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Experimental Procedure and MEG Data Acquisition. A total of
102 native Dutch speakers (51 males), with an age range of 18–33 y
(mean of 22 y), participated in the experiment. All participants
were right-handed, had normal or corrected-to-normal vision, and
reported no history of neurological, developmental, or language
deficits. The study was approved by the local ethics committee
(CMO, the local “Committee on Research Involving Human
Participants” in the Arnhem–Nijmegen region) and followed the
guidelines of the Helsinki declaration. Participants received
monetary compensation for their participation.
The participants were seated comfortably in a magnetically

shielded room and were instructed to read sequences of words
(total number of 240, with 9–15 words per sequence), which were
presented sequentially on a back-projection screen, placed in front
of them. All words were presented at the center of the screen
within a visual angle of 4°, in a black monospaced font, on a gray
background using Presentation software (Version 16.0; Neuro-
behavioral Systems, Inc.). The vertical refresh rate of the LCD
projector was 60 Hz. The sequences of words formed either well-
formed sentences or consisted of a scrambled version of a sen-
tence, where the word order was randomly shuffled. For the re-
mainder we refer to these latter stimulus sequences as word lists.
See Lam et al.(23) for more details about the stimulus material
used. Sentences and word lists were presented in small blocks, of
five sentences (or word lists) each, to a total of 120 stimuli per
condition. To check for task compliance, in a random 10% of the
word sequences they were followed by a yes/no question about the
content of the previous sentence/word list.
MEG data were collected with a 275 axial gradiometer system

(CTF). The signals were analog low-pass-filtered at 300 Hz and
digitized at a sampling frequency of 1,200 Hz. The participant’s
head was registered to the MEG-sensor array using three coils
attached to the participant’s head (nasion and left and right ear
canals). Throughout the measurement the head position was
continuously monitored using custom software (26). During breaks
the participant was allowed to reposition to the original position if
needed. Participants were able to maintain a head position within
5 mm of their original position. Three bipolar Ag/AgCl electrode
pairs were used to measure the horizontal and vertical electrooc-
ulogram and the electrocardiogram.

Artifact Rejection and Subtraction of Single-Trial Activity.All analyses
were done with custom-written MATLAB scripts and FieldTrip
(27). Data were initially epoched from −100 to 600 ms relative to
word onset. Segments contaminated by artifacts due to eye
movements, muscular activity, and superconducting quantum in-
terference device jumps were discarded before further analysis.
Next, we subtracted the event-related response from the single-
trial data with the ASEO algorithm (28). The acronym ASEO
stands for analysis of single-trial ERP and ongoing activity, and
the aim of the application of this algorithm in this context was to
attenuate the effects of evoked transients on the estimation (and
subsequent interpretation) of GC (29). Transients in the signals
violate the underlying assumption of stationarity and moreover
may result in nonzero GC estimates, due to systematic latency
differences of the peak of the transient signals across regions.
Although such latency differences may reflect an actual in-
teraction (where temporal precedence of a transient signal peak in
region A, compared with region B, may be an indication that A is
causing B), their spurious effect on the estimated GC is unwanted,
if the aim is to interpret the frequency domain GC in terms of

directed synchronized interactions. In our experimental setup,
transient brain responses could not be avoided (as opposed to, for
instance, ref. 7), and we developed a procedure (performed at the
sensor level) to attenuate the effect of transient evoked compo-
nents, combining the ASEO algorithm with a blind source se-
paration technique (DSS) (30). In short, the ASEO algorithm
models single-trial signals as a combination of ongoing activity and
event-related components, where the latter are modeled as a set
of “canonical” components, each with a trial-specific latency and
amplitude. In a typical application (31), the single-trial estimates
of latencies and amplitude are used as dependent variables for
subsequent analysis. Here, however, we subtracted the single-trial
evoked responses that were reconstructed from the latency and
amplitude estimates, which results in a better account of ongoing
activity, compared with the subtraction of a fixed average event-
related response from each signal. DSS was used to iteratively
unmix the sensor-level data into a set of components, where the
DSS framework allows for the unmixing algorithm to capitalize on
specific features of the requested components. Specifically, we
applied an iterative procedure, where each iteration consisted of
the following steps:

i) Estimation of the dominant DSS component using quasiperi-
odic averaging, which essentially extracts components with
strong evoked transients, time-locked to word onset. This step
yields a spatial map of mixing weights, describing for each
MEG sensor the extent to which this component is present
in the MEG signals, as well as an observations-by-time matrix
of the component time series. Mathematically, the sensor-
level data are modeled as:

½X1   X2   . . .XR�= a p½y1   y2 . . . yR�+N,

where matrix Xr has channels in the rows and time points in the
columns for trial r. Column vector a represents the mixing
weights, and row vector yr represents the single-trial time courses
of the estimated component. For the implementation we used
the software provided by the authors (30) (available from www.cis.
hut.fi/projects/dss/), which is part of FieldTrip and can be deployed
using ft_componentanalysis, with cfg.method = ‘dss.’
ii) Application of the ASEO algorithm to the single-trial time

series of the estimated DSS component (vector y in our
notational convention), yielding single-trial estimates of
the evoked transients. The data model underlying the
ASEO algorithm models each single-trial response as a
combination of ongoing activity and a weighted combina-
tion of latency shifted event-related canonical signal com-
ponents, as per the following equation:

yrðtÞ=
XN
n=1

βrnsnðt− τrnÞ+ zrðtÞ=~yrðtÞ+ zðtÞ,

where yr(t) is the signal for trial r as a function of time t. zr(t) is the
ongoing activity, and sn(t) is a canonical signal component, which
is shifted by latency parameter τ and weighted by amplitude pa-
rameter β. The ASEO algorithm parameterizes the single-trial
signals using an iterative approach in the frequency domain. For
the implementation used in the current work we adapted the code
that was kindly provided to us by Mingzhou Ding, University of
Florida, Gainesville, FL, and which was used for the original
implementation (28).
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iii) Backprojection of the component’s single-trial evoked tran-
sients ~yr to the MEG sensor level, using the spatial map of
mixing weights, obtained in step i:

�
~X1   ~X2   . . . ~XR

�
= a p

�
~y1   ~y2 . . . ~yR

�
.

iv) Subtraction of the back-projected evoked transients from
the MEG sensor data, yielding MEG-sensor data that served
as input data for the next iteration.

We performed five iterations (i.e., we removed five time-locked
components). Removal of additional components did not affect the
global field power appreciably (Fig. S3E). The different steps and
the effect of this cleaning procedure are illustrated in Fig. S3.

Source Reconstruction and Parcellation of Source-Reconstructed Activity.
After the cleaning of the sensor data with the combined DSS-ASEO
procedure we performed source reconstruction using an LCMV
(32). For this, we computed the covariance matrix between all
MEG-sensor pairs, as the average covariance matrix across the
cleaned single trial covariance estimates. This covariance matrix
was used in combination with the forward model, defined on a
set of 8,196 locations on the participant-specific reconstruction
of the cortical sheet to generate a set of spatial filters, one filter
per dipole location. Individual cortical sheets were generated
with the Freesurfer package (version 5.1) (surfer.nmr.mgh.harvard.
edu), coregistered to a template with a surface-based coregistra-
tion approach, using Caret software (brainvis.wustl.edu/wiki/index.
php/Caret:Operations/Freesurfer_to_fs_LR, brainvis.wustl.edu/
wiki/index.php/Caret:Download), and subsequently downsampled
to 8,196 nodes, using the MNE software (martinos.org/mne/stable/
index.html). The forward model was computed using FieldTrip’s
“singleshell” method (41), where the required brain/skull bound-
ary was obtained from the subject-specific T1-weighted anatomi-
cal images.
Next, we applied an atlas-based parcellation scheme to further

reduce the dimensionality of the data. To this end, we used the
Conte69 atlas (brainvis.wustl.edu/wiki/index.php//Caret:Atlases/
Conte69_Atlas), which provides a parcellation of the neocortical
surface, based on Brodmann’s cytoarchitectonic atlas, consisting
of 41 labeled parcels per hemisphere. This parcellation scheme
was further refined, breaking up the larger parcels into a set of
subparcels, respecting the original boundaries (e.g., breaking up
the middle temporal gyrus in smaller parcels along the anterior/
posterior axis). This resulted in a parcellation scheme consisting of
191 parcels per hemisphere.
For each parcel, we obtained a parcel-specific spatial filter as

