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Abstract

Within the framework of six-dimensional N = (1, 0) conformal supergrav-

ity, we introduce new off-shell multiplets O∗(n), where n = 3, 4, . . . , and use

them to construct higher-rank extensions of the linear multiplet action. The

O∗(n) multiplets may be viewed as being dual to well-known superconformal

O(n) multiplets. We provide prepotential formulations for the O(n) and O∗(n)

multiplets coupled to conformal supergravity. For every O∗(n) multiplet, we

construct a higher derivative invariant which is superconformal on arbitrary

superconformally flat backgrounds. We also show how our results can be used

to construct new higher derivative actions in supergravity.

http://arxiv.org/abs/1707.04445v1


1 Introduction

Recently, there has been some interest in higher derivative superconformal invari-

ants in six dimensions (6D) [1, 2, 3], e.g. in the context of general relations between the

conformal and chiral anomaly coefficients in 6D N = (1, 0) superconformal theories.

One example of such higher derivative models is the N = (1, 0) superconformal vector

multiplet theory. It was formulated in Minkowski superspace in [4], and coupled to

conformal supergravity in [5].1 In this paper, we propose new off-shell superconformal

multiplets and use them to construct higher derivative invariants that are quadratic

in the fields of the new multiplets and naturally generalise the superconformal vector

multiplet action.

We recall that the superconformal vector multiplet action is the supersymmetric

extension of an F✷F term, where F is the two-form field strength of a gauge one-form.

Its construction starts with the supersymmetric BF invariant2 which is, schematically,

the product of a vector multiplet with a linear multiplet. It may be written as a full

superspace integral in N = (1, 0) Minkowski superspace as follows3

I =

∫

d6|8z Uij L
ij =

∫

d6|8z W αiραi , (1.1)

where the superfield Lij = L(ij) satisfies the defining differential constraint for the

linear multiplet [7, 8],

D(i
αL

jk) = 0 . (1.2)

The superfield W αi satisfies the differential constraints

D(i
αW

βj) =
1

4
δβαD

(i
γW

γj) , DαiW
αi = 0 (1.3)

appropriate for a vector multiplet, see [8, 9] and references therein. The real iso-triplet

Uij in (1.1) is the 6D counterpart of the Mezincescu prepotential [10] for the vector

multiplet, and ραi is the prepotential [11] for the linear multiplet. The prepotentials

ραi and Uij play the role of gauge fields, while Lij and W αi are the gauge-invariant

field strengths of the linear and vector multiplets, respectively. One can construct

the supersymmetric F✷F action by building a linear multiplet from the fields of the

vector multiplet. The appropriate composite linear multiplet is

L
ij = i✷D(i

γW
γj) , ✷ := ∂a∂a . (1.4)

1Its component Lagrangian in conformal supergravity was worked out in [6].
2The notation refers to the six-form which is the product of the field strength F and the four-form

potential B contained in the linear multiplet. It is also known as the linear multiplet action.
3The second form of the invariant in (1.1) follows from the expressions for the covariant field

strengths Wαi and Lij in terms of their prepotentials.
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The F✷F action is the BF invariant (1.1) with the replacement Lij → L
ij :

SF✷F =

∫

d6|8z UijL
ij . (1.5)

The above action turns out to be superconformal4 and equivalent to the harmonic

superspace action given in [4].

In order to formulate generalisations of the above construction, we will consider

O(n) multiplets as higher-rank cousins of the linear multiplet, O(2), and uncover a

new family of multiplets akin to the vector multiplet. These multiplets will allow us

to generalise the BF action in such a way that it is now, schematically, the product

of the O(n) multiplet with the new multiplet. Using this invariant we will show how

to generate a whole family of superconformal higher derivative invariants bilinear in

the new multiplets.

In what follows, we will use the superspace formulation for conformal supergravity

in [5] and refer the reader there for our notation and conventions. The results in

Minkowski superspace are obtained by setting the super-Weyl tensor W αβ to zero

and replacing the conformal superspace covariant derivatives with those of Minkowski

superspace, ∇A = (∇a,∇i
α) → (∂a, D

i
α). In this paper, all (super)fields are chosen to

transform in irreducible representations of the R-symmetry group SU(2) so that they

are symmetric in their SU(2) spinor indices, for instance Li1···in = L(i1···in).

