intershell elements can reach the surface and thus appear in the spectrum of the

star. Spectral data of white dwarfs such as RE 0503-289 show high abundances of

trans-iron elements, as shown in figure 1.1.
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Figure 1.1: Spectral data of the star RE 0503-289 taken by the Far Ultraviolet
Spectroscopic Explorer (FUSE) satellite show contributions from ion-
ized trans-iron elements. Image taken from [1].

One of the trans-iron elements is technetium (Z=43), the lightest unstable element

with a half-life of 210 000 years. The detection of technetium will therefore result in

a better comprehension of the trans-iron elements synthesis and of stellar evolution

in general.

Technetium was first discovered in the atmosphere of red giants by P. Merrill in

1952 [2], which leads to the assumption that it could be present in a star whenever

other products of the s-process are detected. The current goal in this field of research

is to find traces of technetium in RE 0503-289 and similar stars [3]. However to

forward this project, spectral data of the trans-iron elements is needed, as so far

only very few of the heavier elements have been investigated beyond their lowest

charge states, which is shown in figure 1.2.
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Figure 1.2: Overview of the number of measured spectral transitions for ions with
atomic number Z, according to the NIST atomic spectra database [4].
The magenta rectangles specify a charge state of a specific element which
has more than 4000 measured transitions, while the white areas represent
charge states for which no data has been collected so far.

To obtain this spectral data the apparatus of choice is the electron beam ion

trap (EBIT). In an EBIT, highly charged ions (HCI) can be produced and trapped,

by means of a magnetically compressed electron beam. However investigations of

technetium with an EBIT are not yet possible since the radioactive nature of the

element involves complex alterations of the experimental setup. Therefore in this

work, ruthenium (Z=44) is investigated, as it has a similar atomic structure com-

pared to technetium. The obtained ruthenium data can then be used to predict the

emission properties of technetium through extrapolation [5] with the spectral data

of molybdenum (Z=42), which is already available. The experiment was performed

at the Heidelberg EBIT (HD-EBIT) and comprised the investigation of Ru9+ to

Ru18+.
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2 Theory

In this chapter, an introduction to atomic physics is presented. The focus lies on the

laws of atomic physics necessary to describe the processes taking place in an EBIT

and perform computational methods to predict the electronic structure of atoms.

However a full overview of atomic physics will not be featured in here. For a more

detailed approach one can refer to literature such as Kuckuck or Demtröder [6, 7].

2.1 One-Electron systems

The starting point is the simplest atomic system consisting of an electron and a

positively charged nucleus. This system can be described by a wave function Ψ(r, t),

which can be found by solving the Schrödinger equation

i~
∂

∂t
Ψ(r, t) = HΨ(r, t), (2.1)

with the Hamiltonian

H =
−~2

2µ
∆ + V (r, t), (2.2)

where µ = meM
me+M

is the reduced mass with the electron rest mass me and M the mass

of the nucleus and ~ = h/2π the reduced Planck constant. The electromagnetic in-

teraction between the nucleus and the electron corresponds to the Coulomb-potential

which is described by

V (r) = − Ze2

4πε0|r|
, (2.3)

with ε0 the electric constant, Ze as the nucleus charge and |r| as the distance between

the nucleus and the electron. Considering the time independence of the Coulomb-

potential, equation (2.1) simplifiesHΨ(r) = EΨ(r). Hence the Schrödinger equation

can be written as [
−~2

2µ
∆− Ze2

4πε0|r|

]
Ψ(r) = EΨ(r). (2.4)
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A complete approach to the solution is not featured here and can be found in [6],

thus only the final solution is presented. The wave function is expressed in spherical

coordinates due to the symmetry of the system and consists of a radial function and

a spherical harmonic:

Ψ(r, ϑ, φ) = Rn,l(r)Y
l
m(ϑ, φ) (2.5)

with the main quantum number n = 0, 1, 2, ..., the angular quantum number

l = 0, 1, 2, ..., n−1 and the magnetic quantum number m = −l,−(l−1), ..., (l−1), l.

The resulting discrete energies En are given by

En = −µc
2(Zα)2

2

1

n2
(2.6)

with α = e2

4πε0~c the fine-structure constant. They depend on the main quantum

number n, while the quantum numbers l and m have no influence on the energies in

this approach, which is why one energy can have multiple possible solutions resulting

in a degenerate state.

An electron can perform transitions between the energy levels by emitting or

absorbing energy as for example in the from of a photon. As the photon energy is

equivalent to the energetic difference between the two levels, information about the

atomic structure can be obtained through measuring it by means of spectrometry.

2.2 Fine structure

The previous approach to the hydrogen-like system is already very accurate. How-

ever measurements with high resolution show small energy splittings in the spectral

lines resulting in an observation of a doublet instead of a single line known as the

fine structure splitting. This is caused by the electron spin s and the resulting

spin magnetic moment of the electron, which was observed in the Stern-Gerlach

experiment

µs = −gs
µB
~
s, (2.7)

where µB = e/2me is the Bohr magneton and gs ≈ 2 the electron g-factor. The

associated spin quantum number is s = 1
2
.

As the electron is moving through the electric field of the nucleus, a magnetic field
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is created around the electron which can be expressed as

B =
µ0Ze

8π|r|3me

l (2.8)

with |r| the distance between the electron and nucleus, µ0 the magnetic constant

and l the electrons orbital angular momentum. The resulting interaction between

the spin electron momentum and the magnetic field B is responsible for the line

splitting and is called the spin-orbit interaction.

To obtain the splitting energy the Hamiltonian from (2.2) has to be adjusted ac-

cordingly.

H = H0 − µs ·B = H0 − gsµB
µ0Ze

8π~|r|3me

(s · l). (2.9)

With the introduction of the total angular momentum j = l + s and use of the

relation (s · l) = 1
2
[j2 − l2 − s2] the splitting energy can be expressed relative to the

established energy levels En as

4EFS = En
Zα2

n · l(l + 1)
. (2.10)

2.3 Many-electron systems

For a system consisting of a nucleus and more than one electron, an analytical

approach is no longer possible. By adding more electrons to the system they not only

interact with the nucleus but also with each other. To take this into consideration

the repulsive contribution HRE of the other electrons is added to the Hamilton

operator.

H = H0 +HRE =
N∑
i=1

(
− ~2

2µ
∆− Ze2

4πε0|ri|

)
+

N∑
i<j=1

e2

4πε0|rij|
(2.11)

Here N is the number of electrons, ri the position of the i-th electron and rij the

distance between the i-th and j-th electron. The potential is thus no longer spher-

ically symmetric, but depends on the angle between the two radius vectors of the

electrons. A separation of the wave function into a radial and angular part as per-

formed in section 2.1 is no longer possible. Instead an approximation can be made

7



by using an iterative method, which is introduced in the next subsection.

