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Abstract Existing algorithms for subgroup discovery with numerical targets do not
optimize the error or target variable dispersion of the groups they find. This often leads
to unreliable or inconsistent statements about the data, rendering practical applica-
tions, especially in scientific domains, futile. Therefore, we here extend the optimistic
estimator framework for optimal subgroup discovery to a new class of objective func-
tions: we show how tight estimators can be computed efficiently for all functions that
are determined by subgroup size (non-decreasing dependence), the subgroup median
value, and a dispersion measure around the median (non-increasing dependence). In
the important special case when dispersion is measured using the mean absolute devi-
ation from the median, this novel approach yields a linear time algorithm. Empirical
evaluation on awide range of datasets shows that, when usedwithin branch-and-bound
search, this approach is highly efficient and indeed discovers subgroups with much
smaller errors.
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1 Introduction

Subgroup discovery is a well-established KDD technique (Klösgen 1996; Friedman
and Fisher 1999; Bay and Pazzani 2001; see Atzmueller 2015 for a recent survey) with
applications, e.g., inMedicine (Schmidt et al. 2010), Social Science (Grosskreutz et al.
2010), and Materials Science (Goldsmith et al. 2017). In contrast to global modeling,
which is concerned with the complete characterization of some variable defined for a
given population, subgroup discovery aims to detect intuitive descriptions of subpop-
ulations in which, locally, the target variable has an interesting or useful distribution.
In scientific domains, like the ones mentioned above, such local patterns are typically
considered useful if they are not too specific (in terms of subpopulation size) and
indicate insightful facts about the underlying physical process that governs the target
variable. Such facts could for instance be: ‘patients of specific demographics experi-
ence a low response to some treatment’ or ‘materials with specific atomic composition
exhibit a high thermal conductivity’. For numeric (metric) variables, subgroups need
to satisfy two criteria to truthfully represent such statements: the local distribution of
the target variable must have a shifted central tendency (effect), and group members
must be described well by that shift (consistency). The second requirement is captured
by the group’s dispersion, which determines the average error of associating group
members with the central tendency value (see also Song et al. 2016).

Despite all three parameters—size, central tendency, and dispersion—being impor-
tant, the only knownapproach for the efficient discovery of globally optimal subgroups,
branch-and-bound search (Webb 1995; Wrobel 1997), is restricted to objective func-
tions that only take into account size and central tendency. That is, if we denote by
Q some subpopulation of our global population P then the objective functions f
currently available to branch-and-bound can be written as

f (Q) = g(|Q|, c(Q)) (1)

where c is some measure of central tendency (usually mean or median) and g is a
function that is monotonically increasing in the subpopulation size |Q|. A problem
with all such functions is that they inherently favor larger groups with scattered target
values over smaller more focused groups with the same central tendency. That is, they
favor the discovery of inconsistent statements over consistent ones—surprisingly often
identifying groupswith a local error that is almost as high or even higher than the global
error (see Fig. 1 for an illustration of this problem that abounded from the authors’
research inMaterials Science). Although dispersion-corrected objective functions that
counter-balance size bydispersionhavebeenproposed (e.g., ‘t-score’ byKlösgen2002
or ‘mmad’ by Pieters et al. 2010), it remained unclear how to employ such functions
outside of heuristic optimization frameworks such as greedy beam search (Lavrač et al.
2004) or selector sampling (Boley et al. 2012; Li and Zaki 2016). Despite often finding
interesting groups, such frameworks do not guarantee the detection of optimal results,
which can not only be problematic for missing important discoveries but also because
they therefore can never guarantee the absence of high quality groups—which often
is an insight equally important as the presence of a strong pattern. For instance, in our
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Dispersion-corrected subgroup discovery 1393

Fig. 1 To gain an understanding of the contribution of long-range van derWaals interactions (y-axis; above)
to the total energy (x-axis; above) of gas-phase gold nanoclusters, subgroup discovery is used to analyze a
dataset of such clusters simulated ab initio by density functional theory (Goldsmith et al. 2017); available
features describe nanocluster geometry and contain, e.g., number of atoms a, fraction of atoms with i bonds
ci , and radius of gyration r . Here, similar to other scientific scenarios, a subgroup constitutes a useful piece
of knowledge if it conveys a statement about a remarkable amount of van der Waals energy (captured by the
group’s central tendency) with high consistency (captured by the group’s dispersion/error); optimal selector
σ0 with standard objective has high error and contains a large fraction of gold nanoclusters with a target
value below the global median (0.13) (a); this is not the case for selector σ1 discovered through dispersion-
corrected objective (b), which therefore can be more consistently stated to describe gold nanoclusters with
high van der Waals energy

example in Fig. 1, it would be remarkable to establish that long-range interactions are
to a large degree independent of nanocluster geometry.

Therefore, in this paper (Sect. 3), we extend branch-and-bound search to objective
functions of the form

f (Q) = g(|Q|,med(Q), d(Q)) (2)

where g is monotonically increasing in the subpopulation size, monotonically decreas-
ing in any dispersion measure d around the median, and, besides that, depends only
(but in arbitrary form) on the subpopulation median. This involves developing an effi-
cient algorithm for computing the tight optimistic estimator given by the optimal value
of the objective function among all possible subsets of target values:

f̂ (Q) = max{ f (R) : R ⊆ Q} , (3)

which has been shown to be a crucial ingredient for the practical applicability of
branch-and-bound (Grosskreutz et al. 2008; Lemmerich et al. 2016). So far, the most
general approach to this problem (first codified in Lemmerich et al. (2016); generalized
here in Sect. 3.1) is to maintain a sorted list of target values throughout the search
process and then to compute Eq. (3) as the maximum of all subsets Ri ⊆ Q that
contain all target values of Q down to target value i—an algorithm that does not
generalize to objective functions depending on dispersion. This paper presents an
alternative idea (Sect. 3.2) where we do not fix the size of subset Ri as in the previous
approach but instead fix its median to target value i . It turns out that this suffices
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1394 M. Boley et al.

to efficiently compute the tight optimistic estimator for all objective functions of the
form of Eq. (2). Moreover, we end up with a linear time algorithm (Sec. 3.3) in the
important special case where the dependence on size and dispersion is determined by
the dispersion-corrected coverage defined by

dcc(Q) = |Q|
|P| max

{
1 − amd(Q)

amd(P)
, 0

}

where amd denotes the mean absolute deviation from the median. This is the same
computational complexity as the objective function itself. Consequently, this new
approach can discover subgroups according to a more refined selection criterion with-
out increasing the worst-case computational cost. Additionally, as demonstrated by
empirical results on a wide range of datasets (Sect. 4), it is also highly efficient and
successfully reduces the error of result subgroups in practice.

2 Subgroup discovery

Before developing the novel approach to tight optimistic estimator computation, we
recall in this section the necessary basics of optimal subgroup discovery with numeric
target attributes. We focus on concepts that are essential from the optimization point
of view (see, e.g., Duivesteijn and Knobbe 2011 and references therein for statistical
considerations). As notional convention, we are using the symbol [m] for a positive
integerm to denote the set of integers {1, . . . ,m}. Also, for a real-valued expression x
we write (x)+ to denote max{x, 0}. A summary of the most important notations used
in this paper can be found in “Appendix C”.