2 The O(n) multiplets and their prepotentials

Given an integer n ≥ 1, the O(n) multiplet is a primary superfield Li1···in of

dimension 2n that satisfies the differential constraint5

∇(i1
α Li2···in+1) = 0 . (2.1)

The contraint (2.1) is primary since the S-supersymmetry generator Sβ
j annihilates

the left hand side (without requiring the constraint). This condition actually fixes

the dimension of Li1···in . The complex conjugate of Li1...in , which is defined by

Li1...in := Li1...in , (2.2)

4Unlike D
(i
γ W

γj)
, the higher-derivative linear multiplet (1.4) is a primary superfield.

5The O(n) multiplets are well known in the literature on supersymmetric field theories with

eight supercharges in diverse dimensions. For 4D N = 2 Poincaré supersymmetry, general O(n)

multiplets, with n > 2, were introduced in [12, 13, 14]. The case n = 4 was first studied in [15]. The

terminology “O(n) multiplet” was coined in [16]. As 6D N = (1, 0) superconformal multiplets, their

complete description was given in [17] following the earlier approaches in four and five dimensions

[18, 19, 20, 21].
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is also an O(n) multiplet. If n is even, n = 2m, one can consistently define real O(2m)

multiplets by imposing the condition Li1...i2m = εi1ji . . . εi2mj2mL
j1...j2m ≡ Li1...i2m .

The n = 1 case corresponds to the 6D version of the Fayet-Sohnius hypermultiplet

[22], which is necessarily on-shell in six dimensions (the constraint ∇(i
αL

j)
= 0 implies

✷Li = 0) and, therefore, it will not be considered in what follows. The case n = 2 is

the linear multiplet, which can be formulated in conformal superspace in terms of an

unconstrained prepotential ρiα as follows6

Lij = ∇(ijkl∇α
klpρ

p)
α −

12i

5
∇ijkl

(

∇αk∇
αβρβl + 4∇αk(W

αβρβl)
)

, (2.3)

where we have introduced ∇αijk := 1
3!
εαβγδ∇(i

β∇
j
γ∇

k)
δ and the covariant projection

operator7

∇ijkl := −
1

96
εαβγδ∇(i

α∇
j
β∇

k
γ∇

l)
δ . (2.4)

The prepotential is defined up to the following gauge transformations

δρiα = ∇i
ατ +∇βjτα

βij , τα
αij = 0 , (2.5)

where τ and τα
βij are dimensionless primary superfields. These gauge transformations

leave Lij invariant. In the flat-superspace limit, eq. (2.3) reduces to the one given in

[11].

The field content of the O(n) multiplets follows from taking spinor covariant

derivatives of the superfield Li1···in and analysing the consequences of the constraint

(2.1). The independent component fields are summarised in Table 1 from which it

can be seen that the number of off-shell degrees of freedom is 8(n − 1) + 8(n − 1).

The cases n ≤ 3 are special since the component fields for which the number of SU(2)

indices become negative are truncated away. Note that, as the Dirac matrices are

anti-symmetric, two antisymmetric Lorentz spinor indices are equivalent to a vector

index, while three antisymmetric lower Lorentz spinor indices are equivalent to a single

raised Lorentz spinor index by making use of the Levi-Civita symbol εαβγδ. The n = 2

case is exceptional in the sense that the linear multiplet is a gauge multiplet because

Ga =
1
4
(γ̃a)

αβGαβ may be identified with the dual of the field strength of a four-form

gauge field since Ga is divergenceless. For n ≥ 3 the supermultiplets do not possess

similar restrictions at the component level and are therefore not gauge multiplets.

Since we will be concerned with the cases for which prepotential formulations

exist, we restrict ourselves to the class of multiplets with n ≥ 2. Indeed, in addition

to n = 2, which was discussed above, prepotential formulations can also be given for

n ≥ 3. As n = 3 and n > 3 need separate treatment, we will discuss them in turn.