follows. We concatenated the spatial filters of the vertices com-
prising the parcel, obtained a set of time courses of the event-related
field at each parcel, and performed a principal component analysis
on the result. We selected for each parcel the first two spatial
components explaining most of the variance in the signal. We opted
for this method, rather than averaging, because we used rank-
reduced forward solutions (excluding the most noise sensitive di-
pole orientations), which might result in signal cancellation effects
upon averaging, due to sign ambiguity of the resulting cardinal
dipole orientations. For the parcels used the two dominant spatial
components explained on average 90% of the signal variance within
each parcel (range: 74–96%).

Preselection of the Connections Between Language-Relevant Areas.
For the connectivity analysis we constrained ourselves a priori to a
subset of connections between parcel pairs, using known “long-
range” macroanatomical fiber pathways between parcels com-
prised of core language regions and the visual system as described
in the literature (1, 9–11). This preselection was motivated by the
fact that direct functional connections should be supported by

direct anatomical connections. In addition, we allowed a priori for
direct connections between neighboring nodes, which is a fair as-
sumption given the characteristics of cortico-cortical connections
observed in anatomical tracing studies (e.g., refs. 24 and 33), where
local connections are abundant. We included intrahemispheric
connections from both hemispheres and also included interhemi-
spheric connections between homologous areas. The nodes were
defined based on the labeling scheme of Brodmann, where each
of these nodes could consist of one or more subparcels (where
subparcels were defined as described above). In addition, nodes
in temporal cortex were classified according to their position
along the anterior–posterior axis (distinguishing anterior, mid-
dle, and posterior parts) and along the superior–inferior axis
(distinguishing superior, middle, and inferior parts). Fig. 2A in
the main text shows how the individual nodes were labeled. As
major long-range fiber pathways we included the arcuate fas-
ciculus (AF), the superior longitudinal fasciculus (SLF), the
extreme capsule (EC), the uncinate fasciculus (UC), and the
inferior fronto-occipital fasciculus (IFOF). The AF provides
widespread connections between the temporal cortex (pre-
dominantly the middle and superior temporal gyri) and various
frontal areas (BA44/45/6/9). The SLF connects frontal areas
(notably BA44) with posterior superior temporal and parietal
areas. The EC connects frontal areas with the middle part of
superior and middle temporal gyrus. The UC connects frontal
areas with the temporal pole, and the IFOF connects frontal
areas with occipital areas. Connections between directly adjacent
parcels were excluded for further analysis to reduce spurious
estimates of connectivity due to spatial leakage of source recon-
structed activity. The selection scheme resulted in 4,350 connections
between pairs of parcels, which notably consisted of a sparse subset
of all possible pairwise connections between the 156 parcels used
for the GC analysis.

GC Computation and Statistical Evaluation of Overall Network
Topology. For computational efficiency we computed the spectral
representation of the signals at the sensor level and projected this
into source space, using the parcel-specific spatial filters. The
spectral representation of the signals was obtained using the fast
Fourier transform in combination with multitapers (using 5-Hz
smoothing) on the time domain data from 200 until 600 ms after
word onset. The sensor-level Fourier-transformed data were pro-
jected into source space, and for each pair of parcels we computed
the cross-spectral density matrix. Subsequently we performed
nonparametric spectral matrix factorization for each pair of parcels,
followed by computation of GC (34, 35).
We used a blockwise approach (35) in combination with non-

parametric spectral factorization (34). Rather than using a para-
metric approach, which requires the estimation of multivariate
autoregressive models, and subsequently uses the Fourier trans-
forms of themodel coefficients (along with variance estimates of the
residuals) to obtain an estimate of frequency-resolved GC, we used
a nonparametric technique, which is implemented in FieldTrip and
has successfully been used before (6, 42).
The factorization algorithm decomposes a (by definition conjugate

symmetric) cross-spectral density matrix, into a (frequency-specific)
asymmetric spectral transfer matrix, and a frequency independent
symmetric matrix, according to

