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Abstract
It has been an open question whether for electromagnetic gyro-kinetic particle-in-cell (PIC)

simulations pitch-angle collisions and the recently introduced pullback transformation scheme
[A. Mishchenko et al., Physics of Plasmas 21, 092110 (2014) and R. Kleiber et al., Physics of
Plasmas 23, 032501 (2016)] are consistent.

This question is positively answered by comparing the PIC code EUTERPE with an approach
based on an expansion of the perturbed distribution function in eigenfunctions of the pitch-
angle collision operator (Legendre polynomials) to solve the electromagnetic drift-kinetic equa-
tion with collisions in slab geometry.

It is shown how both approaches yield the same results for the frequency and damping rate
of a kinetic Alfvén wave and how the perturbed distribution function is substantially changed
by the presence of pitch-angle collisions.
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I. INTRODUCTION

The numerical treatment of the gyro-kinetic equation including collisions and electro-
magnetic effects is, for instance, necessary for studying the interaction of Alfvén modes
with fast particles. It has been shown analytically and numerically (see e.g. Refs. [2, 20])
that collisions have a particularly strong influence on the non-linear saturation mecha-
nism of the mode by detrapping resonant particles. Also the multi-phase simulations
addressing bursting phenomena for JT 60-U [4] and profile flattening effects for D III-D
[27] rely on the proper treatment of collisions for the fast particles. Furthermore, trapped
electrons can contribute to the damping of Alfvén waves as has been shown in Ref. [11].
(A more elaborate discussion can be found in Ref. [8].)
Most computational approaches for solving the gyro-kinetic equations either rely on
a grid-based discretization (Eulerian codes) or use a particle discretization (particle-in-
cell (PIC) codes). Additionally, the electromagnetic gyro-kinetic equations can either
be stated in the so-called v‖-formulation or p‖-formulation, where the former uses the
physical parallel velocity while the latter adopts the parallel canonical momentum p‖ =
mv‖ + qA‖ as an independent variable [5]. For PIC simulations, the v‖-formulation had
serious problems related to the partial time derivative of the perturbed parallel vector
potential (A‖) in the equations of motion [23]. Therefore, the p‖-formulation [12] became
standard despite its notorious cancellation problem (see e.g. Ref. [7]), caused by the
appearance of a non-physical current in Ampère’s law. This problem could be overcome
by the adjustable control variate scheme [13]. A different approach, avoiding some
problems of this method, is the recently proposed pullback transformation scheme (PT-
scheme) [18, 22]. This algorithm, loosely speaking, works in v‖. Thus, it was conjectured
that it may provide an optimal framework for implementing a (pitch-angle) collision
operator, which is naturally formulated in v‖.
Here, the gyro-kinetic PIC code EUTERPE is used to investigate the compatibility of
collisions with the PT-scheme (and additionally with the two-weight scheme developed
in Ref. [24]) as well as its convergence properties. In the past, electrostatic calculations
including collisions, neoclassical impurity transport studies as well as electromagnetic
simulations without collisions were successfully performed with EUTERPE [9, 10, 17,
21].
In the present work, the PT-scheme is combined with a linearized electron pitch-angle
collision operator. Since such a combination is reported for the first time, the main fo-
cus of this paper is on verification and not on validation. In order to concentrate on
the essential properties of the numerical scheme, (drift-)kinetic Alfvén waves in a ho-
mogeneous slab are considered. Additionally, only electron pitch-angle collisions are
included. Ion finite-Larmor-radius (FLR) effects are retained in the ion polarization
density with a Padé approximation whereas the ion dynamics, electron FLR effects, and
gyro-averaging of the fields over the gyro-ring are neglected. Gyro-averaging may con-
tribute significantly to the damping from ion collisions when k⊥ρi & 1 (with k⊥ and
ρi denoting the perpendicular wave vector of the mode and the ion gyro-radius, re-
spectively). Notwithstanding the simplifications made for the collision operator, this
problem is non-trivial and only few analytical results are available. Moreover, recent
comparisons of frequencies and damping rates from analytical theory with direct mea-
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surements revealed striking discrepancies [26]. This additionally motivates the need for
accurate algorithms to gain physical insight.
Since there are no reliable analytical theories available, the results of the PIC approach
will be benchmarked against results from a numerical method (here called ‘Legendre
approach’) using a decomposition of the perturbed distribution function into eigenfunc-
tions of the pitch-angle scattering operator, which are Legendre polynomials.

