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Using the sensitivity of optical second harmonic generation to currents, we demonstrate the generation
of 250-fs long spin current pulses in Fe=Au=Fe=MgOð001Þ spin valves. The temporal profile of these
pulses indicates ballistic transport of hot electrons across a sub-100 nm Au layer. The pulse duration is
primarily determined by the thermalization time of laser-excited hot carriers in Fe. Considering the
calculated spin-dependent Fe=Au interface transmittance we conclude that a nonthermal spin-dependent
Seebeck effect is responsible for the generation of ultrashort spin current pulses. The demonstrated rotation
of spin polarization of hot electrons upon interaction with noncollinear magnetization at Au=Fe interfaces
holds high potential for future spintronic devices.
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Optimization and control of spin currents (SC) and their
interaction with magnetic constituents in heterostructures
on a femtosecond time scale is key for future terahertz
spintronics applications. Although electronic transport
through a ferromagnet (FM), as described by Mott’s
two current model [1], generates a spin-polarized current,
its density is intrinsically limited by Joule losses. The
discovery of the spin-dependent Seebeck effect (SdSE),
where thermal gradients over a bulk FM [2] or across an
interface to a normal metal [3] generate SCs, opened a
path towards overcoming such limitations. Indeed, short-
lived thermal gradients can produce short (∼100 ps) SC
pulses at densities exceeding the static Joule limit, as
recently demonstrated upon laser excitation of spin-valve
structures [4].
Creating highly energetic electrons [5–9], femtosecond

laser excitation is promising for SC pulse generation
on subpicosecond time scales, before the electron-electron
[9] and electron-lattice [8] equilibration is reached.
Superdiffusive transport of laser-excited spin-polarized
hot carriers on a femtosecond time scale [10,11] was
evidenced in a plethora of experiments [12–18]. How-
ever, unraveling the underlying microscopic picture
requires understanding the influence of the electron dynam-
ics in a FM, the scattering in metallic layers, and the
properties of interfaces on the SC pulse. For this, a direct
SC detection is highly desirable yet challenging in the
presence of laser-induced magnetization dynamics [19].
In this Letter we argue that under nonequilibrium

conditions, the SdSE at interfaces can lead to the efficient

generation of femtosecond SC pulses paving the way for
future THz spintronics. Employing a nonlinear-optical
approach, we demonstrate the generation of these pulses
at the Fe=Au interface and Stern-Gerlach-like spatial spin
separation upon their interaction with an orthogonal FM
magnetization. The latter facilitates the development of
nondissipative metallic spin polarizers and rotators for
ultrafast spintronics.
In SdSE, spin transport is determined by gradients of the

electron distribution function ∇fðEÞ, which are drastically
enhanced at interfaces. The difference ΔfðEÞ across the
interface enables the flux of electrons (e) at energy E > EF
or holes (h) at E < EF, where EF is the Fermi energy. A
charge current j emerges when the total fluxes of e and h
are unequal due to an asymmetry (with respect to EF) of
ΔfðEÞ, conductance [20], or the interface transmittance T,
known as the Seebeck effect. If j↑ ≠ j↓ in the majority and
minority subbands of FM, the resulting j ¼ j↑ þ j↓ is
accompanied by the SC jS ∝ j↑ − j↓.
Now we analyze SdSE at the Fe=Auð001Þ interface

for thermal and nonthermal fðEÞ. From ab initio
quantum transport calculations [21] we have obtained
the momentum-averaged interface transmittance TFA for
spin-↑ and -↓ carriers moving from Fe to Au [Fig. 1(a)]. In
the thermal case, the carriers at energies within kBTe ≲
100 meV around EF are responsible for the transport
[4,20], where TeðzÞ is the electron temperature. Therefore,
the thermal SdSE originates from the slope of trans-
mittance ∇ETFAðEFÞ [Fig. 1(a)] and ΔfðEÞ determined by
the temperature gradient ∇zTe across the interface.
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A much broader nonthermal fðEÞ is formed by 1.5 eV
laser excitation of Fe [shaded areas in Fig. 1(a)] [14]. High
optical reflectance ensures the absence of excited carriers in
Au providing much larger Δf than in the thermal case.
Excited into the sp band of Fe [14,24], e↑ have much larger
transmittance [Figs. 1(a),1(b)] than other carriers resided in
the d band which poorly matches the sp band of Au. More-
over, much higher velocity of e↑ in Fe [25] provides their
better transport towards the interface. Thus, an efficient
injection of e↑ into Au [Figs. 1(b),1(c)] results in SC pulses
with the spin component of jSz;i along î ¼ x̂; ŷ set by the Fe
magnetization and the average electron velocity v along ẑ
[Fig. 1(c)]. Noteworthy, a similar spin-dependent interface
transmittance can be expected in any itinerant FM/noble
metal bilayer [26] facilitating demagnetization of the FM
by superdiffusive spin transport [10,11].
In this nonthermal SdSE, the collective displacement of

“cold” non-spin-polarized electrons near EF in Au partially
screens the charge but not the spin component of the e↑

transport. Therefore, compared to the thermal case, SC
pulses of much larger amplitude can be expected while the
net charge transfer is suppressed. Furthermore, the pulse
duration here will be primarily determined by the electron
thermalization time in FM τFMth ≲ 0.5 ps [9,27]: once the
nonthermal fðEÞ [Fig. 1(a)] is relaxed to the Fermi-Dirac
distribution, the remaining SC is of purely thermal origin.