SðωÞ=HðωÞΣHpðωÞ,

where S(ω) is the cross-spectral density as a function of frequency
ω,H(ω) is the spectral transfer matrix, and Σ is a square symmetric
matrix, representing the equivalent of the residuals’ covariance
matrix in a parametric estimation context. In a bivariate context,
that is, where each of the signals consists of a univariate time
series, and thus the cross-spectral density S is a 2 × 2 matrix for
each frequency bin, GC from signal 1 to signal 2 is defined as
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where the subscripts in the variables reflect the row and column
indices for the individual elements of the 2 × 2 matrices. In a
blockwise context, where each of the signals is a multivariate (in
our case, a bivariate) time series, GC from signal 1 to signal 2 is
defined, according to ref. 35, as

GC1→2ðωÞ= ln

 
jS22ðωÞj

j ~H22ðωÞΣ11 ~H22ðωÞj

!
,

where the subscripts in the variables reflect the row and column
indices of the individual blocks of the 4 × 4 matrices, jXj denotes
the determinant of a matrix, and ~H is a modified version of the
spectral transfer matrix, defined as

~HðωÞ=HðωÞP−1,

where P is defined as:
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For the implementationweused custom-written code (to improve com-
putational efficiency), which was adopted from the FieldTrip functions
sfactorization_wilson, sfactorization_wilson2×2,
and ft_connectivity_granger.
In addition to computing GC, we also computed GC based on

the source-projected Fourier transform of time-reversed data,
where time reversal is essentially equivalent to complex conjugation
of the Fourier coefficients, to distinguish “weak” asymmetries from
“strong” asymmetries, as described by Haufe and coworkers (13)
and Haufe et al. (36). Essentially, a weak asymmetry is an ap-
parent directional interaction between a pair of network nodes,
which is the consequence of a difference in SNR across nodes (14)
and difficult to avoid when the signals consist of a linear mixture
of underlying sources (37). We compared GC with reverse GC
and selected only parcel pairs for subsequent analysis for which
the parametric null hypothesis of the means (across subjects)
could be rejected at a P value < 0.05, corrected for multiple
comparisons (one-sided t test, with Bonferroni correction). This
reduced the number of connections that were used for subsequent
analysis from 4,350 to 713. Next, we evaluated the topology of this
resulting network by quantifying the node degree for each of the
156 parcels involved, identifying “hubs” for inflow and outflow
(Fig. 1). We quantified the probability of observing the computed
node degree under the null hypothesis of the 713 connections’
being a random subset of the originally included 4,350 connec-
tions, using a permutation test. Using Bonferroni correction, a P
value of 0.05/(2*156) = 1.6 × 10−4 was considered significant (each
of the 156 parcels was tested twice, once for the degree for inflow
and once for the degree for outflow).
As an important control analysis, we computed, across parcels,

the Spearman’s rank correlation between the inflow and outflow
degree on the one hand and signal variance, the norm of the
spatial filter, and the SNR on the other hand. The norm of the
spatial filter corresponds with an estimate of the projected noise,
and the ratio between the signal variance and the spatial filter’s
norm corresponds with an SNR estimate. The motivation for this
analysis is to check whether there is a relationship between the
node degree and simple univariate signal(-to-noise) properties,

which may give rise to spurious inferences about the directionality
of estimated interactions (14). Specifically, assuming the worst, one
could hypothesize that parcels with a large degree of inflow (out-
flow) also show on average a low (high) signal(-to-noise), when
comparing across parcels. The results of this control analysis are
shown in Table S1. Based on this analysis, which did not reveal any
significant correlations, we argue that the observed patterns of
node degree in the brain network for language are not conse-
quences of systematic differences in univariate signal properties.