II. THEORY AND ALGORITHMS

The theoretical description of kinetic Alfvén waves in a slab starts with the gyro-kinetic
equation for the electrons

∂ fe

∂t
+ Ṙ · ∇ fe + v̇‖

∂ fe

∂v‖
= L ( fe) . (1)

in its v‖-form. For simplicity, gyro-averaging and the dynamics of the ions have been
neglected. The ions just provide a uniform background charge density to satisfy quasi-
neutrality. fe = fe(R, v) is the electron distribution function, R denotes the spatial
position, and v‖ = b · v is the velocity along the magnetic field B = Bb. To treat
the collisional influence on the distribution function, a pitch-angle (ξ = v‖/v) collision
operator

L =
ν

2
∂

∂ξ

(

1 − ξ2
) ∂

∂ξ
(2)

is used. This operator follows from transforming the full Fokker-Planck operator
to guiding-center coordinates (see e.g. Ref. [15]) followed by neglecting energy and
guiding-center diffusion. For the electron-electron pitch-angle collisions considered
here, this is well justified.
In the collision operator, ν is the electron self-collision frequency [14]

ν = ν0
Φ (x)− G (x)

x3 , x =
v√

2vth,e
, (3)

where Φ and G denote the error function and the Chandrasekhar function, respectively.
(vth,e =

√
kBTe/me is the electron thermal velocity.)

The characteristics of the kinetic equation are

Ṙ = v‖b +
1

B⋆

‖
b ×∇

[

φ − v‖A‖
]

(4)

v̇‖ = − qe

me

(

∇‖φ +
∂A‖
∂t

)

(5)

with

B⋆ = ∇× A⋆ (6)

A⋆ = A0 +

(

me

qe
v‖ + A‖

)

b (7)
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in a straight and constant magnetic field. (Here, qe and me are the electron charge and
mass, and A0 denotes the fixed background vector potential, respectively.) The electro-
static potential φ and the parallel component of the vector potential A‖ are denoted as
usual.
Eqs. (1), (4), and (5) are solved together with the gyro-kinetic Poisson equation

−∇ ·
(min0

B2 ∇⊥φ
)

= (1 −∇ · ρ2
i ∇⊥)qene (8)

(with ρi =
√

kBTimi/(qiB) being the ion gyro-radius) and Ampère’s law

−∇2
⊥A‖ = µ0 j‖,e (9)

for the fields. Since collisions are expected to mainly influence high k⊥ρi modes, a
Padé approximation for the ion polarization density was employed in Eq. (8). In the
equations above, mi is the ion mass, n0 denotes the background density, µ0 is the vacuum
permeability, and j‖ stands for the parallel current density. The electron density and
current are obtained by taking the appropriate moments of the distribution function

ne (R) =
∫

d3v fe (R, v) (10)

j‖,e (R) = qe

∫

d3v v‖ fe (R, v) . (11)

The kinetic equation together with the field equations will be solved in two different
ways. Firstly, a particle-in-cell (PIC) method will be employed. Numerical marker par-
ticles, which move along the characteristics (Eqs. (4) and (5)) through phase-space, are
used to represent the actual electrons. Secondly, the equations will be solved by employ-
ing a decomposition of the distribution function into Legendre polynomials (‘Legendre
approach’), which are eigenfunctions of the collision operator L. A similar strategy was
recently used in Ref. [1] for an electrostatic system.
The following subsections elaborate on the individual approaches.

A. A short description of the pullback transformation scheme

The PT-scheme was introduced in Refs. [18, 22] in the absence of collisions. Since those
papers give a good overview of the general idea and of the implementation into a PIC
code, only the key elements are repeated here. The implementation [16] of pitch-angle
collisions into EUTERPE is discussed briefly.
The PT-scheme is based on an arbitrary splitting of A‖ into a Hamiltonian and a sym-
plectic part, A‖ = Ah

‖ + As
‖. Furthermore, an ‘incomplete’ transformation

ũ‖ = v‖ +
qe

me
Ah
‖ (12)

is employed. This transformation is similar to the one transforming to the canonical
momentum p‖, but ‘incomplete’ in the sense that it only contains the Hamiltonian part
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of A‖. The resulting equations of motion are

Ṙ =

(

ũ‖ −
qe

me
Ah
‖

)

b

+
1

B⋆

‖
b ×∇

[

φ − ũ‖
(

Ah
‖ + As

‖
)]

(13)

˙̃u‖ = − qe

me

{

∇‖
[

φ − ũ‖Ah
‖
]