2.1 Description languages, objective functions, and closed selectors

Let P denote our given global population of entities, for each of which we know the
value of a real target variable y : P → R and additional descriptive information that
is captured in some abstract description language L of subgroup selectors σ : P →
{true, false}. Each of these selectors describes a subpopulation ext(σ ) ⊆ P defined
by

ext(σ ) = {p ∈ P : σ(p) = true}

that is referred to as the extension of σ . Subgroup discovery is concerned with finding
selectors σ ∈ L that have a useful (or interesting) distribution of target values in
their extension yσ = {y(p) : p ∈ ext(σ )}. This notion of usefulness is given by an
objective function f : L → R. That is, the formal goal is to find selectors σ ∈ L
with maximal f (σ ). Since we assume f to be a function of the multiset of y-values,
let us define f (σ ) = f (ext(σ )) = f (yσ ) to be used interchangeably for convenience.
One example of a commonly used objective function is the impact measure ipa (see
Webb 2001; here a scaled but order-equivalent version is given) defined by
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Dispersion-corrected subgroup discovery 1395

ipa(Q) = cov(Q)

(
mean(Q) − mean(P)

max(P) − mean(P)

)
+

(4)

where cov(Q) = |Q|/|P| denotes the coverage or relative size of Q (here—and
wherever else convenient—we identify a subpopulation Q ⊆ P with the multiset of
its target values).

The standard description language in the subgroup discovery literature1 is the lan-
guage Lcnj consisting of logical conjunctions of a number of base propositions (or
predicates). That is, σ ∈ Lcnj are of the form

σ(·) ≡ πi1(·) ∧ · · · ∧ πil(·)

where the πi j are taken from a pool of base propositions Π = {π1, . . . , πk}. These
propositions usually correspond to equality or inequality constraints with respect to
one variable x out of a set of description variables {x1, . . . , xn} that are observed for all
population members (e.g., π(p) ≡ x(p) ≥ v). However, for the scope of this paper it
is sufficient to simply regard them as abstract Boolean functionsπ : P → {true, false}.
In this paper, we focus in particular on the refined language of closed conjunctions
Ccnj ⊆ Lcnj (Pasquier et al. 1999), which is defined as Ccnj = {σ ∈ Lcnj : c(σ ) = σ }
by the fixpoints of the closure operation c : Lcnj → Lcnj given by

c(σ ) =
∧

{π ∈ Π : ext(π) ⊇ ext(σ )} . (5)

These are selectors towhich no further proposition can be addedwithout reducing their
extension, and it can be shown that Ccnj contains at most one selector for each possible
extension. While this can reduce the search space for finding optimal subgroups by
several orders of magnitude, closed conjunctions are the longest (and most redundant)
description for their extension and thus do not constitute intuitive descriptions by
themselves. Hence, for reporting concrete selectors (as in Fig. 1), closed conjunctions
have to be simplified to selectors of approximately minimum length that describe the
same extension (Boley and Grosskreutz 2009).

2.2 Branch-and-bound and optimistic estimators

The standard algorithmic approach for finding optimal subgroups with respect to a
given objective function is branch-and-bound search—a versatile algorithmic puzzle
solving framework with several forms and flavors (see, e.g., Mehlhorn and Sanders
2008, Chap. 12.4). At its core, all of its variants assume the availability and efficient
computability of two ingredients:

1. A refinement operator r : L → 2L that is monotone, i.e., for σ, ϕ ∈ L with
ϕ ∈ r(σ ) it holds that ext(ϕ) ⊆ ext(σ ), and that non-redundantly generates L.
That is, there is a root selector ⊥ ∈ L such that for every σ ∈ L there is a unique

1 In this article we remain with this basic setting for the sake of simplicity. It is, however, important to note
that several generalizations of this concept have been proposed (e.g., Parthasarathy et al. 1999; Huan et al.
2003), to which the contributions of this paper remain applicable.
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Bst-BB(F , σ): // F max. priority queue w.r.t. f̂ , σ current
f -maximizer
begin

if F = ∅ or f̂ (top(F))/ f (σ ) ≤ a then
return σ

else
R = r(top(F)) // refinement of f̂ -maximizer in queue
σ ′ = argmax( f (ϕ) : ϕ ∈ {σ } ∪ R)

F ′ = (F \ {top(F)}) ∪ {ϕ ∈ R : f̂ (ϕ)/ f (σ ′) ≥ a}
return Bst-BB(F ′, σ ′)

end
end

σ∗ = Bst-BB({⊥}, ⊥) // call with root element to find global solution

Algorithm1:Best-first branch-and-bound that finds a-approximation to objective
function f based on refinement operator r and optimistic estimator f̂ ; depth-limit
and multiple solutions (top-k) parameters omitted; top denotes the find max
operation for priority queue.

sequence of selectors ⊥ = σ0, σ1, . . . , σl = σ with σi ∈ r(σi−1). In other words,
the refinement operator implicitly represents a directed tree (arborescence) on the
description language L rooted in ⊥.

2. An optimistic estimator (or bounding function) f̂ : L → R that bounds from
above the attainable subgroup value of a selector among all more specific selectors,
i.e., it holds that f̂ (σ ) ≥ f (ϕ) for all ϕ ∈ L with ext(ϕ) ⊆ ext(σ ).

Based on these ingredients, a branch-and-bound algorithm simply enumerates all ele-
ments of L starting from ⊥ using r (branch), but—based on f̂—avoids expanding
descriptions that cannot yield an improvement over the best subgroups found so
far (bound). Depending on the order in which language elements are expanded, one
distinguishes between depth-first, breadth-first, breadth-first iterative deepening, and
best-first search. In the last variant, the optimistic estimator is not only used for prun-
ing the search space, but also to select the next element to be expanded, which is
particularly appealing for informed, i.e., tight optimistic estimators. An important
feature of branch-and-bound is that it effortlessly allows to speed-up the search in a
sound way by relaxing the result requirement from being f -optimal to just being
an a-approximation. That is, the found solution σ satisfies for all σ ′ ∈ L that
f (σ )/ f (σ ′) ≥ a for some approximation factor a ∈ (0, 1]. The pseudo-code given
in Algorithm 1 summarizes all of the above ideas. Note that, for the sake of clarity,
we omitted here some other common parameters such as a depth-limit and multi-
ple solutions (top-k), which are straightforward to incorporate (see Lemmerich et al.
2016).

An efficiently computable refinement operator has to be constructed specifically
for the desired description language. For example for the language of conjunctions
Lcnj, one can define rcnj : Lcnj → Lcnj by

rcnj(σ ) = {σ ∧ πi : max{ j : π j ∈ σ } < i ≤ k}
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where we identify a conjunction with the set of base propositions it contains. For
the closed conjunctions ccnj, let us define the lexicographical prefix of a conjunction
σ ∈ Lcnj and a base proposition index i ∈ [k] as σ |i= σ ∩ {π1, . . . , πi }. Moreover,
let us denote with i(σ ) the minimal index such that the i-prefix of σ is extension-
preserving, i.e., i(σ ) = min{i : ext(σ |i ) = ext(σ )}. With this we can construct a
refinement operator (Uno et al. 2004) rccj : Ccnj → 2Ccnj as

rccj(σ ) = {ϕ : ϕ = ccnj(σ ∧ π j ), i(σ ) < j ≤ k, π j /∈ σ, ϕ| j= σ| j } .

That is, a selector ϕ is among the refinements of σ if ϕ can be generated by an
application of the closure operator given in Eq. (5) that is prefix-preserving.

