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Abstract

Within the framework of six-dimensional N = (1, 0) conformal supergravity, we introduce new off-
shell multiplets O∗(n), where n = 3, 4, . . . , and use them to construct higher-rank extensions of the linear 
multiplet action. The O∗(n) multiplets may be viewed as being dual to well-known superconformal O(n)

multiplets. We provide prepotential formulations for the O(n) and O∗(n) multiplets coupled to conformal 
supergravity. For every O∗(n) multiplet, we construct a higher derivative invariant which is superconformal 
on arbitrary superconformally flat backgrounds. We also show how our results can be used to construct new 
higher derivative actions in supergravity.
© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Recently, there has been some interest in higher derivative superconformal invariants in six 
dimensions (6D) [1–3], e.g. in the context of general relations between the conformal and chiral 
anomaly coefficients in 6D N = (1, 0) superconformal theories. One example of such higher 
derivative models is the N = (1, 0) superconformal vector multiplet theory. It was formulated 
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in Minkowski superspace in [4], and coupled to conformal supergravity in [5].1 In this paper, 
we propose new off-shell superconformal multiplets and use them to construct higher deriva-
tive invariants that are quadratic in the fields of the new multiplets and naturally generalise the 
superconformal vector multiplet action.

We recall that the superconformal vector multiplet action is the supersymmetric extension of 
an F�F term, where F is the two-form field strength of a gauge one-form. Its construction starts 
with the supersymmetric BF invariant2 which is, schematically, the product of a vector multiplet 
with a linear multiplet. It may be written as a full superspace integral in N = (1, 0) Minkowski 
superspace as follows3

I =
∫

d6|8zUij Lij =
∫

d6|8zWαiραi , (1.1)

where the superfield Lij = L(ij) satisfies the defining differential constraint for the linear multi-
plet [7,8],

D(i
α Ljk) = 0 . (1.2)

The superfield Wαi satisfies the differential constraints

D(i
α Wβj) = 1

4
δβ
αD(i

γ Wγj) , DαiW
αi = 0 (1.3)

appropriate for a vector multiplet, see [8,9] and references therein. The real iso-triplet Uij in (1.1)
is the 6D counterpart of the Mezincescu prepotential [10] for the vector multiplet, and ραi is 
the prepotential [11] for the linear multiplet. The prepotentials ραi and Uij play the role of 
gauge fields, while Lij and Wαi are the gauge-invariant field strengths of the linear and vector 
multiplets, respectively. One can construct the supersymmetric F�F action by building a linear 
multiplet from the fields of the vector multiplet. The appropriate linear multiplet is

Lij = i�D(i
γ Wγj) , � := ∂a∂a . (1.4)

The F�F action is the BF invariant (1.1) with the replacement Lij → Lij :

SF�F =
∫

d6|8zUijL
ij . (1.5)

The above action turns out to be superconformal4 and equivalent to the harmonic superspace 
action given in [4].

In order to formulate generalisations of the above construction, we will consider O(n) multi-
plets as higher-rank cousins of the linear multiplet, O(2), and uncover a new family of multiplets 
akin to the vector multiplet. These multiplets will allow us to generalise the BF action in such a 
way that it is now, schematically, the product of the O(n) multiplet with the new multiplet. Using 
this invariant we will show how to generate a whole family of superconformal higher derivative 
invariants bilinear in the new multiplets.

1 Its component Lagrangian in conformal supergravity was worked out in [6].
2 The notation refers to the six-form which is the product of the field strength F and the four-form potential B contained 

in the linear multiplet. It is also known as the linear multiplet action.
3 The second form of the invariant in (1.1) follows from the expressions for the covariant field strengths Wαi and Lij

in terms of their prepotentials.
4 Unlike D(i

γ W
γj) , the higher-derivative linear multiplet (1.4) is a primary superfield.
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In what follows, we will use the superspace formulation for conformal supergravity in [5] and 
refer the reader there for our notation and conventions. The results in Minkowski superspace are 
obtained by setting the super-Weyl tensor Wαβ to zero and replacing the conformal superspace 
covariant derivatives with those of Minkowski superspace, ∇A = (∇a, ∇ i

α) → (∂a, Di
α). In this 

paper, all (super)fields are chosen to transform in irreducible representations of the R-symmetry 
group SU(2) so that they are symmetric in their SU(2) spinor indices, for instance Li1···in =
L(i1···in).

2. The O(n) multiplets and their prepotentials

Given an integer n ≥ 1, the O(n) multiplet is a primary superfield Li1···in of dimension 2n that 
satisfies the differential constraint5

∇(i1
α L

i2···in+1) = 0 . (2.1)

The constraint (2.1) is primary since the S-supersymmetry generator Sβ
j annihilates the left hand 

side (without requiring the constraint). This condition actually fixes the dimension of Li1···in . The 
complex conjugate of Li1...in , which is defined by

Li1...in := Li1...in , (2.2)

is also an O(n) multiplet. If n is even, n = 2m, one can consistently define real O(2m) multiplets 
by imposing the condition Li1...i2m

= εi1ji
. . . εi2mj2m

Lj1...j2m ≡ Li1...i2m
.