+
∂As

‖
∂t

}

(14)

with

A⋆ = A0 +

(

me

qe
ũ‖ + As

‖

)

b (15)

for a plasma slab with constant magnetic field. While the Poisson equation for the
PT-scheme is the same as Eq. (8), Ampère’s law changes to

−∇ · ∇⊥Ah
‖ + Ah

‖
µ0n0q2

e
me

= µ0 j‖,e +∇ · ∇⊥As
‖. (16)

It is important to note that, because of the arbitrary splitting of A‖, an additional equa-
tion is needed to close the system. One thus gains an additional degree of freedom to
fix As

‖. This is done by postulating the equation

∂As
‖

∂t
+ b · ∇φ = 0, (17)

which is similar to the ideal Ohm’s law from MHD (magneto-hydrodynamic) theory.
The idea is that, when simulating MHD modes (such as shear Alfvén waves) the majority
of A‖ will be contained in As

‖. Hence, Ah
‖ will be small. In this way the cancellation

problem is mitigated.
In the simulation, Ah

‖ is chosen to be zero at t = 0. However, as the simulation proceeds,

Ah
‖ increases, which could eventually lead to the reappearance of the cancellation prob-

lem. Therefore, after each time step, a resetting procedure (the actual pullback transfor-
mation) is performed: Before Ah

‖ is reset to zero its value is added to As
‖, Eq. (12) is used

to go back from ũ‖ to v‖, and the distribution function is transformed fe(v‖) = fe(ũ‖).
Thus, at its core, the PT-scheme is a method for solving the gyro-kinetic equations in the
v‖-formulation. As the collision operator is given in v‖, the PT-scheme should be well
suited to incorporate collisions.
In EUTERPE, the collision step is performed after the advection step, in which a fourth-
order Runge-Kutta is used for time integration. The collisions themselves change the
pitch-angle and magnetic moment of each particle. This involves rotating the velocity
vector on a spherical shell (the magnitude of the velocity remains unchanged) according
to randomly generated numbers with specific statistical properties. Denoting the cosine
of the pitch-angle before and after the collision by ξin and ξout one finds

ξout = sin χ sin λ
√

1 − ξ2
in + ξin cos χ, (18)
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where χ = R
√

2ν∆t [16]. Both λ and R are random numbers. λ is drawn from a
uniform distribution between 0 and 2π, while R comes from a Gaussian distribution
with expectation value 0 and variance 1 [16]. This scheme was reported in Refs. [6, 28]
and can be regarded as a variant of the method presented in Ref. [25]. It is important
to note that this particular collisional implementation corresponds to a first-order (weak
convergence) scheme. The often-used Euler-Maruyama method (see e.g. Ref. [19]) for
the integration of stochastic differential equations is also only of first order.

B. Solving the system by a decomposition into Legendre polynomials

While EUTERPE solves the kinetic equation in the mixed formalism, the p‖-formalism
will be used for the Legendre approach. This means that, in contrast to Eqs. (4) and (5),
the characteristics of the kinetic equation are now given as

Ṙ =

(

u‖ −
qe

me
A‖

)

b +
1

B⋆

‖
b ×∇ψ (19)

u̇‖ = − qe

me
∇‖ψ (20)

ψ = φ − u‖A‖ (21)

with
A⋆ = A0 +

me

qe
u‖b. (22)

Note that in this formalism, u‖ = p‖/me = v‖ + (qe/me)A‖ is not the physical velocity
along the magnetic field lines.
Using the left-hand side of Eq. (1) in its p‖-form and transforming it via

u =
√

u2
‖ + 2µB, ξ′ =

u‖
u

(23)

to a (u, ξ′)-coordinate system (µ denotes the magnetic moment per mass) yields

∂ f
(1)
e

∂t
+ uξ′∇‖ f

(1)
e − qe

me
ξ′∇‖ψ

∂F

∂u
= L (F) + L( f

(1)
e ). (24)

The ansatz fe = F + f
(1)
e , with F being the uniform Maxwellian background and f

(1)
e

denoting a small perturbation, has also been used to linearize the kinetic equation. The
∇F-term vanishes, since there are no gradients in density and temperature.
Note that L still acts in (v, ξ)-space. The term with the collision operator acting on the
Maxwellian background is important as F has to be transformed from u‖ to v‖ as will

be discussed below. With a plane-wave ansatz f
(1)
e ∼ exp(ik‖z) the kinetic equation

becomes
∂ f

(1)
e

∂t
+ uξ′ik‖ f

(1)
e = − qe

me

u

v2
th,e

ξ′Fik‖ψ +L (F) + L( f
(1)
e ) (25)
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using the representation

f
(1)
e =

Nl

∑
l=0

fl (u, t) Pl

(

ξ′
)