How to obtain an optimistic estimator for an objective function of interest depends
on the definition of that objective. For instance, the coverage function cov is a valid
optimistic estimator for the impact function ipa as defined in Eq. (4), because the
second factor of the impact function is upper bounded by 1. In fact there are many
different optimistic estimators for a given objective function. Clearly, the smaller the
value of the bounding function for a candidate subpopulation, the higher is the potential
for pruning the corresponding branch from the enumeration tree. Ideally, one would
like to use f̂ (σ ) = max{ f (ϕ) : ext(ϕ) ⊆ ext(σ )}, which is the most strict function
that still is a valid optimistic estimator. Computing this function, however, is as hard
as the whole subgroup optimization problem. Thus, as a next best option, one can
disregard subset selectability and consider the (selection-unaware) tight optimistic
estimator (Grosskreutz et al. 2008) given by

f̂ (σ ) = max{ f (R) : R ⊆ ext(σ )} .

This leaves us with a new combinatorial optimization problem: given a subpopulation
Q ⊆ P , find a sub-selection of Q that maximizes f . In the following section we will
discuss strategies for solving this optimization problem efficiently for different classes
of objective functions—including dispersion-corrected objectives.

3 Efficiently computable tight optimistic estimators

We are going to develop an efficient algorithm for the tight optimistic estimator in
three steps: First, we review and reformulate a general algorithm for the classic case
of non-dispersion-aware objective functions. Then we transfer the main idea of this
algorithm to the case of dispersion-corrected objectives based on the median, and
finally we consider a subclass of these functions where the approach can be computed
in linear time. Throughout this section we will identify a given subpopulation Q ⊆ P
with the multiset of its target values {y1, . . . , ym} and assume that the target values
are indexed in ascending order, i.e., yi ≤ y j for i ≤ j . Also, for two multisets
Y = {y1, . . . , ym} and Z = {z1, . . . , zm′ } indexed in ascending order we say that Y is
element-wise less or equal to Z and write Y ≤e Z if yi ≤ zi for all i ∈ [min{m,m′}].
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1398 M. Boley et al.

3.1 The standard case: monotone functions of a central tendency measure

The most general previous approach for computing the tight optimistic estimator for
subgroup discovery with a metric target variable is described by Lemmerich et al.
(2016), where it is referred to as estimation by ordering. Here, we review this approach
and give a uniform and generalized version of that paper’s results. For this, we define
the general notion of a measure of central tendency as follows.

Definition 1 We call a mapping c : N
R → R a (monotone) measure of central

tendency if for all multisets Y, Z ∈ N
R with Y ≤e Z it holds that c(Y ) ≤ c(Z).

One can check that this definition applies to the standard measures of central tendency,
i.e., the arithmetic and geometric mean as well as themedian2 med(Q) = y�m/2�, and
also to weighted variants of them (note, however, that it does not apply to the mode).
With this we can define the class of objective functions for which the tight optimistic
estimator can be computed efficiently by the standard approach as follows. We call
f : 2P → R a monotone level 1 objective function if it can be written as

f (Q) = g(|Q|, c(Q))

where c is some measure of central tendency and g is a function that is non-decreasing
in both of its arguments. One can check that the impact measure ipa falls under this
category of functions as do many of its variants.

The central observation for computing the tight optimistic estimator for monotone
level 1 functions is that the optimum value must be attained on a sub-multiset that
contains a consecutive segment of elements of Q from the top element w.r.t. y down
to some cut-off element. Formally, let us define the top sequence of sub-multisets of
Q as Ti = {ym−i+1, . . . , ym} for i ∈ [m] and note the following observation:

Proposition 1 Let f be amonotone level 1 objective function. Then the tight optimistic
estimator of f can be computed as the maximum value on the top sequence, i.e.,
f̂ (Q) = max{ f (Ti ) : i ∈ [m]}.
Proof Let R ⊆ Q be of size k with R = {yi1 , . . . , yik }. Since yi j ≤ ym− j+1, we have
for the top sequence element Tk that R ≤e Tk and, hence, c(R) ≤ c(Tk) implying

f (R) = g(k, c(R)) ≤ g(k, c(Tl)) = f (Tk) .

It follows that for each sub-multiset of Q there is a top sequence element of at least
equal objective value. ��
From this insight it is easy to derive an O(m) algorithm for computing the tight
optimistic estimator under the additional assumption that we can compute g and the
“incremental central tendency problem” (i, Q, (c(T1), . . . , c(Ti−1)) �→ c(Ti ) in con-
stant time. Note that computing the incremental problem in constant time implies to

2 In this paper, we are using the simple definition of the median as the 0.5-quantile (as opposed to defining
it as (ym/2 + y1+m/2)/2 for even m), which simplifies many of the definitions below and additionally is
well-defined in settings where averaging of target values is undesired.
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Dispersion-corrected subgroup discovery 1399

only access a constant number of target values and of the previously computed central
tendency values. This can for instance be done for c = mean via the incremental for-
mula mean(Ti ) = ((i − 1)mean(Ti−1) + ym−i+1)/ i or for c = med through direct
index access of either of the two values ym−�(i−1)/2� or ym−�(i−1)/2�. Since, according
to Proposition 1, we have to evaluate f only for the m candidates Ti to find f̂ (Q)

we can do so in time O(m) by solving the problem incrementally for i = 1, . . . ,m.
The same overall approach can be readily generalized for objective functions that are
monotonically decreasing in the central tendency or those that can be written as the
maximum of one monotonically increasing and one monotonically decreasing level
1 function. However, it breaks down for objective functions that depend on more
than just size and central tendency—which inherently is the case when we want to
incorporate dispersion-control.

3.2 Dispersion-corrected objective functions based on the median

Wewill now extend the previous recipe for computing the tight optimistic estimator to
objective functions that depend not only on subpopulation size and central tendency but
also on the target value dispersion in the subgroup. Specifically,we focus on themedian
as measure of central tendency and consider functions that are both monotonically
increasing in the described subpopulation size and monotonically decreasing in some
dispersion measure around the median. To precisely describe this class of functions,
we first have to formalize the notion of dispersion measure around the median. For
our purpose the following definition suffices. Let us denote by Y med

Δ the multiset
of absolute differences to the median of a multiset Y ∈ N

R, i.e., Y med
Δ = {|y1 −

med(Y )|, . . . , |ym − med(Y )|}.
Definition 2 We call a mapping d : N

R → R a dispersion measure around the
median if d(Y ) is monotone with respect to the multiset of absolute differences to its
median Y med

Δ , i.e., if Y med
Δ ≤e Zmed

Δ then d(Y ) ≤ d(Z).

One can check that this definition contains the measures median absolute deviation
around themedianmmd(Y ) = med(Y med

Δ ), the rootmean of squared deviations around
the median rsm(Y ) = mean({x2 : x ∈ Y med

Δ })1/2, as well as the mean absolute
deviation around the median amd(Y ) = mean(Y med

Δ ).3 Based on Def. 2 we can
specify the class of objective functions that we aim to tackle as follows: we call a
function f : 2P → R a dispersion-corrected or level 2 objective function (based
on the median) if it can be written as

f (Q) = g(|Q|,med(Q), d(Q)) (6)

3 We work here with the given definition of dispersion measure because of its simplicity. Note, however,
that all subsequent arguments can be extended in a straightforward way to a wider class of dispersion
measures by considering the multisets of positive and negative deviations separately. This wider class also
contains the interquartile range and certain asymmetric measures, which are not covered by Def. 2.
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where d is some dispersion measure around the median and g : R3 → R is a real
function that is non-decreasing in its first argument and non-increasing in its third
argument (without any monotonicity requirement for the second argument).