2.3.1 Hartree-Fock method

The Hartree-Fock method describes an N-electron wave function as a product of one-

electron wave functions. As electrons are fermions, the N-electron wave function

must be antisymmetric under exchange of electrons in order to satisfy the Pauli

exclusion principle. This principle states that two fermions cannot exist in the same

quantum state. Therefore the N-electron wave function is approximated by the

Slater determinant

Ψ(r1, r2, ..., rn) =
1√
n!

∣∣∣∣∣∣∣∣∣∣
ψ1(r1) ψ2(r1) . . . ψn(r1)

ψ1(r2) ψ2(r2) . . . ψn(r2)
...

...
. . .

...

ψ1(rn) ψ2(rn) . . . ψn(rn)

∣∣∣∣∣∣∣∣∣∣
(2.12)

with the one-electron wave functions ψi(ri). By utilizing the variational method one

can obtain the Hartree-Fock wave function and energy of the system. The method

calculates the energy eigenvalues E
(0)
i of each wave function ψ

(0)
i and constructs

a potential for a specific wave function ψi of the i-th electron. With this new

potential the eigenvalues and wave functions E
(1)
i and ψ

(1)
i are calculated again

and compared to the previously calculated E
(0)
i and ψ

(0)
i . This is repeated until the

energy eigenvalues converge to a minimum value, because it is assumed that the true

energy eigenvalues of the wave function are always lower than the values obtained

by the approximation.

2.3.2 LS- and jj coupling

So far, the contribution of the spin-orbit interaction mentioned in section 2.2 has

been neglected in this approach. Therefore the coupling term HC is added.

HC =
N∑
i=1

1

2m2c2
1

|ri|
∇V (ri)(si · li) (2.13)

To determine the Hamiltonian H = H0 + HRE + HC one has to consider the two

possible cases |HRE| � |HC | and |HRE| � |HC | depending on the examined atom.

The first case applies to light atoms and is solved by considering the LS coupling,
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while the second case applies to heavier atoms and is solved with the jj coupling.

In the case of LS coupling the coupling energies between the orbital angular

momenta of the electrons and between the electron spins are higher than the coupling

energies between the orbital and spin angular momenta of each individual electron.

This leads to the coupling of the individual orbital angular momenta to the total

orbital angular momentum L =
∑N

i=1 li, and a coupling of the spins to the total

spin S =
∑N

i=1 si. Finally this results in a coupling of L and S to form the total

angular momentum J = S + L. For heavy atoms the energy of the orbital and spin

angular momenta of the individual electrons becomes stronger. The orbital and spin

angular momenta couple for each electron individually and form the total angular

momentum j = s + l of a single electron. These momenta then couple to form the

total angular momentum J =
∑N

i=1 ji.

2.4 Computational methods

In this work theoretical calculations have been performed using the flexible atomic

code (FAC) developed by M. F. Gu [8], in order to compare them with the measured

data. The FAC modules were used to calculate the energies of the fine-structure

levels of the investigated ions as well as the transition rates in between those levels.

Additionally, the cross sections of excitation induced by electron collisions have been

calculated allowing the generation of synthetic spectra using the collisional radiative

model (CRM). The CRM is used to better interpret emission spectra from plasmas.

The model usually considers many atomic processes that are taking place in plasmas,

excluding charge exchange. For more information about the CRM model one can

refer to a description of the model made by H. K. Chung [9]. However in this work

the only considered process is electron impact excitation. The reasoning behind

this is the given environment of the trapping region of the EBIT. The charge state

distribution is assumed to be dominated by the investigated charge state, which will

later be shown in this work. This allows the exclusion of excitations resulting from

recombination from higher charge states. The effects of electron impact ionization

and recombination are also neglected as the ionization caused by electron collision is

assumed to mainly produce the investigated ions in their ground state. Ultimately,

this allows the formulation, as presented in [5], of the rate equation describing the
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time dependence of the population ni of the state i as follows

dni
dt

=
∑
i>j

neC(σEIEij , Ee)−
∑
i<j

neC(σEIEij , Ee)−
∑
i>j

niAij +
∑
i<j

njAji. (2.14)

Here the first term represents the electron impact excitation from a less energetic

state j to a higher state, while the second term describes the opposing process of

electron impact de-excitation, from a higher energetic state j. Both terms depend

on the electron impact excitation cross section σEIE, the energy of the electrons Ee

and their density ne. The last two terms account for the spontaneous decay from

the energetically higher state i to the state j in the case of the third term and for the

spontaneous decay from the state j to the less energetic state i. They are described

by the Einstein coefficients Aij and Aji respectively.
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3 Experimental Setup

This chapter addresses the setup of the Heidelberg electron beam ion trap (HD-

EBIT), which was used to obtain the experimental data for this thesis. Furthermore

the properties of the electron beam as well as the optical setup will be discussed.

3.1 Electron Beam Ion Trap

The EBIT is a device to produce, trap and excite highly charged ions (HCI) in order

to study them. The following sections will elaborate how this is accomplished and

highlight the characteristics of the HD-EBIT.

3.1.1 Working principle

Neutral atoms injected into an EBIT are ionized via electron impact ionization

by a magnetically compressed electron beam. The electrons are emitted by an

electron gun, accelerated towards the central drift tube and eventually dumped

in the collector. The trapping region located between the gun and the collector

consists of several drift tubes with a connection to the injection system. A schematic

representation of an EBIT is displayed in figure 3.1. Due to their positive charge,

the ions are trapped radially by the negative space charge of the electron beam.

To trap them in the axial direction, a specific trapping potential can be created by

applying voltage to the drift tube electrodes. The now trapped ions are ionized even

further until the needed ionization energy exceeds the energy of the electron beam.

Additionally, the beam is exciting the ions leading to spontaneous emission of

photons, which in turn can be observed through observation slits in the central drift

tube.
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Figure 3.1: Schematic of an Electron Beam Ion Trap. The ions (green) are trapped
in radial direction by the negative space charge of the electron beam
(orange) which is compressed by the magnetic field (purple) of the su-
perconducting coils and trapped in axial direction by the potential well
(blue) set to the drift tubes. Image taken and altered from [10].

3.1.2 The Heidelberg-EBIT

The cross section of the Heidelberg EBIT is presented in figure 3.2. The electron

gun employed in the HD-EBIT features a barium-wolfram cathode emitting electrons

through the Edison effect. Due to the high temperatures necessary for electron emis-

sion, small amounts of barium and wolfram are also emitted. Over time, these ions

can dominate the trap contents, which can be prevented by regularly emptying the

trap during the experiment. This is accomplished by shortly inverting the trapping

potential, a process that is referred to as dumping.

The applied potential between the cathode and the anode accelerates the electrons

towards the anode. To prevent any collision with the anode, the electrons are

collimated by a focusing anode, which is set to a lower potential than the anode.