F, (26)

where Pl is the lth Legendre polynomial, and the fl are coefficients of the decomposition
which have yet to be determined. One arrives at

∑
l

∂ fl

∂t
PlF + uξ′ik‖ ∑

l

fl PlF =

− qe

me

u

v2
th,e

ξ′Fik‖ψ + L (F) +∑
l

fl FL (Pl) ,
(27)

where it still must be specified how the collision operator acts on the Maxwellian. In the
p‖-formulation F is given as

F =
n0

(

2πv2
th,e

)3/2 exp

(

− u2

2v2
th,e

)

∼= n0
(

2πv2
th,e

)3/2 exp

(

−
v2 + 2vξ(qe/me)A‖

2v2
th,e

)

.

(28)

Hence,

L (F) =
ν

2
∂

∂ξ

(

1 − ξ2
) ∂F

∂ξ
∼= ν

qe

me

vξ

v2
th,e

A‖F

∼= ν
qe

me

uξ′

v2
th,e

A‖F,
(29)

where terms quadratic in A‖ have been neglected. Finally, this transformation of the
Maxwellian leads to a correction proportional to the collision frequency and A‖, a fact
already reported in Ref. [29].
Next, the collision operator acting on the perturbation, L( f

(1)
e ), is transformed from ξ

to ξ′ neglecting all non-linear terms in A‖ and f
(1)
e . The result has the same form as the

original L but with ξ replaced by ξ′.
In summary, one thus arrives at a linear equation fully acting in (u, ξ′)-space.
Eq. (27) is now multiplied by Pl ′ and integrated over the pitch-angle variable (ξ′ ∈
[−1, 1]). In this process the orthogonality relations of the Legendre polynomials are
used. After some straightforward algebra one finds the final result

∂ fl

∂t
+ ik‖u

(

l + 1
2l + 3

fl+1 +
l

2l − 1
fl−1

)

= ν
qe

me

u

v2
th,e

A‖δl,1

− ν

2
l (l + 1) fl −

qe

me
ik‖

u

v2
th,e

[

φδl,1 −
uA‖

3
(δl,0 + 2δl,2)

]

.
(30)
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This is the electromagnetic extension of a very similar equation recently derived in
Ref. [1].
The first term on the right-hand side of the above equation is the correction described
by Eq. (29), the second and the third term result from the pitch-angle scattering operator
and the parallel electric field, respectively.
An expression very similar to Eq. (30) can also be obtained for a simple Krook-type [3]
collision operator C. In that particular case the numerical implementation of Eq. (30)
and the correctness of its solution could be verified, since the dispersion relation can
be solved analytically. It is noteworthy to mention that only in the v‖-formulation the

Krook operator has the simple Cv‖ = −ν f
(1)
e form. In the p‖-formulation, however, the

Krook operator still has to relax the whole distribution function towards a Maxwellian
defined with the physical parallel velocity. This gives rises to a (linearized) correction,

Cp‖ = −ν f
(1)
e + ν

qe

me

u‖
v2

th,e
A‖F (31)

in the p‖-formulation, which is the same as the one associated with the pitch-angle
collision operator.
The initial condition for Eq. (30) is chosen as f0(t = 0) = 1, fl(t = 0) = 0 for l > 1,

which corresponds to f
(1)
e (t = 0) = F.

The field equations for φ and A‖ in the p‖-formulation, using a Padé approximation, are

min0

B2

k2
⊥

1 + k2
⊥ρ2

i
φ = qene,

(

k2
⊥ +

µ0neq2
e

me

)

A‖ = µ0 j‖,e. (32)

The second term on the left-hand side of Ampère’s law is the skin term only present in
the p‖-formulation. (Consequently, this term does not appear in Eq. (9).)
In Eq. (30) the variable u is simply a parameter, which will be defined on an equidistant
grid in the numerical implementation. To obtain ne and j‖,e integrals over (u, ξ′)-space
have to be performed. The results are

ne = 4π
∫

du u2 f0F (33)

j‖,e =
4π

3
qe

∫

du u3 f1F. (34)