Our recipe for optimizing these functions is then to consider only subpopulations
R ⊆ Q that can be formed by selecting all individuals with a target value in some
interval. Formally, for a fixed index z ∈ {1, . . . ,m} define mz ≤ m as the maximal
cardinality of a sub-multiset of the target values that has median index z, i.e.,

mz = min{2z, 2(m − z) + 1} . (7)

Now, for k ∈ [mz], let us define Qk
z as the set with k consecutive elements around

index z. That is

Qk
z =

{
y
z−
⌊
k−1
2

⌋, · · · , yz, · · · , y
z+
⌈
k−1
2

⌉
}

. (8)

With this we can define the elements of the median sequence Qz as those subsets of

the form of Eq. (8) that maximize f for some fixed index z ∈ [m]. That is, Qz = Q
k∗
z
z

where k∗
z ∈ [mz] is minimal with

f (Q
k∗
z
z ) = g(k∗

z , yz, d(Q
k∗
z
z )) = max{ f (Qk

z ) : k ∈ [mz]} .

Thus, the number k∗
z is the smallest cardinality that maximizes the trade-off of size

and dispersion encoded by g (given the fixed median yz = med(Qk
z ) for all k).

Figure 2 shows an exemplary median sequence based on 21 random target values.
Note how the set sizes k∗

z vary non-monotonically for increasing median indices z

Fig. 2 Median sequence sets Q1, . . . , Q21 (colored in red with median elements yz marked by black
dot) for 21 random values y1, . . . , y21 w.r.t. objective function f (Q) = |Q|/|P| − smd(Q)/smd(P)—
where smd(·) denotes sum of absolute deviations from the median; the sets are identical for any arbitrary
dependence on the median med(Q) that could be added to f , and for any such function the optimal value
is attained among those 21 sets (Proposition 2) (Color figure online)
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Dispersion-corrected subgroup discovery 1401

(e.g., k∗
10 = 13, k∗

11 = 10, and k∗
12 = 11). The precise behavior of the k∗

z -sequence is
determined by the cluster structure of the target values and the specific level-2 objective
function. Below we will see that for some functions there is an additional regularity
in the k∗

z -sequence that allows further algorithmic exploitation. For now, let us first
note that, as desired, searching the median sequence is sufficient for finding optimal
subsets of Q independent of the precise objective:

Proposition 2 Let f be a dispersion-corrected objective function based on the
median. Then the tight optimistic estimator of f can be computed as the maximum
value on the median sequence, i.e., f̂ (Q) = max{ f (Qz) : z ∈ [m]}.
Proof For a sub-multiset R ⊆ Q let us define the gap count γ (R) as

γ (R) = |{y ∈ Q \ R : min R < y < max R}| .

Let O ⊆ Q be an f -maximizer with minimal gap count, i.e., f (R) < f (O) for all R
with γ (R) < γ (O). Assume that γ (O) > 0. That means there is a y ∈ Q \ O such
that min O < y < max O . Define

S =
{

(O \ {min O}) ∪ {y}, if y ≤ med(O)

(O \ {max O}) ∪ {y}, otherwise
.

Per definition we have |S| = |O| and med(S) = med(O). Additionally, we can check
that SmedΔ ≤e Omed

Δ , and, hence, d(S) ≤ d(Q). This implies that

f (S) = g(|S|,med(S), d(S)) ≥ g(|O|,med(O), d(O)) = f (O) .

However, per definition of S it also holds that γ (S) < γ (O), which contradicts that O
is an f -optimizerwithminimal gap count. Hence, any f -maximizer O must have a gap
count of zero. In other words, O is of the form O = Qk

z as in Eq. (8) for some median
z ∈ [m] and some cardinality k ∈ [mz] and per definition we have f (Qz) ≥ f (O) as
required. ��
Consequently, we can compute the tight optimistic estimator for any dispersion-
corrected objective function based on the median in timeO(m2) for subpopulations of
size m—again, given a suitable incremental formula for d. While this is not generally
a practical algorithm in itself, it is a useful departure point for designing one. In the
next section we show how it can be brought down to linear time when we introduce
some additional constraints on the objective function.

3.3 Reaching linear time—objectives based on dispersion-corrected coverage

Equipped with the general concept of the median sequence, we can now address the
special case of dispersion-corrected objective functions where the trade-off between
the subpopulation size and target value dispersion is captured by a linear function of
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size and the sum of absolute differences from the median. Concretely, let us define the
dispersion-corrected coverage (w.r.t. absolute median deviation) by

dcc(Q) = |Q|
|P|

(
1 − amd(Q)

amd(P)

)
+

=
( |Q|

|P| − smd(Q)

smd(P)

)
+

where smd(Q) =∑y∈Q |y−med(Q)| denotes the sum of absolute deviations from
the median. We then consider objective functions based on the dispersion-corrected
coverage of the form

f (Q) = g(dcc(Q),med(Q)) (9)

where g is non-decreasing in its first argument. Let us note, however, that we could
replace the dcc function by any linear function that depends positively on |Q| and
negatively on smd. It is easy to verify that function of this form also obey the more
general definition of level-2 objective functions given in Sec. 3.2, and, hence can be
optimized via the median sequence.

The key to computing the tight optimistic estimator f̂ in linear time for func-
tions based on dispersion-corrected coverage is then that the members of the median
sequence Qz can be computed incrementally in constant time. Indeed, we can prove
the following theorem, which states that the optimal size for a multiset around median
index z is within 3 of the optimal size for a multiset around median index z + 1—a
fact that can also be observed in the example given in Fig. 2.

Theorem 3 Let f be of the form of Eq. (9). For z ∈ [m − 1] it holds for the size k∗
z of

the f -optimal multiset with median z that

k∗
z ∈ {max(0, k∗

z+1 − 3), . . . ,min(mz, k
∗
z+1 + 3)} . (10)

Fig. 3 Dispersion-corrected coverage of the sets Qk
z as defined in Eq. (8) for median indices z ∈

{10, 11, 12, 13} and the 21 random target values from Fig. 2; the sets Qz can be found in incremental
constant time since optimal size k∗

z is within a constant range of k∗
z+1 (Theorem 3)
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let Q be given by {y1, . . . , ym } in ascending order
compute el (i) and er (i) for i ∈ [m] through Eqs. (11) and (12)
f (Qm ) = g(1/|P|, ym ) and k∗

m = 1
for z = m − 1 to 1 do

let k− = max(0, k∗
z+1 − 3) and k+ = min(mz , k∗

z+1 + 3) with mz as in Eq. (7)

for k = k− to k+ do
let a = z − �k/2� and b = z + �k/2�
smd(Qk

z ) = el (z) − el (a) − (a − 1)(yz − ya) + er (z) − er (b) − (m − b)(yb − yz)

f (Qk
z ) = g(k/|P| − smd(Qk

z )/smd(P), yz)
end

f (Qz) = f (Q
k∗
z
z ) with k∗

z s.t. f (Q
k∗
z
z ) = max{ f (Qk

z ) : k− ≤ k ≤ k+}
end
f̂ (Q) = max{ f (Qz) : z ∈ [m]}

Algorithm 2: Linear time algorithm for computing tight optimistic estimator
f̂ (Q) of objective f (Q) = g(dcc(Q),med(Q)) as in Eq. (9). After a linear time
pre-processing to compute the cumulative left and right error terms, algorithm
iterates over all possible median indices z—finding optimal value for median
index z + 1 in constant time based on optimal value for index z via Theorem 3
and Proposition 4.

One idea to prove this theorem is to show that (a) the gain in f for increasing the
multiset around amedian index z is alternating between two discrete concave functions
and (b) that the gains for growingmultisets between twoconsecutivemedian indices are
bounding each other. For an intuitive understanding of this argument, Fig. 3 shows for
four different median indices z ∈ {10, 11, 12, 13} the dispersion-corrected coverage
for the sets Qk

z as a function in k. On closer inspection, we can observe that when
considering only every second segment of each function graph, the corresponding
dcc-values have a concave shape. A detailed proof, which is rather long and partially
technical, can be found in “Appendix A”.

