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Abstract

How can heuristic strategies emerge from smaller build-
ing blocks? We propose Approximate Bayesian Com-
putation (ABC) as a computational solution to this
problem. As a first proof of concept, we demonstrate
how a heuristic decision strategy such as Take The Best
(TTB) can be learned from smaller, probabilistically
updated building blocks. Based on a self-reinforcing
sampling scheme, different building blocks are com-
bined and, over time, tree-like non-compensatory heuris-
tics emerge. This new algorithm, coined Approzimately
Bayesian Computed Take The Best (ABC-TTB), is able
to recover data that was generated by TTB, leads to
sensible inferences about cue importance and cue direc-
tions, can outperform traditional TTB, and allows to
trade-off performance and computational effort explic-
itly.

Keywords: Heuristics, Take The Best, Approximate
Bayesian Computation, Reinforcement Learning

Introduction

How can heuristic strategies emerge from smaller build-
ing blocks? Consider the heuristic Take The Best (TTB;
Gigerenzer & Goldstein, 1996) as an example: TTB
is a lexicographic, non-compensatory strategy to decide
which of two objects scores higher on an unobserved cri-
terion variable, based on accessible pieces of informa-
tion (cues). The heuristic looks up cues sequentially
(lexicographically), with the order of cues determined
by their importance (predictive value). TTB is non-
compensatory because once a cue discriminates between
the two options, a decision is made irrespectively of the
value of the other cues. Although relatively simple, TTB
has been shown to outperform more sophisticated mod-
els such as regression models, nearest neighbour classi-
fiers, and classification and regression trees, across many
data sets (Gigerenzer & Brighton, 2009).

A key question is how such a successful but domain-
specific strategy is learned (Gigerenzer & Gaissmaier,
2011). According to the adaptive toolbox metaphor,
there are three building blocks that can be used to im-
plement decision heuristics. Search rules dictate how
information is acquired, for example looking up cues or-
dered by their predictive value. Stopping rules deter-
mine when to stop searching, for example as soon as a
cue discriminates between the two options. Lastly, deci-
sion rules determine the actual decision after search has
stopped, for example deciding which of the two objects
scores higher on the target criterion, depending on the

cue direction (i.e. whether a cue is positively or nega-
tively related to the criterion). Considering TTB, we see
that all of the building blocks are present.

A viable theory of heuristic decision making should
also explain how heuristics strategies like TTB are
learned, that is, how they emerge during learning from
their constituent building blocks. One idea is that a de-
cision maker starts off with some prior intuitions about
which cues might be helpful, and then learns from ex-
perience which cue orders and directions are successful.
We formalize this idea using Approximately Bayesian
Computed Take The Best (ABC-TTB), a computational
approach towards learning TTB adaptively by approx-
imate Bayesian computation. When heuristic building
blocks are fed into it, successful decision strategies are
learned on the fly, paralleling a Bayesian reinforcement
learning algorithm. Note that our approach critically
differs from approaches that model strategy selection
through reinforcement learning mechanisms (e.g.,
Rieskamp & Otto, 2006) as we do not use strategies
(e.g., TTB vs. weighting-and-adding) but building
blocks from within a model class (e.g., different TTB
variants) as the unit of reinforcement. Our approach is
based on the acceptance and rejection of simple simu-
lations that explore the usefulness of proposal models,
emerging from probabilistically updated building blocks.

We show that ABC-TTB:

1. recovers TTB when TTB provides the task structure.

2. generates sound inference based on learned cue order
and directions.

3. can outperform traditional TTB and other models.

4. can balance performance and computational effort.

This is a first proof of concept of how Take The Best can
emerge from smaller building blocks.