III. CASE DEFINITION

A plasma slab (x, y, z) is simulated, with the magnetic field pointing in the z-direction
and periodic boundary conditions applied in the x- and y-directions. EUTERPE was
built to work in geometries topologically equivalent to a torus, hence also the slab has
to be treated as if it were a torus. In the following, the usual nomenclature for a toroidal
system will be used, i.e. (x, y, z) correspond to the radial, poloidal and toroidal coordi-
nates (r, θ, ϕ).
All background quantities, such as temperatures, densities, and the magnetic field are
chosen to be constant. The slab has a length L = 2π m in z. Its cross-section is quadratic
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Table I: Plasma parameters

magnetic field B/T 1.0
electron density ne/m−3 1.037 · 1019

ion density ni/m−3 ne

electron temperature Te/keV 9.579
ion temperature Ti/keV 20 Te

gyration frequency Ωi/s−1 9.579 · 107

with the length of one side being ∆ = 1.4 m. The parallel and the perpendicular wave-
vector, expressed through the toroidal and poloidal Fourier numbers n and m and the
radial mode number o, are given by

k‖ =
2πn

L
=

n

100ρs
(35)

k2
⊥ = k2

r + k2
θ =

4π2

∆2

(

o2 + m2
)

=
4π2

1402ρ2
s

(

o2 + m2
)

(36)

with the normalization quantity ρs = 1 cm (ρs =
√

kBTemi/(qiB) denotes the sound
gyro-radius). Slightly different kinetic Alfvén waves with a fixed value n = 1, but
varying in their poloidal mode number m are considered in the numerical simulations.
The radial mode number is chosen as o = 1/2, because the initial perturbation used
in the EUTERPE runs is a half sine-wave in r. Several other parameters of this case
are listed in Tab. I. If collisions are used, the velocity-independent part of the collision
frequency is ν0 = 0.15 Ωi (with the ion gyration frequency Ωi = qiB/mi).
All EUTERPE calculations are performed using a phase-factor, exp (imθ + inϕ), to ex-
tract the dominant poloidal and toroidal Fourier harmonics from all perturbed quan-
tities. The spatial resolution was chosen as nr = 16, nθ = 8, and nϕ = 1 (parallel
direction). This leads to a radial resolution of 8.75 cm. This is circa 50 times larger than
the electron skin depth δe = ρs

√

2me/(miβe), which does not need to be resolved in the
EUTERPE simulations. (βe is the electron plasma beta defined as usual.)
For the Legendre approach, f

(1)
e is decomposed into the first 20 (40 to obtain Fig. 4)

Legendre polynomials. As for the EUTERPE simulations, a fourth-order Runge-Kutta
method is used for the time-integration. The time step is ∆t Ωi = 0.02 (0.005 to obtain
Fig. 4). The integration over u-space is performed on an equidistant grid (400 grid
points) with umax ≈ 9.33 vth,e using the trapezoidal rule. All results are converged with
respect to those parameters.
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Figure 1: Real frequency (left) and damping rate (right) of the kinetic Alfvén wave without
collisions. EUTERPE and the decomposition of the perturbed electron distribution function into
Legendre polynomials (‘Legendre approach’) yield virtually the same result.

IV. RESULTS

A. Collisional influences on the dispersion relation

In the case of the EUTERPE simulations, the kinetic equation, Eq. (1), is solved by a PIC-
method. The equations of motion (see Eqs. (13) and (14)) are advanced in time using a
fourth-order Runge-Kutta method. At each time step, the field equations (8) and (16)
are solved.
A very similar strategy is pursued for the Legendre approach, where the modified ki-
netic equation (30) is instead solved together with the field equations given by Eq. (32).
The real frequency ω and the damping rate γ of the mode can be seen in Fig. 1 for
ν0 = 0. Different mode numbers m, corresponding to different k⊥ρs, have been used to
obtain this dispersion relation.
For k⊥ρs & 3.5 Fig. 1 shows frequencies that are larger than the ion cyclotron frequency
which contradicts one of the basic assumptions of gyro-kinetics. However, since the
focus of this paper is to verify the correctness of the numerical algorithm (and not
to validate the physics) the benchmark can be performed in that parameter range to
illustrate clearly the effect of collisions (see below).
As can be seen in the figure, the mode is Landau-damped with a maximum damping
rate around k⊥ρs ≈ 3. While γ varies over three orders of magnitude, the change in
ω is smaller. The dotted line corresponds to the Legendre approach. The full circles
have been obtained by EUTERPE. As expected, the agreement between the two different
approaches is very good.
Both numerical implementations have also been compared with analytical theory in the
collision-less case. For ν0 = 0 it is straightforward to obtain the analytical dispersion
relation