6The derivation of (2.3) is rather technical and will be given elsewhere.
7In SU(2) superspace, it coincides with the one in [17].
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component field dimension

ϕi1···in 2n

ψα
i1···in−1 2n+ 1

2

G[αβ]
i1···in−2 2n+ 1

ψ[αβγ]
i1···in−3 2n+ 3

2

ϕi1···in−4 2n+ 2

Table 1: Field content of the O(n) supermultiplet

2.1 n = 3

We can solve the defining constraint for the O(3) multiplet in terms of an uncon-

strained prepotential as follows

Lijk = ∇ijkl∇αlV
α , (2.6)

where the prepotential V α is defined up to the gauge transformations

δV α = ∇βjζ
αβj , ζαβi = ζ (αβ)i . (2.7)

One can check that Lijk is primary using the fact that V α is a primary superfield of

dimension 7/2.

2.2 n ≥ 4

For these cases, the solution of (2.1) is

Li1···in = ∇(i1···i4V i5···in) , (2.8)

which is invariant under the gauge transformations of the unconstrained prepotential

δV i1...in−4 = ∇(i1
α ζαi2···in−4) . (2.9)

The O(n) multiplet (2.8) is primary. This is a consequence of the fact that the

prepotential V i1···in−4 is a primary superfield of dimension 2n − 2. The analogue of

the above prepotential formulation in 5D appeared in appendix G of [23].

3 New superconformal multiplets and their gauge

prepotentials

We will now introduce new multiplets that generalise the vector multiplet. To do

this we focus on a key property of the vector multiplet, which is that an invariant can

4



component field dimension

V[αβ] 1

λαi 3/2

Y ij 2

Table 2: Field content of the vector multiplet

be constructed by multiplying its prepotential with an O(2) multiplet as in eq. (1.1).

This implies that the index structure of the prepotential for the vector multiplet is

such that it can be contracted with Lij to form an SU(2) singlet. In generalising

this property we seek to find multiplets that have prepotentials of the form Ui1···in

that can be used to build a gauge invariant expression with an O(n) multiplet as an

integral over full superspace. In this way the new multiplets will be ‘dual’ to the O(n)

multiplets.

The field content of the vector multiplet is summarised in Table 2, where Va =
1
4
(γ̃a)

αβVαβ is a gauge field. Comparison with Table 1 shows that every component

field of the vector multiplet can be contracted with a component field of the O(2)

multiplet to give a scalar of dimension 6. The analogous property also holds for

the component fields of the new multiplets. We have to distinguish three cases,

depending on the number of SU(2) indices of the prepotential. Note that while the

vector multiplet is a gauge multiplet, the new multiplets are not.

3.1 n = 3

Starting from a primary superfield Tα of dimension −3/2 we impose the differential

constraint

∇i
(αTβ) = 0 . (3.1)

This constraint can be solved in terms of a primary dimension −4 unconstrained

prepotential Uijk as follows

Tα = ∇αl∇
ijklUijk , (3.2)

where the prepotential is defined up to the gauge transformations

δUijk = ∇l
αξ

α
ijkl . (3.3)

The field content of this new multiplet is summarised in Table 3.
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component field dimension

λα −3/2

V[αβ]
i −1

λ[αβγ]
ij −1/2

Y ijk 0

Table 3: Field content of the supermultiplet described by Tα

component field dimension

φi1···in−4 4− 2n

λα
i1···in−3 9

2
− 2n

V[αβ]
i1···in−2 5− 2n

λ[αβγ]
i1···in−1 11

2
− 2n

Y i1···in 6− 2n

Table 4: Field content of the O∗(n) multiplet

3.2 n = 4

We can define another supermultiplet by a primary dimension −4 scalar superfield

T satisfying the constraint

∇k
(α∇β)kT = 0 =⇒ ∇i

(α∇
j

β)T = 0 . (3.4)

One can solve this in terms of an unconstrained prepotential Uijkl as follows
8

T = ∇ijklUijkl , (3.5)

where Uijkl is primary of dimension −6. It is straightforward to check that T is

primary given Uijkl is primary. One can also check that Uijkl is defined up to the

gauge transformations

δUijkl = ∇m
α ξ

α
ijklm . (3.6)

To check the invariance of T , the following identities are useful:

∇(m
α ∇ijkl) = ∇(ijkl∇m)

α = ∇m
(α∇β)m∇

ijkl = ∇ijkl∇m
(α∇β)m = 0 . (3.7)

The field content of this multiplet is summarised in Table 4 with n = 4.