It follows that, after computing the objective value of Qm trivially as f (Qm) =
g(1/|P|, ym), we can obtain f (Qz−1) for z = m, . . . , 2 by checking the at most seven
candidate set sizes given by Eq. (10) as

f (Qz−1) = max
{
f (Q

k−
z
z−1), . . . , f (Q

k+
z
z−1)

}

with k−
z = max(k∗

z − 3, 1) and k+
z = min(k∗

z + 3,mz). For this strategy to result
in an overall linear time algorithm, it remains to see that we can compute individual
evaluations of f in constant time (after some initial O(m) pre-processing step).

As a general data structure for quickly computing sums of absolute deviations from
a center point, we can define for i ∈ [m] the cumulative left error el(i) and the
cumulative right error er (i) as

el(i) =
i−1∑
j=1

yi − y j , er (i) =
m∑

j=i+1

y j − yi .
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Note that we can compute these error terms for all i ∈ [m] by iterating over the ordered
target values in time O(m) via the recursions

el(i) = el(i − 1) + (i − 1)(yi − yi−1) (11)

er (i) = er (i + 1) + (m − i)(yi+1 − yi ) (12)

and el(1) = er (m) = 0. Subsequently, we can compute sums of deviations from center
points of arbitrary subpopulations in constant time, as the following statement shows
(see “Appendix B” for a proof).

Proposition 4 Let Q = {y1, . . . , ya, . . . , yz, . . . , yb, . . . , ym} be a multiset with 1 ≤
a < z < b ≤ m and yi ≤ y j for i ≤ j . Then the sum of absolute deviations to yi of
all elements of the submultiset {ya, . . . , yz, . . . , yb} can be expressed as

b∑
i=a

|yz − yi | = el(z) − el(a) − (a − 1)(yz − ya)

+ er (z) − er (b) − (m − b)(yb − yz) .

With this we can compute k �→ f (Qk
z ) in constant time (assuming g can be computed

in constant time). Together with Proposition 2 and Theorem 3 this results in a linear
time algorithm for computing Q �→ f̂ (Q) (see Algorithm 2 for a pseudo-code that
summarizes all ideas).

4 Dispersion-corrected subgroup discovery in practice

The overall result of Sect. 3 is an efficient algorithm for dispersion-corrected sub-
group discovery which, e.g., allows us to replace the coverage term in standard
objective functions by the dispersion-corrected coverage. To evaluate this efficiency
claim as well as the value of dispersion-correction, let us consider as objective
the normalized and dispersion-corrected impact function based on the median, i.e.,
f1(Q) = dcc(Q)mds+(Q) where mds+ is the positive relative median shift

mds+(Q) =
(
med(Q) − med(P)

max(P) − med(P)

)
+

.

This function obeys Eq. (9); thus, its tight optimistic estimator can be computed using
the linear time algorithm fromSect. 3.3. The following empirical results were gathered
by applying it to a range of publicly available real-world datasets.4 We will first
investigate the effect of dispersion-correction on the output before turning to the effect
of the tight optimistic estimator on the computation time.

4 Datasets contain all regression datasets from the KEEL repository (Alcalá et al. 2010) with at least 5
attributes and two materials datasets from the Nomad Repository nomad-coe.eu/; see Table. 1. Implemen-
tation available in open source Java library realKD bitbucket.org/realKD/. Computation times determined
on MacBook Pro 3.1 GHz Intel Core i7.
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4.1 Selection bias of dispersion-correction and its statistical merit

To investigate the selection bias of f1 let us also consider the non-dispersion corrected
variant f0(Q) = cov(Q)mds+(Q), where we simply replace the dispersion-
corrected coverage by the ordinary coverage. This function is a monotone level 1
function, hence, its tight optimistic estimator f̂0 can be computed in linear time using
the top sequence approach. Figure 4 shows the characteristics of the optimal subgroups
that are discovered with respect to both of these objective functions (see also Table. 1
for exact values) where for all datasets the language of closed conjunctions Ccnj has
been used as description language.

The first observation is that—as enforced by design—for all datasets themean abso-
lute deviation from the median is lower for the dispersion-corrected variant (except in
one case where both functions yield the same subgroup). On average the dispersion
for f1 is 49 percent of the global dispersion, whereas it is 113 percent for f0, i.e.,
when not optimizing the dispersion it is on average higher in the subgroups than in
the global population. When it comes to the other subgroup characteristics, cover-
age and median target value, the global picture is that f1 discovers somewhat more
specific groups (mean coverage 0.3 versus 0.44 for f0) with higher median shift (on
average 0.73 normalized median deviations higher). However, in contrast to disper-
sion, the behavior for median shift and coverage varies across the datasets. In Fig. 4,
the datasets are ordered according to the difference in subgroup medians between the
optimal subgroups w.r.t. f0 and those w.r.t. f1. This ordering reveals the following
categorization of outcomes: When our description language is not able to reduce the
error of subgroups with very high median value, f1 settles for more coherent groups
with a less extreme but still outstanding central tendency. On the other end of the scale,

Fig. 4 Normalized median of optimal subgroup w.r.t. uncorrected positive median shift (Q0) and w.r.t.
dispersion-corrected positive median shift (Q1) for 25 test datasets, sorted according to median difference.
Error bars show mean absolute median deviation of subgroups; groups marked red have larger deviation
than global deviation; fill color indicates group coverage from 0 (white) to 1 (black) (Color figure online)
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when no coherent groups with moderate size and median shift can be identified, the
dispersion-corrected objective selects very small groups with the most extreme target
values. The majority of datasets obey the global trend of dispersion-correction leading
to somewhat more specific subgroups with higher median that are, as intended, more
coherent.

To determine based on these empirical observations whether we should generally
favor dispersion correction, we have to specify an application context that specifies
the relative importance of coverage, central tendency, and dispersion. For that let us
consider the common statistical setting in which we do not observe the full global
population P but instead subgroup discovery is performed only on an i.i.d. sample
P ′ ⊆ P yielding subpopulations Q′ = σ(P ′). While σ has been optimized w.r.t.
the statistics on that sample Q′ we are actually interested in the properties of the full
subpopulation Q = σ(P). For instance, a natural question is what is the minimal y-
value that we expect to see in a random individual q ∈ Q with high confidence. That is,
we prefer subgroups with an as high as possible threshold l such that a random q ∈ Q
satisfies with probability5 1 − δ that y(q) ≥ l. This criterion gives rise to a natural
trade-off between the three evaluation metrics through the empirical Chebycheff
inequality (see Kabán 2012, Eq. (17)), according to which we can compute such a
value as mean(Q′) − ε(Q′) where

ε(Q′) =
√

(|Q′|2 − 1)var(Q′)
|Q′|2δ − |Q′|

and var(Y ) = ∑
y∈Y (y − mean(Y ))2/(|Y | − 1) is the sample variance. Note that

this expression is only defined for sample subpopulations with a size of at least 1/δ.
For smaller subgroups our best guess for a threshold value would be the one derived
from the global sample mean(P ′) − ε(P ′) (which we assume to be large enough to
determine an ε-value). This gives rise to the following standardized lower confidence
bound score l̃ that evaluates how much a subgroup improves over the global l value:

l̃(Q′) =
(
l(Q′) − l(P ′)√

var(P ′)

)
+
where l(Q′) =

{
mean(Q′) − ε(Q′), if ε(Q′) defined
mean(P ′) − ε(P ′), otherwise

.