1 − miβe

me

1
k2
⊥ρ2

s

{

ζ2 − me

miβe

(

1 +
Ti

Te
k2
⊥ρ2

s

)}

[1 + ζZ (ζ)] = 0 (37)
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Figure 2: Real frequency (left) and damping rate (right) of the kinetic Alfvén wave under the
influence of collisions. The agreement between EUTERPE and the Legendre approach is still
very good. Collisional damping mainly affects large k⊥ρs. Compared with the case without
collisions, the time step had to be reduced for small values of k⊥ρs.

that can be solved for ζ numerically. Here, ζ = (ω + iγ)/(
√

2k‖vth,e) and Z denotes the
plasma dispersion function. Both numerical approaches agree very well with Eq. (37) in
the collision-less limit.
Having verified EUTERPE and the Legendre approach for ν0 = 0, a case where collisions
are included (ν0 = 0.15 Ωi) may be investigated next. Note that, in particular, the
implementation of collisions is very different in the Legendre approach and the PIC-
method.
Fig. 2 shows how the dispersion relation changes if collisions are taken into account.
While there is no noticeable change in the frequency ω, the damping rate is modified
substantially. γ is now a combination of pure Landau damping and collisional damping.
In comparison with Fig. 1, the mode is a little bit stronger damped due to collisional
damping for small k⊥ρs. The largest differences, however, are seen at high k⊥ρs >

4, where the mode is now much stronger damped than before. Pitch-angle collisions
randomize the velocity distribution to a certain degree and thus have a smoothing effect
on the perturbations. It is thus not surprising that the collisions have a larger effect on
the small scales, i.e. high k⊥ρs. Again, the agreement between the Legendre approach
(dotted line) and EUTERPE (full circles) is very good for all values of k⊥ρs.
It usually takes several collision times until the effects of collisions become apparent in
a numerical simulation. Thus, a relatively high ν0 was chosen. This leads to a short
collision time τcoll = 1/ν and therefore to a reduced over-all time span required to be
simulated.
A numerical study showing the effect of increasing collision frequency ν0 on the damp-
ing rate is presented in Fig. 3. This has been done for a fixed mode number m = 290,
which corresponds to k⊥ρs = 13. Whereas the frequency stays roughly the same for
different collision frequencies, the damping rate increases linearly with rising ν0. This is
the expected behaviour as the collision operator L also scales linearly with ν0.
Apart from the influence on the damping rate of the kinetic Alfvén wave, the effect of
collisions becomes most apparent when investigating the perturbed distribution func-

11



-0.04

-0.03

-0.02

-0.01

0

0 0.05 0.1 0.15 0.2 0.25

EUTERPE parameters:

m=290

Ne=4 Mio.

γ/
Ω

i

ν0/Ωi

Legendre approach
EUTERPE

Figure 3: Influence of an increasing collision frequency on the damping rate of the kinetic Alfvén
wave. While the frequency (not shown) stays almost the same, the damping rate scales linearly
with ν0.

tion f
(1)
e in velocity-space (u, ξ′). Fig. 4 shows the results obtained by the Legendre

approach. For this particular case the mode number m = 25 has been used, corre-

sponding to an intermediate k⊥ρs ≈ 1.12. In Fig. 4, f
(1)
e is plotted at different times

in the simulation without (left-hand side) and with (right-hand side) collisions. In all
diagrams the resonance condition

ω − u‖k‖ = 0 (38)

is indicated as a solid black line using the ω obtained from the simulation.
Starting from the same initial condition, which is a Maxwellian and therefore isotropic in
ξ′, it can be seen that collisions have a strong effect on the structure of f

(1)
e . Without col-

lisions the perturbed distribution function becomes highly non-isotropic in pitch-angle.

f
(1)
e peaks around those velocities fulfilling Eq. (38), as expected. As time progresses,

the structures in velocity-space become even finer.
When collisions are included, the velocity-space becomes more isotropic with respect to

ξ′ for tΩi ≥ 35. The strong peaking of f
(1)
e around the resonant velocities has almost

vanished, but the perturbed distribution function is still localized in the vicinity of the
resonances. The small scales in velocity-space are effectively damped. Furthermore,

the shape of f
(1)
e in velocity space seems to have quickly reached a nearly converged

state, nevertheless the amplitude is growing slightly (less than in the collision-less case)
between tΩi = 35 and tΩi = 70.
Another feature of collisions is related to the long-time behaviour of f

