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“When you know a thing, to recognize that you know it; 

and when you do not know a thing, to recognize that you do not know it. 

That is knowledge! 
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Abstract 

 

In spite of their potential, photovoltaic-based energy sources currently represent only a tiny fraction of 

current global energy sources a t the moment.. To change this status quo, it is necessary to achieve 

low-cost, high-efficiency solutions for the direct conversion of sunlight into electricity. Quantum dot-

sensitized solar cells (QDSSCs) represent a promising low-cost photovoltaic technology that has 

demonstrated a sharp rise in efficiency performance in the past decade. Despite these efforts, the 

<10% efficiency of current QDSSCs designs is still too low to be competitive with established 

technologies.  

The work included in this thesis is dedicated to identify, understand and potentially overcome the 

constraints limiting QDSSC device efficiencies. The primary focus of this work is to elucidate the very 

first step following absorption of photons: we focus primarily on unveiling the nature and tuning of 

interfacial electron transfer (ET) processes from the quantum dot (QD) sensitizer towards the 

mesoporous oxide electrode. The charge carrier dynamics at the QD-sensitized oxide interfaces is 

primarily investigated by femtosecond time-resolved optical-pump terahertz-probe spectroscopy. The 

results discussed and summarized in this thesis have revealed new pathways in order to boost 

efficiencies of QDSSCs by targeting: (i) improvements in the device’s open circuit voltages (VOC) by 

reducing thermal energy losses at QD/oxide interfaces and in the QDs themselves; (ii) improvements 

in short-circuit currents (JSC) by suppressing trapping processes in QD/oxide electrodes. Specifically, 

for reducing energy losses from thermalization processes, several novel strategies have been proposed 

and tested in this thesis, including enhancing the donor-acceptor coupling strength (chapter 3), 

reducing interfacial donor-acceptor energetics by dipolar capping at QD surfaces (chapter 5), 

multiexciton generation and collection (chapter 6), and interfacial extraction of hot carriers (chapter 7). 

From a kinetic point of view, all of these strategies share a common aspect: boosting the coupling 

strength between the quantum dot and the oxide is shown to represent a key characteristic of high-

performance devices. On the other hand, for boosting JSC in QDSSCs, we have shown that atomic 

(chapter 4) and organic ligand (chapter 5) passivation of QDs are both suitable for boosting QDSSCs 

performance.  Atomic passivation can be readily achieved via stoichiometric control in QDs; ligand 

passivation is enabled, and tunable by the rich functionality of organic molecules (dipole moment 

etc.). These different approaches bring new design principles for optimizing charge transfer dynamics 

at QD/oxide interfaces.  

In summary, the results discussed within this thesis contribute to a better understanding of interfacial 

charge transfer dynamics in sensitized systems; furthermore several novel design principles for 

boosting the power conversion efficiency in QDSSCs were analyzed and discussed herein. 
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Zusammenfassung 

 

Trotz ihres Potentials stellen Energiequellen, die auf Photovoltaik basieren, derzeit nur einen winzigen 

Bruchteil der global genutzten Energiequellen. Um diesen Status quo zu ändern, ist es notwendig, 

kostengünstige und hocheffiziente Lösungen für die direkte Umwandlung von Sonnenlicht in 

Elektrizität zu entwickeln. Quantenpunktsensibilisierte Solarzellen (QDSSCs) stellen eine 

vielversprechende kostengünstige Photovoltaik-Technologie dar, die innerhalb der letzten zehn Jahre 

einen starken Anstieg in ihrer Effizienz gezeigt haben. Trotz dieser Bemühungen ist die  Effizienz der 

gegenwärtigen QDSSCs Designs mit <10% immer noch zu niedrig, um gegen etablierte Technologien 

wettbewerbsfähig zu sein.  

Diese Doktorarbeit beschäftigt sich damit die Grenzen der QDSSC-Effizienz zu identifizieren, sie zu 

verstehen und zu zeigen, wie sie möglicherweise sogar zu überwinden sind. Der Schwerpunkt dieser 

Arbeit liegt auf den Prozessen, welche sich direkt an die Absorption von Photonen anschließen: Wir 

konzentrieren uns primär auf die Art des  Elektronentransferprozesses (ET), der sich an der 

Grenzfläche von Quantenpunktsensibilisator und mesoporöser Oxid-Elektrode abspielt und wie dieser 

justiert werden kann. Die Ladungsträgerdynamik an den quantenpunktsensibilisierten 

Oxidgrenzflächen wird hauptsächlich durch optische Pump- Terahertz-Spektroskopie mit 

Zeitauflösung im Femtosekundenbereich untersucht. Die in dieser Arbeit diskutierten und 

zusammengefassten Ergebnisse zeigen neue Wege auf, um die Effizienz von QDSSCs zu steigern, 

durch: (i) Verbesserungen in der Leerlaufspannung des Geräts (VOC) durch Reduktion thermischer 

Energieverluste an den Quantenpunkt (QD)/Oxidgrenzflächen und in den QDs selbst; (ii) die 

Verbesserung der Kurzschlussströme (JSC) durch die Unterdrückung von Einfangprozessen in den 

QD/Oxid-Elektroden. Insbesondere werden in dieser Arbeit mehrere neue Strategien zur Verringerung 

von Energieverlusten aus Thermalisierungsprozessen, einschließlich der Verbesserung der Donor-

Akzeptor-Kopplungsstärke, vorgeschlagen und getestet (Kapitel 3), der Verringerung der Donor-

Akzeptor-Energetik an Grenzflächen durch dipolares Capping von QD Oberflächen (Kapitel 5), der 

Generierung und Extraktion von Multi-Exzitonen (Kapitel 6), und Extraktion heißer Ladungsträger 

(Kapitel 7). Aus kinetischer Sicht haben alle diese Ansätze eine Gemeinsamkeit: die Steigerung der 

Kopplungsstärke zwischen Quantenpunkt und Oxid stellt ein wesentliches Merkmal von 

Hochleistungsgeräten dar. Andererseits, um den JSC in QDSSCs zu steigern, haben wir gezeigt, dass 

die Passivierung von QDs sowohl mit atomaren (Kapitel 4) als auch organischen Liganden (Kapitel 5) 

für die Leistungssteigerung der QDSSCs geeignet ist. Atomare Passivierung kann leicht über die 

stöchiometrische Kontrolle in QDs erreicht werden; anpassbare Liganden-Passivierung kann durch die 

reichen Funktionalität von organischen Molekülen (Dipolmoment etc.) erreicht werden. Diese 
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unterschiedlichen Ansätze zeigen neue Design-Prinzipien für die Optimierung der 

Ladungstransferdynamik an den QD/Oxid-Grenzflächen.  

Zusammenfassend tragen die im Rahmen dieser Arbeit diskutierten Ergebnisse zu einem besseren 

Verständnis der Ladungstransferdynamik an Grenzflächen von sensibilisierten Photovoltaik-Systemen 

bei; außerdem wurden mehrere neuartige Konstruktionsprinzipien für die Steigerung des 

Energieumwandlungseffizienz in QDSSCs analysiert und diskutiert. 
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Chapter 1 Introduction 

 

 

The global energy consumption is increasing in proportion with the world population expansion. At 

present, the world energy supply is mainly based on burning fossil fuels (oil, coal and natural gas); 

energy sources that are non-renewable and non-sustainable. Moreover, emissions of harmful 

byproducts when consuming fossil fuels have caused many environmental issues. One of the most 

concerning examples is the scientifically established relationship between CO2 emissions and global 

warming.1-3 Within this pressing scenario, searching for novel cost-effective, abundant and 

environmentally friendly energy sources for sustainable development represents a great challenge 

worldwide.  

According to “World Energy Assessment Report: Energy and the Challenge of Sustainability” from 

the United Nations in 2003*, the total energy contained in one hour of solar radiation incident on the 

earth could already fulfill our yearly global energy consumption demand. Much scientific effort has 

been spent during the last 5 decades attempting to harness efficiently the energy from the sun. While 

the sun is the source of many renewable energies, e.g. wind energy, hydroelectric power, biomass 

energy and non-sustainable such as fossil fuels. In principle, the direct conversion of solar energy into 

electricity represents a unique way to harness solar radiation without intermediate steps. 

Unfortunately, the efficiency/costs ratio for solar cells at present is not competitive yet with current 

energy supply technologies regarding exploiting fossil fuels. In this respect, substantial advances to 

reduce costs and increase efficiency for photovoltaic applications are necessary for the realization of 

an era based on clean and limitless solar energy. 

 

 

 

 

______________________________ 

* http://www.undp.org/content/undp/en/home/librarypage/environment-energy/sustainable_energy/ 

world_energy_assessmentenergyandthechallengeofsustainability.html
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1.1 Solar cells: loss mechanisms and Shockley-Queisser limit 

In this thesis, we will focus our discussion on the development of solar cells: a photovoltaic (PV) 

device converting solar energy directly into electricity. Normally, solar cells are made out of 

semiconductors: a type of materials which combines a good absorption and good conduction for 

photogenerated charges. When a semiconductor is illuminated by sunlight, an electron from the 

valence band (VB) can be promoted to the conduction band (CB), leaving a hole behind in the VB. As 

the binding energy of excitons in inorganic semiconductors is normally lower than the thermal 

energy4, photogenerated electrons and holes appear as the free charges. To harvest these free charges 

for producing electricity, it is mandatory that electrons and holes move in opposite directions within 

the device, and this can be achieved by p/n junctions (a junction between 2 semiconductors with an 

excess of holes and electrons respectively). Away from the p/n junction the free charges can move by 

drift to the metal contacts. By connecting the metal contacts between the electron and hole side of the 

solar cell through an external circuit, electricity can be generated. 

Understanding the fundamental limits defining energy conversion efficiency of a PV device is 

essential. Independently on the chemical and geometrical design of the solar cell, two loss mechanisms 

are commonly shared in all solar cells consisting of a single junction: the transmission loss and 

thermal energy loss.  

(1) Transmission loss: Absorption of sunlight is the first key step for an efficient photo-conversion 

process. In figure 1 (A), the solar irradiation spectrum reaching earth surface is shown. As we can see, 

although sunlight intensity peaks at visible range, the infrared energies (> 800 nm) represent a 

substantial portion of the solar spectrum. In order to achieve an efficient absorption in the active layer 

for solar cells, a good match between available solar radiation at earth surface and the materials’ 

bandgap is a requirement. As sunlight hits in the solar cells, only photons with energies that are above 

the bandgap energy (Eg) can excite an electron from valence band (VB) to generate free charges. On 

the other hand, photons with energy lower than the bandgap will be transmitted through, not 

contributing to the solar power conversion process. As depicted in figure 1(B), for solar cell based on 

a wide bandgap semiconductor (e.g. Eg >3 eV), absorption of sunlight is inefficient: only high-energy 

photons at the blue side of the solar spectrum are absorbed, and sunlight from the red portion of the 

solar spectrum is totally lost. This is in contrast to the case of narrow bandgap semiconductors (e.g. 

with Eg <1 eV), in which absorption can start from the infrared side of the spectrum (see illustration in 

figure 1.1 (C), allowing for strong absorption and thus potentially high current density (JSC) in the 

cells. 
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by the physical boundary. The effect of such confinement to the kinetic energy in the very small dot 

can be simply understood though de Broglie equation: 

ܧ ൌ
௣మ

ଶ௠
ൌ

ሺ
೓
ഊ
ሻమ

ଶ௠
ൌ

௛మ

ଶ௠∗ఒమ
	,			 Equation 1.1, 

in which p is the momentum, λ the wavelength, m the effective mass of charges and h as the Planck 

constant.  For a given dot with diameter R, the electronic wavelength in the dot can only take a discrete 

number of wavelengths by considering the boundary condition of a standing wave: 

                                                      

ܴ ൌ ݊ ∗ ,ߣ ݊ ൌ 1, 2, 3………, Equation 1.2 

 

By combining equation 1.1 and 1.2, finally one can obtain:  

 

ܧ ൌ
௛మ∗௡మ

ଶ௠∗ோమ
 ,    Equation 1.3 

 

Although equation 1.3 is rather simple, it contains the essence of the confinement effect in QDs. 

According to equation 1.3, the energy levels in these “quantum dot” are discrete, in analogy to the 

electronic orbitals in a single atom. As a result, QDs are often seen as an “artificial atoms”. For a more 

accurate theoretical calculation of the size dependent bandgap, other factors besides the confinement 

effect such us Coloumbic interactions between electrons (e) and holes (h) have to be considered.  

 

Eg (QD)=ܧ௚ሺܾ݈݇ݑሻ 	൅ ௘	௙௢௥	௖௢௡௙௜௠௘௡௧ܧ 	൅ ௛	௙௢௥	௖௢௡௙௜௠௘௡௧ܧ	 	െ  ௘ି௛ܧ

ሻ݈݇ݑ௚ሺܾܧ =                                         ൅
௛మ

ଶ∗ோమ
	ሺ

ଵ

௠೐
൅

ଵ

௠೓
ሻ	- 

ଵ.଼

ɛ∗ோ
 ,    Equation 1.4 

 

In which, Eg (QD) and ܧ௚ሺܾ݈݇ݑሻ are the bandgaps of the quantum dot and  bulk counterpart, me and mh 

the effective masses for electrons and holes respectively, ɛ the dielectric constant for quantum dots.13 

As we can see from equation 1.4, with decreasing QD size, the confinement energies (scaling with 

1/R2) dominate over Coloumbic interactions (scaling with 1/R): i.e. the smaller the size, the larger of 

the bandgap. As a result, the bandgap of quantum dots shifts to blue in energy with decreasing size, as 

shown in the figure 1.4 (A) (CdSe quantum dots ranging from 2.3 to 3 nm as an example). The 

corresponding electronic structural changes are depicted schematically in figure 1.4 (B). Owing to 

their “artificial atom” nature, the first two electronic transitions in QDs are labeled as 1S and 1P 

orbitals, in analogy to the electronic transitions in atoms. 
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1.2. 2 Quantum dot sensitized solar cell 

The size-dependent electronic and optical properties of QDs are by far the most appealing aspects for 

many optoelectronic applications based on QDs. For instance, light-emitting technologies based on 

QDs have been developed owing to their tunable size dependent emission.14-18 For solar cells, such 

size tunability of QD electronic properties can be applied for material bandgap optimization to match 

the solar spectrum, making QDs extremely attractive absorbers for solar energy conversion.    