The plot on the left side of Fig. 5 shows the score values of the optimal subgroup
w.r.t. to f1 (l̃1) and f0 (l̃0) using confidence parameter δ = 0.05. Except for three
exceptions (datasets 3,4, and 12), the subgroup resulting from f1 provides a higher
lower bound than those from the non-dispersion corrected variant f0. That is, the
data shows a strong advantage for dispersion correction when we are interested in
selectors that mostly select individuals with a high target value from the underlying
population P . In order to test the significance of these results, we can employ the
Bayesian sign-test (Benavoli et al. 2014), a modern alternative to classic frequentist
null hypothesis tests that avoids many of the well-known disadvantages of those (see
Demšar 2008; Benavoli et al. 2016). With Bayesian hypothesis tests, we can directly

5 The probability is w.r.t. to the distribution with which the sample P ′ ⊆ P is drawn.
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Fig. 5 Effect of dispersion correction on lower bound of 95-percent confidence interval of target variable;
(left) improvement over global lower bound in standard deviations of dispersion-corrected objective (l̃1)
and non-dispersion-corrected objective (l̃0) with annotations showing ids of datasets where either method
provides no improvement; (right) posterior joint probabilities of the events that normalized difference (l̃1 −
l̃0)/max{l̃0, l̃1} is larger than 0.1 (Pr(l̃1)), less than−0.1 (Pr(l̃0)), orwithin [−0.1, 0.1] (Pr(rope)) according
to Bayesian sign-test in barycentric coordinates (sections correspond to regions where corresponding event
is maximum a posteriori outcome)

evaluate the posterior probabilities of hypotheses given our experimental data instead
of just rejecting a null hypothesis based on some arbitrary significance level.Moreover,
we differentiate between sample size and effect size by the introduction of a region
of practical equivalence (rope). Here, we are interested in the relative difference z̃ =
(l̃1 − l̃0)/(max{l̃0, l̃1}) on average for random subgroup discovery problems. Using
a conservative choice for the rope, we call the two objective functions practically
equivalent if the mean z̃-value is at most r = 0.1. Choosing the prior belief that
f0 is superior, i.e., z̃ < −r , with a prior weight of 1, the procedure yields based
on our 25 test datasets the posterior probability of approximately 1 that z̃ > r on
average (see the right part of Fig. 5 for in illustration of the posterior belief). Hence,
we can conclude that dispersion-correction improves the relative lower confidence
bound of target values on average by more than 10 percent when compared to the
non-dispersion-corrected function.

4.2 Efficiency of the tight optimistic estimator

To study the effect of the tight optimistic estimator, let us compare its performance
to that of a baseline estimator that can be computed with the standard top sequence
approach. Since f1 is upper bounded by f0, f̂0 is a valid, albeit non-tight, optimistic
estimator for f1 and can thus be used for this purpose. The exact speed-up factor is
determined by the ratio of enumerated nodes for both variants as well as the ratio
of computation times for an individual optimistic estimator computation. While both
factors determine the practically relevant outcome, the number of nodes evaluated is
a much more stable quantity, which indicates the full underlying speed-up potential
independent of implementation details. Similarly, “number of nodes evaluated” is also
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1410 M. Boley et al.

Fig. 6 Effect of tight optimistic estimator; (right) optimistic estimation ( f̂1(σ
+
1 ), f̂0(σ

+
0 )) of remaining

search space and value of current best solution ( f1(σ
∗
1 ), f1(σ

∗
0 )) resulting from tight estimator and top

sequence estimator, respectively—per processed nodes for dataset binaries; (left) speedup factor (t0/t1) in
increasing order for all datasets plus node-reduction factor (|E0|/|E1|), which indicate potential of further
improvements of estimator algorithm

an insightful unit of time for measuring optimization progress. Therefore, in addition
to the computation time in seconds t0 and t1, let us denote by E0, E1 ⊆ L the set of
nodes enumerated by branch-and-bound using f̂0 and f̂1, respectively—but in both
cases for optimizing the dispersion-corrected objective f1. Moreover, when running
branch-and-bound with optimistic estimator f̂i , let us denote by σ ∗

i (n) and σ+
i (n) the

best selector found and the top element of the priority queue (w.r.t. f̂i ), respectively,
after n nodes have been enumerated.

Figure 6 (left) shows the speed-up factor t1/t0 on a logarithmic axis for all datasets
in increasing order along with the potential speed-up factors |E0|/|E1| (see Table 1 for
numerical values). There are seven datasets for which the speed-up is minor followed
by four datasets with a modest speed-up factor of 2. For the remaining 14 datasets,
however, we have substantial speed-up factors between 4 and 20 and in four cases
immense values between 100 and 4000. This demonstrates the decisive potential effect
of tight value estimation even when compared to another non-trivial estimator like f̂0
(which itself improves over simpler options by orders of magnitude; see Lemmerich
et al. 2016). Similar to the results in Sect. 4.1, the Bayesian sign-test for the normalized
difference z = (t1 − t0)/max{t1, t0} with the prior set to practical equivalence (z ∈
[−0.1, 0.1]) reveals that the posterior probability of f̂1 being superior to f̂0 is apx.
1. In almost all cases the potential speed-up given by the ratio of enumerated nodes
is considerably higher than the actual speed-up, which shows that, despite the same
asymptotic time complexity, an individual computation of the tight optimistic estimator
is slower than the simpler top sequence based estimator—but also indicates that there
is room for improvements in the implementation.

Examining the optimization progress over time for the binaries dataset, which
exhibits the most extreme speed-up (right plot in Fig. 6), we can see that not only does
the tight optimistic estimator close the gap between best current selector and current
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highest potential selector much faster—thus creating the huge speed-up factor—but
also that it causes better solutions to be found earlier. This is an important property
when we want to use the algorithm as an anytime algorithm, i.e., when allowing
the user to terminate computation preemptively, which is important in interactive data
analysis systems. This is an advantage enabled specifically by using the tight optimistic
estimator in conjunction with the best-first node expansion strategy.

5 Conclusion

During the preceding sections, we developed and evaluated an effective algorithm for
simultaneously optimizing size, central tendency, and dispersion in subgroup discov-
ery with a numerical target. This algorithm is based on two central results: (1) the
tight optimistic estimator for any objective function that is based on some dispersion
measure around the median can be computed as the function’s maximum on a linear-
sized sequence of sets—the median sequence (Proposition 2); and (2) for objective
functions based on the concept of the dispersion-corrected coverage w.r.t. the absolute
deviation from themedian, the individual sets of themedian sequence can be generated
in incremental constant time (Theorem 3).

Among the possible applications of the proposed approach, the perhapsmost impor-
tant one is to replace the standard coverage term in classic objective functions by the
dispersion-corrected coverage, i.e., the relative subgroup size minus the relative sub-
group dispersion, to reduce the error of result subgroups—where error refers to the
descriptive or predictive inaccuracy incurred when assuming the median value of a
subgroup for all its members. As we saw empirically for the impact function (based
on the median), this correction also has a statistical advantage resulting in subgroups
where we can assume larger target values for unseen group members with high confi-
dence. In addition to enabling dispersion-correction to known objective functions, the
presented algorithm also provides novel degrees of freedom, which might be interest-
ing to exploit in their own right: The dependence on the median is not required to be
monotone, which allows to incorporate a more sophisticated influence of the central
tendency value than simple monotone average shifts. For instance, given a suitable
statistical model for the global distribution, the effect of themedian could be a function
of the probability P[med(Q)], e.g., its Shannon information content. Furthermore, the
feasible dispersion measures allow for interesting weighting schemes, which include
possibilities of asymmetric effects of the error (e.g., for only punishing one-sided
deviation from the median). More generally, let us note that numerical subgroup dis-
covery algorithms are also often applicable in settings where numerical association
rules are sought (see Aumann and Lindell 2003). The appeal of branch-and-bound
optimization is here that it circumvents the expensive enumeration step of all frequent
(high coverage) sets.