The n = 1 case corresponds to the 6D version of the Fayet–Sohnius hypermultiplet [22], 
which is necessarily on-shell in six dimensions (the constraint ∇(i

α L
j) = 0 implies �Li = 0) 

and, therefore, it will not be considered in what follows. The case n = 2 is the linear multiplet, 
which can be formulated in conformal superspace in terms of an unconstrained prepotential ρi

α

as follows6

Lij = ∇(ijkl∇α
klpρp)

α − 12i

5
∇ ijkl

(∇αk∇αβρβl + 4∇αk(W
αβρβl)

)
, (2.3)

where we have introduced ∇αijk := 1
3!ε

αβγ δ∇(i
β ∇j

γ ∇k)
δ and the covariant projection operator7

∇ ijkl := − 1

96
εαβγ δ∇(i

α ∇j
β∇k

γ ∇ l)
δ . (2.4)

The prepotential is defined up to the following gauge transformations

δρi
α = ∇ i

ατ + ∇βj τα
β ij , τα

αij = 0 , (2.5)

where τ and τα
β ij are dimensionless primary superfields. These gauge transformations leave Lij

invariant. In the flat-superspace limit, eq. (2.3) reduces to the one given in [11].

5 The O(n) multiplets are well known in the literature on supersymmetric field theories with eight supercharges in 
diverse dimensions. For 4D N = 2 Poincaré supersymmetry, general O(n) multiplets, with n > 2, were introduced 
in [12–14]. The case n = 4 was first studied in [15]. The terminology “O(n) multiplet” was coined in [16]. As 6D 
N = (1, 0) superconformal multiplets, their complete description was given in [17] following the earlier approaches in 
four and five dimensions [18–21].

6 The derivation of (2.3) is rather technical and will be given elsewhere.
7 In SU(2) superspace, it coincides with the one in [17].
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Table 1
Field content of the O(n) supermultiplet.

Component field Dimension

ϕi1···in 2n

ψα
i1···in−1 2n + 1

2
G[αβ]i1···in−2 2n + 1
ψ[αβγ ]i1···in−3 2n + 3

2
ϕi1···in−4 2n + 2

The field content of the O(n) multiplets follows from taking spinor covariant derivatives of 
the superfield Li1···in and analysing the consequences of the constraint (2.1). The independent 
component fields are summarised in Table 1 from which it can be seen that the number of off-shell 
degrees of freedom is 8(n −1) +8(n −1). The cases n ≤ 3 are special since the component fields 
for which the number of SU(2) indices become negative are truncated away. Note that, as the 
Dirac matrices are anti-symmetric, two antisymmetric Lorentz spinor indices are equivalent to a 
vector index, while three antisymmetric lower Lorentz spinor indices are equivalent to a single 
raised Lorentz spinor index by making use of the Levi-Civita symbol εαβγ δ. The n = 2 case is 
exceptional in the sense that the linear multiplet is a gauge multiplet because Ga = 1

4 (γ̃a)
αβGαβ

may be identified with the dual of the field strength of a four-form gauge field since Ga is 
divergenceless. For n ≥ 3 the supermultiplets do not possess similar restrictions at the component 
level and are therefore not gauge multiplets.

Since we will be concerned with the cases for which prepotential formulations exist, we re-
strict ourselves to the class of multiplets with n ≥ 2. Indeed, in addition to n = 2, which was 
discussed above, prepotential formulations can also be given for n ≥ 3. As n = 3 and n > 3 need 
separate treatment, we will discuss them in turn.

2.1. n = 3

We can solve the defining constraint for the O(3) multiplet in terms of an unconstrained 
prepotential as follows

Lijk = ∇ ijkl∇αlV
α , (2.6)

where the prepotential V α is defined up to the gauge transformations

δV α = ∇βj ζ
αβj , ζ αβi = ζ (αβ)i . (2.7)

One can check that Lijk is primary using the fact that V α is a primary superfield of dimen-
sion 7/2.

2.2. n ≥ 4

For these cases, the solution of (2.1) is

Li1···in = ∇(i1···i4V i5···in) , (2.8)

which is invariant under the gauge transformations of the unconstrained prepotential

δV i1...in−4 = ∇(i1
α ζ αi2···in−4) . (2.9)
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Table 2
Field content of the vector multiplet.

Component field Dimension

V[αβ] 1

λαi 3/2
Y ij 2

The O(n) multiplet (2.8) is primary. This is a consequence of the fact that the prepotential 
V i1···in−4 is a primary superfield of dimension 2n − 2. The analogue of the above prepotential 
formulation in 5D appeared in appendix G of [23].