Additionally, to prevent unwanted interactions with the magnetic field generated by

the main magnet located at the drift tubes, a bucking coil is installed around the

electron gun for compensating the field. Thereby, the electrons passing through the
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anode enter the drift tubes in form of a collimated beam. The HD-EBIT features

nine drift tubes with individually adjustable potentials to create a custom trapping

potential.

The main magnet, consisting of two superconducting coils in Helmholtz configu-

ration, produces a magnetic field of 8 T which compresses the electron beam along

the drift tubes to a diameter of approximately 50µm. The coils are cooled to tem-

peratures slightly above 4 K using liquid helium.

Finally, after passing through the drift tubes the electron beam is dumped in the

collector. This is achieved with the collector coil, which compensates the compres-

sion of the beam induced by the main magnet, and with the suppressor electrode

mounted in front of the collector. These measures help to expand the electron beam,

causing the electrons to hit the inner surface of the collector where the kinetic en-

ergy of their impact is discharged with the water cooling system of the collector. To

ensure that no electron is able to pass the collector, the extractor electrode, whose

potential is set lower than the cathode potential, is installed in the rear of the col-

lector. This extractor can also be used to extract ions from the EBIT to perform

further measurements.

In order to be able to perform optical spectrometry, the light can pass through a

slit in the central drift tube perpendicular to the electron beam and further passes

through two quartz lenses before leaving the EBIT through a quartz window at the

outer vacuum barrier, in front of which the optical setup is mounted as shown later

in figure 3.3.
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Figure 3.2: Cross section of the Heidelberg-EBIT. The electron beam traverses the
EBIT starting at the electron gun then passing through the drift tubes,
while being compressed by the magnetic field of the superconducting
magnets and ending in the collector. Image taken from [11]

3.1.3 Electron beam

The energy of the electron beam inside the EBIT is an important parameter as it

directly affects the charge state of the ions inside the trap. It is estimated by the

potential difference between the cathode and the central drift tube

Ee = e(−Uc + UDT9). (3.1)

In this expression, however, the influence of the space charge of the electron beam

is neglected. An approximation of the space charge in the center of the central drift

tube is given by [11]

USC[V ] ≈ 30 · Ie[A]√
1−

(
Ee[keV ]

511
+ 1
)−2

(
ln

(
rH
rDT9

)2

− 1

)
(3.2)

with the electron beam current Ie, the previously calculated electron beam energy

Ee, the inside radius of the central drift tube rDT9=5 mm and rH the Hermann

radius of the electron beam. In the Hermann model [12] this radius is defined as the
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radius containing 80 % of the electrons of the beam and can be calculated by

rH = rB

√√√√1

2
+

√
1

4
+

8mekBTcr2c
e2B2r4B

+
B2
c r

4
c

B2r4B
(3.3)

with the cathode temperature Tc, the magnetic field strength at the cathode Bc,

the magnetic field strength at the central drift tube B, the cathode radius rc,the

Brillouin radius rB the electron charge e, electron mass me and the Boltzmann

constant kB. The Brillouin radius is given by

rB =

√
meIe

πε0υeB2
(3.4)

where υ is the axial electron velocity. The Herrmann radius has been calculated by

using values similar to those used in this work and is approximately 25µm [5]. The

obtained space charge is also partially compensated by the positive space charge of

the ion cloud. However, the contribution of the positive space charge depends on the

number and charge distribution of the ions which cannot be estimated. Thus, the

space charge correction is estimated from previous experimental experience [13] [5].

3.2 Optical Setup

This section is divided into three parts covering the CCD detector, the Czerny-

Turner spectrometer and the image rotation system including the calibration setup.

The complete optical setup that has been used in this experiment is shown in figure

3.3. Before the light of the ion cloud reaches the first component of this setup (the

image rotation system) it passes two plano-convex lenses inside the vacuum chamber

of the EBIT and gets projected to a quartz window on the outer vacuum barrier.
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Figure 3.3: The optical setup equipped at the HD-EBIT. Light generated in the
EBIT (a) first enters the image rotation system (b) where it is rotated
and then projected onto the entrance slit of the spectrometer (d). (c)
is the optical bench with the mounted calibration lamp and converging
lens. Image taken from [14]

3.2.1 CCD detector

A charge-coupled device (CCD) composed of 2048×512 pixels was used for recording

the diffracted light leaving the spectrometer. The 2048 pixels lie on the dispersive

plane and are thus used to obtain the wavelength information of the recorded spec-

trum, while the others are needed for image corrections. To reduce the readout

noise, a binning in 8 stripes is applied to the vertical plane resulting in 8 areas with

2048×64 pixels. The CCD is cooled with a Peltier element to reduce thermal noise.

This is necessary since the measured lines often show low intensities, requiring long

exposure times. The drawback of long exposures is the increase of impurities on

the obtained image due to cosmic rays hitting the CCD constantly throughout the

exposure time. However, these can be removed in later stages of data analysis.
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3.2.2 Spectrometer

The spectrometer used in this work is a Czerny-Turner monochromator. A schematic

of the spectrometer is shown in figure 3.4. The light entering the spectrometer

through the entrance slit (A) is collimated onto the grating (G) by the concave

mirror (S1). The diffracted light is then collected by a second concave mirror (S2)

and refocused onto the detector (D).

Figure 3.4: Schematic of the Czerny-Turner spectrometer. Image taken from [14].

The grating installed in the spectrometer is a blazed reflective grating. It features

sawtooth-shaped grating lines, which form a step structure. The steps are slanted at

the blazed angle θb with respect to the grating surface. A blazed grating is used to

optimize the diffraction efficiency of a certain wavelength λ, which is shown in figure

3.5. To analyze a region around the wavelength λ the grating has to be rotated so

that the grating equation [15]

sin(α) + sin(β) =
nλ

g
(3.5)

is satisfied. Here, α is the angle of incidence, β is the angle of reflection with respect

to the grating normal, n is the diffraction order and g is the line spacing of the

grating. The grating used in this work features a line spacing of 300 lines per mm.
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Figure 3.5: Scheme of a blazed reflective grating. With the given blaze angle θb the
blue light reflected under the angle β1 has the same angle of incidence β1
with respect to the blaze normal. This optimizes the diffraction efficiency
of the blue light. Image taken from [5].

3.2.3 Image rotation system and calibration

As the ion cloud trapped inside the EBIT has a horizontal expansion (approximately

40 × 0.5 mm2), the light emitted by the ions must be rotated before entering the

vertical entrance slit of the spectrometer in order to maximize the luminous inten-

sity of the measurement. To achieve this the light of the ion cloud is directed into

the image rotation system shown in figure 3.6. The system consists of three mirrors

and two lenses of which the first mirror (a) and the last lens (e) are adjustable to

ensure an optimal projection onto the entrance slit of the spectrometer.