(1)
e . Without col-

lisions, the perturbed part of the distribution function never vanishes. The damping
of the potentials φ and A‖ comes from the integration over velocity-space in combina-
tion with the developing fine-scale structure. Pitch-angle collisions, on the other hand,
have the property of relaxing the distribution function towards a Maxwellian in this lin-
ear problem. Hence (because of the splitting fe = F + f

(1)
e applied to the distribution

function), f
(1)
e has to vanish for t → ∞.
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Figure 4: The perturbed distribution function (at k‖z = π/4) in velocity-space at different sim-

ulation times. Collisions are included only on the right-hand side. While f
(1)
e peaks around the

resonant velocities (black line) without collisions, velocity-space becomes more isotropic in ξ′ for
the case including collisions. All solutions for f

(1)
e were obtained by the Legendre approach.

It was observed in long-time simulations (about five times longer than the longest time
shown in Fig. 4) that f

(1)
e integrated over all velocities (using the L2-norm) saturates at a

finite value in the collision-less case, but vanishes if collisions are included.
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Figure 5: Convergence of the real frequency (left) and of the damping rate (right) determined by
EUTERPE with decreasing time step under the influence of collisions. The gray region on the
left-hand side corresponds to an uncertainty level of 0.1 %. Since it is more difficult to resolve the
damping rate, the gray region indicates 5 % uncertainty on the right-hand side. Since increasing
the particle number by a factor of 10 leads to nearly the same behaviour, the convergence seems
to be bound by ∆t. The convergence with respect to ∆t is of first order.

B. Convergence studies

1. Convergence study for ∆t and small k⊥ρs

As can be seen in Figs. 1 and 2, the frequency of the mode increases with rising values
of k⊥ρs. In order to fully resolve the ever-faster oscillatory behaviour, the time step had
to be decreased with increasing values of the poloidal mode number m. Fig. 1 confirms
that the time steps were chosen well for the cases without collisions. With collisions,
however, ∆t had to be chosen smaller at low values of k⊥ρs (at high values of k⊥ρs the
time step was already small enough). This is due to the fact that, when collisions are
included in the EUTERPE simulations, a stochastic scheme is chosen. As this scheme
only has a weak convergence of order one (in ∆t) and is thus less accurate than the
fourth-order Runge-Kutta, a smaller time step needs to be chosen.
A convergence scan with respect to the time step ∆t was performed for the EUTERPE
calculation including collisions at m = 3 (k⊥ρs ≈ 0.14). Fig. 5 shows the results. Using
the same time step ∆t Ωi ≈ 0.83 with and without collisions does not lead to accurate
results for ω and γ in the collisional case: The damping rate is for instance wrong by
a factor of two. This is due to the aforementioned change in the time-integrator from
a fourth-order Runge-Kutta to a first-order stochastic method. Note that for this small
value of k⊥ρs collisions have nearly no influence on ω and γ (see Fig. 2), but they still
determine the time step.
However, Fig. 5 also shows how EUTERPE converges to the result obtained by the Leg-
endre approach with decreasing values of ∆t. Thus, when including collisions into the
simulations, it should be carefully checked if the result is converged with respect to the
time step. Especially since the numerical error of the integration scheme increases that
drastically.
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Figure 6: Convergence of the real frequency (left) and of the damping rate (right) with increasing
number of electron markers in EUTERPE. Collisions are present. The uncertainty levels are the
same as in Fig. 5.

2. Convergence study for Ne and high k⊥ρs

Figs. 2 and 3 nicely demonstrate the correct implementation of collisions in the electro-
magnetic version of EUTERPE. However, to obtain the results presented in Fig. 2 rather
high particle numbers have been chosen in order to ensure numerically converged re-
sults. Now, a convergence study (for the last point of Fig. 2 at k⊥ρs = 13, m = 290) has
been conducted with the aim to reduce the required particle number. Fig. 6 summarizes
the results.
It can be seen that particle numbers greater than 4 million are not necessary for an
accurate determination of ω and γ. Reducing the particle number by a factor of 2 to
2 million still gives a frequency that is approximately only 0.2 % (≈ 5 % for γ) off
compared with the Legendre approach. For particle numbers greater than 2 million the
agreement between both approaches is very good. This is even less than the 4 million
numerical marker particles used in the case without collisions (Fig. 1). This hints on the
fact that not the optimum particle number may have been used in that case.
Seeing how on the left-hand side of Fig. 6 nearly all points scatter around the 0.1 % un-
certainty interval emphasizes again that the frequency is more robust than the damping
rate for this case.