3. New superconformal multiplets and their gauge prepotentials

We will now introduce new multiplets that generalise the vector multiplet. To do this we 
focus on a key property of the vector multiplet, which is that an invariant can be constructed by 
multiplying its prepotential with an O(2) multiplet as in eq. (1.1). This implies that the index 
structure of the prepotential for the vector multiplet is such that it can be contracted with Lij

to form an SU(2) singlet. In generalising this property we seek to find multiplets that have 
prepotentials of the form Ui1···in that can be used to build a gauge invariant expression with an 
O(n) multiplet as an integral over full superspace. In this way the new multiplets will be ‘dual’ 
to the O(n) multiplets.

The field content of the vector multiplet is summarised in Table 2, where Va = 1
4 (γ̃a)

αβVαβ is 
a gauge field. Comparison with Table 1 shows that every component field of the vector multiplet 
can be contracted with a component field of the O(2) multiplet to give a scalar of dimension 6. 
The analogous property also holds for the component fields of the new multiplets. We have to 
distinguish three cases, depending on the number of SU(2) indices of the prepotential. Note that 
while the vector multiplet is a gauge multiplet, the new multiplets are not.

3.1. n = 3

Starting from a primary superfield Tα of dimension −3/2 we impose the differential con-
straint

∇ i
(αT

β)
= 0 . (3.1)

This constraint can be solved in terms of a primary dimension −4 unconstrained prepotential 
Uijk as follows

Tα = ∇αl∇ ijklUijk , (3.2)

where the prepotential is defined up to the gauge transformations

δUijk = ∇ l
αξα

ijkl . (3.3)

The field content of this new multiplet is summarised in Table 3.

3.2. n = 4

We can define another supermultiplet by a primary dimension −4 scalar superfield T satisfy-
ing the constraint
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Table 3
Field content of the supermultiplet described by Tα .

Component field Dimension

λα −3/2
V[αβ]i −1
λ[αβγ ]ij −1/2

Y ijk 0

Table 4
Field content of the O∗(n) multiplet.

Component field Dimension

φi1···in−4 4 − 2n

λα
i1···in−3 9

2 − 2n

V[αβ]i1···in−2 5 − 2n

λ[αβγ ]i1···in−1 11
2 − 2n

Y i1···in 6 − 2n

∇k
(α∇β)kT = 0 =⇒ ∇ i

(α∇j

β)T = 0 . (3.4)

One can solve this in terms of an unconstrained prepotential Uijkl as follows8

T = ∇ ijklUijkl , (3.5)

where Uijkl is primary of dimension −6. It is straightforward to check that T is primary given 
Uijkl is primary. One can also check that Uijkl is defined up to the gauge transformations

δUijkl = ∇m
α ξα

ijklm . (3.6)

To check the invariance of T , the following identities are useful:

∇(m
α ∇ ijkl) = ∇(ijkl∇m)

α = ∇m
(α∇β)m∇ ijkl = ∇ ijkl∇m

(α∇β)m = 0 . (3.7)

The field content of this multiplet is summarised in Table 4 with n = 4.

3.3. n ≥ 5

As a generalisation of the scalar superfield we used in the previous subsection, we can intro-
duce superfields Ti1···in−4 of dimension 4 − 2n satisfying the constraint9

∇j
αTi1···in−5j

= 0 =⇒ ∇j

(α∇β)j Ti1···in−4 = 0 . (3.8)

Its solution in terms of an unconstrained prepotential is

Ti1···in−4 = ∇ in−3···inUi1···in , (3.9)

where Ui1···in is defined up to the gauge transformations

δUi1···in = ∇j
αξα

i1···inj . (3.10)

8 This multiplet and its prepotential description first appeared in Minkowski superspace in [8].
9 Similar constraints were considered in [24].



354 S.M. Kuzenko et al. / Nuclear Physics B 925 (2017) 348–361
The field content of these multiplets is summarized in Table 4. The form of the constraints (3.8)
is ‘transverse-like’ as opposed to the ‘longitudinal-like’ constraints (2.1) of the O(n) multiplets 
and for this reason we may refer to the new multiplets as transverse multiplets. Although in this 
sense it might be natural to refer to the O(n) multiplets as longitudinal multiplets, we will stick 
to the well-established nomenclature for them. As for the transverse multiplets, we will denote 
them by O∗(n) as a reminder that they were constructed to be ‘dual’ to the O(n) multiplets in 
the sense that one will be able to use them to construct an invariant as a product of it with an 
O(n) multiplet. For convenience, we also define O∗(2) to be the vector multiplet, O∗(3) to be 
the multiplet described by the superfield Tα and O∗(4) to be the multiplet described by the scalar 
superfield T . We have not defined O∗(1) here but we will introduce it in section 6.

4. New superconformal invariants

We will now use the new multiplets and their prepotentials to generalise the BF invari-
ant (1.1).