An argon-iron-hollow-cathode calibration lamp is used in order to calibrate the ob-

tained spectra. The Ar-Fe-source is mounted on an optical bench (c) alongside

the spectrometer. The light is focused into a glass fiber using a converging lens.

The glass fiber then directs the light onto a diffusive reflector, whose position can

be adjusted in order to shine calibration light or light from the ion cloud into the

spectrometer. To further ensure that no calibration light can falsify the ion cloud

spectra, a shutter is mounted in front of the glass fiber which blocks the optical

path of the calibration light during acquisitions of the ion cloud. This setup can be

operated by remote control allowing an automated measurement with the suitable

scripts and a prior optimization of the image rotating system.
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Figure 3.6: Image rotation system as viewed from the HD-EBIT window. (a), (b)
and (d) are mirrors and (c) and (e) are lenses. (a) and (e) can be
adjusted to change the horizontal position and the focus of the image.
Image taken from [16].
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4 Performing the experiment

This chapter describes the individual work steps performed during the experiment

and mentions the different settings applied to the EBIT and the optical setup.

4.1 Injection

In the HD-EBIT the element of interest is injected into the trap center in form of a

molecular beam. To favor this method, a volatile compound containing ruthenium

had to be found. The compound Tris(2,2,6-tetramethyl-3,5-heptanedionato)rutheni-

um(III) (C33H57O6Ru) satisfies these requirements. The binding energies of the

molecule are surpassed by the electron beam energy, hence the bonds are broken

once the molecule comes in contact with the beam. The other components besides

ruthenium, hydrogen, carbon and oxygen are lighter than ruthenium and thus leave

the trapping region as they can only reach low charge states. The remaining ion

cloud is also cooled during this process, which is called evaporative cooling. The

probe vessel is connected to the first injection stage via a needle valve, used to

regulate the flow of gas into the first stage. A small aperture is leading to the

second injection stage, where the gas needs to pass one more aperture to reach the

central drift tube. In order to inject a sufficient amount of the molecule the probe

vessel is heated to 80 ◦C during the measurements. The resulting pressures in the

injection stages are pinj1 = 7 · 10−7 mbar in the first stage and pinj2 = 2 · 10−8 mbar

in the second stage.

4.2 Optimizing the electron beam

The first step is to optimize the electron beam by adjusting the potential of the

focus electrode and the position of the electron beam through a slight altering of the

position of the electron gun. The currents measured on the anode and the suppressor

electrode are indicators of the stability and straightness of the electron beam. These
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currents should be minimized, while maximizing the collector current. When the

currents are showing only small fluctuations the auto focus of the electron beam

should be activated to maintain a stable electron beam during the measurements.

In the course of this work the electron beam has the properties Ie=40 mA, Ee=520 eV

for the higher charge states and Ie=8 mA, Ee=170 eV for the lower charge states.

The stated electron beam energies are the initial beam energies, which are increased

stepwise during the experiment.

4.3 Optimizing the trapping potential and optical

setup

After applying a trapping potential to the drift tubes, the ruthenium compound can

be injected into the central drift tube to obtain the first spectrum. In the following,

the trapping potential as well as the electron beam energy can be modified to ensure

the highest possible intensity for the observed light. The applied trapping potentials

are 20 V - 70 V - 20 V for the higher charge states and 10 V - 20 V - 10 V for the lower

charge states, where the central voltage is applied to the central drift tube (DT9)

and the outer voltages are applied to the drif tubes in front and behind DT9. To

ensure that the obtained light originates from the injected ruthenium the spectrum

is recorded with a closed injection after inverting the trap. Now the optical setup

needs to be optimized for the measured wavelength. A bright line in the middle of

the spectrum is chosen to determine the optimal positions of the focus lens and the

first mirror of the image rotation system in order to project and focus the light of the

ion cloud onto the entrance slit of the spectrometer. The focus is optimized when

the intensity of the line reaches a maximum and the full width at half maximum

(FWHM) of the line is minimal. To project the light on the middle of the entrance

slit, the peak position of the line is measured with a fully opened entrance slit

(2 mm) and the slit size which was used during the following ion cloud acquisition,

while changing the position of the mirror. The entrance slit sizes were 70µm for

the high energy measurements and 200µm for those with lower energies. This is

repeated until the shift of the peak position between the two applied slit sizes is

approximately one pixel. The optimization of the optical setup is performed before

every measurement with a different wavelength range.
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4.4 Data acquisition

The measurements in this work are performed in the form of energy scans, meaning

that the electron beam energy is raised for a fixed amount, by applying a higher

voltage to the drift tube platform after each acquisition. For the measurements of

the lower charge states Ee is raised from 170 eV to 400 eV in steps of 5 eV and for

the higher charge states from 520 eV to 900 eV in steps of 10 eV. In order to cover

the full optical range of the emission spectrum each energy scan is performed 3

times with different overlapping wavelength ranges. Hence 6 energy scans have been

performed in total, while a background spectrum was recorded for each scan as well

as a calibration spectrum before and after each step of the scan. The background

spectra were obtained with a inverted trap to correct the ion cloud measurements for

possible stray light inside the EBIT. The acquisition time for the individual spectra

of each energy step as well as for the background spectra was 30 minutes whereas

the calibration spectra had an acquisition time of 3 minutes.
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5 Analysis

5.1 Cosmic removal

The cosmic rays mentioned in 3.2.1 consist of highly energized particles hitting

molecules in the atmosphere of the earth. Secondary particles such as muons pro-

duced during the collision reach the surface of the earth and eventually strike the

CCD camera, generating a strong signal in the affected pixels. These pixel errors,

referred to as cosmics had to be removed from all of the recorded spectra including

the calibration and background measurements. This process is shown exemplarily

in figure 5.1, displaying a ruthenium spectrum before and after cosmic removal is

applied.
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Figure 5.1: The spectrum of Ru17+ in the range of 290 to 470 nm is shown before
(above) and after the cosmic removal algorithm is applied (below). Con-
stants are added to the intensities of each bin for a better visualization
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To accomplish this task the cosmic-ray rejection algorithm written by Wojtek

Pych was implemented in python [17]. The recorded image is divided into over-

lapping sub-frames for each of which a histogram of the count distribution is con-

structed. As the cosmic signal is characterized by a high amount of counts, a gap

can be found in the histogram when the sub-frame features a cosmic signal. If this

gap exceeds a selected threshold, the pixels with counts above this gap are removed

from the image. Setting this threshold too low results in unwanted removal of the

ion signal, while setting it too high may leave a small amount of cosmics uncorrected.

5.2 Line straightening

The CCD features a slight rotation with respect to the diffracted spectral lines of

the ion cloud, which can be seen in figure 5.2 showing an uncorrected line of the

recorded spectrum of Ru17+.