Regarding the limitations of the presented approach, let us note that it cannot be
directly applied to the previously proposed dispersion-aware functions, i.e., the t-score
tsc(Q) = √|Q|(mean(Q) − mean(P))/std(Q) and the mmad score for ranked
data mmd(Q) = |Q|/(2med(Q) + mmd(Q)). While both of these functions can be
optimized via the median sequence approach (assuming a t-score variant based on the
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median), we are lacking an efficient incremental formula for computing the individ-
ual function values for all median sequence sets, i.e., a replacement for Theorem 3.
Though finding such a replacement in future research is conceivable, this leaves us
for the moment with a quadratic time algorithm (in the subgroup size) for the tight
optimistic estimator, which is not generally feasible (although potentially useful for
smaller datasets or as part of a hybrid optimistic estimator, which uses the approach
for sufficiently small subgroups only).

Since they share basic monotonicities, it is possible to use functions based on
dispersion-corrected coverage as an optimization proxy for the abovementioned objec-
tives. For instance, the ranking of the top 20 subgroups w.r.t. the dispersion-corrected
binomial quality function, dcb(Q) = √

dcc(Q)(med(Q) − med(P)), turns out to
have a mean Spearman rank correlation coefficient with the median-based t-score of
apx. 0.783 on five randomly selected test datasets (delta_elv, laser, stock, treasury,
gold).However, amore systematic understandingof the differences and commonalities
of these functions is necessary to reliably replace themwith one another.Moreover, the
correlation deteriorates quite sharply when we compare to the original mean/variance
based t-score (mean Spearman correlation coefficient 0.567), which points to the per-
hapsmore fundamental limitation of the presented approach for dispersion-correction:
it relies on using the median as measure of central tendency. While the median and
the mean absolute deviation from the median are an interpretable, robust, and sound
combination of measures (the median of a set of values minimizes the sum of absolute
deviations), the mean and the variance are just as sound, are potentially more relevant
when sensitivity to outliers is required, and provide a wealth of statistical tools (e.g.,
Chebyshev’s inequality used above).

Hence, a straightforward but valuable direction for future work is the extension
of efficient tight optimistic estimator computation to dispersion-correction based on
the mean and variance. A basic observation for this task is that objective functions
based on dispersion measures around the mean must also attain their maximum on
gap-free intervals of target values. However, for a given collection of target values,
there is a quadratic number of intervals such that a further idea is required in order
to attain an efficient, i.e., (log-)linear time algorithm. Another valuable direction for
future research is the extension of consistency and error optimization to the case of
multidimensional target variables where subgroup parameters can represent complex
statistical models (known as exceptional model miningDuivesteijn et al. 2016). While
this setting is algorithmically more challenging than the univariate case covered here,
the underlying motivation remains: balancing group size and exceptionality, i.e., dis-
tance of local to global model parameters, with consistency, i.e., local model fit, should
lead to the discovery of more meaningful statements about the data and the underlying
domain.
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Appendix A: Proof of Theorem 3

In order to proof Theorem 3, let us start by noting that for functions of the form of
Eq. (9), finding the set size k∗

z corresponds to maximizing the dispersion-corrected
coverage among all multisets with consecutive elements around median yz (as defined
in Eq. 8). In order to analyze this problem, let us write

hz(k) = dcc(Qk
z ) = |Qk

z |
|P| − smd(Qk

z )

smd(P)

for the dispersion-corrected coverage of the multiset Qk
z . Let Δhz : [mz] → R denote

the difference or gain function of hz , i.e., Δhz(k) = hz(k) − hz(k − 1) where we
consider Q0

z = ∅ and, hence, hz(0) = 0. With this definition we can show that hz
is alternating between two concave functions, i.e., considering either only the even
or only the odd subset of its domain, the gains are monotonically decreasing. More
precisely:

Lemma 5 For all k ∈ [mz] \ {1, 2} we have that Δhz(k) ≤ Δhz(k − 2).

Proof For k ∈ [mz], let us denote by qkz the additional y-value that Qk
z contains

compared to Qk−1
z (considering Q0

z = ∅), i.e., Qk
z \ Qk−1

z = {qkz }. We can check that

qkz =

⎧⎪⎨
⎪⎩
q
z−
⌊
k−1
2

⌋, k odd

q
z+
⌈
k−1
2

⌉, k even
.

With this and using the shorthands n = |P| and d = smd(P) we can write

Δhz(k) − Δhz(k − 2) = hz(k) − hz(k − 1) − (hz(k − 2) − hz(k − 3))

= k

n
− smd(Qk

z )

d
− k − 1

n
+ smd(Qk−1

z )

d
− k − 2

n

+ smd(Qk−2
z )

d
+ k − 3

n
− smd(Qk−3

z )

d

= 1

n
(k − k + 1 − k + 2 + k − 3)︸ ︷︷ ︸

=0

+ 1

d

(
smd(Qk−2

z )

−smd(Qk
z ) + smd(Qk−1

z ) − smd(Qk−3
z )

)

= 1

d

(
−|qkz − yz | − |qk−1

z − yz | + |qk−1
z − yz |
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+ |qk−2
z − yz |

)

= 1

d

(
−|qkz − yz | + |qk−2

z − yz |
)

case k odd

= 1

d

(
−
(
yz − y

z−
⌊
k−1
2

⌋
)

+
(
yz − y

z−
⌊
k−3
2

⌋
))

= y
z−
⌊
k−1
2

⌋ − y
z−
⌊
k−3
2

⌋ ≤ 0

case k even

= 1

d

(
−
(
y
z+
⌈
k−1
2

⌉ − yz

)
+
(
y
z+
⌈
k−3
2

⌉ − yz

))

= y
z+
⌈
k−3
2

⌉ − y
z+
⌈
k−1
2

⌉ ≤ 0

��
One important consequence of this fact is that the operation of growing a set around
median z by two elements—one to the left and one to the right—has monotonically
decreasing gains. In other words, the smoothed function hz(k) = hz(k) + hz(k − 1)
is concave or formally

Δhz(k) + Δhz(k − 1) ≥ Δhz(k + 1) + Δhz(k) . (13)

Moreover, we can relate the gain functions of consecutive median indices as follows.