4.1. Generalised BF invariants

With the help of the results of the previous sections, one can immediately write down a super-
symmetric invariant

I(n) =
∫

d6|8zE Ui1···in Li1···in , (4.1)

where E = Ber(EM
A) and, as usual, EA = dzMEM

A is the supervielbein. Taking into account 
the differential constraint on the O(n) multiplet, it is straightforward to check that I(n) is invari-
ant with respect to the gauge transformations of the prepotential Ui1···in . In the n = 2 case the 
invariant (4.1) corresponds to the standard BF invariant (1.1), while for n ≥ 3 we obtain new 
generalisations.10 In the flat case, the supersymmetric invariant (4.1) can be seen to naturally 
originate in harmonic superspace, see Appendix A.

Note that one can equivalently define the generalised BF invariants by explicitly using the 
prepotential for the O(n) multiplets. For n = 3 eq. (4.1) is equivalent to

I(3) =
∫

d6|8zE V αTα , (4.2)

while for n ≥ 4 it is equivalent to

I(n) =
∫

d6|8zE Vi1···in−4T
i1···in−4 . (4.3)

However, as one can see from the above, the fact that the prepotential obtains a Lorentz index for 
the n ≤ 3 cases means that we cannot treat all cases ubiquitously in this form.

4.2. Superform realisation of the invariants

It is worth mentioning that a manifestly gauge-invariant form of the invariant (4.1) for n ≥ 3
can be given by making use of the superform construction in [24,5]. It is based on the existence 

10 The invariant I(4) is similar to the one used in the description of the relaxed hypermultiplet action [8] in Minkowski 
superspace.
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of a closed six-form in superspace that describes a locally superconformal invariant. It is ex-
pressed entirely in terms of a basic primary superfield Aα

ijk of dimension 9/2 which satisfies the 
differential constraint ∇(i

(αAβ)
jkl) = 0. The superfield Aα

ijk plays the role of a supersymmetric 
Lagrangian similar to the chiral Lagrangian in 4D. Its component structure was elaborated in [6].

The invariant (4.1) can be equivalently described by a composite superfield Aα
ijk which is, 

roughly, the product of an O∗(n) multiplet and the corresponding O(n) multiplet. More specifi-
cally, for n = 3 one has

Aα
ijk ∝ TαLijk , (4.4)

while for n ≥ 4, one takes

Aα
ijk ∝ (n − 3)Ti1···in−4∇αlL

ijkli1···in−4 + (n + 1)(∇αlTi1···in−4)L
ijkli1···in−4 . (4.5)

The above representations are democratic in the sense that they put both multiplets on the same 
footing.11

The above results are useful in elaborating the component structure since they make the con-
nection with the component action more direct through the results of [5,6]. Note, however, that 
while a manifestly gauge-invariant description exists for n ≥ 3, an analogous description in terms 
of the superfield Aα

ijk does not exist for n = 2.

5. Higher derivative superconformal invariants

With the results obtained so far, it is possible to construct composite O(n) multiplets and 
use them to construct higher derivative actions for the O∗(n) multiplets. In this section we will 
restrict ourselves to a superconformally flat geometry, where the super-Weyl tensor vanishes, 
Wαβ = 0.

One can construct an O(3) multiplet out of the superfield Tα as follows

Lijk = �3∇αijkTα . (5.1)

The power of the d’Alembertian operator, � := ∇a∇a , is chosen to ensure that Lijk has the right 
dimension and is primary in the superconformally flat geometry. To check that it is primary, the 
following identities are useful:[

Sα
i ,�] = −2i∇αβ∇βi + i[∇αβ,∇βi] , (5.2a)

{Sα
l ,∇βijk} = 8δ

(i
l ∇αβjk) + ∇βγ (ij {Sα

l ,∇ l)
γ } . (5.2b)

A higher derivative invariant can now be described by plugging in L
ijk

into the generalised BF

invariant (4.1), giving

J(3) =
∫

d6|8zE UijkL
ijk

. (5.3)

This invariant is the supersymmetric extension of a λα�4∂αβλβ term.
We can also describe higher derivative invariants for the O∗(n) multiplets with n ≥ 4. We 

begin by building an O(n) multiplet from the superfield Ti1···in−4 :

11 Any full superspace invariant 
∫

d6|8zEL, with the Lagrangian L being a primary scalar superfield of dimension +2, 
can equivalently be described by (4.5) with a composite O(4) multiplet Lijkl = ∇ijkl (T −1L), where T is chosen to be 
nowhere vanishing. Its dependence on T is artificial since the invariant is independent of T modulo a total derivative.
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Li1···in = �2n−3∇(i1···i4T i5···in) . (5.4)

One can show that in a superconformally flat geometry Li1···in is primary, using again eqs. (5.2)
and the following identities:

[
Sα

m,∇ ijkl
]

= 3δ(i
m∇αjkl) − 1

4
∇β(ijk{Sα

m,∇ l)
β } , (5.5a)

∇αβ∇βγ = −δα
γ � + 1

2
[∇αβ,∇βγ ] , (5.5b)

∇αj∇(j i1i2i3T i4···in−1) = −2(n + 1)i

n
∇βγ ∇γ (i1i2i3T i4···in−1) + (Wαβ terms) . (5.5c)

The higher derivative invariants are now described by the generalised BF invariant (4.1)

with L
i1···in , i.e.