Figure 5.2: (left) Raw data of the recorded 297 nm line of Ru17+ showing a noticeable
horizontal shift along the vertical axis. (right) parabolic fit of the peak
positions plotted against their bin number.

This problem is solved using a line straightening procedure introduced in [18].

First the horizontal pixel position of a selected calibration line is determined in each

of the 8 bins of the obtained calibration spectrum with a Gaussian fit. The peak

positions and their respective errors are then plotted against their bin number and

a parabolic fit is applied as shown in figure 5.2. Ultimately, the bins are aligned

according to the obtained parameters. In a last step the bins from number 2 to

number 6 are jointed by calculating their arithmetical mean to produce a two di-
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mensional spectrum. The bins 1,7 and 8 are excluded to account for the optical

aberration known as coma.

5.3 Calibration

For each of the three measured wavelength ranges, one calibration spectrum was

taken, of which the pixel positions of the calibration lines were fitted with a Gaus-

sian. The measured calibration lines and their Gaussian fits of the second wavelength

range, reaching from 290 to 470 nm, are shown in figure 5.3. Most of the lines of

the argon-iron lamp were identified with the help of previous measurements [19] [18]

and the National Institute of Standards and Technology (NIST) spectral database.

The pixel positions of the identified lines and their fit errors are plotted as x-values

together with the respectively assigned wavelength obtained from the NIST data

base as y-values. This plot is then fitted with a parabolic function as demonstrated

in figure 5.3. Here the errors of the wavelength are neglected since they are small

compared to the fit uncertainties of the pixel positions. The fit results have been

evaluated for each calibration by creating a residual plot as shown in figure 5.3.

Also for every calibration a confidence band for an uncertainty of 68 % ≈ 1σ has

been calculated. For the following analysis the width of the confidence band at the

corresponding position will be serving as the calibration error for most of the identi-

fied lines. To ensure an optimal calibration for each line of the ion spectrum, every

pair of calibration spectra, obtained at the beam energy where this line reached

maximum intensity, was fitted using the previously received reference wavelengths.

This was performed with a python program, which proceeded to match them with

the respective reference lines of the NIST data base. The final fit utilizes only the

reference lines with a deviation from the fit lower then a previously set threshold. In

a last step the arithmetical mean of each pair of calibration functions is calculated

and applied to the respective ion spectrum.

By examining the confidence band in figure 5.3 one can observe the decreasing fit

accuracy at the edges of the spectrum. In the case of the first two calibration ranges

the accuracy is further impaired as only very few reference lines could have been

found in the lower wavelength range of the calibration spectrum. This is of partic-

ular importance considering that the obtained spectra are connected, which leads

to discrepancies between the calibrations in the overlap. An assembled calibration

spectrum of the three investigated wavelength regions, displaying the overlapping
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Figure 5.3: (top) The spectrum of the argon-iron lamp in the region of 290-470 nm
with the applied Gaussian fits. (middle) The polynomial fit applied to
the wavelengths of the reference lines plotted against the pixel positions
of the peaks. (bottom) The residuals between the data points and the
calibration function with the 68 % confidence band shown in gray.
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Figure 5.4: The spectrum of the argon-iron lamp composed of the three recorded
calibration spectra for the different wavelength ranges. 1st range: 191-
358 nm, 2nd range: 289-455 nm, 3rd range: 410-576 nm

areas, is shown in figure 5.4. For the overlap between the second and third wave-

length region, the discrepancies among the calibration spectra are in the same order

of magnitude as the width of the confidence band as can be seen in figure 5.5.

However the discrepancies in the overlap between the first and second range are

significantly higher, as the occurring deviation between the two calibration spectra

yields up to 0.08 nm, as shown in figures 5.6 and 5.7. The recorded lines located in

this overlap are therefore assigned with a calibration error calculated by determining

the wavelength difference between a calibration line with a similar wavelength and

the respective reference line.
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Figure 5.5: Close up of the overlap between the second and the third wavelength
range. The distance from the reference line of Ar I (430.0101 nm) is
0.0064 nm for the second range and 0.0023 nm for the third range.

Figure 5.6: Close up of the right edge of the overlap between the first and the sec-
ond wavelength range. The distance from the reference line of Ar II
(354.58431 nm) is 0.0061 nm for the first range and 0.018 nm for the sec-
ond range.
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Figure 5.7: Close up of the left edge of the overlap between the first and the sec-
ond wavelength range. The distance from the reference line of Fe II
(297.9125 nm) is 0.001 nm for the first range and 0.080 nm for the sec-
ond range.
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5.4 Wavelength determination

The obtained spectra of the ion cloud first have to be corrected for the measured

background. Since the background is obtained only once in the beginning of the

measuring sequence, subtracting it does not account for small variations of the

background over the time. Due to these fluctuations the arithmetical mean of the

measured intensities of each bin is subtracted for every bin. The wavelength de-

termination is not impaired by this as the background fluctuation affects the whole

spectrum. The wavelengths of the spectral lines were obtained by fitting the peak in

the spectrum where the maximum intensity of the line is reached with a Gaussian.

The wavelength error is determined by combining the error of the Gaussian fit with

the calibration error through error propagation.

To later be able to compare the lines with atomic theory calculations, the wave-

lengths are also converted to energies using

E =
hc

λvac
. (5.1)

with the Planck constant h and the speed of light c. The value of the product hc

was taken from CODATA, hc = 1239.841974(7) nm eV [20]. The wavelengths were

obtained with a spectrometer placed in air, therefore they have to be corrected with

the refractive index of air nair to obtain the wavelengths in vacuum needed for the

conversion. This is performed as specified in [5] using

λvac = nairλair (5.2)

nair = 1 + 10−8

(
8342.13 +

2406030

130− S2
+

15997

38.9− S2

)
(5.3)

with S = 1000
λair

. The lines are listed in table 5.1 with their respective charge state,

their wavelength and their energy. After the determination of every line, the indi-

vidual spectra of each energy scan are assembled resulting in a complete overview of

the acquired data shown in figure 5.8 in dependence of the photon energy in electron

volts.
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Table 5.1: List of spectral lines of Ru9+ to Ru18+. The wavelengths are given in λair.
The errors set in bold face were calculated using the overlap error dis-
cussed in the previous section. The range indicates in which wavelength
range the line was recorded. The ranges are 1: 191-358 nm, 2: 289-455 nm
and 3: 410-576 nm