After photoexcitation, efficient extraction of electrons from QDs is a pre-requirement for energy 

conversion applications, and can be achieved by a sensitization protocol stemming from the concept of 

dye sensitized solar cells (DSSCs).19 DSSCs were introduced by Grätzel’s group in the early 90’s as a 

potential route for developing highly efficient, low cost photovoltaic devices. Owing to the high 

porosity of nanostructured TiO2 film, a high loading of the sensitizer is possible thus resulting in large 

absorption of sunlight. Under illumination conditions, dyes are exploited as sensitizers for light 

absorbing to generate excitons. The excitons are further separated by injecting of electrons into 

nanostructured wide bandgap oxide particles (eg. TiO2, SnO2, ZnO, process 1 in the figure 5(A)), and 

by transferring hole into a hole-conducting material (e.g. the iodide electrolyte19, process 3).20-22 

Subsequently, the separated electrons and holes are collected at electrodes and recombined in the 

external circuits to generate electricity. Owing to the excellent optical properties of QDs (strong 

absorption cross sections12, 23-25, etc.), they have been considered as promising candidates for replacing 

the dyes. Sensitized solar cells based on QDs were proposed back to early 90s.26, 27 The general 

working principle of sensitized solar cells based on QDs is similar to that based on dyes. In the last 

decade, considerable effort has put into optimizing QDSSC fabrication. However, the highest reported 

power conversion efficiency of quantum dot sensitized solar cells (QDSSCS) is still modest ~8.5%28 

when compared to >12% for DSSCs.29 In this respect, understanding and minimizing efficiency losses 

associated with the charge transfers at different interfaces (QD/oxide, QD/electrode etc.), and charge 

transport at different electrodes are essential for boosting efficiency of QDSSCs, to be competitive to 

their dye counterparts. In the following, charge transfer/transport processes and their corresponding 

recombination mechanisms that limit the cell performance in QDSSCs will be discussed with some 

more details. 

 

(1) Electron transfer (ET) from QD to oxide interfaces 

Electron transfer from sensitizer to oxide interface is one of the most important steps in quantum dot 

sensitized solar cells (QDSSCs) as it is the first key process for efficient exciton dissociation. In figure 

1.5 (B), we show the energetics and possible charge transfer dynamics at QD/oxide interfaces. In 

principle, after photoexcitation, electron transfer dynamics from the LUMO states of QDs to oxides 

can be described as ET between a discrete molecular state in the donor to dense conduction band states 
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 (2) Electron transport in the film of TiO2 nanoparticles is mediated by diffusion towards the back 

contact.45 On the way towards the metal electrode, charge recombination processes at QD/oxide, 

oxide/electrolyte can be active. At the QD/oxide interfaces, injected electrons can recombined with the 

hole left in sensitizer, a process we call “back electron transfer (BET)” in this thesis; shown in figure 

1.5 (A) as process 6. Another detrimental interfacial recombination exists between electrons in oxide 

and holes in electrolyte, illustrated as process 7 in figure 1.5(A). For regenerating of QDs by 

electrolyte, holes are transferred from QDs to electrolyte and further transport towards the counter 

electrode. As oxide surfaces are intimately contacted with electrolyte, such interfacial recombination 

can be very efficient and is harmful for charge collections in solar cells.46 A strategy to prevent this 

recombination path in sensitized solar cell was proposed for solving this problem; coating an 

insulating layer in between the 2 electrodes, by this approach interfacial recombination at 

oxide/electrolyte interface can be largely suppressed.47 By applying this approach in QDSSCs, with 

our collaborators we have reported a world-record solar cell with 8.2% certified efficiency.28 

(3) Charge regeneration in QDs by hole-conducting materials for the sustainable operation of 

QDSSCs. The redox couple is a key component of the DSSC, as its redox potential can affect the 

extracted charge energetics and VOC in the final devices. Conventionally, an electrolyte consisting of 

iodide/triiodide in an organic solvent has been widely used, owing to their ability of fast hole 

scavenging in comparison to other redox couples.48, 49 However, for QDSSC iodide/triiodide can 

induce a big corrosion in QDs, which affects the stability of the cells. Exploiting solid-state hole 

transporting materials, such as 2,2',7,7'-tetrakis(N,N-di-p-methoxyphenyl-amine)9,9'-spirobifluorene 

(spiro-OMeTAD) 50 has been proven an useful approach for QDSSCs. Generally, compared with ET 

dynamics studied in QD/oxide interfaces, much less attention have been given to hole scavenging 

processes and developing of new hole-conducting materials in the sensitized solar cells’ community. 

Future works on these aspects will be important for the overall solar cell device optimizations.  

 

1.2.3 Shockley-Queisser limit for QDSSCs 

Considerable advance in enhancing the power conversion efficiency of QDSSC has been made in the 

last 5 years, with record power conversion efficiency ~8.2% being reported recently.28 However, such 

values are still much lower than that for dyes (~13% for DSSCs29) and bulk semiconductor solar cells 

(Si with 26% power conversation efficiency, for instance). According to S-Q limit, for QDSSC the 

maximum power conversion efficiency can be achievable for QDs with an absorption bandgap ~1.35 

eV.10 As we discussed previously, the interfacial energetics (∆G) for triggering charge transfer are lost 

with charge extraction, representing a thermal energy dissipation channel in the final devices with a 

consequent drop in power conversion efficiency. By taking the ET energy loss contribution into 

account, Giebink et.al. have recalculated the S-Q limit in the situation of excitonic solar cells 
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properties, such as electronics structures52, 53, optical properties54 and their chemical stability.24 

Relevant to solar cell applications, uncoordinated atoms at QD surfaces can introduce high densities of 

trap states, promoting recombination centers which are detrimental to efficient extraction of 

photogenerated charges.55  

Surface passivation of QDs is therefore of paramount importance and has been reported essential for 

improving the photocurrent JSC and thus efficiencies of QDSSCs.56-58 Different passivation strategies 

have been proposed and reported to cure the surface states in QDs. One of the most popular 

approaches for passivating QDS is to grow a shell of wide band gap materials (such as ZnS as reported 

by Guyot-Sionnest’s 59 and Bawendi’s group60). This results in notable improvement of QD 

photoluminescence yield and long-term stability61-63. Nevertheless, QDSSC devices with this 

passivation strategy showed only moderate efficiency (~5%)56-58, plausibly due to a thick tunneling 

barrier for the hole extraction to electrolyte imposed by the inorganic capping. Alternatively, other 

passivation approaches by capping QDs with atoms 44, 64, short organic ligands 57, 65, 66 and short 

inorganic ligands67, 68 have recently attracted much research attention owing to simplicity of these  

treatments, and tunable barriers for charge transfer. More importantly, the extra advantage for 

exploiting atomic and organic/inorganic molecules for QD passivation lies in the power of synthetic 

chemistry: a great variety of candidate materials with designed electronic structures can be 

synthesized. Beyond the passivation effect, surface ligands can bring new functionality and provide 

flexibility in design parameters, such as workfunction tuning via QD capping with molecular dipoles, 

surface wetting and the tuning of dielectric environment etc. In chapters 3 and 4, the role of surface 

chemistry (atomic passivation and molecular passivation) on ET dynamics and thus surface 

passivation will be discussed.  

 

 

1.3.2 Increasing the VOC by reducing thermal energy losses 

1.3.2.1 Decreasing the ET energy loss at QD/oxide interfaces  

As discussed in section 1.2, the dissociation of exciton confined in QDs into free electrons relies on 

interfacial energy transfer. Such transfer is driven by the excess energy between the QD LUMO and 

the bottom of the oxide CB (∆G in figure 1.5 (B)), establishing a new thermal energy loss channel 

which limits the obtainable energy in the cell. In a state-of-the-art QDSSC with efficiencies up to 8.2 

% as reported recently 28, alloyed QDs CdSexTe1–x with a bandgap of ~1.4 eV have been employed. In 

the champion device, a VOC of 0.65 V has been obtained, indicating a serious thermal energy loss of 

~0.75 eV in the devices. In order to prevent such a big voltage loss, an Ohmic contact should be 

established between sensitizer and an oxide electrode, leading to ∆G 0. However, one should take 

into account that the delicate charge kinetic balance of the system can be dramatically affected. A 

reduced ∆G implies slower ET,31, 69 and then ultimately radiative relaxation within the QD could 
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compete kinetically. This kinetic competition is at the core of the tradeoff between sensitized solar 

cells showing low voltage and high current or vice versa.  

 

1.3.2.1.1 Tuning the donor-acceptor coupling strength 

In order to decrease the driving force ∆G for ET, other mechanisms and factors regarding ET need to 

be explored. Besides ∆G, 31, 69, 70 the rate of interfacial ET has been reported to be governed by other 

few factors, such us the donor-acceptor coupling strength,71-73 reorganization energy in the Marcus 

theory  framework30, 74, 75 (phonons and the dielectric environment) and temperature. Controlling the 

length and nature of bridging molecules between QD and oxide is an extremely convenient and useful 

means for varying the coupling strength in a systematic way. In both dye and QD sensitized oxide 

systems, attempts on understanding the bridge length dependent interfacial ET rate have been 

reported.71, 72, 76 There is certain consensus in these reports that the charge transfer rate through the 

linking bridges decays exponentially with the donor-acceptor separation. However, there are also some 

controversies regarding to reported ET rates in similar systems from different groups, spanning from 

the sub-ps to the μs regime.69-72, 77 Additionally, for a given length of the molecule, the structure of the 

backbone has been reported not to impact the ET rate,72 being in contrast to the observations that the 

molecular nature has a big influence on the electron conductance and transfer through molecular wires. 78, 79 In 

chapter 3, the role of the bridge molecule, both the length and the nature, on tuning the donor-acceptor coupling 

strength will be investigated.  

 

1.3.2.1.2 Tuning the donor-acceptor energetics 

Another way to reduce the energy consumption during charge transfer is to achieve a tunable 

interfacial energetics via control by synthetic chemistry. For a given size of the QD, energetics 

modification to reduce ∆G can be achieved by either down-shifting QD energy levels or up-shifting 

the oxide conduction band. For the latter case, doping has been reported as a useful means for 

modifying the work function in the oxide electrode80, 81. 

Recent research interests on exploiting organic small molecules for tuning the electronic structures of 

QDs though mixing of the frontier orbitals at the QD–ligand interface, offer a convenient path for 

controlling the QD energetics. 44, 52-54, 82, 83 Especially, the introduction of ligand dipole effects at QD 

surfaces to modulate energy levels has resulted in the shift of energy levels up to ~1 eV in a controlled 

manner.52 Such tuning of the energetics in QDs is extremely appealing for solar cell applications for 

controlling the interfacial exciton dissociation efficiency by tuning interfacial energetics. Indeed a few 

recent reports exploit dipole effect for improving the solar cell performance based on QDs.22, 84-86 It is 

worth to comment that the dipole effects in principle can be also applicable for oxide surfaces.87, 88 In a 

recent report from Sargent’s group,89 a new world record efficiency of ~10.7% in QD bulk junction 

solar cells was achieved. This achievement was reached by tailoring the energy levels of the oxide 
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substrate by a monolayer of self-assembled ligands to decrease the energy cost for charge splitting 

thus increasing the voltage output in the devices. Given the availability and abundance of the ligand 

molecules, it offers an indispensable and rich tool box for further optimizing interfacial energetics for 

exciton dissociations in solar cell applications. In chapter 4, besides the passivation effect discussed in 

section 1.3.1, the effect of dipole moments on energetics tuning and corresponding ultrafast ET 

dynamics is investigated. 

 

1.3.2.2 Exploiting the excess energy of hot carriers: for QDSSC efficiency beyond the S-Q limit 

As discussed in the section 1.1, one major loss channel in the solar power conversion efficiency of 

single absorber solar cells is the ultrafast cooling (~ps time scales) of hot carriers. Preventing cooling 

processes governed by multi-phonon emission could, in principle, leads to efficiency gain for solar 

energy conversion.90 Various strategies for overcoming the release of hot carrier excess energy as heat 

have been proposed90-94 and will be discussed in the following sections. If realized, they can pave the 

way towards solar cells with power conversion efficiencies exceeding the S-Q limit. 

 

1.3.2.2.1 Hot carrier solar cells  

Nozik et. al90 proposed that a direct extraction of carriers from hot states by selective contacts can 

result in both  high open circuit potentials (Eex+Eg as an example depicted in figure 7, vs. only Eg if 

thermalization takes place efficiently before extracting hot carriers) and photocurrents in the so called 

“hot carrier solar cells”. This would enable an energy conversion efficiency of 66% under 1 sun 

illumination, a nearly 100% improvement vs. the Shockley-Queisser limit estimated for a single 

absorber solar cell.90 Despite the potential of hot carrier solar cells, suitable cell designs allowing the 

harvesting of hot carriers have remained elusive. One of the reasons relate with finding suitable 

absorbers where carrier thermalization is inhabited. Once this is achieved, one should also consider 

whether the efficient extraction of charges from hot states can take place.  

In this respect, QDs with discrete energy states had been long considered as potential candidates for 

hot carrier solar cells.92 In principle, carrier cooling rates in QDs can be decreased, as the energy 

spacing for QD intraband transitions can be as large as several longitudinal optical (LO) phonon 

energies, hence requiring emission of multiple phonons: a many-body process with very low 

probability (so called phonon-bottleneck effect).95, 96 However, It was reported that the phonon-

bottleneck effect can be bypassed in QDs by Auger-like process regarding columbic interactions 

between charges, resulting in a size dependent QD hot carrier relaxation in ultrafast time scales, ~ 0.5-

2 ps between 1Pe-1Se states.97, 98 By engineering QD core-shell with type II band alignment, it has been 

shown that  electron-hole interactions can be reduced by exciton splitting, and then the bottleneck 
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1.3.2.2.2 Multiexciton generation (MEG) 

As an alternative approach to the hot carrier concept, the excess energy of the hot carriers can be 

exploited for promoting a second (or more) electron(s) from the QD HOMO to the QD LUMO 

orbitals, resulting in two (or more) excitons populating the QD per incident photon. This process is 

called multiexciton generation (MEG, also referred as carrier multiplication);94 an sketch of the kinetic 

processes involved in MEG are illustrated in figure 8(A). For energy conservation reasons, MEG can 

only take place for phonons impinging the QD absorber with an excess energy at least twice of the 

bandgap.  

Observation of the MEG effect in QDs by ultrafast spectroscopy was first reported in 2004 in a PbSe 

QDs94, and was verified by following reports in  several different QD systems consisting of PbS,101 

PbSe,102 PbTe,103, CdSe,104 Si,105 InAs,106 CuInSe2
107 etc. These studies gained great research attention 

in the photovoltaic community, because harvesting multiple excitons per absorbed photon can improve 

the performance of solar energy conversion devices (e.g. solar cells and solar fuel devices). The main 

gain here is the conversion of potential thermal losses into a gain in photocurrent (one photon, 2 

electrons). The maximum theoretical efficiency of quantum dot solar cells exhibiting optimal MEG 

can reach 42% (at one sun for an absorber with a bandgap of 0.7eV)93, 108: well above the Shockley-

Queisser limit of 33%. However, the yield efficiency of the MEG process is a topic of intense debate: 

early reports on the MEG efficiency showed extremely high quantum efficiencies up to 700% (1 

photon, seven excitons)101, 104, 109-112, while many follow-up experiments have shown that the MEG 

effect in QDs is quite moderate, and sometimes is very weak or even absent.110, 113-116. It has been 

proposed that part of the large efficiency gain discrepancies stemmed from experimental pitfalls such 

us photocharging and sample degradation.110, 117 On top of that debate, it is still controversial whether 

the MEG efficiency is enhanced on not in QDs owing to confinement effects when compared with 

their bulk counterpart phases.108, 110, 118, 119 Despite all these debates, the occurrence of MEG has been 

unambiguously addressed and demonstrated on a device level.120-124 External quantum yields above 

unity have been reached for wavelengths close or in the UV region of the solar spectrum in solar cells 

(both bulk junction122, 123 and sensitized type121) and photodetectors120, demonstrating the relevance of 

the MEG concept for optoelectronic applications. 