J(n) =
∫

d6|8zE Ui1···inL
i1···in =

∫
d6|8zE Ti1···in�2n−3T

i1···in
. (5.6)

J(n) contains a term of the form φ
i1···in−4�2n−1φi1···in−4 at the component level.

6. Discussion

A family of higher derivative superconformal actions was proposed in [2,3]. Upon appropri-
ate identification of the fields, one can see that the actions sketched in [2,3] correspond to the 
higher derivative superconformal invariants presented in this paper. Note that analogous higher 
derivative invariants realised in terms of O(n) multiplets is not possible since all its fields have 
dimension 2n or higher. As a result, the only case when a local superconformal action, that is 
quadratic in the fields, could exist is n = 1, but this corresponds to an on-shell hypermultiplet. 
This tells us that such higher derivative invariants require the use of the O∗(n) multiplets.

The question whether the higher derivative invariants of the previous section can be lifted to 
conformal supergravity is a separate problem. As a matter of fact, it appears not to be the case. 
The point is that (5.6) should include the term φ̄�2n−1φ once one truncates to N = 0 and it 
is known that there does not exist a locally conformal completion for n ≥ 3 [25]. The same is 
expected for the higher derivative invariant (5.3). In conformally flat backgrounds the obstruction 
for their existence is, however, absent [26].

The results in this paper may have interesting consequences in the construction of new higher 
derivative supergravity theories. To construct Poincaré supergravity theories within a supercon-
formal framework, one must use a conformal compensating multiplet, which is a real scalar 
superfield � that we choose, without loss of generality, to have dimension one. In this frame-
work it becomes apparent that the construction of composite O(n) multiplets from the O∗(n)

multiplets can be made in many more ways using the results of this paper. For instance, we can 
construct O(n) multiplets with n ≥ 4 as follows

Li1···in = ∇(i1···i4(T i5···in)�4n−6) . (6.1)

Furthermore, we can choose the compensator as �−4(n−2) = T i1···in−4T i1···in−4 leading to a four-
derivative invariant for the O∗(n) multiplet once one plugs the composite into the generalised BF

invariant (4.1). We will explore the supercurrents of such theories in a forthcoming paper [27].
It is interesting to note that supersymmetric invariants built out of O∗(n) for n ≥ 4 may be 

mapped to invariants of the O(2) multiplet for even n = 2m. One only needs to make use of 



S.M. Kuzenko et al. / Nuclear Physics B 925 (2017) 348–361 357
an O(2) multiplet Lij such that L2 := LijLij is nowhere vanishing. Given the O(2) multiplet, 
we can choose the O∗(2m) multiplet to be12

T i1···i2m = L−(2m+1)L(i1i2 · · ·Li2m−1i2m) . (6.2)

In this way the resulting invariant will be expressed entirely in terms of the O(2) multiplet.
It is also possible to construct composite O∗(n) multiplets out of O(n) multiplets leading 

to superconformal invariants for the O(n) multiplets. For instance, for n ≥ 4 we can take the 
composite

T i1···in−4 = ∇ in−3···in (Li1···in�−4n+2) . (6.3)

We can choose the compensator to be �4n = Li1···inLi1···in and then plugging the result into the 
invariant (4.3) gives a four-derivative invariant for the O(n) multiplet. Many more invariants can 
be constructed by iterating eqs. (6.1) and (6.3) in various ways, and using the fact that there 
is an obvious multiplication defined on the space of O(n) multiplets and the space of O∗(n)

multiplets. Similar constructions appeared in 4D for the O(2) multiplet in [28].
In this paper, we have defined the O∗(n) multiplets for n ≥ 2. The O∗(n) multiplet has the 

same number of degrees of freedom as the corresponding O(n) multiplet as follows from the 
generalised BF invariant (4.1). We have ignored the n = 1 case since the O(1) multiplet is 
on-shell and does not have a prepotential formulation. However, it is interesting to ask whether 
there exists another on-shell multiplet possessing the same number of degrees of freedom as 
that of the O(1) multiplet that one could naturally add to the class of O∗(n) multiplets. Such a 
superconformal multiplet is described by a primary superfield T α of dimension −1/2 satisfying 
the constraint

∇ i
αT β = 1

4
δβ
α∇ i

γ T γ . (6.4)

It might be appropriate to define this multiplet as the O∗(1) multiplet.
The multiplets described in this paper certainly do not exhaust all possible superconformal 

multiplets nor those that permit a prepotential formulation. To illustrate this we introduce a 
supermultiplet described by a superfield Mα1···αn = M(α1···αn) with n ≥ 1 and subject to the con-
straint13

∇ i
(α1

Mα2···αn+1) = 0 , (6.5)

which describes a superconformal multiplet when DMα1···αn = − 3n
2 Mα1···αn . For n > 2 the dif-

ferential constraint can be solved in terms of a prepotential as

Mα1···αn = ∇k
(α1

∇α2kVα3···αn) , (6.6)

where the prepotential Vα1···αn−2 = V(α1···αn−2) possesses the gauge transformations