Charge State Range Wavelength (nm) Energy (eV) Label

9 1 302.716(8) 4.0945(1) A

2 302.7(8) 4.093(1) A

10 1 336.504(8) 3.68342(9) B

2 336.51(2) 3.6834(2) B

11 2 310.22(8) 3.995(1) C

1 310.167(4) 3.99618(7) C

3 427.46(1) 2.89962(9) D

12 1 272.92(1) 4.5414(2) E

2 384.175(3) 3.22637(2) F

2 418.14(2) 2.9642(1) G

3 418.11(2) 2.96455(7) G

3 545.88(2) 2.27063(7) H

13 1 254.656(7) 4.8672(1) I

1 254.698(6) 4.8664(1) I

3 487.96(2) 2.5402(1) J

3 509.455(4) 2.43298(2) K

14 2 316.32(2) 3.9184(2) L

1 316.338(9) 3.9182(1) L

1 316.303(6) 3.91865(8) L

2 316.29(2) 3.9188(2) L

15 1 269.529(7) 4.5987(1) M

1 297.577(7) 4.1652(1) N

2 346.43(2) 3.5779(2) O

1 346.415(7) 3.57804(7) O

2 366.474(5) 3.38220(5) P

3 436.55(2) 2.8393(1) Q

2 436.589(8) 2.83904(5) Q

3 436.511(6) 2.83955(4) Q

3 541.05(1) 2.29091(5) R
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?? 2 336.99(2) 3.6782(2) S

Charge State Range Wavelength (nm) Energy (eV) Label

?? 1 336.948(7) 3.67856(5) S

2 422.56(1) 2.93330(7) T

16 1 282.640(4) 4.38536(6) U

3 565.268(7) 2.19276(3) V

17 2 297.52(8) 4.166(1) W

1 297.497(5) 4.16636(7) W

2 312.51(2) 3.9663(2) X

1 312.491(3) 3.96646(4) X

2 335.07(2) 3.6992(2) Y

1 335.058(8) 3.69932(9) Y

2 345.49(2) 3.5877(2) Z

1 345.474(8) 3.58779(9) Z

3 470.23(2) 2.6360(1) α

18 2 326.97(2) 3.7907(3) β

1 326.99(1) 3.7905(1) β

2 332.52(2) 3.7275(2) χ

1 332.52(1) 3.7275(1) χ

1 342.644(7) 3.61741(7) δ

2 342.64(2) 3.6174(2) δ

2 378.22(1) 3.2772(1) ε

2 398.587(6) 3.10972(4) φ

3 416.92(2) 2.9729(1) γ

3 479.310(9) 2.58600(5) η
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5.5 Charge state determination

The assigned charge states displayed in table 5.1 have been determined with the

help of theoretical calculations made by by J. Scofield [21], which are presented in

table 5.2.Calculations performed with the flexible atomic code have later been made

to further reinforce the assignment of the charge states. One of the obtained level

schemes is shown exemplary for Ru13+ in figure 5.9, while the remaining ones are

listed in the appendix. The first reference point for the charge state determination

is the line U, which possesses a high intensity over an energy range of 300 eV. The

only eligible charge state spanning over a similar energy range is Ru16+, leading to

the conclusion that line U is emitted by Ru16+-ions. The other charge states are

assigned based to this assumption, according to the energy differences ∆E of the

respective states. Lines S and T remain the only ones that could not have been

assigned to a charge state, since they are observed in between the charge states 15+

and 16+. Line T possibly originates from another ion that was temporarily present

in the trap, since it could not have been measured consistently, appearing only in

the third wavelength range but not in the second, as shown in figure 5.10. However

line S is present in the first and second wavelength range, which cannot be explained

with the current charge state determination.

Table 5.2: Ionization energies of the ions investigated in this work provided by cal-
culations of J. Scofield. ∆E is the energy difference between the current
and the following charge state.

Charge state Ionization energy (eV) ∆E (eV)
Ru9+ 178.5 21.6
Ru10+ 200.1 22.1
Ru11+ 222.2 26.6
Ru12+ 248.8 24.2
Ru13+ 273.0 23.9
Ru14+ 296.9 56.7
Ru15+ 353.6 26.1
Ru16+ 379.7 293.6
Ru17+ 673.3 57.8
Ru18+ 731.0 n.a.
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Figure 5.9: Grotrian level diagram of the energy levels of Ru13+ as calculated by
FAC. The indicated level transitions are marked with the label of their
respective line.

Figure 5.10: Comparison of the two spectra recorded in the ranges 2 (289-455 nm)
and 3 (410-576 nm), showing that the line T is only appearing in the
measurement of range 3.
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To compare the theoretical calculations and the measured data, the intensity

behavior of the individual charge states is plotted as a function of the electron beam

energy Ee in figure 5.12. The lines corresponding to the 18+ charge state have a

very low intensity, because the state is not yet satisfactory populated in the last

measurement steps and are thus not included in this plot. The featured intensity

profiles were obtained by adding all lines corresponding to the same charge state

and normalizing the resulting profile. In order to combine the two different energy

ranges of 170 eV to 400 eV and 520 eV to 900 eV they have to be corrected for their

respective space charges. These are estimated to be 50 eV for the lower energy range

and 180 eV for the higher energy range.

When examining the lower charge states 9+ to 12+, a shift of about 20 eV to a

lower energies from the theoretical ionization energies is noticeable. This suggests an

overestimated space charge potential for the lower energy range experiments, since

the start of the intensity profiles should coincide with their respective calculated

ionization energy. The intensity profile of the 12+ charge state first shows a steep

increase of intensity, similar to the preceding charge states, but after reaching a

maximum at 230 eV it declines over an energy range of 50 eV. An opposite behavior

can be observed in the profile of the 13+ charge state, which shows a small increase

of intensity over 50 eV before reaching the maximum at 310 eV and a very fast

decline afterwards. The theoretical ionization energy is reflecting this early rise of

intensity, since it is predicted for the charge states to have an energy difference of

24.2 eV, which still leaves the question why the maximum of the 13+ charge state

intensity profile is only reached after approximately 60 eV. A possible explanation

is the slow intensity decrease of the 12+ charge state, probably caused by a high

number of Ru12+ ions still present in the trap. However, simulations of the charge

state population distribution, performed with the private source program Dither,

do not support this assumption, as can be seen in figure 5.11. The distribution

is simulated for a beam energy of 295 eV using conditions similar to those of the

experiment, resulting in the 13+ charge state representing 95% of the population.

Thus no explanation can be given for the intensity profile shapes of the charge states

12+ and 13+.
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Figure 5.11: Simulation of the charge state population performed with dither for a
8 mA beam current and an electron beam energy of 295 eV. The time
axis is displayed in a logarithmic scale.

The charge states 14+ to 17+ are in good agreement with the theoretical calcu-

lations as their intensity profiles all coincide with the respective ionization energies,

with the exception of 16+. Here the predicted ionization energy is approximately

30eV lower than the start of the intensity profile. The shift results in an agreement

between the start of the intensity profile of the unknown charge state related to the

line S and the ionization energy of the 16+ charge state. This may be a hint for the

origin of this line which will be further discussed in the following section.