Approximate Bayesian Computation
Bayesian inference concerns updating prior beliefs in
light of observed data. Given a prior distribution m(f)
reflecting our initial beliefs about an unknown parame-
ter 6, the data D affect the posterior belief p(8|D) only
via the likelihood p(D|0):

_ p(D|9)m(0)
p(OIP) = 1, p(D6)m(6)do
o p(DI0)m(0) (1)
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Bayesian inference thus models subjective beliefs as a
mixture of prior assumptions and incoming data, pro-
viding a coherent framework to model inference un-
der uncertainty. Accordingly, the approach has been
used to model cognition in many domains (Oaksford
& Chater, 2007). Since full Bayesian inference is fre-
quently intractable (e.g., due to the curse of dimension-
ality, see Bellman, 1961), powerful sampling mechanisms
have been developed that approximate the posterior dis-
tribution by means of Markov chain Monte Carlo meth-
ods (Gilks, 2005). Here, we focus on an alternative ap-
proach to approximate posterior inference: Approzximate
Bayesian Computation (ABC; Turner & Van Zandt,
2012). ABC is an approximative method that, instead
of computing the required likelihood directly, substitutes
it with surrogate simulations of a model (Csilléry et al.,
2010), and then checks whether the output of these simu-
lations comes close enough to the actual data. This sim-
ple mechanism of model simulations and reality checks
provides a useful tool to approximate posteriors and has
been applied to many scenarios in which the true under-
lying likelihood is hard to assess.

A formal description of ABC is shown in Algorithm 1.
The algorithm samples a proposed parameter from a
prior m(#) and plugs the proposal into a model M in or-
der to simulate an output y* from the given data D. It
then calculates a summary statistic S of both the simu-
lated data and the real data and accepts proposals that
have produced a summary that is close enough (mea-
sured by a distance p) to the summary of the real data,
allowing for some error e. The proximity of the two
summary statistics is normally estimated by the differ-
ence of the statistics J, for example the Euclidean dis-
tance between two means. A more intuitive explana-
tion of this algorithm is that an agent has some subjec-
tive beliefs about how the world works and repeatedly
checks whether or not these beliefs can, on average, pro-
duce similar patterns to the ones observed. If they can,
the model proposals are accepted and (possibly) rein-
forced. If they cannot, the proposals are rejected. Even
though this algorithm is based on a computationally sim-
ple reinforcement scheme, it has been shown to provide
reasonable approximate posteriors in many scenarios, in
particular when inferring tree-like structures (Beaumont,
Zhang, & Balding, 2002).

ABC-TTB: Growing heuristic strategies

We next show how ABC can be applied to the problem
of learning heuristics from smaller building blocks. More
specifically, our ABC-TTB algorithm can yield a similar
tree-like structure as TTB, but learns the structure of
the tree (cue order and cue directions) on the fly while
it makes decisions and receives feedback regarding the

Algorithm 1 Approximate Bayesian Computation
Require: 7(0); model M; data D = (X,y); tolerance
€, required sample size n
while j <7 do
Sample 0* ~ 7(6)
Simulate y* = My« (X)
Calculate § = p(S(y),S(y"))
if § < e then
set 0 =0"and j=7+1
else

reject 0*
end while

usefulness of the model proposals.! Thus, ABC-TTB
randomly generates proposal trees and checks how well
these trees perform in a subset of the data. Success-
ful cues are reinforced through a kind of Bayesian rein-
forcement learning algorithm (Poupart, 2010). This way,
ABC-TTB starts out with small building blocks, com-
bines and tests them, and —over time— heuristic struc-
tures emerge that reflect the learning experience.

Figure 1 uses a Polya urn sampling scheme to illustrate
the reinforcement-based learning mechanism underlying
ABC-TTB. The model learns through updating distri-
butions over cue importance and cue directions, from
which model proposals are generated and tested. Fig-
ure la shows the urn representing three available cues,
cl to ¢3. A cue is sampled from the current distribution;
in this case ¢2 is sampled from a uniform distribution
over the cues. Next a cue direction is sampled from
an independent urn associated with this particular cue
(Figure 1b). From these two building blocks a proposal
model is generated (Figure 1c) and tested against the
data (Figure 1d). If the cue correctly predicts which ob-
ject scores higher on the target criterion, the sampled
cue and direction are reinforced by putting a ¢2 ball into
the cue urn and a P ball into the urn associated with
¢2’s direction. If the prediction is wrong, the proposal is
rejected and no reinforcement takes place. This process
is repeated several times, and over time the distribu-
tions resulting from reinforcing successful cue combina-
tions make it more likely that successful model proposals
are generated.