8This multiplet and its prepotential description first appeared in Minkowski superspace in [8].
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3.3 n ≥ 5

As a generalisation of the scalar superfield we used in the previous subsection, we

can introduce superfields Ti1···in−4
of dimension 4− 2n satisfying the constraint

∇j
αTi1···in−5j

= 0 =⇒ ∇j

(α∇β)jTi1···in−4
= 0 . (3.8)

Its solution in terms of an unconstrained prepotential is

Ti1···in−4
= ∇in−3···inUi1···in , (3.9)

where Ui1···in is defined up to the gauge transformations

δUi1···in = ∇j
αξ

α
i1···inj . (3.10)

The field content of these multiplets is summarized in Table 4. The form of the

constraints (3.8) is ‘transverse-like’ as opposed to the ‘longitudinal-like’ constraints

(2.1) of the O(n) multiplets and for this reason we may refer to the new multiplets as

transverse multiplets. Although in this sense it might be natural to refer to the O(n)

multiplets as longitudinal multiplets, we will stick to the well-established nomencla-

ture for them. As for the transverse multiplets, we will denote them by O∗(n) as a

reminder that they were constructed to be ‘dual’ to the O(n) multiplets in the sense

that one will be able to use them to construct an invariant as a product of it with

an O(n) multiplet. For convenience, we also define O∗(2) to be the vector multiplet,

O∗(3) to be the multiplet described by the superfield Tα and O∗(4) to be the mul-

tiplet described by the scalar superfield T . We have not defined O∗(1) here but we

will introduce it in section 6.

4 New superconformal invariants

We will now use the new multiplets and their prepotentials to generalise the BF

invariant (1.1).

4.1 Generalised BF invariants

With the help of the results of the previous sections, one can immediately write

down a supersymmetric invariant

I(n) =

∫

d6|8z E Ui1···in L
i1···in , (4.1)
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where E = Ber(EM
A) and, as usual, EA = dzMEM

A is the supervielbein. Taking

into account the differential constraint on the O(n) multiplet, it is straightforward

to check that I(n) is invariant with respect to the gauge transformations of the pre-

potential Ui1···in. In the n = 2 case the invariant (4.1) corresponds to the standard

BF invariant (1.1), while for n ≥ 3 we obtain new generalisations.9 In the flat case,

the supersymmetric invariant (4.1) can be seen to naturally originate in harmonic

superspace, see Appendix A.

Note that one can equivalently define the generalised BF invariants by explicitly

using the prepotential for the O(n) multiplets. For n = 3 eq. (4.1) is equivalent to

I(3) =

∫

d6|8z E VαT
α , (4.2)

while for n ≥ 4 it is equivalent to

I(n) =

∫

d6|8z E Vi1···in−4
T i1···in−4 . (4.3)

However, as one can see from the above, the fact that the prepotential obtains a

Lorentz index for the n ≤ 3 cases means that we cannot treat all cases ubiquitously

in this form.

4.2 Superform realisation of the invariants

It is worth mentioning that a manifestly gauge-invariant form of the invariant

(4.1) for n ≥ 3 can be given by making use of the superform construction in [24, 5].

It is based on the existence of a closed six-form in superspace that describes a locally

superconformal invariant. It is expressed entirely in terms of a basic primary super-

field Aα
ijk of dimension 9/2 which satisfies the differential constraint ∇(i

(αAβ)
jkl) = 0.

The superfield Aα
ijk plays the role of a supersymmetric Lagrangian similar to the

chiral Lagrangian in 4D. Its component structure was elaborated in [6].