The intensity profile of the 15+ charge state is the only one that is represented

by a very narrow peak. This is due to lines Q, O, N and M that are only visible for

a small energy range of 30 eV, in contrast to the lines of other charge states which

are prominent for a range of about 60 eV. Only the line P of the 15+ charge state

has an intensity profile similar to the ones of other charge states. However, so far

no explanation can be given for this unique behavior.
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5.6 Comparison to atomic theory

The FAC calculations, addressed in the previous chapter, have been performed for

every charge state of ruthenium investigated in this work. As there is no other theo-

retical data available, these calculations are the only reference for the determination

of the observed transitions.

First, the energy levels and the transition probabilities between the said levels

were calculated. The code used for this calculations had to be adjusted for each

individual charge state. The electron shells below the first not completely filled shell

are considered as closed shells, meaning that electronic excitations from these shells

are not included in the calculation. This includes the shells 1s, 2s, 2p, 3s and 3p for

every calculation, 3d for the calculations below the 15+ charge state and 4s for the

charge states below 14+. The shells that were included in the individual calculations

are displayed in the respective Grotrian diagrams in the appendix. Performing these

calculations supplied all the possible electronic configurations and their energies in

regards to the included electron shells. Because of the numerous configurations

and the even higher number of possible transitions between them, the measured

transitions cannot be identified with a satisfactory certainty. Therefore a collisional

radiative modeling (CRM) has been made to include the electron impact excitation,

and de-excitation processes occurring in the EBIT.

In this model, the electron beam properties present for the individual charge state

measurements had to be included, which have been taken from previous simulations

made by H. Bekker [5], with exception of the electron beam density, which was set

to 1011 cm−3, and the electron beam energy, which was set to an energy 20 eV higher

than the ionization energy of the respective charge state. The rate equations were

solved with these settings and a synthetic spectrum was created for each charge

state in the investigated photon energy range. The result is shown in figure 5.13,

presenting the modeled color map similar to figure 5.8, obtained through combining

the created spectra.

Using these calculations, most of the measured lines could have been assigned

to an intra configuration transition, which energies are displayed together with the

measured photon energies of the corresponding line in table 5.3. Each transition is

visualized in the Grotrian diagrams, with an arrow starting from the upper energy

level and pointing to the lower level of the transition. The label of each measured

line is also used to label the corresponding calculated transition in the Grotrian

diagrams as well as the synthetic spectrum.
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Table 5.3: List of spectral lines of Ru9+ to Ru18+ together with their transition
energy as calculated with FAC. Values of lines that were recorded multiple
times were obtained by calculating the weighted mean of these lines.

Label Charge state Measured energy FAC calculation (eV)

A 9 4.094(1) 4.148844

B 10 3.6834(8) 3.679477

C 11 3.9961(9) 4.309919

D 11 2.89962(9) 2.771703

E 12 4.5414(2) 4.679065

F 12 3.22637(2) 3.125138

G 12 2.9644(6) 3.012064

H 12 2.27063(7) 2nd order of E

I 13 4.867(1) 4.917998

J 13 2.5402(1) 2.403241

K 13 2.43298(2) 2nd order of I

L 14 3.9185(6) 3.826422

M 15 4.5987(1) 4.363037

N 15 4.1652(1) 3.985569

O 15 3.5780(7) 3.548676

P 15 3.38220(5) 3.261143

Q 15 2.8393(4) 3.045619

R 15 2.29091(5) 2.460174

S 16 3.6785(6) 3.643454

T - 2.93330(7) -

U 16 4.38536(6) 4.329961

V 16 2.19276(3) 2nd Order of U

W 17 4.167(1) 4.381599

X 17 3.9664(7) 3.885674

Y 17 3.6993(8) 3.655596

Z 17 3.5878(8) 3.425308

α 17 2.6360(1) 2.838258

β 18 3.791(1) 3.974222

χ 18 3.7275(9) 3.9498423

δ 18 3.6174(7) 3.719746

ε 18 3.2772(1) 3.397970
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φ 18 3.10972(4) 3.002810

γ 18 2.9729(1) 2.881759

η 18 2.58600(5) 2.543725

The lines obtained from the lower charge states of ruthenium up to Ru14+ (A-L)

are corresponding to strong transitions in the ground state configuration, which are

all in agreement with the theoretical values within a range of ±0.1 eV, except for

the line C, which has deviation of -0.3 eV from the theoretical prediction. A reason

for this high discrepancy might be the calibration, as line is recorded in the overlap

region where the overlapping calibration spectra have a high deviation. The only

lines not originating from a transition in the ground state are the lines G, J and L.

However they originate from the configurations which are the energetically closest

to their respective ground states. The lines A to L are also the ones with the highest

intensities in the simulated spectra, as can be seen in figure 5.13. Nevertheless the

CRM model predicts more optical transitions in these charge states, which do not

appear in the measurement data. Line H, has the same behavior as line E while

having a much lower intensity. As the photon energy of this line is exactly half the

photon energy of the line E, it is concluded that line H is the second diffraction

order of line E. Following this reasoning, the lines K and V are also identified as

second diffraction orders of the lines I and U, respectively.

The electronic configurations of the higher charge states are much more complex,

due to the fact that the 3d shell, containing up to 10 electrons is no longer considered

as a closed shell. This affects the calculation of the transition energies, leading to

overall higher discrepancies between the theoretical calculations and the experimen-

tal data. However the calculated transitions corresponding to the measured lines are

still among the ones with the highest transition rate in the CRM model. Four of the

observed transitions of Ru15+ (O, P, Q and R) occur in the 3d94s14p1 configuration,

while the line M represents a transition in the 3d94s2 configuration. The remaining

line N is the only one that is represented by an inter shell transition between 6g1

and 6f 1. The 15+ charge state thus features no measured optical transitions near

the ground state, in contrast to the other charge states investigated in this work.

The Grotrian diagram of Ru15+ is given in figure 5.14 and a close up of the diagram

in figure 5.15.
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Figure 5.14: Grotrian level diagram of the energy levels of Ru15+ as calculated by
FAC. The occurring transitions are featured in the following close up.

Figure 5.15: Close up Grotrian level diagram of the energy levels of Ru15+ as cal-
culated by FAC. The indicated level transitions are marked with the
label of their respective line.

The lines obtained from the charge states Ru16+ to Ru18+ all correspond to transi-
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tions in the ground state configurations and the configurations energetically closest

to the ground state.

Only two strong transitions are visible in the synthetic spectrum of Ru16+, whereat

U corresponds to the lowest possible optical transition in the 3d94s1 configuration.

However the stronger of the two visible transitions energetically corresponds to the

line S, which has no assigned charge state. As already mentioned, the ionization

energy for the 16+ charge state matches with the intensity profile of the line S. Ad-

ditionally, the line is in good agreement with the theoretical calculation, which leads

to the assumption that line S originates from Ru16+-ions. But under consideration

of the significant difference in the beam energy dependence of the two lines S and

T it becomes apparent that these lines cannot belong to the same charge state.