Now consider a probabilistic implementation of this
learning process. Associated with each cue is a Beta
prior (B(1,1)) that induces an implicit likelihood for
each cue to generate a successful prediction. From these
priors, a probability is independently sampled for each
cue, which are used to generate a proposal tree by nor-
malizing these probabilities (so they sum up to 1) and
then sampling a cue according to these probabilities
(similar to Figure 1a). The drawn cue is the top node of

'Even though TTB is not commonly labelled as a tree,
the model can be represented as a tree structure, as shown
in Figure 2.
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ABC-TTB Polya Urn Sampling Scheme

A: Draw a cue:

B: Draw a direction for that cue:

P
C: Create tree: D: Compare with data:
2
-l(i \- C2 Observed Predicted Correct
1 Win Win 1

0 Win Loss 0

E.1: Keep Urns if incorrect: E.2:. Update Urns if correct:

Figure 1: Sketch of ABC-TTB’s sampling scheme. c1-c3
are three example cues; N and P are negative or positive
weights.

the tree (i.e. the most important cue). The second cue is
drawn from the remaining cues by first renormalizing the
associated probabilities and then sampling accordingly.
Thus, cues are drawn in order without replacement from
the set of all cues to construct a lexicographic decision
tree. Consider a situation with three cues, where ¢l has
a probability of 0.8 to make a correct prediction, ¢2 a
probability of 0.6, and ¢3 a probability of 0.2 (all sam-
pled from the corresponding Beta priors). To draw the
top node of the tree, these probabilities are normalized
to sum to 1. For example, the probability that cl is
sampled as the top node is .8/(.8 + .6 + .2) = .5, while
the second and third cue have probabilities of .375 and
.125 respectively. Imagine that c¢1 was drawn as the top
node. The remaining probabilities for ¢2 and ¢3 are then
re-normalized to .75 and .25, respectively, and the sec-
ond cue is sampled. This process continues until all cues
have been sampled. Associated to each cue is a second
Beta prior which models the probability of the cue di-
rection (i.e., whether it is positively or negatively related
to the outcome). The resulting beta-binomial distribu-
tion model assigns to each cue the probability to have
a positive direction. The cue direction is independently
sampled for each cue and attached to the nodes to gen-
erate the proposal tree.

The proposal tree is then used to make predictions for
a randomly sampled subset of the available data (e.g.,
the training sample in cross-validation). The size of the
sampled subset can be varied by a parameter 0 < ¢ < 1,
which means that the subset has to be more than 0%
and can contain up to 100% of the data. If more than
(1-€) x 100% of the predictions are correct, the proposal
is accepted and the cues involved within that tree, as
well as their directions, get updated by adding a success
to their posterior beta-binomial-distribution in propor-
tion to how often they have actually made a difference
(how often they successfully discriminated between the
cues in the sub-sample). As the Beta distributions are
updated based on a cue’s success, more successful cues
are sampled more often as the top node in proposal trees
than less successful cues. If less than (1-€) x 100% of the
predictions are correct, the proposal tree is rejected and
no update happens for the cues or their directions. This
whole process repeats until 7 successful proposal trees
have been generated. At this point, the updated Beta
distributions are approximations to the posterior distri-
butions of cues and directions.

ABC-TTB makes predictions for a new paired com-
parison based on the posterior distributions of cues and
directions resulting from the learning process. The pos-
teriors are used to generate w proposal trees and the final
decision is given by the modal prediction from all sam-
pled proposal trees’ predictions. In summary, the ABC-
TTB algorithm constitutes a computational solution to
how cue importance and cue directions are learned simul-
taneously through a simple reinforcement process. The
algorithm shows how a heuristic can emerge from com-
bining and reinforcing its building blocks, resulting in
an algorithm that is able to find and utilize simple trees
within the complex forest of all possible trees.

Recovering TTB

A first sanity check is to see whether ABC-TTB can re-
cover the true underlying model from a data set that has
been generated by the TTB heuristic. As TTB is a sub-
set of all possible models (cue orders and cue directions)
captured by ABC-TTB, it should be able to recover it
from simulated data. We simulated a paired-comparison
task with four cues, according to the TTB model shown
in Figure 2. For each cue, the two objects in a paired
comparison could either be identical (a draw, with prob-
ability .5), or the cue could be present in one object and
absent in the other (a win, or loss, each with probability
.25). In this environment the outcome of a decision is
determined by the first discriminating (winning or los-
ing) cue, just like in the original TTB. The cues were
ordered by importance as cl, ¢2, ¢3, and c4. If the third
cue ¢3 did not discriminate (a draw), the outcome was
determined randomly. As a result, the fourth cue, c4,
was uninformative in the simulation. The decision strat-
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Figure 2: Underlying TTB-model generating the data
set. c4 is not shown as it is not predictive.

egy generating this data set is identical to TTB, i.e. it
can be seen as a comparison between two different items
A and B, where a win means that item A has something
that item B has not and an outcome of y = 1 means that
item A is better than item B.