The origin of the MEG effect in QDs has been theoretically addressed by atomistic pseudo-potential 

calculations. These works concluded that a model of impact ionization (II) was capable to explain the 

MEG effect in QDs.119, 125 In a simple picture, the generation yield of multiexcitons is controlled by a 

competition between II and thermalization processes for the hot carriers. If MEG is effective, the 

ultrafast harvesting of excitons is a request towards practical implementations. This aspect is a very 

challenging task, as strong Coulomb interactions between multiple charges lead to a decay via an 

ultrafast nonradioactive three-particle process called Auger recombination (a reverse version of MEG 
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1.4 Outline of this thesis 

 

In chapter 1 we present a general introduction to solar cells, and quantum dot sensitized solar cells 

(QDSSCs). The theoretical power conversion efficiencies in both cases are analyzed, and strategies for 

boosting power conversion efficiency in QDSSC are discussed. In chapter 2, the experimental setup 

THz spectroscopy for monitoring ET dynamics in QD sensitized oxide is introduced. Material 

synthesis and sample preparation for this study are described in details. 

Our specific discussion on strategies for boosting power conversion efficiency in QDSSC is presented 

in different chapters of this thesis. In chapter 3, and chapters 5-7 we focus on the concept of reducing 

thermal energy losses in the QDs or in QD/oxide interfaces for enhancing solar cell’s open circuit 

voltages (VOC); in chapter 4 and a small part of chapter 5 we discuss the role of surface chemistry on 

interfacial QD/oxide electron transfer efficiency (related to improved short circuit currents, JSC, in the 

devices).  

 

More specifically: 

In chapter 3 we have investigated the role of coupling strength on the ET rate at QD/oxide interfaces, 

by tuning the length and nature of linkers between QD and oxide. This investigation was performed 

for a given donor-acceptor energetics (e.g. for a given QD size). Ultrafast charge transfer can be 

achieved by tuning interfacial chemistry. This approach may hold the potential to allow fast transfer 

while paying little to none energy in the exciton interfacial dissociation (preventing thermal losses at 

the electrode); 

In chapter 4, we show that the passivation of QDs surface can be done by tuning their surface atomic 

composition, e.g.  by controlling deposition steps via successive ionic layer absorption and reaction 

(SILAR) method. The origin the atomic passivation relates with fine tuning of QD stoichiometry. The 

passivation effect is size-dependent, illustrating that traps in QDs are primarily at the surfaces as 

discussed in this chapter;  

Chapter 5 discusses a unique approach in this thesis, in the sense that, it involves potential gains in 

both photocurrent and voltage with a single chemical treatment, by molecular capping at QD surfaces. 

The impact in interfacial QD/oxide dynamics of capping the QDs with ligands defined by different 

dipole moments is interrogated; 

In chapter 6 and 7, hot electron transfer, and multiexciton generation and collection at the electrodes 

are analyzed for QD/oxide systems. These approaches have the potential of power conversion 

efficiency beyond S-Q limit are tested in sensitized system.  

Chapter 6 explores multiexciton generation and dissociation processes at QD/oxide systems. We 

demonstrate that capturing two 2 electrons from biexciton states in QDs can be realistic, and that the 

competition between ET and Auger rates dictates the efficiency of the interfacial dissociation. 
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Additionally, we will show that ultrafast hot electron transfer can effectively compete with the process 

of MEG, leading to ~0% MEG quantum yield in the system; 

Chapter 7 focuses on harvesting hot electrons. We show that, ultrafast sub-100fs hot electron transfer 

can be achieved in QD/oxide systems, notably with unity quantum efficiency yield at room 

temperature. The effect of excess energy and temperature on QD to oxide interfacial hot transfer 

efficiency is interrogated; 

 

Chapter 8 summarizes the results and main conclusions of this thesis. 
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Chapter 2 

Experimental Technique and Sample Preparation 

 

Understanding the dynamics of interfacial electron transfer in QD sensitized oxides is essential to 

design and optimize QDSSCs. However, for monitoring charge flow at QD/oxide interfaces is a non-

trivial task for the following reasons: (i) If one aim to measure conductance across a given interface, 

metallic contacts are required: an aspect that is extremely challenging (if not impossible) when aiming 

contacting nanostructures with sizes of few nanometers in diameter; (2) Nano-contacts could 

dramatically modify the native properties of the semiconductor nanocrystals; (3) Conventional 

electronics could be too slow to resolve events happening in ultrafast time scales1-3. For all these 

reasons accessing information about the conductance across a nano-sized interfaces in a non-contact 

fashion seems mandatory. These constrains can be circumvented by employing ultrafast THz 

spectroscopy for monitoring interfacial electron transfer dynamics. This tool is able to resolve with 

sub-ps resolution and in a non-contact fashion the pump induced conductivity of a system, and as 

described in detail below, is perfectly suited to measure interfacial charge transfer processes in QD 

sensitized oxides. 

In this chapter, we will discuss briefly some experimental optical pump Terahertz probe (OPTP) 

spectroscopy, the basics for THz generation and detection, and how to monitor and interpret the data 

regarding the electron transfer dynamics at interfaces. Finally, we describe in some detail the 

procedures for the preparation of the samples analyzed in this thesis e.g. QD synthesis, oxide 

sensitization. 

 

 

2.1 Introduction to Terahertz spectroscopy 

Terahertz (THz) frequencies are located between the far-infrared and the microwave region in the 

electromagnetic spectrum. The energy of the photons in the 0.1-30 THz region comprises energies 

ranging between~0.4-123 meV. The interaction of THz light with materials offers a powerful 

spectroscopic tool for investigating many fundamental aspects of matter including molecular rotations, 

vibrations and particularly charge motion. Methods for the emission and detection of THz radiation 

are well established up to date and exploited for time-resolved studies, in a pump-probe scheme, 

allowing interrogating the photoconductivity of samples with sub-ps resolutions. There are several 

good reviews in the literature summarizing the technical aspect and applications for THz 
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pump at the same speed. When the latter condition is not fulfilled, THz wave fronts generated at 

different time-space positions in the sample result in a deconstructive interference. At the same time, 

the detection of THz pulses is also based on a nonlinear process called Pockels effect which also 

occurs in a ߯ሺଶሻcrystal like ZnTe. The Pockels effect consists in the change of the refractive index of 

the detection crystal induced by the THz electric field. The THz induced birefringence is linearly 

proportional to the applied THz electric field. By time delaying an ultra-short optical pulse (sampling 

beam) respect to the THz pulse, the THz field can be readily mapped out in the detection crystal in 

time-domain. Additionally, for monitoring the dynamics of photo-excited carriers in the sample, a 

pump pulse in the uv-vis range is employed for sample excitation. 

 

2.1.2 Optical pump terahertz probe (OPTP) spectroscopy: the measurements on QD-sensitized oxide 

Using optical pump-terahertz probe (OPTP) spectroscopy for monitoring ET at QD/oxide interfaces, is 

based on exciting QD donors by a femtosecond optical laser pulse and subsequently probing the 

induced transient terahertz (THz) wave absorption with sub-picosecond time resolution. This approach 

has been proven to be a powerful tool for monitoring ET at the QD/oxide interface.8-10 The working 

principle of OPTP, when applied to sensitized samples, is schematically shown in figure 2.2 (A) and 

based on the fact that THz probe can only be absorbed by free electrons in the oxide CB for our 

samples due to its low energy bandwidth (2 THz, is equivalent to 8 meV, well below intraband 

transitions in the QDs). After visible pump photo-excitation of the QDs, if electrons have not been 

transferred to the oxide (case I), the transmitted THz probe does not experience any absorption (the 

THz signal before and after photo-excitation is identical); however, if electrons are transferred from 

the QD to the oxide phase (case II), the THz probe is absorbed by the free electrons populating the 

oxide conduction band (where they become mobile). The latter process can be traced with a 

picosecond time resolution just by changing the time between sample excitation and detection (e.g. by 

changing the pump-probe delay).  More precisely, the photo induced transient THz absorption ΔE (E 

represents the amplitude of the THz electric field) is related to the photo-induced real conductivity 

ΔRe(σ) in the sample which can be obtained as following:  

݀
ݐ݀
ܴ݁ሺߪሻሺݐሻ ൌ

݀
ݐ݀
ሺ݁ ∗ ݊ሺݐሻ ∗ ሻሻݐሺߤ ൌ ݁ ∗

݀
ݐ݀
ሺ݊ሺݐሻ ∗  ሻሻݐሺߤ

																																																															ൌ 	݁ ∗
ௗ

ௗ௧
݊ሺݐሻ ∗ ߤ ൅ 	݁ ∗ ݊ሺݐሻ ∗ 	

ௗ

ௗ௧
  Equation 2.1		ሻ,ݐሺߤ

in which n(t) is the electron density injected into oxides for a given time delay, e is the electron charge 

and μ stands for the intrinsic mobility of electrons in the oxide CB and 
ௗ

ௗ௧
 ሻ as the possible mobilityݐሺߤ

modulation due to carrier-carrier interactions. By pumping QDs with fluences allowing in the low 
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2.2.1 Preparation of metal oxide films 

Commercial nanopowders of SnO2 (Aldrich, < 100 nm), TiO2 (Solaronix, Ti-Nanoxide) and ZnO 

(99%, Alfa Aesar, 20-30 nm) were used in this thesis for preparing thin oxide films. Two different 

kinds of substrates were employed: fused silica for optical pump-terahertz probe (OPTP) 

measurements. Prior to their use, the fused silica substrates were sand-blasted in order to enhance the 

adhesion of the films, this treatment do not affect THz transmission. The silica substrates were cleaned 

with ethanol (30 min) and acetone (30 min) in an ultrasonic bath before any deposition of oxide layers. 

Metal oxide films were deposited by doctor-blading aqueous slurry of the corresponding oxide over 

the cleaned substrates. The slurry was prepared by grinding 1 g of the oxide, 2 mL of H2O, 30 μL of 

acetylacetone (99+%, Aldrich) and 30 μL of Triton X-100 (Aldrich). The samples were dried in air 

and sintered at 150 ºC (for 30 min) and 450 ºC (for 2 h) subsequently. The resulting films were 

measured to be ~7 µm in thickness by profilometry. 

 

2.2.2 Ex-situ QD sensitization (QD-bridge-oxide system) 

In the protocol of QD-linker-oxide sensitization, the colloidal QDs have to be produced first by wet-

chemistry. For the CdSe QD used in the chapter 3, we have synthesized it by following the recipe from 

Mekis et.al. 11 Briefly, two precursors were prepared in the glovebox by dissolving 0.474 g Se powder 

(325 mesh) in 6 ml TOP (trioctylphosphine) and 0.36 g Cd(Ac)2 in 9 ml TOP, respectively. Then, 24g 

TOPO (Trioctylphosphine oxide) was heated up to 180 °C in vacuum under periodic flushing with N2. 

After cooling down to 100 °C, 15 g HDA (1-hexadecylamine) and 0.45 g TDPA (1-

tetradecylphosphonic acid) were added and dried at 120 °C in vacuum during 30 min under periodic 

flushing with N2. The TOP-Se precursor was subsequently injected and the solution was heated to 300 

°C with N2 protection. Under vigorous stirring, the TOP-Cd(Ac)2 precursor was injected to induce 

nucleation of CdSe nanoparticles. During the growth at 280 °C aliquots were taken to monitor the 

growth rate. After 550 s the reaction was stopped by cooling down the remaining reaction volume to 

room temperature. At 55 °C 30 ml of toluene was injected to avoid solidification of the TOPO. The 

obtained dispersion was purified by repeated washing with MeOH and precipitation of particles in a 

centrifuge at 3000 rpm for 5 min. The wash process was repeated 3 times to get rid of extra capping 

molecules absorbing on the QD surface. The final stock of particles was dispersed in toluene and 

waiting for further usage. 

For sensitization of oxides by QDs, the oxide films were firstly immersed for 12 h in a solution of 2 ml 

of acetonitrile containing 0.2ml of targeted molecular bridges. Afterwards, the films were washed 

thoroughly with acetonitrile and toluene to remove unbound bridges. As COOH groups are selectively 

linked to oxide surfaces,12 the resulting bridge sensitized oxide surface is characterized by the presence 

of free SH groups that act as anchoring points for the QDs. The sensitization of the oxide film by QDs 
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Chapter 3 

 

Tuning Electron Transfer Rates through Molecular Bridges in 

Quantum Dot Sensitized Oxides* 

 

Photo-induced electron transfer processes from semiconductor quantum dots molecularly bridged 

to a mesoporous oxide phase are quantitatively surveyed using optical pump-THz probe 

spectroscopy. We control electron transfer rates in donor-bridge-acceptor systems by tuning the 

electronic coupling strength through the use of n-methylene (SH-[CH2]n-COOH) and n-phenylene 

(SH-[C6H4]n-COOH) molecular bridges. Our results show that electron transfer occurs as a non 

resonant quantum tunneling process with characteristic decay rates of βn = 0.94 ± 0.08 and βn = 

1.25 per methylene and phenylene group respectively; in quantitative agreement with reported 

conductance measurements through single molecules and self-assembled monolayers. For a given 

QD donor-oxide acceptor separation distance, the aromatic n-phenylene based bridges allow faster 

electron transfer processes when compared with n-methylene based ones. Implications of these 

results for QD sensitized solar cell design are discussed. 

 

3.1 Introduction 

While metal oxides constitute robust and relatively cheap semiconductor materials that are finding 

increasing applications in optoelectronics, their band gaps are typically prohibitively wide for the 

generation of electron-hole pairs through the absorption of visible light. Several approaches have been 

developed to circumvent this drawback. Specifically, the sensitization of mesoporous oxides by 

semiconductor quantum dot (QD) nanocrystals represents a promising route for the development of 

low cost solutions for energy production (i.e. in QD sensitized solar cells1-3) and storage (i.e. in 

photocatalyst for water splitting4, 5). In a common approach for the sensitization of mesoporous oxide 

films with QDs, bi-functional molecular linkers are employed, for which each end of the molecule 

selectively anchors to the donor and acceptor, respectively6-9. This configuration has been termed a 

* Adapted with permission from (Nano Letters, 2013, 13 (11), pp 5311–5315). Copyright (2013) 
American Chemical Society. 
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gradual increase in the real conductivity with time after photo-excitation therefore directly and 

unambiguously reflects the ET processes taking place from the QD to the oxide. However, we have 

reported previously12, 13 that there is an additional, instantaneous contribution to the real conductivity 

upon photo-excitation due to free carriers populating QD aggregates. Here, we show how deliberate 

photo-oxidation of the sample allows us to separate out this parasitic signal to obtain pure ET kinetics.  