Lemma 6 Let z ∈ [m] \ {1} and k ∈ [mz−1] \ {1, 2, 3}. It holds that

Δhz−1(k − 2) + Δhz−1(k − 3) ≥ Δhz(k) + Δhz(k − 1) (14)

Δhz−1(k) + Δhz−1(k − 1) ≤ Δhz(k − 2) + Δhz(k − 3) (15)

Proof For this proof, let us use the same shorthands as in the proof of Lemma 5 and
start by noting that for all i ∈ [m] and k ∈ [mz] \ {1} we have the equality

Δhi (k) + Δhi (k − 1) = 2

n
− |qki − yi | + |qk−1

i − yi |
d

(16)

which we can see by extending

Δhi (k) + Δhi (k − 1) = hi (k) − hi (k − 1) + hi (k − 1) − hi (k − 2)

= k − k + 2

n
− smd(Qk

i ) − smd(Qk−2
i )

d

= 2

n
− |qki − yi | + |qk−1

i − yi |
d

.
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We can then show Eq. (14) by applying Eq. (16) two times to

Δhz−1(k − 2) + Δhz−1(k − 3) − (Δhz(k) + Δhz(k − 1))

= 1

d

(
−|qk−2

z−1 − yz−1| − |qk−3
z−1 − yz−1| + |qkz − yz | + |qk−1

z − yz |
)

and finally by checking separately the case k odd

= 1

d

(
y
z−1−

⌊
k−3
2

⌋ − yz−1 + yz−1 − y
z−1+

⌈
k−4
2

⌉ + yz − y
z−
⌊
k−1
2

⌋ + y
z+
⌈
k−2
2

⌉ − yz

)

= 1

d

⎛
⎜⎜⎜⎝y

z−
⌊
k−1
2

⌋ − y
z−
⌊
k−1
2

⌋
︸ ︷︷ ︸

=0

+ y
z−1+

⌈
k
2

⌉ − y
z−3+

⌈
k
2

⌉
︸ ︷︷ ︸

≥0

⎞
⎟⎟⎟⎠ ≥ 0

and the case k even

= 1

d

(
yz−1 − y

z−1+
⌈
k−3
2

⌉ + y
z−1−

⌊
k−4
2

⌋ − yz−1 + y
z+
⌈
k−1
2

⌉ − yz + yz − y
z−
⌊
k−2
2

⌋
)

= 1

d

⎛
⎜⎜⎜⎝y

z+1−
⌊
k
2

⌋ − y
z+1−

⌊
k
2

⌋
︸ ︷︷ ︸

=0

+ y
z+
⌈
k−1
2

⌉ − y
z−2+

⌈
k−1
2

⌉
︸ ︷︷ ︸

≥0

⎞
⎟⎟⎟⎠ ≥ 0 .

Similarly, for Eq. (15) by applying Eq. (16) two times we can write

Δhz−1(k) + Δhz−1(k − 1) − (Δhz(k − 2) + Δhz(k − 3))

= 1

d

(
−|qkz−1 − yz−1| − |qk−1

z−1 − yz−1| + |qk−2
z − yz | + |qk−3

z − yz |
)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
d

⎛
⎜⎜⎜⎝y

z−1−
⌊
k−1
2

⌋ − y
z+1−

⌊
k−1
2

⌋
︸ ︷︷ ︸

≤0

+ y
z−2+

⌈
k
2

⌉ − y
z−2+

⌈
k
2

⌉
︸ ︷︷ ︸

=0

⎞
⎟⎟⎟⎠ ≤ 0, k odd

1
d

⎛
⎜⎜⎜⎝y

z−
⌊
k
2

⌋ − y
z+2−

⌊
k
2

⌋
︸ ︷︷ ︸

≤0

+ y
z−1+

⌈
k−1
2

⌉ − y
z−1+

⌈
k−1
2

⌉
︸ ︷︷ ︸

=0

⎞
⎟⎟⎟⎠ ≤ 0, k even

��

Combining all of the above we can finally proof our main result as follows.

123



1416 M. Boley et al.

Proof (Theorem 3) We start by showing that every k ∈ [mz+1] with k < k∗
z − 3 can

not be an optimizer of hz+1. It follows that k∗
z − 3 ≤ k∗

z+1, and, hence, k
∗
z ≤ k∗

z+1 + 3
as required for the upper bound. Indeed, we have

hz+1(k) = hz+1(k + 2) − (Δhz+1(k + 2) + Δhz+1(k + 1))

≤ hz+1(k + 2) − (Δhz+1(k
∗
z − 2) + Δhz+1(k

∗
z − 3)) (by Eq. (13))

≤ hz+1(k + 2) − (Δhz(k
∗
z ) + Δhz(k

∗
z − 1))︸ ︷︷ ︸

>0 by def. of k∗
z

< hz+1(k + 2) . (by Lm. 6)

Analogously, for the lower bound, we show that every k ∈ [mz+1] with k > k∗
z + 3

can not be the smallest optimizer of hz+1. It follows that k∗
z + 3 ≥ k∗

z+1, and, hence,
k∗
z ≥ k∗

z+1 − 3 as required. Indeed, we can write

hz+1(k) = hz+1(k − 2) + Δhz+1(k) + Δhk+1(k − 1)

≤ hz+1(k − 2) + Δhz+1(k
∗
z + 4) + Δhz+1(k

∗
z + 3) (by Eq. (13))

≤ hz+1(k − 2) + Δhz(k
∗
z + 2) + Δhz(k

∗
z + 1)︸ ︷︷ ︸

≤0 by def. of k∗
z

≤ hz+1(k − 2) (by Lm. 6)

��

Appendix B: Additional proofs

Proof (Proposition 4) Using di j as a shorthand for y j − yi for i, j ∈ [m] with i ≤ j
we can write

el(z) − el(a) − (a − 1)(yz − ya) + er (z) − er (b) − (m − b)dzb

=
z−1∑
i=1

diz −
a−1∑
i=1

dia − (a − 1)daz +
m∑

i=z+1

dzi −
m∑

i=b+1

dbi − (m − b)dzb

=
z−1∑
i=a

diz +
a−1∑
i=1

(diz − dia)︸ ︷︷ ︸
daz

−(a − 1)daz +
b∑

i=z+1

dzi

+
m∑

i=b+1

(dzi − dbi )︸ ︷︷ ︸
dzb

−(m − b)dzb

=
z−1∑
i=a

diz + (a − 1)daz − (a − 1)daz +
b∑

i=z+1

dzi + (m − b)dzb − (m − b)dzb

=
z−1∑
i=a

diz +
b∑

i=z+1

dzi =
b∑

i=a

|yz − yi |

��
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Appendix C: Summary of used notations

Symbol Meaning Defined in

| · | Cardinality of a set or absolute value of a number –
[k] Set of integers {1, . . . , k} 2
(x)+ max{x, 0} for a real-valued expression x 2
≤e Element-wise less-or-equal relation for multisets of real values 3
2X Power set of a set X , i.e., set of all of its subsets –
N
X Set of all multisets containing elements from set X –

σ , ϕ Subgroup selectors σ, ϕ : P → {true, false} 2.1
c Measure of central tendency 3.1
d Measure of dispersion 3.2
el (i), er (i) Left and right cumulative errors of target values up to value i 3.3
f Objective function 2.1
f̂ Tight optimistic estimator of objective function f 2.2
m Number of elements in subpopulation Q 3
mz Maximal size parameter k for consecutive value set Qk

z 3.2
k∗
z f -maximizing size parameter k for consecutive value set Qk

z 3.2
y Numeric target attribute y : P → R 2.1
yi i-th target value of subpopulation w.r.t. ascending order 3
P Global population of given subgroup discovery problem 2.1
Q Some subpopulation Q ⊆ P 2.1
Qz Median sequence element with median index z 3.2
Qk
z Submultiset of Q with k consecutive elements around index z 3.2

Ti Top sequence element i , i.e., Ti = {ym−i+1, . . . , ym } 3.1
Y Real-valued multiset 3
Ymed
Δ multiset of differences of elements in Y to its median 3.2

L, Lcnj Description language and language of conjunctions 2.1
Ccnj Language of closed conjunctions 2.1
amd(Q) Mean absolute deviation of y-values in Q to their median 3.2
cov(Q) Coverage, i.e., relative size |Q|/|P| of subpopulation Q 2.1
dcc(Q) Dispersion-corrected coverage of subpopulation Q 3.3
mean(Q) Arithmetic mean of y-values in Q –
ipa(Q) Impact, i.e., weighted mean-shift, of subpopulation Q 2.1
med(Q) Median of y-values in Q 3.1
smd(Q) Sum of absolute deviations of y-values in Q to their median 3.3
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