δVα1···αn−2 = ∇k
(α1

ξα2···αn−2)k . (6.7)

Interestingly, upon introducing a ‘dual’ multiplet described by a superfield Nα1···αn−2 =
N(α1···αn−2) that is constrained by ∇k

βNα1···αn−3β = 0, one can write down a gauge invariant

12 It is a straightforward exercise to check that the composite multiplet satisfies the appropriate differential constraint.
13 These superconformal constraints appeared in Minkowski superspace in [29].
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∫
dz6|8 E Nα1···αn−2Vα1···αn−2 . (6.8)

However, it does not appear that such an invariant can be used to describe higher derivative 
superconformal actions.

It is worthwhile mentioning that the new multiplets and constructions introduced in this paper 
imply the existence of analogues in lower spacetime dimensions. We leave their exploration for 
future work.
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Appendix A. Harmonic superspace construction

In this appendix we present a harmonic superspace origin of the supersymmetric invari-
ant (4.1) in the flat case. Our construction is an extension of the known procedure to read off 
the Mezincescu prepotential from the analytic prepotential [30,31].

Given an O(n) multiplet Li1...in (z) in Minkowski superspace, with n ≥ 2,

D(i1
α Li2···in+1) = 0 , (A.1)

we associate with it a harmonic superfield

L(+n)(z, u) = Li1...in (z)u+
i1

. . . u+
in

, (A.2)

which is analytic

D+
α L(+n) = 0 , D±

α := u±
i Di

α (A.3a)

and obeys the harmonic shortness constraint

D++L(+n) = 0 , (A.3b)

where the harmonic derivative D++ is defined as usual [30,31]. Then we can define a supersym-
metric invariant

Î(n) =
∫

dζ (−4) �(4−n)L(+n) , D+
α �(4−n) = 0 , (A.4)

in which the integrand involves an analytic potential �(4−n). The integration in (A.4) is carried 
out over the analytic subspace of the harmonic superspace. It is defined by∫

dζ (−4) L(4) =
∫

d6x

∫
du (D−)4L(4) , D+

α L(4) = 0 ,

(D−)4 := − 1

96
εαβγ δD−

α D−
β D−

γ D−
δ , (A.5)

for any analytic Lagrangian L(4). Here the u-integral denotes the integration over the group man-
ifold SU(2) defined as in [30,31]. The functional (A.4) is invariant under gauge transformations 
of the form



S.M. Kuzenko et al. / Nuclear Physics B 925 (2017) 348–361 359
δ�(4−n) = D++�(2−n) , D+
α �(2−n) = 0 , (A.6)

with the gauge parameter �(2−n) being an analytic superfield of U(1) charge (2 − n).
The analyticity constraint on �(4−n) is solved by

�(4−n) = (D+)4U(−n) , (D+)4 := − 1

96
εαβγ δD+

α D+
β D+

γ D+
δ . (A.7)

Here the prepotential U(−n)(z, u) is an unconstrained harmonic superfield which is defined mod-
ulo gauge transformations

δU(−n) = D+
α ξ (−n−1) α , (A.8)

with the gauge parameter ξ (−n−1) α(z, u) being an unconstrained harmonic superfield.
The analyticity constraint on the gauge parameter in (A.6) can be solved similarly to the 

representation (A.7) for �(4−n),

�(2−n) = (D+)4ρ(−n−2) . (A.9)

Then the gauge transformation becomes equivalent to

δU(−n) = D++ρ(−n−2) . (A.10)

The unconstrained harmonic superfields U(−n) and ρ(−n−2) can be represented by convergent 
harmonic series

U(−n)(z, u) = Ui1...in (z)u−
i1

. . . u−
in

+
∞∑

m=1

U(i1...in+2m)(z)u+
i1

. . . u+
im

u−
im+1

. . . u−
in+2m

, (A.11a)

ρ(−n−2)(z, u) =
∞∑

m=0

ρ(i1...in+2+2m)(z)u+
i1

. . . u+
im

u−
im+1

. . . u−
in+2+2m

. (A.11b)

It follows from these expressions that the gauge symmetry (A.10) allows us to impose a gauge 
condition

U(−n)(z, u) = Ui1...in (z)u−
i1

. . . u−
in

, (A.12)

which completely fixes the gauge freedom (A.10). In this gauge, we still have the freedom to 
perform those gauge transformations (A.8) which are generated by parameters of the form14

ξ (−n−1) α(z, u) = ξ i1...in+1 α(z)u−
i1

. . . u−
in+1

. (A.13)

The resulting gauge transformation of the prepotential Ui1...in (z) coincides with the flat-
superspace version of (3.10).