The invariant (4.1) can be equivalently described by a composite superfield Aα
ijk

which is, roughly, the product of an O∗(n) multiplet and the corresponding O(n)

multiplet. More specifically, for n = 3 one has

Aα
ijk ∝ TαL

ijk , (4.4)

while for n ≥ 4, one takes

Aα
ijk ∝ (1 + n)Ti1···in−4

∇αlL
ijkli1···in−4 + (5 + n)(∇αlTi1···in−4

)Lijkli1···in−4 . (4.5)

9The invariant I(4) is similar to the one used in the description of the relaxed hypermultiplet

action [8] in Minkowski superspace.
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The above representations are democratic in the sense that they put both multiplets

on the same footing.10

The above results are useful in elaborating the component structure since they

make the connection with the component action more direct through the results of

[5, 6]. Note, however, that while a manifestly gauge-invariant description exists for

n ≥ 3, an analogous description in terms of the superfield Aα
ijk does not exist for

n = 2.

5 Higher derivative superconformal invariants

With the results obtained so far, it is possible to construct composite O(n) mul-

tiplets and use them to construct higher derivative actions for the O∗(n) multiplets.

In this section we will restrict ourselves to a superconformally flat geometry, where

the super-Weyl tensor vanishes, W αβ = 0.

One can construct a composite O(3) multiplet out of the superfield Tα as follows

L
ijk = ✷

3∇αijkTα . (5.1)

The power of the d’Alembertian operator, ✷ := ∇a∇a, is chosen to ensure that Lijk

has the right dimension and is primary in the superconformally flat geometry. To

check that it is primary, the following identities are useful:

[Sα
i ,✷] = −2i∇αβ∇βi + i[∇αβ ,∇βi] , (5.2a)

{Sα
l ,∇

βijk} = 8δ
(i
l ∇

αβjk) +∇βγ(ij{Sα
l ,∇

l)
γ } . (5.2b)

A higher derivative invariant can now be described by plugging in L
ijk

into the

generalised BF invariant (4.1), giving

J(3) =

∫

d6|8z E UijkL
ijk

. (5.3)

This invariant is the supersymmetric extension of a λα✷
4∂αβλβ term.

We can also describe higher derivative invariants for the O∗(n) multiplets with

n ≥ 4. We begin by building a composite O(n) multiplet from the superfield Ti1···in−4
:

L
i1···in = ✷

2n−3∇(i1···i4T i5···in) . (5.4)

10Any full superspace invariant
∫

d6|8z E L, with the Lagrangian L being a primary scalar su-

perfield of dimension +2, can equivalently be described by (4.5) with a composite O(4) multiplet

L
ijkl = ∇ijkl(T−1L), where T is chosen to be nowhere vanishing. Its dependence on T is artificial

since the invariant is independent of T modulo a total derivative.

9



One can show that in a superconformally flat geometry L
i1···in is primary, using again

eqs. (5.2) and the following identities:

[

Sα
m,∇

ijkl
]

= 3δ(im∇
αjkl) −

1

4
∇β(ijk{Sα

m,∇
l)
β} , (5.5a)

∇αβ∇βγ = −δαγ✷+
1

2
[∇αβ,∇βγ ] , (5.5b)

∇αj∇
(ji1i2i3T i4···in−1) = −

2(n+ 1)i

n
∇βγ∇

γ(i1i2i3T i4···in−1) + (W αβ terms) . (5.5c)

The higher derivative invariants are now described by the generalised BF invariant

(4.1) with L
i1···in

, i.e.

J(n) =

∫

d6|8z E Ui1···inL
i1···in

=

∫

d6|8z E Ti1···in✷
2n−3T

i1···in
. (5.6)

J(n) contains a term of the form φ
i1···in−4

✷
2n−1φi1···in−4

at the component level.

6 Discussion

A family of higher derivative actions was proposed in [3]. The actions were claimed

to be superconformal. Unfortunately they are not. The point is that the ‘invariants’

proposed in [3] are realised in terms of the O(n) multiplets for which all of its fields

have dimension 2n or higher. As a result, the only case when a local superconformal

action, that is quadratic in the fields, could exist is n = 1, but this corresponds to an

on-shell hypermultiplet. This tells us that such higher derivative invariants require

a different kind of supermultiplet. The O∗(n) multiplets possess precisely the right

properties to allow for such higher derivative actions and the corresponding invariants

were given in the previous section for the superconformally flat case.