A data set of size n = 1000 was generated and the
ABC-TTB algorithm was run with ¢ = 0.1 and ¢ = 0.1
until n = 100 proposed trees were accepted. Figure 3
shows the cue importance over time. The traces were
calculated by dividing each Beta’s posterior mean by the
total sum of posterior means of all cues. This then equals
the probability of a cue to be chosen as the top node
in the tree and can act as a proxy variable for a cue’s
overall importance. Notice that the actual magnitude
of that probability is not as important as the recovered
order. The simulation was repeated 100 times and the
probabilities were averaged per step. It can be seen that
—even after a few accepted proposals— the mode tree (the
most likely tree) is the same as the one generating the
data. Shortly after the start of the simulation, the cue
order grows to the correct order and less important cues
are chosen less frequently, exactly as expected given the
underlying structure. Additionally, the uninformative
cue ¢4 approached a probability of 0.

Inference and performance for real data

Next, we checked whether or not ABC-TTB yields sen-
sible and interpretable inferences in a real-world data
set. For this, we applied our algorithm to the classic
city size data, which has been frequently used in pre-
vious research (e.g., Gigerenzer & Brighton, 2009) and
contains the population size of different German cities
and whether or not they have an intercity train line,
an exposition site, a soccer team, a university, are the
national capital, have their own license plate, are lo-
cated in the former east Germany, are a state capital,
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Figure 3: Trace plot of probability to be chosen first
over 100 accepted proposals, averaged over 100 simula-
tions. Legend is ordered by final cue importance. Bars
represent standard errors.

and have their own industrial belt . This data set con-
tains 81 objects (German cities) with 9 different binary
variables that can be used to decide which of two cities
has more citizens (the unobserved target criterion). Fig-
ure 4 shows the trace plots for the city size simulation
(e = 0.35, ¢ = 0.01)? over 200 accepted proposal trees.
Again, the results of ABC-TTB look sensible, finding
that having a intercity train line, an exposition site, a
major league soccer team, and a university are the four
most important cues. This cue order correspond more
to a frequency-adjusted validity taking into account how
often a given cue can be utilized (cf. Newell et al., 2004).

Next, we compared the performance of ABC-TTB
to the performance of classic TTB within the city size
data set. Additionally, we also tested classification
trees (CART), another tree-based classification algo-
rithm. For the comparison, we split up the data into
learning sets of s = [5,10,...,90]%, fitted TTB (using
the classic cue validity), CART, and ABC-TTB (e = 0.5,

= 0.1) to this data and then assessed their predic-
tive accuracy in the remaining test set. This procedure
was repeated 50 times for every learning set size and
the results were averaged over all trials. Results can
be seen in Figure 5. ABC-TTB consistently outper-
formed classic TTB, which itself performed better than
CART (c.f. Gigerenzer & Brighton, 2009). This is due
to the fact that ABC-TTB learns the tree structure by
sub-sampling items from the learning set and makes pre-
dictions based on aggregations over possible outcomes.

2We used different parameters as the data set was bigger
and contained more variables. See next section on a more
detailed treatment of hyper-parameters.
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Figure 4: Trace plot of probability to be chosen first over
200 accepted proposals, averaged over 100 simulations.
Legend is ordered by final cue importance.
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Figure 5: Performance of TTB, ABC-TTB, and CART
in the city size data set. Performance increases with
training set. ABC-TTB performs best overall.

As it can be seen as an ensemble of different trees, ABC-
TTB will naturally generate less prediction errors than
classic TTB. The posterior of ABC-TTB defines a distri-
bution over possible trees, some of which will generate di-
vergent predictions. Therefore, predictive variances can
be calculated, which is important for future research on
exploration-exploitation problems (Schulz, Konstantini-
dis & Speekenbrink, 2015).