In the gauge (A.12), the supersymmetric invariant (A.4) can be represented as an integral over 
Minkowski superspace by making use of the identity∫

dζ (−4) (D+)4L(z, u) =
∫

d6|8z
∫

duL(z, u) , (A.14)

14 Such a transformation should be accompanied by a compensating ρ-transformation (A.10) which is required to 
preserve the gauge condition (A.12).



360 S.M. Kuzenko et al. / Nuclear Physics B 925 (2017) 348–361
and computing the relevant harmonic integral. This reduces the supersymmetric invariant (A.4)
to the flat-superspace version of (4.1) modulo a numerical factor.

In the n = 2 case, the supersymmetric invariant (A.4) is the harmonic superspace realisation 
of the linear multiplet action.
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[16] F. Gonzalez-Rey, M. Roček, S. Wiles, U. Lindström, R. von Unge, Feynman rules in N = 2 projective superspace. 

I: massless hypermultiplets, Nucl. Phys. B 516 (1998) 426, arXiv:hep-th/9710250.
[17] W.D. Linch III, G. Tartaglino-Mazzucchelli, Six-dimensional supergravity and projective superfields, J. High En-

ergy Phys. 1208 (2012) 075, arXiv:1204.4195 [hep-th].
[18] S.M. Kuzenko, On compactified harmonic/projective superspace, 5D superconformal theories, and all that, Nucl. 

Phys. B 745 (2006) 176, arXiv:hep-th/0601177.
[19] S.M. Kuzenko, On superconformal projective hypermultiplets, J. High Energy Phys. 0712 (2007) 010, arXiv:0710.

1479.
[20] S.M. Kuzenko, G. Tartaglino-Mazzucchelli, Super-Weyl invariance in 5D supergravity, J. High Energy Phys. 0804 

(2008) 032, arXiv:0802.3953 [hep-th].
[21] S.M. Kuzenko, U. Lindström, M. Roček, G. Tartaglino-Mazzucchelli, On conformal supergravity and projective 

superspace, J. High Energy Phys. 0908 (2009) 023, arXiv:0905.0063 [hep-th].
[22] M.F. Sohnius, Supersymmetry and central charges, Nucl. Phys. B 138 (1978) 109.
[23] D. Butter, S.M. Kuzenko, J. Novak, G. Tartaglino-Mazzucchelli, Conformal supergravity in five dimensions: new 

approach and applications, J. High Energy Phys. 1502 (2015) 111, arXiv:1410.8682 [hep-th].
[24] C. Arias, W.D. Linch III, A.K. Ridgway, Superforms in six-dimensional superspace, J. High Energy Phys. 1605 

(2016) 016, arXiv:1402.4823 [hep-th].
[25] A.R. Gover, K. Hirachi, Conformally invariant powers of the Laplacian: a complete non-existence theorem, J. Am. 

Math. Soc. 17 (2004) 389, arXiv:math/0304082 [math.DG].
[26] A. Juhl, On conformally covariant powers of the Laplacian, arXiv:0905.3992 [math.DG].
[27] S.M. Kuzenko, J. Novak, S. Theisen, Non-conformal supercurrents in six dimensions, arXiv:1709.09892 [hep-th].