As an example of the methodology, we show in figure 3.2 the characteristic photo-oxidation OPTP 

dynamics for a sample consisting of ~3nm diameter CdSe QDs sensitizing a mesoporous SnO2 film by 

4-mercaptobutyric acid (HS-[CH2]3-COOH). A detailed description of the sample preparation is given 

in chapter 2 sample preparation part. The solid black trace in figure 3.2 is the time resolved real 

conductivity signal for a sample preserved from photo-oxidation (prepared and measured under 

nitrogen environment). The real conductivity response of the sample is characterized by an 

instantaneous rise of the conductivity at time zero (attributed to photoconductivity within QD 

aggregates12, 13) followed by a fast decay (due to trapping or recombination within those QD 

aggregates) and a picosecond timescale rise of the conductivity. Note that only the slow rise of the real 

conductivity signal (indicating an increasing population of free carriers in the oxide) is related to the 

ET process of interest. 

Photo-oxidation of the sample is achieved by exposing the sample to air under identical optical 

excitation conditions (in this case 12 hours with 400 nm pulses at 1 kHz at a fluence of 40 μJ/cm2, 

dotted black trace in figure 3.2). Photo-oxidation of QDs causes quenching of QD luminescence15, 16, 

as a result of the generation of electron traps in the QD surface. The generation of these traps also can 

prevent ET from QDs to the oxide phase13, 17, which is apparent in our measurements from the 

disappearance of the time-dependent ingrowth of the photoconductivity upon photo-oxidation (figure 

3.2, dotted line). The instantaneous signal due to aggregated QDs remains, being a bulk signal that is 

less sensitive to the state of QDs at the surface of these aggregates. Hence, by comparing 

photoconductivity dynamics in the pristine sample with that in a photo-oxidized sample, for which ET 

is strongly suppressed, we can resolve unambiguously the ET component of interest. The green trace 

in figure 3.2 is obtained by subtracting OPTP traces with different degree of oxidation (solid and 

dotted black traces in figure 3.2). The resulting dynamics can be well described by a single 

exponential function allowing for straightforward quantification of ET from the QD to the oxide. In 

Appendix 3.5.1 attached to this chapter (see figure 3.6), we show that our methodology give very good 

sample to sample reproducibility. 

Two important observations must be made here: (i) The inferred kinetics are independent of the degree 

of photo-oxidation for the two comparative measurements; (ii) while the parasitic signal can vary 

strongly between different samples, or even different spots on the same sample, our photo-oxidation 

protocol gives reproducible ET kinetics from sets of samples made with the same recipe. It is 
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Chapter 4 

 

Interplay between Structure, Stoichiometry and Electron 

Transfer Dynamics in SILAR-based Quantum Dot-Sensitized 

Oxides 

 

We quantify the rate and efficiency of picosecond electron transfer (ET) from PbS nanocrystals, 

grown by successive ionic layer adsorption and reaction (SILAR), into a mesoporous SnO2 support. 

Successive SILAR deposition steps allow for stoichiometry- and size-variation of the QDs, 

characterized using transmission electron microscopy. Whereas for sulfur-rich (p-type) QD 

surfaces substantial electron trapping at the QD surface occurs, for lead-rich (n-type) QD surfaces, 

the QD trapping channel is suppressed and the ET efficiency is boosted. The ET efficiency increase 

achieved by lead-rich QD surfaces is found to be QD-size dependent, increasing linearly with QD 

surface area. ET rates, on the other hand, are found to be independent of both QD size and surface 

stoichiometry, suggesting that the donor-acceptor energetics (constituting the driving force for ET) 

are fixed, due to Fermi level pinning at the QD/oxide interface. Implications of our results for QD-

sensitized solar cell design are discussed. 

 

4.1 Introduction 

The sensitization of wide bandgap oxides by quantum dots (QDs) represents a promising route for the 

development of low-cost solar energy conversion devices (e.g. photovoltaics1-6 and photocatalysis7). 

The QD synthesis can be performed either ex situ, i.e. colloidal dots are prepared and then directly 

adsorbed on or molecularly linked to the oxide,2 or in situ, with nanocrystals directly nucleated and 

grown onto the oxide matrix,6, 8, 9 for example through chemical bath deposition (CBD)10, 11 or 

successive ionic layer adsorption and reaction (SILAR).6, 8, 12, 13 The ex-situ approach provides a path 

for obtaining highly monodisperse QDs, but commonly suffers from the formation of QD aggregates 

* Adapted with permission from (Nano Letters., 2014, 14 (10), pp 5780–5786). Copyright (2014) 

American Chemical Society. 
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and/or limited QD surface coverage (constrained by oxide pore size). Electronically, the QD capping 

shell and/or the molecular bridges linking the QDs to the oxide can act as an insulating barrier to 

electron transfer; for aromatic and aliphatic molecular bridges, charge transfer has been shown to 

proceed via coherent tunneling, slowing down with increasing bridge length.14 On the other hand, in-

situ QD sensitization potentially enables hetero-epitaxial growth which allows morphologically well-

defined QD donors,15-18 and can offer larger QD surface coverage in mesoporous oxide architectures 

compared to the ex-situ approaches. Moreover, the intimate QD/oxide contact is expected to provide 

the strongest achievable electronic coupling for a given donor/acceptor system. This particular 

property could enable ultrafast and efficient QD-to-oxide ET processes at little to no energy cost, 

allowing to reach the ultimate theoretical ~30% Shockley-Queisser limit for photon-to-electron energy 

conversion in sensitized systems.19  

Previous reports on in-situ nucleated QDs have, however, suggested wide QD size distributions and a 

lack of control over the nanocrystal morphology.17 This has been primarily concluded from the 

featureless QD absorbance, which can also be an intrinsic manifestation of the strong donor-acceptor 

electronic wavefunction overlap.20, 21 Among the existing in-situ methodologies, the SILAR method 

allows low-temperature-solution-processed epitaxial thin film growth22, 23 and SILAR-based QD-

sensitized solar cells with efficiencies exceeding 5% have been reported.5, 6 The strengths of the 

SILAR approach to grow QDs on metal oxides lie in the fact that (i) the size of the QD can be 

controlled, to some extent, by the number of deposition cycles;24, 25 and (ii) the QD surface 

stoichiometry can be easily tuned26, opening new possibilities for QD doping27-30 and providing a path 

for atomically passivated dots31, 32. Additionally, highly monodisperse core/shell colloidal QDs can be 

obtained when this sensitization methodology is applied.32 Despite the apparent potential of this 

approach, several important questions concerning SILAR-based QD-sensitized oxides remain open; 

clear correlations between chemical synthesis, QD structure and stoichiometry, donor-acceptor charge 

transfer dynamics and their impact on device performance are lacking.  

Here, we investigate the interplay between QD structure, stoichiometry, and electron transfer rate and 

efficiency in SILAR-based PbS QD-sensitized tin oxides as a function of SILAR deposition steps. 

TEM analysis indicates that the size of PbS QDs is controlled through sequential epitaxial deposition 

steps, as is the stoichiometry. Optical pump-THz probe (OPTP) spectroscopy reveals electron transfer 

(ET) rates independent of QD size and surface chemistry, indicative of Fermi level pinning at the 

QD/oxide interface. In contrast to the ET rate, the ET efficiency from PbS QDs directly nucleated onto 

a mesoporous oxide is very sensitive to the QD surface composition, being substantially enhanced for 

lead-rich surfaces. Finally, we correlate our OPTP photoconductivity measurements with photocurrent 

generation in QD-sensitized solar cells (QDSSCs), highlighting the relevance of our observations for 

solar cell design.  
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4.2 Methods and Materials 

We characterize ET processes on QD-sensitized oxides using OPTP spectroscopy14, 33-36 with sub-

picosecond time resolution. Owing to its low photon energy, terahertz radiation is insensitive to optical 

transitions in QDs35; however, because the THz probe is absorbed by mobile carriers populating the 

oxide conduction band, the photo-induced THz absorption is directly related to the photoconductivity 

of the sample. Hence, following optical excitation of the QD, the time-dependent pump-induced 

absorption of the THz probe in a QD-sensitized system can be directly correlated with ET from the 

QDs to the oxide.14, 33, 34 Note that as discussed in chapter 2, not only the ET rate but also the 

efficiency of the ET process can be obtained from OPTP measurements, through the amplitude of the 

photo-induced THz absorption.  

Sensitization of a mesoporous SnO2 matrix with PbS QDs was achieved by alternatively dipping the 

oxide film (up to 6 times) into beakers containing a (i) MeOH-based Pb(NO3)2 solution – providing 

the Pb2+ cations, (ii) pure MeOH solvent to remove the excess of unbound cations, (iii) MeOH-based 

Na2S solution – providing the S2- anions, and (iv) pure MeOH solvent to remove the excess of 

unbound anions. Steps (i) through (iv) are termed as one SILAR cycle, and denoted here as Cn, n ≥ 1. 

Analogously, we define here half cycle as the same routine terminated after step (ii) (a scheme of 

SILAR method is given in chapter 2, sample preparation section). Note that half-cycle samples (Cn.5, 

n ≥ 1) are characterized by a Pb-rich surface while samples grown with a completed cycle (Cn, n ≥ 1) 

are S-rich. To avoid QD photo-oxidation, sample preparation and measurements were realized under 

N2 conditions.  

 

4.3 Results and Discussions 

4.3.1 TEM characterization: QD growth mechanism.  

Before reporting how QD stoichiometry affects electron transfer rate and efficiency, we characterize 

the SILAR-grown nanocrystal morphologies. The characteristic red-shift of the absorption threshold of 

SILAR-based QD-sensitized oxides vs. the number of SILAR cycles24, 25 is a manifestation of a size-

dependent confinement effect (see figure 2.5 in chapter 2). In order to accurately correlate QD 

structure and ET dynamics we performed transmission electron microscopy (TEM) on our samples; 

representative images for PbS QDs on a SnO2 mesoporous support for samples C1, C3 and C6 are 

shown in figure 4.1(A-C).  The TEM images reveal that QDs are uniformly distributed on the oxide 

surfaces, and do not show preferential nucleation on particular SnO2 facets (larger area and higher 

resolution images are provided in figure 4.6 in Appendix). From TEM image statistical analysis, a 

saturation of PbS QD base diameter (2r) is apparent for samples beyond 3 SILAR cycles (see figure 
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4.1(D)). The saturation in QD base diameter is followed by a significant change in QD height (as 

resolved by monitoring QD aspect ratios (h/r), as a function of the number of SILAR cycles, see figure 

4.1(E)). A similar qualitative change in aspect ratios was reported before for SILAR-based CdSe QDs 

onto TiO2 and ZnO surfaces.12, 37 In parallel with the saturation of the QD base diameter (from C3 and 

onwards), we observe the emergence of QD aggregates (PbS bulky phases, see TEM images in figure 

4.6 (D) and (F) in the Appendix 4.5.1). The emergence of polycrystalline PbS phases after the QDs 

saturate in base diameter is consistent with the appearance of an ultrafast component in the ET 

dynamics for samples beyond C4, due to direct photogeneration and recombination of free carriers 

within the bulky QD clusters. Similar behavior has previously been observed for samples sensitized 

with colloidal QDs.14, 33, 34 Furthermore, the emergence of an ultrafast component on the OPTP 

dynamics is accompanied in our samples by a decrease in the ET efficiency (as apparent from the 

reduced THz response at long times – see figure 4.7 (A) in the Appendix 4.5.2), indicating that the 

PbS bulky patches are strong photon absorbers but are not substantially contributing to the overall 

photocurrent in the samples. This scenario agrees well with previous observations that QDSSCs 

typically exhibit an increase in photocurrent followed by a decrease, as a function of the number of 

SILAR cycles.24, 25 The correlation between nanostructure and ET dynamics stresses the importance of 

preventing the transition from isolated QD growth to polycrystalline thin film growth in sensitized 

architectures. For an optimum device performance, high surface densities of isolated QDs without 

aggregate formation are required. 

Heteroepitaxial QD/oxide growth by different solution-processing methods has recently been 

discussed in a review;15 concerning the SILAR method, to the best of our knowledge, only one report 

resolved the epitaxial growth of crystalline PbS QDs nucleated onto anatase TiO2 surfaces by TEM.25 

As shown in figure 4.1(F), for our samples we have also been able to resolve crystalline PbS QDs 

epitaxially grown onto rutile SnO2 surfaces. Our deposition recipe results in [111] faceted PbS dots 

with near-unity aspect ratio. These observations, together with the characteristic change in QD aspect 

ratio as a function of deposited material, indicate that epitaxial growth (triggered by QD/oxide lattice 

mismatch) most likely governs the nucleation of nanocrystals in our SILAR based samples. Note that 

in hetero-epitaxial Volmer-Weber growth mode an increasing aspect ratio as a function of the amount 

of deposited material has been predicted theoretically38 and resolved experimentally39. Based on this 

analogy, we propose a simple model for the growth kinetics as sketched in figure 4.1(G). Our semi-

empirical model considers spherical cap-shaped QDs assuming that SILAR deposition steps change 

the height of the QDs linearly and that the QD growth is self-limiting when h/r aspect ratios approach 

unity (half-sphere shaped QDs). Taking only the empirically measured saturated QD diameter radius 

as input (R = r ~ 2.9 nm for C6), such a simple growth model is able to describe remarkably well the 

QD diameters (2r) and aspect ratios (r/h) obtained from our statistical treatment on TEM 

characterization (see dashed lines in figures 4.1 (D-E)).  
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only of SILAR cycles (or sizes of QDs), but also of QD stoichiometry as illustrated by the OPTP 

traces for samples C3 and C3.5 (characterized by sulfur- and lead-rich QD surfaces, respectively). The 

fact that back ET rates are independent on QD stoichiometry suggests that the QD/oxide energetics 

and coupling strength are independent of QD surface doping. The invariance of ET dynamics with QD 

size and stoichiometry can be rationalized by Fermi level pinning41, 42 at the PbS/SnO2 interface, so 

that the energy difference between QD LUMO and oxide CB (given by ΔG and ΔG’ in figure 4.3 (B)) 

is not modulated by QD size or surface doping (ΔG and ΔG’ are equal and independent of nanocrystal 

dimensions). This is generally different from ex situ QD-sensitized oxides systems, where ET slows 

down with increasing QD size as a consequence of reduced ΔG (see figure 4.3(B)).34, 43  Similarly, as 

theoretically predicted44 and experimentally reported27, 28, 45, 46, changes in the SILAR QD S/Pb ratio 

(QD stoichiometry) will affect the QD Fermi level, yet apparently do not affect ET rates. While the 

variation in both QD size and stoichiometry will affect QD energy levels, the energy difference 

between QD LUMO and oxide CB is not modulated by QD size or doping at the QD/air interface.  