Performance-effort trade-off

Another benefit of ABC-TTB is that performance and
computational effort can be traded-off against each other
explicitly. Assessing this trade-off lies at the heart of
approaches that frame a learning agent as exhibiting
a meta-reasoning mechanisms sensitive to the costs of
cognition (Gershman, Horvitz & Tenenbaum, 2015), a
hypothesis that can only be evaluated by making the
accuracy-effort-off explicit.

As (1 — €) defines the proportion of predictions that
have to be correct in order for a proposal tree to be
accepted, decreasing e will lead to more rejections of
proposed trees and to acceptance of only higher qual-
ity proposals. The same holds true for the proportion
of sampled data points ¢. The higher the proportion
of the sampled data set, the better the proposed tree
has to be, and the longer it takes to find good trees.
We can adjust these parameters explicitly to gauge the
interaction between performance and computational ef-
fort. Therefore, we created all 81 possible combinations
of e ={0.1,0.2,...,0.9} and p = {0.1,0.2,...,0.9} and
applied the resulting models to the scenario in which
TTB had generated the data as in the “Recovering TTB”
analysis above. We tracked the number of proposed sam-
ples as a proxy variable of computational effort, averaged
over 100 trials. Additionally, we tracked how well ABC-
TTB described the generated data overall, measured by
the mean proportion of correct predictions it would gen-
erate within that sample. Lastly, we calculated the ratio
of the mean correct predictions (MCP) per proposal gen-
erated. Results are shown in Figure 6.

The leftmost plot in Figure 6 shows that the compu-
tational effort (measured by the number of generated
proposal trees, plotted on a logarithmic scale) seems
to increase more than exponentially (exponentially on
a log-scale) when the proportion of samples and the
quality of the to-be-accepted proposals increases. For
the performance of the resulting models (shown in the
middle), we can see that tuning the € and ¢-parameters
can increase performance by up to 20%. Most impor-
tantly, there seems to be a diminishing returns property
as shown in the rightmost plot, in the sense that one
would have to spend more and more proposal samples
for an ever smaller increase in prediction accuracy. Tak-
ing these results together, we see that there seems to be
a clear trade-off between effort and performance as num-
ber of samples increases super-exponentially, but perfor-
mance increases not as steeply. Using ABC-TTB, we can
change the parameters directly and test this accuracy-
effort trade-off explicitly thereby gaining deeper insights
into when good predictions might only need few samples
(Vul et al., 2014).
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Figure 6: Assessed computational effort (log-number of proposal trees, N), performance (mean correct predictions,
MCP), and trade-off (proportion correct predictions per proposal generated) for different e-¢-combinations. Number
of samples go up exponentially when bigger proportions are sampled and only high quality proposals are accepted.
Performance also goes up, but there is a diminishing returns effect whereby increasingly less additional correct

predictions are generated per generated proposal.

Conclusion

We have introduced Approximate Bayesian Computa-
tion as a method to let heuristic strategies emerge from
smaller building blocks. ABC assesses the posterior of a
model by sanity checking simulated proposals. We there-
fore think it could be a plausible approach to model how
diverse strategies emerge over time. As a first proof of
concept, we have shown how simple TTB-like trees can
emerge from smaller building blocks (distributions over
cues and their weights). Our new model, coined ABC-
TTB, can recover TTB when data was generated by
it, produces sensible inference and predictions in a real
world data set, and allows to trade off computational
effort and performance explicitly, consistently generat-
ing simple trees within the complex forest of all possible
trees.

This is a first step towards unpacking the heuristic
toolbox and future work will focus on extending our
approach to the problem of letting more diverse build-
ing blocks or even different strategies emerge. An-
other venue for future research concerns the psychologi-
cal plausibility of the proposed learning mechanism. We
think that dynamic scenarios such as active (Parpart
et al., 2015) or causal learning (Morais et al., 2014) are a
plausible way to test sequential predictions of heuristic
models, especially given that ABC-TTB generates de-
cisions from the beginning of the learning process and
provides measures of uncertainty for every prediction.
Given the large number of cognitive models (Schulz,
Speekenbrink & Shanks, 2014), we believe that prob-
ing how strategies emerge from compositional building
blocks, and how simple structures are derived from ap-
proximative computation, is a promising endeavour.
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