The question whether the higher derivative invariants of the previous section can

be lifted to conformal supergravity is a separate problem. As a matter of fact, it

appears not to be the case. The point is that (5.6) should include the term φ̄✷2n−1φ

once one truncates to N = 0 and it is known that there does not exist a locally

conformal completion for n ≥ 3 [25]. The same is expected for the higher derivative

invariant (5.3). In conformally flat backgrounds the obstruction for their existence is,

however, absent [26].

The results in this paper may have interesting consequences in the construction

of new higher derivative supergravity theories. To construct Poincaré supergravity

theories within a superconformal framework, one must use a conformal compensating
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multiplet, which is a real scalar superfield Φ that we choose, without loss of generality,

to have dimension one. In this framework it becomes apparent that the construction

of composite O(n) multiplets from the O∗(n) multiplets can be made in many more

ways using the results of this paper. For instance, we can construct O(n) multiplets

with n ≥ 4 as follows

L
i1···in = ∇(i1···i4(T i5···in)Φ4n−6) . (6.1)

Furthermore, we can choose the compensator as Φ−4(n−2) = T i1···in−4T i1···in−4
leading

to a four-derivative invariant for the O∗(n) multiplet once one plugs the composite

into the generalised BF invariant (4.1). We will explore the supercurrents of such

theories in a forthcoming paper [27].

It is interesting to note that supersymmetric invariants built out of O∗(n) for

n ≥ 4 may be mapped to invariants of the O(2) multiplet for even n = 2m. One

only needs to make use of an O(2) multiplet Lij such that L2 := LijLij is nowhere

vanishing. Given the O(2) multiplet, we can choose the O∗(2m) multiplet to be11

T
i1···i2m = L−(2m+1)L(i1i2 · · ·Li2m−1i2m) . (6.2)

In this way the resulting invariant will be expressed entirely in terms of the O(2)

multiplet.

It is also possible to construct composite O∗(n) multiplets out of O(n) multiplets

leading to superconformal invariants for the O(n) multiplets. For instance, for n ≥ 4

we can take the composite

T i1···in−4
= ∇in−3···in(Li1···inΦ

−4n+2) . (6.3)

We can choose the compensator to be Φ4n = Li1···inLi1···in and then plugging the result

into the invariant (4.3) gives a four-derivative invariant for the O(n) multiplet. Many

more invariants can be constructed by iterating eqs. (6.1) and (6.3) in various ways,

and using the fact that there is an obvious multiplication defined on the space of

O(n) multiplets and the space of O∗(n) multiplets. Similar constructions appeared

in 4D for the O(2) multiplet in [28].

In this paper, we have defined theO∗(n) multipelts for n ≥ 2. TheO∗(n) multiplet

has the same number of degrees of freedom as the corresponding O(n) multiplet as

follows from the generalised BF invaraint (4.1). We have ignored the n = 1 case since

the O(1) multiplet is on-shell and does not have a prepotential formulation. However,

11It is a straightforward exercise to check that the composite multiplet satisfies the appropriate

differential constraint.
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it is interesting to ask whether there exists another on-shell multiplet possessing the

same number of degrees of freedom as that of the O(1) multiplet that one could

naturally add to the class of O∗(n) multiplets. Such a superconformal multiplet is

described by a primary superfield T α of dimension −1/2 satisfying the constraint

∇i
αT

β =
1

4
δβα∇

i
γT

γ . (6.4)

It might be appropriate to define this multiplet as the O∗(1) multiplet.

It is worthwhile mentioning that the new multiplets and constructions introduced

in this paper imply the existence of analogues in lower spacetime dimensions. We

leave their exploration for future work.
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A Harmonic superspace construction

In this appendix we present a harmonic superspace origin of the supersymmetric

invariant (4.1) in the flat case. Our construction is an extension of the known proce-

dure to read off the Mezincescu prepotential from the analytic prepotential [29, 30].