Back ET (BET) kinetics have been reported47, 48 in dye sensitized systems to be determined by not 

only the energetics, but also by diffusion/hopping of charges within the oxide films, which can also be 

rate limiting. Even in the simple case that the overall recombination is determined by the interfacial 

BET, and assuming Marcus theory applies, BET rates will vary with driving force in a way depending 

on whether it occurs on the normal or inverted regions (which will depend on the system 

reorganization energy).  Also BET can be a function of oxide/QD coupling strength which in our 

system is QD size dependent21. Although an accurate description of the BET process observed here is 

out of the scope of the present work, the observed decrease of KBET with SILAR-cycle-number (see 

inset figure 4.2(A)) is consistent with an upward-shifting HOMO level (the HOMO level is not 

pinned). The experimentally resolved decrease of KBET with SILAR-cycle-number (see inset figure 

4.2(A)) is then a consequence of an increasingly smaller driving force for back-ET and increasingly 

smaller donor/acceptor coupling with increasing QD size. 
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(from C1.5/C1 to C6.5/C6). For atomically Pb-passivated samples we resolve a monotonous increase 

in the monitored photoconductivity as a function of SILAR cycles within the range defined by C1.5 

and C4.5. For samples treated beyond C4.5 SILAR cycles (C5.5 and C6.5 SILAR cycles), a decay in 

the overall measured photoconductivity is observed. The decay is consistent with the formation of QD 

aggregates beyond C4 cycles as discussed previously (bulky PbS phases acting as strong photon 

absorbers but poor donors). The observed improvement in the absolute amplitude of the 

photoconductivity between C1.5 and C4.5 SILAR cycles can be correlated with a QD size dependent 

effect, but can also result from an increasing population of QDs per unit area. In order to remove the 

potential effect of an increasing QD population we define here a passivation efficiency term defined 

as: PE = {Re(σ)Cn.5 - Re(σ)Cn) / Re(σ)Cn}, 

with n ≥ 1, where Re(σ)Cn.5 and Re(σ)Cn stand for the plateau real conductivity of samples with Cn.5 

and Cn SILAR cycles, respectively. In this respect, PE simply represents the Pb-passivation effect 

without considering changes in QD surface densities per unit area of the oxide. As derived in the 

Appendix 4.5.4, the passivation efficiency can be rewritten as PE = {KTr / KET}, in which KTr 

represents the rate of electron trapping at QD surfaces and KET is the rate of ET from donor to 

acceptor. As a consequence, the defined PE term physically represents the kinetic competition 

between undesired trapping at the QD surface (KTr) and QD/oxide electron transfer (KET), as illustrated 

in figure 4.3(B). As discussed above (see figure 4.2(A)), KET is a constant regardless of QD size (or, 

equivalently, regardless of the number of SILAR cycles, Cn). On the other hand, trapping rates are 

linearly dependent on defect density in bulk semiconductors.54, 55 In this respect, for our system (where 

KET(Cn) = constant) we have that PE ∝ KTr(Cn) ∝ Nacceptors ∝ QDsurface area. In figure 4.4(B) the 

dependence of PE vs QDsurface area is plotted, the latter being estimated from our epitaxial model and 

TEM characterization, see figures 4.1(D, E and G). A linear correlation is resolved between C1 and C4 

SILAR cycles, in agreement with the notion that the QD trapping rate is linearly correlated with QD 

area. Note that the saturation of PE at 300% versus QD surface area observed for samples beyond C4 

is a manifestation of the saturation in the QD size as a function of deposition steps (in perfect 

agreement with TEM characterization).  
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quantitative correlation between the observed PE improvement by OPTP measurements (see figure 4.5 

(B)) and the monitored short circuit current (JSC) in complete solar cell devices. Note that the kinetics 

(including recombination kinetics) may differ substantially under transient (THz) and steady state 

(device working) conditions (under illumination). In particular, under steady-state illumination, trap 

filling can alter transfer rates. On the other hand, we observe that the open circuit voltages (VOC) for 

the two devices containing, respectively, QDs with Pb- or S-rich surfaces are indistinguishable within 

the range of values observed for the different samples. For our cells, the similar values for VOC’s 

(within the sample-to-sample variation) indicates in simple terms, that the maximum quasi Fermi level 

splitting under illumination within the PbS QD absorber (which could be limited by the reported 

pinning) is preserved for cationic and anionic rich QD surfaces. Overall, the reported results indicate 

that atomic passivation can potentially be well-suited for QDSSCs. 

 

4.4 Summary 

In summary, we have correlated the structure and stoichiometry of QDs grown on SnO2 films with the 

electron transfer rates and efficiency. Transmission electron microscopy reveals saturation in the QD 

base diameter, followed by an increase in nanocrystal height as a function of the number of SILAR 

cycles. This shape transition, together with the observation of the presence of hetero-epitaxial 

nucleated dots suggest that Volmer-Weber growth (mediated by lattice mismatch between QD and 

oxide materials), is the underlying growth mechanism for the analyzed SILAR-based QD sensitized 

system. While ET rates from the QD to the oxide are found to be insensitive to QD size and 

stoichiometry (attributed to Fermi level pining at the QD/oxide interface), the ET efficiency is found 

to be highly dependent on both aspects. In fact, half-cycle, n-type QD surfaces (cation-rich) exhibit a 

better passivation of the QD, which in turn favors photo-induced ET processes from the QD to the 

oxide acceptor. The cationic passivation effect is found to be QD-size dependent, being more 

prominent as QD area increases and correlating with density of QD surface acceptors. Finally, OPTP 

measurements are correlated with device photocurrents, showing that exploiting QD stoichiometry for 

nanocrystal passivation could be an efficient strategy for solar cell design. 
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4.5.4 Definition of passivation efficiency PE 

In order to remove the potential effect of an increasing QD population with the number of deposition 

cycles, we define here a passivation efficiency term as: PE = {Re(σ)Cn.5 - Re(σ)Cn) / Re(σ)Cn}, with n ≥ 

1. In this respect, PE simply represents the absolute Pb passivation effect without considering changes 

in QD surface densities per unit area. Given that the time resolved photoconductivity can be written as 

Re(σ) = μ*NET*e, where μ is the electron mobility in the oxide CB, NET is the number of electrons 

transferred to the oxide and e the elementary charge, we can rewrite PE as: PE = {NTr (Cn)/ NET(Cn)}, 

with  NTr(Cn) = NET(Cn.5) - NET(Cn), where NTr(Cn) is the number of electrons being trapped in the 

QD surface before passivation with lead. As NTr and NET can be defined as NTr = Ntot*(KTr / KTr + KET) 

and NET = Ntot*(KET / KTr + KET) respectively (where Ntot is the total population of photogenerated 

excitons), then we can write PE further as: PE = {KTr / KET}(Cn), with n ≥ 1. Therefore, physically, the 

defined PE term is directly reflecting the kinetic competition between QD/oxide electron transfer (KET) 

and undesired trapping (KTr). 
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Chapter 5 

Fermi Level Pinning at QD Sensitized Oxide Interfaces Precludes 

Tuning of Donor-Acceptor Energetics by QD Dipolar Molecular 

Capping 

 

Reducing the driving excess energy for exciton dissociation (∆G) at quantum dot (QD)/oxide 

interfaces could pave the way towards improved photoconversion efficiencies in solar cells and fuels 

architectures. Recent works demonstrated that QD workfunction (and hence ∆G at electrodes) can 

be tuned by capping the semiconductor nanocrystals with molecular dipoles. However, the 

workfunction tunability in PbS QD-superlattices was reported to be ~20-fold larger when compared 

with those reported on CdS and CdSe QD sensitized schemes; the origin for the large mismatch in 

tunability for these systems remains unclear (e.g. whether dipole/QD interfacial chemistry or 

sample morphology determine ∆G tuning). Here, we demonstrate that interfacial electron transfer 

(ET) rates, correlating directly with ∆G, are invariant to the QD dipolar capping in PbS/SnO2 

interfaces. This result rules out the scenario where a specific dipole/QD surface chemistry dictates 

∆G tunability, and can be attributed to Fermi level pinning at the QD/oxide interface. Furthermore, 

we demonstrate that ET dynamics at interfaces, and then ∆G, can be tuned by QD dipolar 

molecular capping when inserting an insulating layer in between QD donor and oxide acceptor. 

Our results reveal that tuning of donor-acceptor energetics in sensitized systems requires electronic 

decoupling between the QD and the oxide phases.  

 

5.1 Introduction 

Achieving efficient surface passivation schemes in quantum dot (QD) nanocrystals is essential for 

their implementation in novel optoelectronic devices.1-5 The passivation of QD surfaces, which is 

commonly achieved by capping the semiconducting nanocrystals with molecular agents3, 6, 7, inorganic 

shells1, 8, 9, or atoms4, 10, 11, suppresses non-radiative relaxation paths for photo-excited charge carriers. 

The effectiveness of a passivation treatment is determined by the nature of the physico-chemical 

interaction of QD surface and capping agents (e.g. type of bond, packing density, lattice matching 

etc.). Additionally, the synergy between QDs and their capping agents offers a plethora of 

opportunities for tuning and controlling nanocrystal stability12 and QD optoelectronic properties13, 14 

such as bandgap13-15, doping16 and workfunction17-19. Core QD workfunction tuning could be enabled 

by exploiting molecular dipoles as a QD passivation shell. This approach is an appealing route for 
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sensitized geometries, as a single QD capping treatment can provide a reliable passivation scheme for 

the QDs, boosting the short circuit photocurrents in devices,3, 19, 20 and allow fine tuning of donor-

acceptor interfacial energetics,17-19, 21 potentially enhancing open circuit voltage in solar cells22. In fact, 

exploiting QD dipolar molecular capping treatments have provided a path towards more efficient QD 

based solar cells in bulk heterojunction21 and sensitized cell architectures17, 23.  

The workfunction tunability of semiconductor surfaces by dipolar molecular treatments24-26 can be 

qualitatively classified according to the organic-inorganic composite interfacial coupling strength (e.g. 

weak or strong, physisorption or chemisorption).25, 27, 28 For weakly coupled interfaces, the modulation 

of surface energetics by molecular dipoles can be modeled by the Helmholtz equation:25, 28  

∆V=
ே∗ఓ∗௖௢௦ఏ

ɛ∗ɛబ
	,                      Equation 5.1, 

where ∆V represents the potential drop across the molecular film, ܰ  the number of absorbed 

molecules/area at the surface, ߤ the molecular dipole moment, and ߠ the molecular binding angle with 

respect to the surface normal; ɛ  and ɛ0  denote the permittivity of the molecule and vacuum, 

respectively. Equation 5 illustrates that in the weak coupling regime the workfunction of 

semiconductor surface increases in proportion to the dipole moment of the capping molecules. This 

proportionality seems to be a general phenomenon among many bulk29-31 and polycrystalline32 

semiconductors, yet the quantitative strength of the interaction, i.e. the proportionality constant, ∆V/ߤ, 

seems to be highly dependent on the nature of the interfaces.29 Similarly, for semiconducting QDs, 

although linear ∆V/ߤ responses have been reported for QD-superlattices and QD/oxide surfaces; the 

workfunction tunability was found to be ~20-fold larger in  PbS QD-superlattices when compared with 

those reported on in-situ nucleated CdS/TiO2 and CdSe/TiO2 QD/oxide  interfaces (~400 meV/Debye 

vs ~20 meV/Debye respectively)17, 18, 23. The weaker workfunction tunability in QD sensitized oxides 

needs to be rationalized; e.g. does material interfacial chemistry determine the ∆V/ߤ  value in 

sensitized systems (e.g. PbS vs CdS)?; if this is the case, PbS QDs sensitizing a mesoporous oxide will 

display the ~400 meV/Debye found in colloidal superlattices. Note that the ∆V/ߤ  ratio will determine 

the degree of tunability for the exciton dissociation driving energy, ∆G, in a given system; where ∆G 

is defined as the energy difference between the QD LUMO and oxide CB workfunctions. In turn the 

∆G value, which can be considered simply as a thermal loss at the electrodes, will ultimately 

determine the maximum efficiency for a sensitized solar cell22. Understanding these aspects is crucial 

for further development of QD sensitized solar cells. 

In order to interrogate whether the specific dipole/QD surface chemistry sets the ∆V/	ߤ ratio, and 

hence the degree of donor-acceptor ∆G tunability on sensitized QD/oxide systems, we analyze here the 

interplay between QD dipolar molecular capping and interfacial electron transfer (ET) dynamics in a 

system where PbS QDs were directly nucleated onto a mesoporous SnO2 matrix. We demonstrate that 

the interfacial ET rates (directly correlated with donor-acceptor ∆G) are invariant to the molecular 
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dipolar moment sign and strength at PbS/SnO2 interfaces. These results rule out the scenario where a 

specific dipole/QD surface chemistry dictates the ∆V/	ߤ ratio, and can be rationalized by Fermi level 

pinning at the QD/oxide interface precluding the modulation of donor-acceptor energetics for any 

dipolar capping treatments. Furthermore, we demonstrate that by placing an inorganic insulating oxide 

layer between QD and oxide, pinning effects are removed and the tunability of donor-acceptor 

energetics is enabled. This illustrate that the tunability of interfacial donor-acceptor energetics in QD 

sensitized oxides by molecular dipoles requires decoupling of the QD and the oxide. Our results set 

design rule principles for optimized sensitized solar cells where thermal losses at the electrodes are 

engineered and reduced. 

 

5.2 Methods and Materials 

Bare PbS QDs were nucleated in-situ onto mesoporous SnO2 electrodes by using the successive ionic 

layer adsorption and reaction (SILAR) approach in a glove box under N2 atmosphere. The capping-

free-grown QDs after 2 SILAR cycles are defined by a bandgap of ~0.9 ±0.1 eV11. QD molecular 

treatments with different dipolar moments were achieved by immersing QD/oxide electrodes for 2 

hours in 0.1 M MeOH solutions for each given molecule and the details are given in chapter 2, sample 

preparation section. 

 

5.3 Results and Discussions 

The effective bonding of molecules to the QDs was verified for all samples as discussed in the 

Appendix. Figure 5.1 summarizes the set of molecules analyzed in this work, with dipole moments 

ranging from -3.2 to +4.76 Debye. All molecules contain a thiol group that serves as a selective 

anchoring site to the PbS QDs.2, 3, 33 Interfacial carrier dynamics on a given sample spot before 

(QD/oxide) and after applying the molecular treatment (dipole/QD/oxide) were evaluated by optical 

pump-THz probe (OPTP) spectroscopy. This technique provides time-resolved photoconductivity with 

a sub-ps resolution and has been proven to be a powerful tool for investigating ET processes in QD 

sensitized systems.1, 11, 34-36 Following optical excitation of the QDs (800nm, ~50 fs FWHM), the time-

dependent pump-induced absorption of the THz probe directly reveal ET processes from the QD donor 

to the oxide acceptor.11, 34  All OPTP measurements were performed under vacuum conditions (< 1.4 × 

10-4 mbar) to avoid photo-oxidation of the QDs. Up to 5 different sample spots were measured for 

each sample, the variation of signal amplitudes is within 3-8% indicating the good homogeneity of the 

films and reproducibility of the measurements. 
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do rationalize the observations made in previous reports regarding the distinct contrast of 

workfunction tunability degree by capping QDs with molecular dipoles in colloidal QD superlattices 

(~400 meV/Debye18) and in QD dots sensitizing a mesoporous oxide matrix (~20 mV/Debye17); Fermi 

level pinning at QD/oxide interfaces can preclude ∆G  tuning. 