C. Comparison of p‖- and v‖-formulation

All the EUTERPE results have been obtained using the PT-scheme. For the second strat-
egy presented in this paper, using the Legendre approach to solve the kinetic equation,
the p‖-formalism has been used exclusively so far. This avoids the numerically difficult
∂A‖/∂t-term inherent to the v‖-formulation, but requires the introduction of a correc-
tion resulting from L (F). It is not required to change the collision operator (given in
v‖) directly, because all corrections are non-linear in the perturbations and therefore
negligible.
When comparing the results obtained with the Legendre approach with the EUTERPE
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Figure 7: Comparison of the p‖- and v‖-formulation of the equations. Good agreement is found
for values of k⊥ρs for which the v‖-formulation was numerically stable.

results it should be pointed out that the collision step in EUTERPE is performed while
being in the v‖-frame. It is therefore worthwhile to examine what happens to the Leg-
endre approach when going from p‖ to v‖.
This transition requires the u̇‖ equation to be replaced by

v̇‖ = − qe

me

(

∇‖φ +
∂A‖
∂t

)

. (39)

Consequently, the skin term in Ampère’s law and L (F) do no longer appear. Hence, in
the kinetic equation only the A‖-terms change and Eq. (30) must be transformed to

∂

∂t

(

fl +
qe

me

v

v2
th,e

A‖δl,1

)

+ ik‖v

(

l + 1
2l + 3

fl+1 +
l

2l − 1
fl−1

)

= −ν

2
l (l + 1) fl −

qe

me
ik‖

v

v2
th,e

φδl,1.
(40)

Contrary to the p‖-formulation, f1 is now integrated together with the vector potential,
i.e.

f̃1 = f1 +
qe

me

v

v2
th,e

A‖ (41)

and after each Runge-Kutta sub-step f1 is computed from f̃1 using the A‖ from the
previous step. This emphasizes that the v‖-formulation is numerically indeed more
challenging.
In Fig. 7 it is shown that also for electromagnetic simulations including collisions the
agreement between the p‖- (dotted line) and v‖-implementation (full circles) is very
good. However, this comparison could only be carried out for three data points with
high mode numbers, because the integration scheme became numerically unstable in
v‖ for smaller values of k⊥ρs. Using an implicit scheme for the time integration might
prevent the numerical instability.
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V. SUMMARY AND CONCLUSIONS

The applicability of the pullback transformation scheme [18, 22] to an electromagnetic
system influenced by electron pitch-angle collisions has been investigated using the
gyro-kinetic PIC code EUTERPE. For comparison, a decomposition of the perturbed
electron distribution function into Legendre polynomials was used as a second strategy
to solve the equations.
The widely used p‖-approach has the drawback that the collisional and the non-
collisional parts of the kinetic equation operate in different coordinates. This is counter-
intuitive and necessitates the introduction of a correction term. On the other hand, the
PT-scheme, apart from its other advantages, operates in v‖-space. Here we showed by
comparing the PIC and the Legendre approach that this scheme is a natural choice for
including collisional effects in electromagnetic PIC simulations and is compatible with
a two-weight scheme.
After the successful benchmark between EUTERPE and the Legendre approach the ef-
fects of collisions on f

(1)
e were studied in greater detail. It was found that because of

collisions, the velocity-space becomes much more isotropic with respect to the pitch-

angle. f
(1)
e is completely different with and without collisions, which might be the

reason why perturbative theories on this topic are scarce.
All simulations have been performed in slab geometry in order to concentrate on the
essential properties of the numerical scheme. The parameters of this case were chosen
in a way to facilitate a straightforward comparison between EUTERPE and the Leg-
endre approach with the focus of the benchmark being on verification rather than on
validation.
The convergence scans showed that, when collisions are included, choosing a small
time step is more important than having a high particle number. This could easily
be understood as the integration scheme changes from a fourth-order Runge-Kutta to
a first-order (weak convergence) stochastic scheme. For more complex systems with
higher constraints on the time step, it could be worthwhile to test stochastic integrators
of higher order.
For simplicity, only results excluding the ion dynamics have been presented in this
paper. A fully kinetic extension is straightforward.
The consequent next steps would be performing simulations in more interesting parame-
ter regimes and in more realistic geometries, e.g. in tokamaks or stellarators. Moreover,
since only electron-electron pitch-angle collisions were considered so far, the collision
operator should be extended accordingly.
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