NMF and Network Visualization. We explored the network topology
by performing NMFwith sparsity constraints, using an open-source
toolbox (38). Specifically, we used the sparsenmfnnls routine
from this toolbox, to group-concatenated data matrix X according to

X ≈AY ,

where X, A, and Y are nonnegative matrices and A and Y aim to
minimize the following quantity:

X −AY 2
F+ηA

2
F + λ

XN
i=1

yi21,

where η and λ are sparsity parameters.
Because typically the outcome of NMF depends on the random

starting conditions, we repeated the factorization multiple times
(n = 40), and used a hierarchical clustering procedure, as imple-
mented in the Icasso toolbox (40) (research.ics.aalto.fi/ica/icasso).
In particular, we used the hcluster function, using as a simi-
larity matrix a matrix that was defined as

1− corr

0
BB@
2
664
Y1
Y2
«

Y40

3
775
1
CCA,

where corr(Y) is the sample correlation matrix between all pairs of
rows in Y, and where the matrix Y was constructed as a concatena-
tion of the network topologies extracted by each of the 40 runs of
the NMF algorithm. We fixed the number of clusters to 20. From
each of the clusters, we extracted the component that on average
had the highest correlation with the other members of that cluster,
to obtain the spatial topology and spectral content of that cluster.
The purpose of this analysis is to describe the reconstructed

connectivity data as a low-dimensional mixture of network com-
ponents, each of which with a subject-specific spectral profile. This
technique has successfully been applied to sensor-levelMEG-signals
before (39). We opted for sparse NMF, because the nonnegativity
constraint facilitates the interpretation of the components, as op-
posed to, for example, a statistical independence constraint as
applied in independent component analysis. This is because GC is
strictly nonnegative. The data matrix that was subjected to the
factorization algorithm was constructed by concatenating across
subjects GC spectra, normalized for the SD per subject. The col-
umns in this matrix reflect the individual connections (across sub-
jects and frequencies), and the rows in this matrix (number of
frequency bins times number of subjects) reflected the connections
for a given frequency bin and subject. Typically, the outcome of
NMF is dependent on the number of components (which has to be
chosen a priori) and of the initial random starting conditions. We
explored a range of “number of components” but settled on the
number 20, because this number provided a reasonable balance
between providing a small number of easily interpretable compo-
nents, while at the same time maintaining a good separation be-
tween subnetworks.
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The outcome of this procedure consisted of two matrices. One
matrix represents the network component spatial fingerprints,
quantifying for each of the edges its relative contribution to the
network components. The other matrix contains for each network
component a subject-specific spectral profile, quantifying the
subjectwise relative and frequency-specific contribution to the
network components. For visualization purposes we assigned each
of the edges to a unique network component based on its relative
weight. Subsequently, the different aspects of the network com-
ponents were depicted as follows. To obtain spatial maps of the
nodes (i.e., anatomical parcels) participating in a particular com-
ponent, we summed across each node’s contributing edges the
outflow and inflow separately and displayed these onto an inflated
representation of the cortical sheet, using hcp-workbench (www.
humanconnectome.org/software/connectome-workbench.html).
To visualize the connections between the parcels, for each pair of

parcels we averaged the connection weights across all pairs of
subparcels that constituted the parcel pair. Connections were
drawn as directed arrows, where the thickness of the lines reflects
the overall weight of the connection. The spectral profiles of the
network components were visualized as the median across subjects
and their IQR. For display purposes we ordered the components
according to their dominant regions for outflow. Fig. 2 in the main
text shows the components that are made up predominantly by
connections between language-relevant cortical parcels.
Components that are made up predominantly by connections

between visual cortical parcels as well as components with spa-
tially very diffuse connections are displayed in Fig. S1.
As a sanity check, we compared the NMF-based results with

K-means clustering scheme, which in theory should give very
similar results (43, 44). The results of this comparison are displayed
in Fig. S4. We used the MATLAB built-in kmeans.m function,
with cityblock as distance metric. Overall, both clustering ap-
proaches yield very similar patterns, where the K-means clusters
were topologically less sparse than their corresponding NMF-
based counterparts.