 

5.3.3 The impact of QD dipolar molecular capping on QD/oxide back ET (BET) rate  

A recent work found a bandgap narrowing in PbS QDs15 treated with three  dipolar molecular capping 

analyzed here (Ph-CF3, Ph-NH2, Ph-H); this effect was found to be determined primarily by the nature 

of the molecular head group (e.g. thiol) rather than the specific dipole moment of QD capping 

molecules. Considering system energetics ∆G, a dipole independent bandgap narrowing in the QDs for 

our samples should be manifested as a dipole independent slowdown in back electron transfer (BET) 

rates.11 Although we resolve experimentally that the molecularly induced changes in BET rate are 

invariant vs the specific dipole moment employed for capping the QDs, see figure 5.4(A-E). Contrary 

to expectations, we find a speed up of BET rates. This should be indicative of a widening in QD 

bandgap onset induced by molecular capping for our samples; indeed absorption measurements for 

samples before and after molecular treatment confirmed a ~40 meV QD bandgap increase induced by 

molecular capping, but independent of dipolar moment (see figure 5.8 in Appendix 5.5.3). The 

observation of a QD bandgap widening after molecular capping in our samples could be connected 

with strain release from the lattice-matched epitaxially grown PbS nanocrystal onto the SnO2 matrix.11, 

39, 40 Note that the inferred bandgap for our bare PbS nanocrystals (~0.9	േ	0.1	eV) is much narrower 

than that expected for a nanocrystal of similar volume41, 42; a bandgap narrowing is a common 

phenomenon observed in epitaxially grown QDs owing to the lattice mismatch between dot and 

substrate11,43. In line with this discussion, a similar blue energy shift induced by capping has been 

reported for CdSe QDs directly nucleated onto a TiO2 oxide matrix22. Further work would be required 

to elucidate the details of this molecular induced strain release effect.  
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5.5 Appendix 

5.5.1 The impact of QD dipolar molecular capping on QD/oxide ET efficiency 

In chapter 4, we have demonstrated that the boost in QD/oxide ET efficiency induced by a specific QD 

passivation treatment can be quantified by OPTP measurements. In order to interrogate experimentally 

the effectiveness (e.g. bonding and packing density) of our molecular treatments on QD/oxide 

electrodes grown by SILAR we follow here the same approach; where the boost in ET efficiency 

(passivation efficiency, PE) can be defined as11: 

PE =(Re(σ)after - Re (σ)before) / Re (σ)after),     Equation. 5.2, 

here Re(σ)before  and Re(σ)after  refer to the OPTP plateau amplitude (when ET is ended) before and after 

a specific passivation treatment. Figure 5.6 (A) shows an example of the boost in OPTP signal 

monitored in a single QD/oxide sample’s spot before and after being passivated by Ph-COOH 

molecules.  As evident from the plot the overall real conductivity amplitude is approximately doubled 

by this specific molecular capping treatment (following EQ 2, this represents a PE~100% - please note 

here that this value is size dependent11 and do not necessarily refer to unity passivation quantum yield  

induced by the thiol52, 53). This observation serves as a verification of an effective molecular capping 

of QDs when exploiting thiol-based linkers as passivation agents2, 3. Notably, the PE value estimated 

here quantitatively matches our previous findings - inferred for this exact system - when applying 

atomic passivation through QD surface stoichiometry tuning from p- to n-type11 (see figure 5.6 (B), Pb 

passivation). Note that as illustrated in figure 5.1, the employed molecular dipole is expected to have 

an electron donating character towards the oxide surface near the SH group, which can be consistent 

with a dipole/QD n-type-like interface. In figure 5.6 (B) we summarize the PE efficiency for all the 

molecules analyzed in this work. The molecules defined by negative dipoles exhibit, within the noise 

of our estimates, the comparable improvement in PE independently of dipole moment strength. On the 

other hand, we find no difference between the PE efficiency resolved by molecules with phenyl vs. 

ethyl based backbones (grey and black squared in figure 5.6 (B)) which could indicate that steric 

effects potentially affecting packing density are not promoted by the molecules defined by un-
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For exploring the binding energy of the molecules on the PbS surface and packing conformations, we 

calculated the total energy of the system for molecules attached on the PbS surface (Emol+PbS), the 

energy of the bare PbS surface (EPbS), and the energy of the isolated molecules (Emol) with the SIESTA 

code package.55 We prepared the PbS (100) and (111) surfaces within the slab model. The PbS slab 

model was composed of three PbS layers, where the structure of the topmost 1 layer along the z-

direction were optimized, while the atom positions for the rest of the two layers were fixed. Note that 

the topmost layer in this study means that the layer where the molecules were attached. The size of the 

cell was 11.872 Å × 11.872 Å × 35 Å for the (100) surface and 14.540 Å × 16.792 Å × 35 Å for the 

(111) surface with periodic boundary conditions. The x- and y-directions of the cell size was set to the 

experimentally measured lattice constant. We used the Troullier-Martins norm-conserving 

pseudopotential56 with the Kleinman-Bylander nonlocal projector57 for describing the core electrons. 

We used the PBE functions and DZP basis set. The k-points were sampled by 5 × 5 × 1. Note that the 

same calculation conditions were used for all the systems of molecules absorbed on the PbS surface, 

isolated molecules, and bare PbS surface. For the cases of the molecules absorbed on the PbS surface, 

the H atoms next to S atoms of the thiol molecules were dissociated from the molecules and were 

placed on the PbS surface where the molecules were not attached. The binding energy of a molecule 

when m molecules are added onto the PbS surface where n molecules are attached (∆ܧ௡→௡ା௠) can be 

computed from 

௡→௡ା௠ܧ∆ ൌ
ா೙శ೘,ು್ೄିா೙,ು್ೄ

௠
െ  ,௠௢௟,  Equation 5.3ܧ

where En,PbS is the conformation energy of the system of n molecules attached on the PbS surface, Emol 

is the energy of a single isolated molecule, and EPbS is the energy of the bare PbS surface. The 

molecular geometries of the Ph-NO2 molecules absorbed on the PbS (111) surface as well as PbS 

(100) surface are displayed in Fig. S3. The calculated bonding is plotted in Fig. 2(A) in the main text. 

The angles of the molecules absorbed on the PbS surface and surface normal were calculated by using 

the optimized structure for two molecules absorbed on the PbS (111) surface. The data are given in 

Fig. 2(B) in the main text. 
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Chapter 6 

Interplay between Multiexciton Generation and Collection 

Efficiency at Quantum Dot-Oxide Interfaces 

 

Harvesting multiexcitons populating semiconductor quantum dots (QDs), generated by the 

absorption of a single high energy photon, has been proposed as a path towards higher efficiencies 

in photovoltaic devices. Although multiexciton generation (MEG) efficiency has been widely 

interrogated in colloidal QD solutions, less focus has been placed on the physics regarding 

multiexciton collection (MEC) at electrodes. In this work, using optical pump THz probe 

spectroscopy, we investigate interfacial biexciton transfer rates and efficiency from PbS quantum 

sensitizing a mesoporous SnO2 film as a function of impinging photon flux and photon excess 

energy. First we interrogate MEC efficiency for photon energies below the MEG threshold 

(hv/Eg<2, where biexciton regime is reached by increasing photon flux); the interfacial MEC 

efficiency is dictated by the kinetic competition between QD-to-oxide electron transfer and QD 

Auger recombination rates. Accordingly, we demonstrate that by reducing Auger rate in the QDs, 

by partial localization of holes in a QD molecular capping shell, allowing us boosting MEC at the 

QD/oxide interface. For sample’s excitation allowing MEG (hv/Eg>2) and in the 1 hv/QD excitation 

regime, we find that the interfacial MEG efficiency is essentially zero. This seemingly 

counterintuitive result is rationalized by efficient hot electron transfer (HET) at the QD/oxide 

interface kinetically competing with impact ionization within the QDs, and thus greatly reducing 

MEG efficiency.  

 

6.1 Introduction 

In a single junction photovoltaic device, the efficiency for solar energy conversion under 1 sun is 

thermodynamically limited to ~33%; the so called Shockley−Queisser (SQ)  limit.1  To a great extent, 

this upper limit is determined to the ultrafast thermalization of highly energetic charges photo-

generated by photons well exceeding material’s absorption onset.1-4 In this respect, efficiencies beyond 
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 the SQ limit can be in principle achieved in solar cell designs where thermal losses in the absorber are 

circumvented, e.g. hot carrier solar cells5 or solar cells exploiting multiexciton generation6 (MEG, also 

referred as carrier multiplication). MEG is a phenomenon in which absorption of one high energy 

photon with energy at least twice of the semiconductor’s bandgap (hv/Eg>2) is capable to produce two 

or more excitons7-10 by impact ionization11, 12. By detailed balance arguments the theoretical limit of 

photo-conversion efficiency by exploiting MEG at 1 sun is ~44%.7, 13-15 As proven in complete 

devices16, sensitization of oxide electrodes by QDs could represent an appealing route for efficient 

interfacial dissociation of multiple excitons generated by MEG. The intimate contact between QD and 

oxide can in principle allow ultrafast extraction of multiple charges before exciton-exciton annihilation 

takes place (e.g. via Auger recombination17-19). Although a vast amount of experimental reports have 

scrutinized MEG dynamics and process efficiency as a function of photon energy and fluence in 

semiconducting QDs7, 9, 20-23, to our knowledge there is only one report interrogating interfacial 

biexciton dissociation dynamics and multiexciton collection (MEC) efficiency at QD/oxide interfaces; 

albeit under excitation conditions not allowing MEG (hv/Eg<2). Although biexciton dynamics in QDs 

induced by the absorption of 2 photons with energies hv/Eg<2 or by MEG for photon energies hv/Eg>2 

are correlated24, an absolute estimate of multiexciton collection (MEC) efficiency at the QD/oxide 

interface could in principle differ in both cases. This is due to the fact that MEG efficiency is 

determined by the kinetic competition between impact ionization and carrier cooling within the QDs; 

note that both kinetic processes are absent under hv/Eg<2 excitation conditions.  

Here we interrogate for the first time biexciton dissociation dynamics (transfer rates and MEC 

efficiency) in a sensitized system for photon energies below (hv/Eg<2) and above (hv/Eg>2) the energy 

excitation threshold allowing MEG. When exciting QDs with photon energies below the MEG energy 

onset, where the biexciton regime can be only reached under high photon flux, we find that MEC 

efficiency at the QD/oxide interface is dictated, in agreement with the currently available report17, by 

the kinetic competition between the donor-to-acceptor-biexciton-dissociation and Auger-

recombination rates within QDs. On the other hand, contrary to expectations, when exciting QDs with 

photon energies allowing MEG (hv/Eg>2) and in the 1hv/QD excitation regime, we find that the MEC 



                                                                                                                                       Chapter 6 

pg. 87 
 

efficiency is essentially null. This seemingly counterintuitive result is rationalized by efficient hot 

electron transfer (HET) at the QD/oxide interface. By modelling the kinetic competition at the 

QD/oxide surface, we resolve that MEG efficiency (both amplitude and energy onset) can be 

dramatically affected by simple considering an ultrafast depopulation channel, e.g. HET transfer 

towards the oxide, kinetically competing with impact ionization within the QDs. 

 

6.2 Methods and Materials 

In this work, we analyze interfacial biexciton carrier dynamics on PbS QDs directly nucleated onto 

SnO2 mesoporous matrices via successive ionic layer adsorption and reaction (SILAR) method (as the 

same system discussed in chapters 4, and 5). The nucleation of PbS QDs by SILAR was made in a 

globe box under N2 conditions following a 3.5 SILAR cycles recipe the QDs are defined by a bandgap 

onset of ~0.9±0.1 eV (estimated by absorption spectrum). This growth recipe provides a good 

passivation scheme for the QDs by surface stoichiometry tuning, as we have shown in chapter 4. 

Carrier dynamics were interrogated by optical pump THz probe (OPTP) spectroscopy and the detailed 

working principle are given in chapter 2. In this work the samples under study were optically 

photoexcited by 800 nm and 400 nm laser pulses as a function of photon flux density; importantly for 

both excitation conditions we found null OPTP real conductivity signal on bare SnO2 electrodes (gap 

~3.5 eV). In order to prevent sample photo-oxidation during OPTP characterisation, all measurements 

were conducted under vacuum (~1.4*10-4 mbar); under these conditions the OPTP signal remained 

constant for measuring times exceeding 12 hours.  

 

6.3 Results and Discussions 

6.3.1 Interfacial biexciton dynamics for hv/Eg<2 pump excitation: QD to oxide ET rates 

Figure 6.1(A) shows OPTP data normalized to the dynamics at 1.1.ns for PbS QDs sensitizing SnO2 as 

a function of 800nm pump fluence (between ~3.87*1014 and ~1.11*1016 photons/cm2; these estimates 

are corrected for reflection and transmission losses in the samples, see the discussion in the Appendix 

6.5.1). The OPTP dynamics reveal a pump induced rise of real conductivity representing electron 
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transfer (ET) processes taking place from the QD to the oxide. The rise is followed by a slow long 

lived decay representing back ET processes (BET) from oxide CB towards the QDs and/or oxide 

surface states25. For fluences <2.5 *1015 photons/cm2 we find invariant OPTP dynamics referring to 

the single exciton regime (X, 1hv/QD excitation). A single-stretched-exponential ingrowth which 

amplitude is modulated by an exponential decay fits the data well; back solid line in figure 6.1(A) 

provides ߬ா்
௑ = 4.2±0.2 ps and ߬஻ா்

௑ = 14.7±0.3 ns respectively with β=0.58±0.1. On the other hand, for 

excitation fluences >2.5 *1015 photons/cm2, the OPTP dynamics become fluence dependent; under 

these conditions the OPTP dynamics are contributed by a mixture of ET processes taking place from 

QDs hosting single excitons and multiexcitons respectively.26 In this respect, the multiexciton 

contribution to the OPTP dynamics can be disentangled by simply subtracting low and high fluence 

OPTP data as shown in figure 6.1(B). Notably, the amplitude regarding multiexciton dynamics scales 

linearly with fluence as shown in the inset of figure 6.1(B); in addition, normalized multiexciton 

dynamics are invariant vs photon density as shown in figure 6.1(C). These observations allow us to 

conclude that, under our experimental conditions, the disentangled multiexciton contribution to the 

OPTP dynamics shown in figure 6.1(B-C) represent primarily the biexciton regime (XX). Black dotted 

line in the figure 6.1(C) represent the best fit to the XX dynamics following the same fitting protocol 

employed before for the X regime where β=0.58±0.1 was kept constant. Figure 6.1(D) summarizes the 

obtained transfer rates defining ET and BET components for 3 different PbS/SnO2 samples in the X 

and XX regime respectively ( ܭா்
௑ ஻ா்ܭ	,

௑ 	, ா்ܭ
௑௑,	 and	ܭ஻ா்௑௑ ). As evident from figure 6.1(D), both the ET 

and the BET rates are fasten by ~1 and ~2 orders of magnitude respectively in XX regime when 

compared with the X regime. Faster ET and BET rates can be tentatively rationalized by assuming an 

enhancement in donor-acceptor interfacial energetics and/or donor-acceptor coupling strength in the 

XX regime when compared with the X regime; both effects have been shown by us and others to 

strongly speed up donor to acceptor rates in the X regime on QD sensitized systems.27-30,25 This simple 

picture could be consistent with reports showing a QD energy onset blue shift ranging from tens to 

few hundreds meVs as consequence of negative bi-exciton QD binding energies (see the discussion in 

the Appendix 6.5.2); the strength of the blue shift being dependent on QD sample composition,  size31, 

32, shape32 and strain33.  
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QD generate 1e in the oxide CB (1e/1hv; see green line in figure 6.2(A)). We can extrapolate that 

slope for fluences >2.5*1015 photons/cm2; this projection set the MEC upper limit efficiency at the 

oxide electrode in the XX regime (2e/2hv; see green line in figure 6.2(A)). In the XX regime, the 

weights of the maximum amplitudes for NX and NXX dynamics at a given fluence can be disentangled 

from OPTP data as discussed previously, resulting in linear dependences within the analyzed range of 

fluences (solid black and dotted blue lines in figure 6.2(A) for NX and NXX contributions respectively). 