The intensities of the lines that were recorded in the 17+ charge state feature

a deviation from the theoretical calculations. Line W is the second weakest of the

recorded Ru17+ transitions whereas the corresponding calculated line is the brightest

in the synthetic spectrum of Ru17+. Additionally, the brightest line in the recorded

spectrum (line X) is among the transitions with the lowest intensities in the synthetic

spectrum. Line W is assumed to be the brightest line, as it is corresponding to the

single possible transition in the ground state configuration 3d9, while the remaining

transitions occur in the 3d84s1 configuration. However, this line features also a

comparatively high energy deviation of -0.21 eV from the theoretical value, which

could indicate that the energy of the intra ground state transition is overestimated

in the calculation.

Due to the limited energy range of the recorded spectra, the lines originating from

Ru18+-ions do not reach their maximum intensities. As a result, the accuracy of the

wavelength determination is reduced and their intensities cannot be compared with

the lines of the synthetic spectrum. A total of seven transitions have been recorded,

three in the 3d8 ground state configuration and four in the 3d74s1 configuration.

Ru18+ is thus the charge state with the highest number of transitions recorded in

this experiment, making it an interesting subject for future measurements in addition

to the determination of the origin of the line S.
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6 Summary and outlook

The investigation of ruthenium ions in the charge states Ru9+ to Ru18+ that has

been performed at the HD-EBIT, resulted in a first set of 30 identified transitions in

the wavelength range of 220-576 nm, which is shown in the table 6.1. The transition

energies have been compared to atomic theory, using FAC calculations that were

also performed in this work. The discrepancies between the measurements and

theoretical calculations are within a reasonable range, considering the complexity of

the calculations due to a high number of electrons included in the model.

Two more lines, S and T, have been measured with wavelengths of λS = 336.96(6) nm

and λT = 422.56(1) nm, but could not be identified. The Line T presumably origi-

nates from a contaminant temporarily residing in the trap, since it was not measured

consistently. Line S appears to belong to an intra configuration transition occurring

in the 3d94s1 configuration of R16+. However, the electron beam energy dependency

of this line agrees with neither the calculated ionization energies, nor the other

recorded line of the Ru16+ charge state. Therefore the identification of this line

remains a challenge for future measurements.

Another objective of future investigations is to confirm the identified transitions

with other identification methods. One approach is to compare the measurements

to other theoretical models besides FAC, for example the multi-configuration Dirac-

Fock code (MCDF) [22]. Also, investigations of the individual line shapes can be

performed by observing the Zeeman splitting of these lines and comparing them to

theoretical line shape predictions made for each transition.

Additionally, in order to further complete this data set, measurements with low

electron beam energies should be performed to investigate the lower charge states

of ruthenium.

As mentioned in the introduction, spectral data of technetium is needed to forward

the investigations of the white dwarf RE 0503-289. To accomplish this task a vacuum

ultra violet spectrometer has been developed recently and is currently being tested.

Also it is planned to design a new injection system that satisfies the requirements

given by the radioactive nature of technetium.
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Table 6.1: Transitions of Ru9+ to Ru18+ identified in this work, with their energies
as calculated with FAC.

Charge state Measurement (eV) FAC calculation (eV) Difference (eV)

9 4.094(1) 4.149 -0.055

10 3.6834(8) 3.6795 +0.0039

11 3.9961(9) 4.3099 -0.3138

2.89962(9) 2.7717 +0.12792

12 4.5414(2) 4.6791 -0.1377

3.22637(2) 3.12514 +0.10123

2.9644(6) 3.0121 -0.0477

13 4.867(1) 4.918 -0.051

2.5402(1) 2.403241 +0.137

14 3.9185(6) 3.8264 +0.0921

15 4.5987(1) 4.3630 +0.2357

4.1652(1) 3.9856 +0.1796

3.5780(7) 3.549 +0.029

3.38220(5) 3.26114 +0.12110

2.8393(4) 3.0456 -0.2063

2.29091(5) 2.46017 -0.16926

16 4.38536(6) 4.32996 +0.0554

17 4.167(1) 4.382 -0.215

3.9664(7) 3.8857 +0.0807

3.6993(8) 3.6556 +0.0437

3.5878(8) 3.4253 +0.1625

2.6360(1) 2.838 -0.202

18 3.791(1) 3.974 -0.183

3.7275(9) 3.9498 -0.2223

3.6174(7) 3.7197 -0.1023

3.2772(1) 3.398 -0.1208

3.10972(4) 3.00281 +0.10691

2.9729(1) 2.8818 +0.0911

2.58600(5) 2.544 +0.042
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7 Appendix

Figure 7.1: Grotrian level diagram of the energy levels of Ru9+ as calculated by FAC.
The indicated level transition is marked with the label of the respective
line A.
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Figure 7.2: Grotrian level diagram of the energy levels of Ru10+ as calculated by
FAC. The indicated level transition is marked with the label of the re-
spective line B.

Figure 7.3: Grotrian level diagram of the energy levels of Ru11+ as calculated by
FAC. The indicated level transitions are marked with the label of their
respective line.
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Figure 7.4: Grotrian level diagram of the energy levels of Ru12+ as calculated by
FAC. The indicated level transitions are marked with the label of their
respective line.

Figure 7.5: Grotrian level diagram of the energy levels of Ru14+ as calculated by
FAC. The indicated level transition is marked with the label of the re-
spective line L.
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Figure 7.6: Grotrian level diagram of the energy levels of Ru16+ as calculated by
FAC. The indicated level transition is marked with the label of the re-
spective line S, other occurring transitions are featured in the following
close up.

Figure 7.7: Close up Grotrian level diagram of the energy levels of Ru16+ as calcu-
lated by FAC. The indicated level transitions are marked with the label
of their respective line.
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Figure 7.8: Grotrian level diagram of the energy levels of Ru17+ as calculated by
FAC. The indicated level transition is marked with the label of the re-
spective line W, other occurring transitions are featured in the following
close up.

Figure 7.9: Close up Grotrian level diagram of the energy levels of Ru17+ as calcu-
lated by FAC. The indicated level transitions are marked with the label
of their respective line.
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Figure 7.10: Grotrian level diagram of the energy levels of Ru18+ as calculated by
FAC. The occurring transitions are featured in the two following close
ups.

Figure 7.11: Close up Grotrian level diagram of the energy levels of Ru18+ as cal-
culated by FAC. The indicated level transitions are marked with the
label of their respective line.
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Figure 7.12: Close up Grotrian level diagram of the energy levels of Ru18+ as cal-
culated by FAC. The indicated level transitions are marked with the
label of their respective line.
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