Condition-Specific Statistical Evaluation. To investigate whether the
involvement of the network components was modulated by func-
tional constraints of the linguistic input, we estimated condition-
specific GC in the dominant connections extracted from the iden-
tified network components. The individual conditions were defined
according to whether the words were presented in a well-formed
sentence context (or were part of a word list), and according to
whether the words were presented early in the sentence/word list
(words two to four) or late in the sentence/word list (n− 3 until n− 1,
with n being the number of words in the sentence/word list). To
account for potential interpretational confounds of the resulting GC
estimates we adopted a stratification procedure to ensure that, for
each of the parcel pairs in each of the subjects, the marginal dis-
tributions of the epochwise signal variances as well as the words’
lexical frequencies were equalized across conditions. Lexical fre-
quencies were estimated using the Subtlex-NL database (crr.ugent.
be/programs-data/subtitle-frequencies/subtlex-nl). Condition-specific
histograms for lexical frequency were generated using 13 log-spaced
bins. Histograms for signal variance were generated using six log-
spaced bins. The consequence of this procedure is that only a subset
of epochs is used for the subsequent estimation of GC, where the
parcel-pair-specific number of epochs varies across parcel pairs. On
average 50% of the epochs were retained (range: 20–75%), corre-
sponding to 147 (range: 45–235) epochs.
From each of the extracted network components we defined a

dominant connection as a spatially clustered set of edges that
fulfilled the following criteria: (i) Each cluster consisted of at least
four edges, (ii) the inflow/outflow nodes consisted of spatially
adjacent cortical parcels, and (iii) nodes that for a given cluster of
edges served both as input and output node were discarded, as
well as the edges to which these nodes contributed.

This resulted in 42 connections for which we computed subject-
and condition-specific GC, as an average across the contributing
edges, and across the component-specific frequency range, defined
by the IQR across subjects. We performed a nonparametric per-
mutation test to evaluate the following contrasts: i) sentence –word
list words, ii) for the sentence condition: early – late words, and
iii) interaction effect: (early-late words sentences) – (early-late
words sequences).
The statistical test performed was a two-sided permutation

test (using 20,000 permutations) onWilcoxon’s signed rank statistic
(Z-score) with a Bonferroni–Holm stepdown control for the
familywise error rate. Fig. S2 shows in more detail data from the
individual connections that showed statistically significant effects
for one (or two) of the contrasts mentioned above.

Power Analysis. Our large sample of subjects provides a unique
opportunity to perform a power analysis, to estimate the minimum
sample size required to reliably identify the beta-band fronto-
temporal and alpha-band temporo-frontal interaction patterns.
We randomly sampled from our pool of 102 subjects, using two

different approaches. These approaches differed in the extent of
reanalysis upon random sampling from our pool of 102 subjects.
Our general approach was as follows. We randomly drew from the
pool of subjects subsets of 10, 20, 30, or 40 subjects, and for each of
these subsets we did this random selection 100 times. Next, we
performed the NMF on the reduced-number-of-subjects concate-
nated GC spectra. In the first approach, we included only those
edges that survived the statistical pruning procedure (based on a
Bonferroni corrected parametric statistical evaluation of GC vs.
reverse-time GC, as described in the main text), where this pro-
cedure was performed on the subselection of the subjects. In the
second approach we included the 713 edges that were determined
based on the statistical evaluation of the full batch of subjects. Next,
we paired the NMF components obtained from the subsampled
data with the 102-subject results, by computing pairwise correlations
between the spatial topology of the components. The subsampled
components with the highest spatial correlation with the original
components were subsequently used. We focused on the temporo-
frontal and fronto-temporal components, corresponding to the
components in Fig. 2 B and G of the main text, respectively. Next,
we defined a frontotemporal directionality index:

di= ðFTl −TFlÞ+ ðFTr −TFrÞ,

where FTl is the average of the nonzero left-hemispheric fronto-
temporal edges for a given component and TFl is the average of
the nonzero left-hemispheric temporo-frontal edges. We used
Monte Carlo resampling to estimate the expected value of di un-
der random allocation of the edge weights and subtracted the
average across 500 Monte Carlo estimates from the di estimated
from the observed component to obtain a corrected value. Thus, a
di value >0 would indicate that the corresponding component is a
predominantly frontal to temporal connection, and the a di
value <0 would indicate a temporal to frontal connection.
Correct detection performance was calculated as the percentage