Finally, the difference at any given photon flux between the NXX contribution and the upper threshold 

XX efficiency (2e/2hv) slope accounts for Auger-related recombination losses taking place within the 

QDs hosting biexcitons (red area in figure 6.2(A)). In this respect, the MEC efficiency can be simply 

inferred by the ratio between the measured and upper limit XX contributions; or analogously by the 

ratio between MEC gain at the oxide electrode and Auger losses within the QDs by ηMEC=( 
ே೉೉

ே೉೉ାேಲೠ೒
). 

From figure 6.2(A) we obtain a MEC efficiency of ~55 ±3% for the analyzed PbS/SnO2 samples. This 

figure implies that, on average, QDs populated with biexcitons are only able to transfer to the oxide 

1.10 ±0.06 electrons per 2 absorbed photons; or equivalently that 90 ±6% of the XX populating QDs 

recombine efficiently via Auger-related processes. From the latter estimates, we can infer a QD 

averaged Auger relaxation lifetime of τAug~0.33 ps (assuming a kinetic model involving neutrally and 

positively charged biexcitons17, 26, see the detailed discussion in Appendix 6.5.3). This rough estimate 

is consistent with the one that can be inferred from the reported linear correlation between biexciton 

Auger rates and nanocrystal volume (τAug~1.5 ps).7, 26, 34, 35 
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MBA passivated QDs equals ~75 ±5%. This figure implies that on average 1.5 ±0.1 electrons are 

injected towards the oxide from QDs populated by biexcitons. The boost in interfacial MEC efficiency 

for 4-MBA capped QDs when compared with Pb capped QDs is consistent with the expected 

reduction in Auger recombination lifetime anticipated for the latter (with an estimate of τAug(4-MBA)= 

2 ps; see the detailed discussion in Appendix 6.5.3). Our results are fully consistent with the 

observations made by Zidek et al.17, in which they have analyzed  MEC efficiency in CdSe QDs 

sensitizing ZnO with photon energies hv/Eg<2 (biexcitons generated as a function of photon flux). In 

their work, they found a QD size dependent maximum MEC efficiency peaking at ~70% which was 

codetermined by the sequential kinetic competition between interfacial charge transfer processes and 

Auger dynamics in QDs. 

 

6.3.3 Biexciton electron transfer dynamics for hv/Eg>2 photon energies 

As discussed before, in order to MEG in sensitized architectures, it is mandatory to interrogate 

interfacial biexciton dissociation dynamics in the hv/Eg>2 regime. In order to evaluate any gain in 

MEC efficiency induced by MEG we analyzed OPTP interfacial dissociation dynamics for 4-

MBA/QD/oxide samples as a function of 800nm and 400nm photon excitations in the 1hv per QD 

excitation regime (fluences <2.5 *1015photons/cm2). If MEG is efficient under 400nm pump excitation 

in our QDs (hv/Eg~3.4), a stepper slope for the OPTP real conductivity amplitude dependence with 

photon flux should be obtained when compared with 800nm excitation. Note here that MEG studies on 

isolated QDs of similar gap under similar excitation conditions revealed MEG efficiencies in the range 

15-25%35, 44, 45 (with hv/Eg ~3.1), well above our detection limit. Contrary to expectations, we find 

nearly identical slopes for both excitation energies, indicating that MEG efficiency in the QDs is null 

in our systems. A closer look to the OPTP dynamics under 800nm and 400nm allow us to rationalize 

this observation. In figure 6.3(B) we compare the obtained dynamics under 400nm and 800nm 

excitation in the 1hv/QD excitation regime. Although we experimentally resolve that the 400nm pump 

excitation fastens the ET rate, both the OPTP maximum amplitude as well as the inferred BET rates 

are barely affected when comparing both excitation conditions. These observations, together with the 

lack of MEG resolved in figure 6.3(A) can be explained by simply assuming that hot carrier extraction 
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Interestingly, we believe that our simple modeling could explain the disparity on MEG efficiency 

estimates reported in literature for a single system by simply assuming the existence of an ultrafast 

trapping component competing with hot charge relaxation. Note that hot trapping in QDs has been 

indeed reported in lead salt dots by other authors49, 50, and also that the speed of trapping at the QD 

surface is simply proportional to trap acceptor density (scaling linearly with QD surface area25, see 

chapter 4). Further experimental efforts are needed to unravel whether the density of traps involved in 

hot charge trapping correlates with MEG efficiency as illustrated in figure 5. It is also worth mention, 

that the simple modeling depicted here –where KRel relates with PbSe LO multi-phonon bulk like 

relaxation – sets the upper threshold MEG efficiency for 3nm PbSe QDs as 76% for photon energies 

between 2 and 3 times the bandgap of the absorber. Aiming square-like MEG efficiency response in 

the  2<hv/Eg<3 excitation photon range, towards maximum device photoconversion efficiency, will 

require exploiting QDs where bulk-like carrier thermalization rates are at least one order of magnitude 

slower than impact ionization rates.  

 

6.4 Summary 

To summarize, using optical pump THz probe spectroscopy we interrogate multiexciton collection 

(MEC) efficiency in QD sensitized system as a function of impinging photon flux, QD surface 

chemistry and photon excess energy. For photon energies hv/Eg<2, where the biexciton regime is 

accessible only by increasing photon flux impinging the samples, MEC efficiency is simply dictated 

by the kinetic competition between interfacial donor-to-acceptor ET and QD Auger-recombination 

rates. As a result, reducing Auger rate, e.g. by localization of holes in the outer QD shell, allows 

boosting the interfacial MEC efficiency in sensitized systems. For photon energies hv/Eg>2, where 

biexcitons can be readily accessible by the absorption of one high energy photon, we find that MEG 

efficiency is null in our system. This is correlated with ultrafast hot ET transfer processes competing 

efficiently against MEG generation in the QDs. Modelling allow us to conclude that that MEG 

efficiency estimates (both amplitude and energy onset) can be completely weighted by an ultrafast 
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depopulation channel (e.g. HET transfer towards the oxide) kinetically competing with impact 

ionization in the QDs.  

 

6.5 Appendix 

6.5.1 Characterization of transmission and reflection losses 

The transmission and reflection losses have been characterized. The measurement geometry is shown 

as in the figure 6.6, in which the sample is placed inside a cryostat with the front and back window 

materials of quartz. The incident pump intensity I0, and transmission intensity Itr are measured for 

each fluence used. For the reflection loss, the loss related to one reflection at the front and back 

windows are considered. According to the Fresnel’s equations, and given the refractive index 1.5 for 

the quartz, one can estimate the loss Iref (from the front window), and I’ref (from the back window) as: 

Iref=I0*(nwindow - nair)
2/(nwindow+ nair)

2=I0*(1.5-1)2/(1.5+1)2=0.04I0;  Equation 6.1 

I’ref=(I0-Iref-Iabs)*0.04=(0.96I0-Iabs)*0.04;  Equation 6.2 

By considering the conservation of light flux in the system,  

Iabs=I0-Iref-I’ref-Itr=I0-0.04I0-(0.96I0-Iabs)*0.04-Itr   Equation 6.3 

One can obtain:   

Iabs=0.96I0-1.04Itr;    Equation 6.4 
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For the epitaxial grown strained PbS QDs analyze here25, is likely that the distribution of electron and 

hole charge density in the bi-exciton regime is asymmetric (e.g. due to distinct nature of surface 

chemistry and strain at the bare PbS surface and contacted PbS/SnO2 interface); in this respect some 

degree of charge localization is expected that should be linked to a broadening on QD emission onset 

(negative bi-exciton binding energy, δEXX).  

 

6.5.3 Estimation of Auger rate based on XX collection efficiency  

In theory, the probability (P) of extracting 2 electrons out of an exciton states in QDs is determined by 

2 consequential competitions: (1) between transferring the first electron and biexciton Auger 

recombination, and (2) between transferring the second electron and corresponding trion Auger 

recombination. That is: 

ܲ ൌ ଵܲ ∗ ଶܲ ൌ
௄ಶ೅
೉೉

௄ಶ೅
೉೉ା௄ಲೠ೒

೉೉ ∗
௄ಶ೅
೉

௄ಶ೅
೉ ା௄ಲೠ೒

೉೉శ	, Equation 6.5, 

in which, ଵܲ  and	 ଶܲ  are probability of transferring first electron and second electron out, ܭா்
௑௑ , 

ா்ܭ
௑ , ஺௨௚ܭ

௑௑ 		and ܭ஺௨௚
௑௑శ represent dissociation rate for first and second electron, and Auger rate in the 

XX and trion (XX+) states respectively.  

In equation 6.5, ܭா்
௑௑ and  ܭா்

௑ 	can be readily obtained by fitting ET dynamics in X and XX regime. P 

can be obtained by converting the biexciton ETXX efficiency ηXX as:  

                                                        P=2 ηXX-1, Equation 6.6, 

This relationship is based on the fact that in the biexciton states, at least one electron out of two can be 

extracted even if the Auger is dominant.17 Now in equation 6.5, the only 2 unknown parameters are 

஺௨௚ܭ
௑௑ 		and ܭ஺௨௚

௑௑శ. It is worth to noting that, it has been theoretically proposed53 and experimentally 

demonstrated54 that the XX Auger process can be considered as a superposition of two independent 

decay pathways consisting of positive- and negative-trion (X-) channels, resulting in: 

஺௨௚ܭ
௑௑ ൌ ሺ2 ∗ ஺௨௚ܭ

௑ା ൅ 2 ∗ ஺௨௚ܭ
௑ି ሻ, Equation 6.7, 
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Where ܭ஺௨௚
௑ି  is the negative-trion Auger rate. By assuming a symmetric decay rate (ܭ஺௨௚

௑ି ൌ ஺௨௚ܭ
௑ା ), one 

can get: 

஺௨௚ܭ
௑ା ൌ ஺௨௚ܭ

௑௑ /4	, Equation 6.8, 

Combined equation 6.5, 6.6, and 6.8, one can get: 

                                              ܲ ൌ
௄ಶ೅
೉೉

௄ಶ೅
೉೉ା௄ಲೠ೒

೉೉ ∗
௄ಶ೅
೉

௄ಶ೅
೉ ା௄ಲೠ೒

೉೉ /ସ
ൌ ௑௑ߟ2 െ 1 , Equation 6.9, 

Based on equation 6.9, ܭ஺௨௚
௑௑  can be estimated with knowing the rest parameters. 
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Chapter 7 

Unity Hot Electron Transfer Quantum Yield in Quantum Dot 

Sensitized Mesoporous Oxides at Room Temperature 

 

Charge thermalization processes represent one of the major efficiency losses in a solar converter. 

Thermal looses can in principle be circumvented if hot carrier extraction towards selective contacts 

is faster than intraband relaxation in the absorber (e.g. in the so called hot carrier solar cells). 

Previous works reported that extraction of hot electrons is feasible in QD sensitized systems, yet 

only at low temperature (e.g. when carrier cooling is inhibited). In chapter 6, hot electron transfer 

(HET) was demonstrated to be competitive with impact ionization and relaxation processes in 

PbS/SnO2 samples at room temperature. Here we analyze the underling photophysics governing 

HET rate and efficiency in this system. We demonstrate that interfacial HET efficiency is simply 

determined by the kinetic competition between QD-to-oxide charge transfer and electron cooling 

within the QD. In this respect, HET can be tuned by increasing photon excess energy and by 

lowering sample’s temperature. Sub-120 fs HET rates with unity quantum yield efficiency are 

observed for ≥1 eV excess energies of hot electrons at room temperature. Our results set the design 

principles for circumventing thermal losses in sensitized systems, which are promising candidates 

for low cost solar energy conversion schemes. 

 

7.1 Introduction 

In 1961 Shockley and Queisser established theoretically the limiting efficiency for single bandgap 

solar converters as ~33.5% under 1 sun illumination.1 This upper limit is dictated ultimately by a 

trade-off between two competing major losses in the absorber, which are: (i) the inability to absorb 

photons with energy less than the absorber bandgap and (ii) the ultrafast cooling of hot carriers 
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generated by the absorption of photons with energies well exceeding bandgap energy2, 3. The latter loss 

mechanism accounts for a ~33% efficiency drop in optimized ~1 eV bandgap single absorber solar 

cells,4 but could, in principle, be circumvented if hot carriers are extracted towards selective contacts 

faster than intraband relaxation in the absorber takes place (e.g. in hot carrier solar cells).4, 5 In the 

quest for realizing “hot carrier solar cells”4, much attention has been paid to prevent thermal losses in 

the absorbers. In bulk semiconductors, carrier cooling proceeds within picoseconds following 

primarily a sequential cascade of electron-phonon interactions (multiphonon relaxation).3, 6, 7 Although 

initial reports suggested multiphonon relaxation processes to be inefficient in quantum dot 

nanocrystals near the band edges (the “phonon bottleneck effect”)8, further research demonstrated that 

the phonon-bottleneck effect can be bypassed by Auger-like electron-hole interactions.9-11 Indeed 

decoupling of electron and hole wavefunctions in type II core-shell QDs has proven capable for 

making the phonon bottleneck effect active; as evident from hot electron lifetimes above nanosecond 

time scales.12 

Previous reports dealt mainly with inhibiting relaxation processes near the QD bandedge, where 

discretization of energy levels makes the phonon-bottleneck an appealing aspect for preventing hot 

carrier cooling. However, for high excess energies, relaxation in QDs proceeds as in their bulk 

counterparts13, 14, via multiphonon relaxation. These processes occur within ps timescales, so when 

aiming harvesting high energy hot carriers will require a different approach. For a system were 

ultrafast hot relaxation dynamics are fixed (e.g. determined by phonon-electron scattering), one could 

aim collecting hot carries by engineering ultrafast interfacial extraction rate towards the contacts. In 

this respect, strongly coupled quantum dot sensitized oxides systems in which the donor-acceptor 

coupling strength is enhanced by means of short conjugated bridges in between QD and oxide, as 

described in chapter 3, could represent a practical way for extracting hot carriers in ultrafast time 

scales.15, 16 Indeed, two reports have demonstrated hot electron transfer in QD sensitized oxide systems 

by tuning interfacial chemistry to enhance the coupling strength between PbSe QDs and TiO2 

electrodes17, 18, yet HET appears to be efficient only at very low temperatures (e.g. at 77 K). A recent 

work from us suggests that HET  could indeed happen as well at room temperature for this system19.  
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In all these works17-19, HET was resolved from the 1Pe states of QDs to TiO2. Still, little is known 

about the nature of HET for a given system as a function of photon excess energy for HET, and 

whether HET is possible from the bulk-like QD states at room T. Additionally, quantitative estimates 

of HET efficiency for a given system are lacking, and high efficiency of HET process is essential for 

realization of hot carrier solar cells. 