Given an O(n) multiplet Li1...in(z) in Minkowski superspace, with n ≥ 2,

D(i1
α Li2···in+1) = 0 , (A.1)

we associate with it a harmonic superfield

L(+n)(z, u) = Li1...in(z)u+i1 . . . u
+
in
, (A.2)

which is analytic

D+
αL

(+n) = 0 , D±
α := u±i D

i
α (A.3a)

and obeys the harmonic shortness constraint

D++L(+n) = 0 . (A.3b)
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Then we can define a supersymmetric invariant

Î(n) =

∫

dζ (−4)Ω(4−n)L(+n) , D+
αΩ

(4−n) = 0 , (A.4)

in which the integrand involves an analytic potential Ω(4−n). The integration in (A.4)

is carried out over the analytic subspace of the harmonic superspace. It is defined by
∫

dζ (−4)L(4) =

∫

d6x

∫

du (D−)4L(4) , D+
αL

(4) = 0 ,

(D−)4 := −
1

96
εαβγδD−

αD
−
βD

−
γ D

−
δ , (A.5)

for any analytic Lagrangian L(4). Here the u-integral denotes the integration over the

group manifold SU(2) defined as in [29, 30]. The functional (A.4) is invariant under

gauge transformations of the form

δΩ(4−n) = D++Λ(2−n) , D+
αΛ

(2−n) = 0 , (A.6)

with the gauge parameter Λ(2−n) being an analytic superfield of U(1) charge (2− n).

The harmonic derivative D++ is defined as usual [29, 30].

The analyticity constraint on Ω(4−n) is solved by

Ω(4−n) = (D+)4U (−n) , (D+)4 := −
1

96
εαβγδD+

αD
+
βD

+
γ D

+
δ . (A.7)

Here the prepotential U (−n)(z, u) is an unconstrained harmonic superfield which is

defined modulo gauge transformations

δU (−n) = D+
α ξ

(−n−1)α , (A.8)

with the gauge parameter ξ(−n−1)α(z, u) being an unconstrained harmonic superfield.

The analyticity constraint on the gauge parameter in (A.6) can be solved similarly

to the representation (A.7) for Ω(4−n),

Λ(2−n) = (D+)4ρ(−n−2) . (A.9)

Then the gauge transformation becomes equivalent to

δU (−n) = D++ρ(−n−2) . (A.10)

The unconstrained harmonic superfields U (−n) and ρ(−n−2) can be represented by

convergent harmonic series

U (−n)(z, u) = U i1...in(z)u−i1 . . . u
−
in

13



+
∞
∑

m=1

U (i1...in+2m)(z)u+i1 . . . u
+
im
u−im+1

. . . u−in+2m
, (A.11a)

ρ(−n−2)(z, u) =
∞
∑

m=0

ρ(i1...in+2+2m)(z)u+i1 . . . u
+
im
u−im+1

. . . u−in+2+2m
. (A.11b)

It follows from these expressions that the gauge symmetry (A.10) allows us to impose

a gauge condition

U (−n)(z, u) = U i1...in(z)u−i1 . . . u
−
in
, (A.12)

which completely fixes the gauge freedom (A.10). In this gauge, we still have the free-

dom to perform those gauge transformations (A.8) which are generated by parameters

of the form12

ξ(−n−1)α(z, u) = ξi1...in+1 α(z)u−i1 . . . u
−
in+1

. (A.13)

The resulting gauge transformation of the prepotential U i1...in(z) coincides with the

flat-superspace version of (3.10).

In the gauge (A.12), the supersymmetric invariant (A.4) can be represented as an

integral over Minkowski superspace by making use of the identity

∫

dζ (−4) (D+)4L(z, u) =

∫

d6|8z

∫

duL(z, u) , (A.14)

and computing the relevant harmonic integral. This reduces the supersymmetric

invariant (A.4) to the flat-superspace version of (4.1) modulo a numerical factor.

In the n = 2 case, the supersymmetric invariant (A.4) is the harmonic superspace

realisation of the linear multiplet action.
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