http://refhub.elsevier.com/S0550-3213(17)30343-7/bib42656363617269613A32303135757461s1
http://refhub.elsevier.com/S0550-3213(17)30343-7/bib42656363617269613A32303135757461s1
http://refhub.elsevier.com/S0550-3213(17)30343-7/bib42656363617269613A32303135797061s1
http://refhub.elsevier.com/S0550-3213(17)30343-7/bib42656363617269613A32303135797061s1
http://refhub.elsevier.com/S0550-3213(17)30343-7/bib42656363617269613A32303137646D77s1
http://refhub.elsevier.com/S0550-3213(17)30343-7/bib42656363617269613A32303137646D77s1
http://refhub.elsevier.com/S0550-3213(17)30343-7/bib49535A3035s1
http://refhub.elsevier.com/S0550-3213(17)30343-7/bib49535A3035s1
http://refhub.elsevier.com/S0550-3213(17)30343-7/bib424B4E54s1
http://refhub.elsevier.com/S0550-3213(17)30343-7/bib424B4E54s1
http://refhub.elsevier.com/S0550-3213(17)30343-7/bib424E542D4D3137s1
http://refhub.elsevier.com/S0550-3213(17)30343-7/bib424E542D4D3137s1
http://refhub.elsevier.com/S0550-3213(17)30343-7/bib42536F686E697573s1
http://refhub.elsevier.com/S0550-3213(17)30343-7/bib42536F686E697573s1
http://refhub.elsevier.com/S0550-3213(17)30343-7/bib4853543833s1
http://refhub.elsevier.com/S0550-3213(17)30343-7/bib4B6F6C6C65723833s1
http://refhub.elsevier.com/S0550-3213(17)30343-7/bib474C3835s1
http://refhub.elsevier.com/S0550-3213(17)30343-7/bib4B4C54s1
http://refhub.elsevier.com/S0550-3213(17)30343-7/bib4B4C54s1
http://refhub.elsevier.com/S0550-3213(17)30343-7/bib4B4C54s2
http://refhub.elsevier.com/S0550-3213(17)30343-7/bib4B4C54s2
http://refhub.elsevier.com/S0550-3213(17)30343-7/bib47494Fs1
http://refhub.elsevier.com/S0550-3213(17)30343-7/bib47494Fs1
http://refhub.elsevier.com/S0550-3213(17)30343-7/bib4C52s1
http://refhub.elsevier.com/S0550-3213(17)30343-7/bib535357s1
http://refhub.elsevier.com/S0550-3213(17)30343-7/bib535357s1
http://refhub.elsevier.com/S0550-3213(17)30343-7/bib472D5252574C7655s1
http://refhub.elsevier.com/S0550-3213(17)30343-7/bib472D5252574C7655s1
http://refhub.elsevier.com/S0550-3213(17)30343-7/bib4C542D4D3132s1
http://refhub.elsevier.com/S0550-3213(17)30343-7/bib4C542D4D3132s1
http://refhub.elsevier.com/S0550-3213(17)30343-7/bib4B3036s1
http://refhub.elsevier.com/S0550-3213(17)30343-7/bib4B3036s1
http://refhub.elsevier.com/S0550-3213(17)30343-7/bib4B3037s1
http://refhub.elsevier.com/S0550-3213(17)30343-7/bib4B3037s1
http://refhub.elsevier.com/S0550-3213(17)30343-7/bib4B542D4D3038s1
http://refhub.elsevier.com/S0550-3213(17)30343-7/bib4B542D4D3038s1
http://refhub.elsevier.com/S0550-3213(17)30343-7/bib4B4C52542D4Ds1
http://refhub.elsevier.com/S0550-3213(17)30343-7/bib4B4C52542D4Ds1
http://refhub.elsevier.com/S0550-3213(17)30343-7/bib536F686E697573s1
http://refhub.elsevier.com/S0550-3213(17)30343-7/bib424B4E542D4D3544s1
http://refhub.elsevier.com/S0550-3213(17)30343-7/bib424B4E542D4D3544s1
http://refhub.elsevier.com/S0550-3213(17)30343-7/bib414C523136s1
http://refhub.elsevier.com/S0550-3213(17)30343-7/bib414C523136s1
http://refhub.elsevier.com/S0550-3213(17)30343-7/bib476F7665723A32303033616Ds1
http://refhub.elsevier.com/S0550-3213(17)30343-7/bib476F7665723A32303033616Ds1
http://refhub.elsevier.com/S0550-3213(17)30343-7/bib4A75686Cs1
http://refhub.elsevier.com/S0550-3213(17)30343-7/bib4B4E54746261s1


S.M. Kuzenko et al. / Nuclear Physics B 925 (2017) 348–361 361
[28] D. Butter, S.M. Kuzenko, New higher derivative couplings in 4D N = 2 supergravity, J. High Energy Phys. 1103 
(2011) 047, arXiv:1012.5153 [hep-th].

[29] J.H. Park, Superconformal symmetry in six-dimensions and its reduction to four-dimensions, Nucl. Phys. B 539 
(1999) 599, arXiv:hep-th/9807186.

[30] A. Galperin, E. Ivanov, S. Kalitzin, V. Ogievetsky, E. Sokatchev, Unconstrained N = 2 matter, Yang–Mills and 
supergravity theories in harmonic superspace, Class. Quantum Gravity 1 (1984) 469.

[31] A.S. Galperin, E.A. Ivanov, V.I. Ogievetsky, E.S. Sokatchev, Harmonic Superspace, Cambridge University Press, 
2001.

http://refhub.elsevier.com/S0550-3213(17)30343-7/bib424B3131s1
http://refhub.elsevier.com/S0550-3213(17)30343-7/bib424B3131s1
http://refhub.elsevier.com/S0550-3213(17)30343-7/bib5061726Bs1
http://refhub.elsevier.com/S0550-3213(17)30343-7/bib5061726Bs1
http://refhub.elsevier.com/S0550-3213(17)30343-7/bib47494B4F53s1
http://refhub.elsevier.com/S0550-3213(17)30343-7/bib47494B4F53s1
http://refhub.elsevier.com/S0550-3213(17)30343-7/bib47494F53s1
http://refhub.elsevier.com/S0550-3213(17)30343-7/bib47494F53s1

	New superconformal multiplets and higher derivative invariants in six dimensions
	1 Introduction
	2 The O(n) multiplets and their prepotentials
	2.1 n = 3
	2.2 n >=4

	3 New superconformal multiplets and their gauge prepotentials
	3.1 n = 3
	3.2 n = 4
	3.3 n >=5

	4 New superconformal invariants
	4.1 Generalised BF invariants
	4.2 Superform realisation of the invariants

	5 Higher derivative superconformal invariants
	6 Discussion
	Acknowledgements
	Appendix A Harmonic superspace construction
	References