In this chapter, we demonstrate by THz spectroscopy that HET efficiency with unity quantum yield 

can be achieved at room temperature in strongly coupled PbS QD/SnO2 interfaces21 (the same system 

that was discussed in chapters 4, 5, and 6). Furthermore, we illustrate that the quantum yield for HET 

efficiency is basically defined by the kinetic competition between interfacial HET rate and cooling 

rates within the QDs. Accordingly, increasing photon excess energy (e.g. increase the donor-acceptor 

coupling strength), and/or reducing carrier cooling rate by lowering system’s temperature can increase 

the HET rate and process efficiency. 

 

7.2 Methods and Materials  

For monitoring sub-ps HET rate, we have used optical pump THz probe (OPTP) spectroscopy. PbS 

QDs used in this study are nucleated by following a 1 to 4 SILAR cycle recipe. The bandgap of QDs 

inferred from reflectance as described in chapter 4 are: 1.25±0.1 (C1), 1.0 ±0.1 (C2), 0.90±0.1 (C3) 

and 0.83 ±0.1eV (C4) respectively (where Cn denotes the number of SILAR cycles).  

 

7.3 Results and Discussions 

7.3.1 Efficient hot electron transfer (HET) at room temperature: the role of electron excess energy 

If thermal losses in the QDs compete efficiently with interfacial ET processes in our samples, ET will 

take place from cold states, and one should resolve ET dynamics to be invariant on pump energy. In 

contrast, as shown in figure 7.1(A) (taking C3 as an example), we observed clearly distinct ET 
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Chapter 8  

Summary and Conclusions 

 

In spite of their potential, photovoltaics represent only a tiny fraction of current global energy sources 

nowadays. For turning this scenario around, it is necessary to achieve low cost-high efficiency 

solutions for the direct conversion of sunlight into electricity. For overcoming the high production 

costs of traditional solar cells based on silicon, new solar cell concepts and protocols employing e.g. 

cheap, abundant and solution-processable materials as light absorbers have been developed in the 

recent years.  

Within this scenario, quantum dot-sensitized solar cells (QDSSCs) represent a promising low-cost 

photovoltaic technology that has demonstrated a sharp rise in efficiency performance in the past 

decade. Despite these efforts, the <10% efficiency of current QDSSCs designs is still too low to be 

competitive with established technologies. While the low cost is attractive, further research efforts 

need to focus on photoconversion efficiency improvement: a mandatory step for potential 

commercialization of QDSSCs in the future. To this end, the work included in this thesis was 

dedicated to understand and to potentially overcome the fundamental constraints limiting QDSSC 

device efficiencies, with a particular focus on analyzing carrier dynamics at the sensitized interfaces 

by THz spectroscopy. The operation of a QDSSC is complex: it relies on the kinetic competition 

between charge transfer and trapping processes across hybrid interfaces, as well as on transport and 

trapping dynamics taking place at the electrodes. In this thesis, we focused primarily on unveiling the 

nature and tuning of interfacial electron transfer (ET) processes from the quantum dot (QD) sensitizer 

towards the mesoporous oxide electrode. The results discussed and summarized in this thesis revealed 

new pathways in order to boost efficiencies of QDSSCs by targeting: (i) improvements in device’s 

open circuit voltages (VOC) by reducing thermal energy losses at QD/oxide interfaces, and (ii) 

improvements in short circuit currents (JSC) by suppressing trapping processes in QD/oxide electrodes.  

 

8.1 Reducing thermal energy losses at QD/oxide electrodes  

When ET takes place from the lowest unoccupied molecular orbital (LUMO) of QDs towards the 

oxide conduction band (CB), an associated thermal loss at the interface needs to be considered for 

estimating the solar cell’s maximum efficiency. The thermal energy loss at the electrode is linked to 

the need of paying a certain amount of energy (commonly referred to ET driving excess energy, ∆G) 
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for dissociating excitons at the interface. A fundamental question arises here: what is the minimum 

energy offset required to transfer electrons from the QD to the electrode? Aiming to reduce the value 

of donor-acceptor ∆G while keeping the interfacial ET rate still fast, we have interrogated the role of 

the donor-acceptor coupling strength and QD surface dipole moment on ET dynamics in chapters 3 

and 5.  

In chapter 3 we demonstrated that for a fixed value of ∆G, ET rates from QD donor to oxide acceptor 

can be fastened by systematically shortening the length of molecular linkers between them. These 

results are rationalized by assuming a simple model of a tunneling process taking place from QDs to 

oxide: the molecular linker acts simply as a resistor towards current flow between QDs and oxides, 

and the QD/oxide coupling strength exponentially decays with respect to donor-acceptor distance. 

Furthermore, we demonstrated that for a fixed donor-acceptor distance defined by the molecular 

bridge, unsaturated molecular bridges imposed a smaller tunneling barrier height than those based on 

saturated hydrocarbons (e.g. when comparing SH-[C6H4]n-COOH and SH-[CH2]n-COOH bridges. 

Remarkably, we found that the decay factors of the tunneling processes obtained from the ET rates 

were in quantitative agreement with reported values from conductance measurements through single 

molecules and self-assembled monolayers. Achieving ultrafast ET processes by enhancing donor-

bridge-acceptor coupling strength through interfacial chemistry engineering can release constrain 

related with aiming reduced ∆G losses in QDSSC designs. 

In chapter 5 the impact of QD dipolar molecular capping as a mean to tune interfacial energetics (∆G) 

was investigated. We found that, Fermi level pinning effects at the QD/oxide interface can completely 

preclude the tuning of the interfacial energetics by QD molecular capping. In this respect, we further 

demonstrated that tunability of ∆G is enabled after inserting an insulating layer in between QD/donor 

and oxide acceptor phases. These results offer new design principles for reducing thermal losses at 

QD/oxide interfaces, and open the path for improved photoconversion efficiencies on QD-sensitized 

systems beyond the thermal losses associated with ∆G.  

Additionally, an ambitious strategy for boosting photoconversion efficiencies beyond the Shockley–

Queisser limit relies on preventing thermal losses at the absorbers: e.g. those associated with cooling 

of hot carrier after the absorption of photons with energies above the bandgap. In this thesis we have 

analyzed two approaches for circumventing thermal losses within QDs: multiexciton generation and 

collection, and hot carrier extraction at oxide interfaces.  

Multiexciton generation (MEG) is a process where a high energy photon (hv>2Eg) can produce at least 

two excitons. During the last decades, most of the research focused on MEG was devoted to 

investigate the underlying physics of the processes in isolated QD systems. For implementing MEG in 

real devices, multiexciton collection (MEC) at electrodes is critical but has not been extensively 
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studied yet. In chapter 6 we studied MEC rates and efficiencies in QD/oxide electrodes as a function 

of QD photon excess energy. Firstly we have interrogated MEC efficiency for photon energies below 

the MEG threshold (hv/Eg<2, where biexciton regime is reached by increasing photon flux); the 

interfacial MEC efficiency is found to determine by the kinetic competition between QD-to-oxide 

electron transfer and QD Auger recombination rates. For excitations allowing MEG (hv>2Eg) in QDs, 

the MEG efficiency in the 1hv/QD excitation regime was essentially zero, while collection efficiency 

of biexciton generated in the 2hv/QD regime can reach nearly 100%. This seemingly counterintuitive 

result was rationalized by efficient hot electron transfer (HET) at the QD/oxide interface kinetically 

competing with impact ionization (II): a key step for efficient MEG efficiency in the QDs. Our results 

provided new fundamental insights into exploiting MEG effects in nanostructured systems efficiently.  

In chapter 7 we analyzed the photophysics of hot electron transfer (HET) processes taking place in 

QD/oxide electrodes. Although HET was demonstrated in chapter 6 to reduce the MEG efficiency, it 

could however be quite relevant for hot carrier solar cell designs. In this chapter we demonstrated that 

by enhancing the donor-acceptor coupling by increasing the photon pump excess energy, HET 

efficiency can reach unity quantum efficiency yield at room temperature. On the other hand, we 

demonstrated that samples displaying less efficient HET can reach unity quantum efficiency yield as 

well by reducing the sample temperature and thereby inhibiting thermal losses in the QDs. These 

results rationalize the underlying physics regarding HET at QD/oxide electrodes, offering new avenues 

to exploit efficient extraction of hot carriers in sensitized protocols.   

 

8.2 Boosting JSC by preventing surface trapping at QD/oxide electrodes  

In chapter 4 and a section of chapter 5 we discussed our attempts to prevent recombination losses in 

QD/oxide architectures by different passivation schemes (e.g. inorganic or organic in nature). These 

engineering efforts are crucial for boosting photocurrents in solar cell converters. 

In chapter 4 we demonstrated that QDs can be passivated “atomically” by tuning surface 

stoichiometry. This can be achieved by the mean of successive ionic layer adsorption and reaction 

(SILAR), which allows controlling whether surfaces are terminated with cations or anions. 

Furthermore, we found that the boost in efficiency of a QD following a passivation treatment 

increased linearly with QD surface area (correlating with the number of surface trap acceptors). 

Notably, we established qualitative correlations between the enhanced ET efficiency in QD/oxide 

interfaces by stoichiometry control inferred by ultrafast THz spectroscopy and the short circuit (JSC) 

enhancement in complete QDSSCs devices. In chapter 5 the passivation of QD surfaces by organic 

molecules was correlated with the one inferred by stoichiometry, obtaining a similar passivation 

efficiency for both treatments for a given QD size. Fully inorganic or organic passivated QD schemes 
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are thus equally suitable for boosting QDSSCs performances; selecting among them can allow 

improved flexibility on the design for future sensitized cells. 

While passivation of QD surfaces is vital for device performance, preventing recombination processes 

between the electron and hole contacts is also critical. In a collaborative effort with partners from 

Spain and China on exploiting TiO2 surface capping by ZnS/SiO2 (J. Am. Chem. Soc., 2015, 137 (16), 

pp 5602–5609), we demonstrated by THz spectroscopy that back electron transfer recombination was 

inhibited in proportion to the TiO2 over-coating treatment. By following this approach, ~8.2% world 

record efficiency QD sensitized solar cells were developed.  

 

In conclusion, provided that recombination losses can be in principle circumvented by rational 

engineering of interfaces, in order to increase the efficiency of QDSSCs one should target a reduction 

of thermal energy losses at electrodes. In this respect, several novel strategies have been addressed in 

this thesis, e.g. reducing interfacial donor-acceptor energetics by QD dipolar capping, multiexciton 

collection and interfacial extraction of hot carriers. From a kinetic point of view, all of these results 

share a common aspect – boosting QD/oxide coupling strength represents a key aspect towards high 

performing devices.   
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sharing personal feelings or little complains - it does not matter where we are: ufficio, caffè, o 

ristorante. Thanks for showing us around your hometown and introducing your family to us, helping 

me to choose a perfect suit for my big day etc. I wish everything will go well with finishing your 

thesis and defending it 434 km away. Marc-Jan, “thank you” for teasing us around and keep me 

laughing. Also I do appreciate many “seems-small” things you have done for the office when the 

heads of PhD students were fully occupied by science (it is not only your responsibility, but you are 

always so responsible): installing the printer, get new paper from supermarket etc. Dank je wel voor 

het leren van een paar “heel nuttige” woorden (bijvoorbeeld luie aap). I still have to laugh when I think 
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about your quiz result on "how Dutch you are". I am not leaving yet, but I will definitely think of you 

when someone says “A~~nyway”. “Good morning”, Frederik: I like your sense of humor and relaxing 

attitude at work, which makes our office a place very living and social. I hope everything goes well 

with your projects and you can finish your PhD smoothly.  Gabi, thank you for being such a nice 

office mate who is willing to listen but also share stories. Being an organized person, it must be 

difficult to sit next to a messy desk full of paper. 

For the Bonners: I will mention all of you (or us) as an group rather than individuals here, as it is 

going to be a very long list and I will have a big chance to miss someone’s name that I don’t intend to. 

One thing is for sure, that I have enjoyed every single day during my stay in this group, because of 

you, you and you, who, who and who are nice and social from different cultures: thanks for bringing a 

cake for certain reasons, or voting for gently asking/pushing someone to bring one for no reasons; 

thanks for giving us a nice photo book as our wedding gift: I have never seen so many funny and 

ridiculous pictures of mine (but I love them ); thanks for the nice time having a drink in Baron or at 

festivals. I have to mention the Christmas show, one of the highlights in my PhD time: it was a great 

success, and more importantly, I felt really proud to be one of the group, and I got to know some of 

you much better through it. Thanks again and I wish you all the best for the future.  

Friends out of lab: Grandma Anneke, I enjoyed all the great time we have spent together! Thank you 

for your support over the last 6 years. You are my “living legend” full of life wisdom, positive energy 

and humor. How lucky I am to know you, to become a great friend with you (with 60 years age 

difference), and how much I have learnt from you! Whenever I feel something is difficult and try to 

find smoesjes, your words like “tomorrow is another day”, “so what”, “just do it” appear in my mind: 

if like you, grandma, who still keeps herself up-to-date, learns new things at age 91 (I guess you are 

most likely the oldest computer user in NL?), no one has excuses to stop learning. Yaping, thank you 

for all the support over years. I wish you happy and peaceful, and enjoy your life every day. Irene, you 

opened an European window for me. Starting from being curious about culture differences, I have 

asked, naively many questions to you when we were master students together in Delft, and you were 

always so patient to tell me the reasons behind the differences. You are always so nice, social, open, 

smart and positive, and I felt so lucky, and sometimes even proud to have a friend like you. Simon: 

you don’t have a brother, I don’t have a brother neither - we are brothers of each other . It is just so 

natural to talk about/share almost everything with you and Claudia. I have learned a lot from you, to 

be nice (and nicer) and moderate.  

感谢所有曾经支持过, 关心过我的朋友. 豆子, 不管隔着有多远,或者一时忙碌没有联系, 我们之间的兄弟情谊都没有 

变化－遇上你这样一个“坏人”, 一辈子都毁了; 赛, 谢谢你这些年对我还有我的家人的帮助和照顾. 一直非常内疚 

夏天的事情, 一辈子很长, 向着阳光前进; 黄伟, 感谢这些年的友谊, 我们继续赤道行走. 头儿, 愿你内心平静找到让 

自己开心的人, 事, 听从自己的内心. 
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Finally, I would like to thank the support from my family (from both Leonie’s and my side). From my 

first day with Leonie visiting de Driesjes, I have felt being home: warm, free and relaxed. Grown up as 

the only child in my own family, it is so great to have so many nice brothers and sisters “for free” (as 

my board game victims). I had also a great time with the big Visser family: how often you meet and 

how close you are, remind me of a Chinese family!!! 谢谢爸妈很多年来, 无论在如何艰苦 的生活环境下给予

我教育的机会. 谢谢爷爷奶奶, 阿公一直对我的支持与关爱. 希望你们为我骄傲. Leonie, thank you for all your 

love and everything you have done. I am looking forward to new life experiences ahead of us. 

 

 

 

 