of random subsets yielding a di value with the expected sign. The
results are shown in the Table S2. When using the previously de-
termined subset of 713 edges the detection performance was ex-
tremely good, even at low subject numbers, suggesting that only a
moderate sample size is needed for a reliable detection of fronto-
temporal beta-band and temporo-frontal alpha-band interactions.
However, when using a more conservative approach, and using a
data-driven approach to statistically prune the edges (using Bon-
ferroni correction), based on the subset of subjects in the sample,
detection performance became rather poor. This performance
decrease was primarily caused by the conservative edge detection
process’s not selecting sufficient fronto-temporal and temporo-
frontal edges to begin with. Extending the number of subjects in
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the subselection to 50 and 60 increased the detection performance,
but not in a satisfactory way. Relaxation of the statistical selection
threshold (arbitrarily setting the edge acceptance threshold to
0.0005 uncorrected) recovered the detection rate to beyond 80%
with a sample size between 30 and 40. Thus, based on these

analyses we conclude that using a data-driven edge selection
procedure with a statistical selection criterion that is not too
strict would require a sample size of 30–40 subjects to detect
the fronto-temporal and temporo-frontal connections with a
probability of at least 80%.
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Fig. S1. Network components obtained by group-level NMFwith predominant connections between visual cortical areas (A) and with spatially diffuse connections (B).
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Fig. S2. Connection-specific data for the condition comparisons. (A) Spatial location of outgoing (blue) and ingoing (yellow) parcels. (B) Distribution of data values
across subjects of Granger causal strength for the different conditions compared. Upper row: sentences vs. word lists. Middle row: early words vs. late words.
Bottom row: difference values (early words minus late words) for sentences and word lists. (C) Table with uncorrected P values for the condition-specific com-
parisons, including a specification of the connection-specific frequency range.
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Fig. S3. Illustration of combined DSS/ASEO procedure tor the removal of word-onset event-related signal transients. (A) Spatial topography of the mixing co-
efficients for the first extracted DSS component for an example subject. (B) Single-trial time courses (in gray) of the first DSS component, time-locked to word onset,
average across trials in red. (C) Single-trial estimates of the stimulus-locked transient response, estimated with the ASEO algorithm, average across trials in red.
(D) Overlay of single channel event-related averages before (gray) and after (red) the cleaning procedure. (E) Global field power across channels of the event-
related average (light orange) and after iterative removal of five DSS components (ranging from orange to dark red). (F–H) Effect of the DSS/ASEO procedure on
spectral quantities. (F) Overlay of single-channel relative change in power after removal of event-related activity. (G) Overlay of single-channel power spectra
before (gray) and after (red) the cleaning procedure. The magnified subpanel zooms in on a subset of channels for the low-frequency range. (H) Reduction in
power (average across channels) during iterative removal of five DSS components.
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Fig. S4. Comparison between NMF and K-means clustering. (A) Pairwise correlation matrix between the spatial topology of network components identified with
NMF and with K-means clustering. The components are ordered such that for each of the NMF components the most highly correlated K-means cluster is on the
diagonal. (B) Spatial topology of NMF component (left columns) with corresponding highly correlated K-means cluster (right columns).

Table S1. Correlation between node degree and univariate
signal properties

Node degree inflow Node degree outflow

Signal property Correlation P value Correlation P value

Signal variance 0.054 0.51 0.077 0.34
Spatial filter norm 0.096 0.23 0.12 0.15
SNR −0.097 0.23 0.032 0.69
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Table S2. Detection probability of beta-band fronto-temporal and alpha-band temporo-frontal
connections, based on subsampling of the subjects

No. of subjects Fronto-temporal, % Temporo-frontal 1, % Temporo-frontal 2, %

Fixed set of edges (713), based on 102 subjects’ results
10 100 92 100
20 100 95 96
30 100 99 99
40 100 99 96

Data-driven edge detection (Bonferroni corrected P value)
10 0 0 0
20 0 1 1
30 0.1 0.4 0.2
40 9 0.8 5
50 47 17 40
60 68 21 51

Data-driven edge detection (P < 0.0005, uncorrected)
10 43
20 90 41 35
30 90 77 77
40 95 91 87
50 96 92 93
60 95 94 91
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