The thus expected generation of ultrashort and intense SC
pulses is demonstrated below.
To achieve steady control of propagation direction and

spin polarization of SC pulses, we combine the spin-valve
concept with the pump-probe approach developed in
Ref. [14]; see Fig. 1(c). The two Fe layers in the epitaxial
Fe=Au=Fe=MgOð001Þ stack [Fig. 2(a)] are magnetically
decoupled and can be optically excited and probed inde-
pendently owing to the 50 nm-thick Au spacer. The samples
were fabricated following Ref. [14] and examined with
transmission electron microscopy, see Figs. 2(a)–2(c). The
excellent epitaxial quality and flatness of interfaces, are
essential for comparison with the ab initio calculations
performed for an atomically sharp interface.
Magnetoinduced second harmonic generation (mSHG)

[28,29] is a promising tool for direct SC detection owing to
its high temporal resolution and sensitivity to the current-
driven symmetry breaking, as demonstrated in GaAs
[30,31] and multilayer graphene [32]. We performed all-
optical experiments in either the front or back pump-probe
scheme shown in Fig. 1(c). The 800 nm, 14 fs, 1 MHz
output of a cavity-dumped Ti:sapphire oscillator (Mantis,
Coherent) was split at a power ratio 4∶1 into pump and
probe pulses both focused into an ∼10 μm spot resulting
in a pump fluence of ∼10 mJ=cm2. The magneto-optical
Kerr effect (MOKE) was measured with a balanced two-
photodiode detector while the second harmonic signal was
registered by a photomultiplier [14].

(b)

(a)

(c)

(d)

(e)

(f)
(g)

FIG. 2. (a)–(c) Cross-section transmission electron microscopy
images of Fe=Au=Fe=MgOð001Þ stack capped with 3 nm of Au
and the experimental scheme. Electron diffraction (inset) reveals
epitaxial growth of layers. Hysteresis loops measured by mSHG
(d),(e) in p-in, p-out polarization geometry and by p-in MOKE
(f),(g) in the bottom (collector) (d),(f) and top (emitter) (e),(g) Fe
layers vs the transversal external magnetic field HT∥ŷ for the
indicated values of the longitudinal field HL∥x̂, as shown in (a).

(a)
(b)

(c)

FIG. 1. (a) Calculated momentum-averaged transmittance of
the Fe=Au interface for majority (T↑

FA) and minority (T↓
FA)

carriers moving from Fe to Au. Shaded areas reproduce sche-
matically the spectrum of primary carriers excited by the 1.5 eV
pump [14]. (b) Nonthermal spin-dependent Seebeck effect:
among the hot carriers excited in Fe, only majority electrons
with the energy above 0.3 eV are effectively transmitted into Au.
(c) Experimental scheme: switching between the front and back
pump changes the direction of currents in the Au spacer while the
magnetizationM in the pumped Fe layer set along one of the two
equivalent easy axes x̂ ¼ ½100� and ŷ ¼ ½010� defines the spin
polarization.
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The second harmonic field E2ω ¼ Ee þ Em consists of
“electronic” Ee and magnetoinduced Em terms which are,
respectively, independent of and proportional to the mag-
netization M [28]. In this work (x, z) is the plane of
incidence and we use p-in, p-out polarization geometry.
Then, Em is proportional to My, the transversal magneti-
zation component [14,28] while the MOKE is sensitive to
the longitudinal Mx [33]. In order to set the magnetization
of collector Mcol and emitter Mem [Fig. 1(c)], transversal
(HTjjŷ) and longitudinal (HLjjx̂) magnetic fields were
applied along the two easy axes [Figs. 2(d)–2(g)] [34]. In
the pump-probe experiments, the mSHG intensity was
measured in transversal and longitudinal geometries for
positive and negative My and Mx, respectively. From these
data, we retrieved Ee, Em for each pump-probe delay t and
Ee0, Em0 in the absence of pump [35]. In the following, we
discuss relative variations ΔEe=Ee0 and ΔEm=Em0 which
are shown in Figs. 3, 4.
In equilibrium,Ee ¼ Eint

e and Em ¼Eint
m originate from

the interface dipole polarization [37] P2ω
i ¼ χð2ÞijkE

ω
j E

ω
k þ

χð2;mÞ
ijk;y E

ω
j E

ω
kM

col
y , where i, j, k ¼ x, z. However, after fs-

laser excitation, the propagating electrons break the

inversion symmetry. Thus, bulk dipole current- and SC-

induced polarizations χð2;CÞijkz Eω
j E

ω
k jz and χð2;SCÞijkz;y E

ω
j E

ω
k j

S
z;y

appear [39]. They contribute to E2ω as

EC
e ∝ jz ∝ vz; ESC

m ∝ jSz;y ∝ vzsy; ð1Þ

where jSz;y is the SC tensor component with the electron
velocity vz and spin polarization sy [40]. Thus, in addition
to the modulation of the interface contributions, the
total pump-induced variations ΔEe;m contain bulk
terms (1) which provide direct access to the charge and
spin currents [41]:

ΔEe ¼ ΔEint
e þ EC

e ; ΔEm ¼ ΔEint
m þESC

m : ð2Þ
This is demonstrated in Fig. 3 where we excite currents

from the front (F) or back side of the sample. In the latter
case, we consider parallel (P), antiparallel (A), and non-
collinear (N) alignment of Mem with respect to the trans-
versalMcol. First, we discuss the pronounced characteristic
features at t < 0.5 ps ∼ τFMth . In the F configuration, we
observe ΔEF

e > 0 [Fig. 3(a)] and ΔEF
m < 0 [Fig. 3(b)].

Then we reverse v keeping the direction of s (determined
by Mem) and find in this P configuration ΔEP

e < 0 and
ΔEP

m > 0, in agreement with the sign change of jz and jSz;y
in Eq. (1). Reversing jSz;y (but not jz) by keeping vz but
changing the sign of sy (A configuration) only slightly
affects ΔEe [Fig. 3(a)] while ΔEm changes its sign:
ΔEA

m < 0 [Fig. 3(b)]. Lastly, we rotate s by 90° (N
configuration) to set jSz;y ¼ 0, ESC

m ¼ 0 [cf. Eq. (1)] and

(a)

(b)

FIG. 3. Variations of nonmagnetic and current-induced (a) and
magnetization- and SC-induced (b) components of the second
harmonic electric field observed in p-in, p-out polarization
geometry. SC vs M configurations for the front (F) and back
ðP; A; NÞ pumping are shown in the legend [cf. Fig. 1(c)]. The
solid line represents the common background due to heating-
induced demagnetization.

(a)

(b)
(c)

FIG. 4. (a) ΔEP
m and ΔEN

m with the linear background removed
represent the SC pulse shape and the contribution of reflected and
transmitted hot electrons, respectively. ΔENL

m differs from ΔEP
m

due to the accumulation of the transversal magnetic moment
ΔMcol

T in Fe behind the Au=Fe interface [cf. (b) and Eq. (2)].
(b) Hot electron behavior at the Au=Fe interface in orthogonal
(N and NL) configurations. (c) Calculated momentum-averaged
transmittance of the Au=Fe interface for majority (T↑

AF) and

minority (T↓
AF) carriers moving from Au to Fe [36].
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obtain no sizable ΔEN
m. Since the major part of ΔEm

changes its sign with reversal of vz or sz (i.e., of jSz;y), we
conclude on the dominant role of ESC

m in the mSHG
response at short delays. Thus, we unambiguously observe
ultrashort SC pulses in Fig. 3(b).
At t ≫ τFMth , we expect a reduction of Eint

m by thermal-
ized electrons heating up the collector: ΔEint

m ∝ ΔMcol
y .

This agrees with the observed ΔEP;A;N
m ðtÞ coinciding at

t > 2 ps [Fig. 3(b)]. Subtracting this trend (solid line) from
ΔEP

m, we obtain a unipolar trace [Fig. 4(a)] with a sharp
onset in contrast to the bipolar behavior of ΔEA

m [Fig. 3(b)].
To understand this difference and its relation to the SC
profile [41], we discuss the interaction of spin-polarized
electrons with the Au/Fe interface [Fig. 4(b)] determined by
TAF [Fig. 4(c)]. After considering open (P) and closed (A)
states of the spin valve important for GMR devices, we turn
to N and NL (noncollinear, longitudinal collector) con-
figurations with Mem⊥Mcol having high potential func-
tionality for spin transfer torque applications [42].
Averaging the calculated interface transmittance over the

energy of emitted electrons we obtain TP ¼ hT↑
AFi ≈ 0.95

and TA ¼ hT↓
AFi ≈ 0.25. Therefore, in the A configuration,

the reflected SC modifies ESC
m [43] leading to bipolar

ΔEA
mðtÞ similar to that measured at the Au surface [14]. In

the P configuration, the SC is absorbed by the collector
[44] andΔEP

mðtÞ in Fig. 4(a) represents the temporal profile
of incoming SC pulse. For ballistic electrons traveling in
Au with the Fermi velocity 1.4 nm=fs [45] and random
angular distribution the average propagation time τb is
70 fs. The maximum of ΔEP

mðtÞ observed at this delay thus
suggests ballistic transport [14] with the length λAu ≳
100 nm for electrons at 0.3 < E − EF < 1.5 eV [46]. We
conclude that ΔEP

mðtÞ closely reproduces the dynamics of
electron emission. The similarity of its decay time of 250 fs
[Fig. 4(a)] to the electron thermalization time τFeth ≈ 200 fs
[47] strongly corroborates the nonthermal SdSE mecha-
nism considered above. Its high efficiency is evident from
the negligibly small contribution of thermal SdSE [4],
which is within the noise level here.
We now turn to the NL configuration where the longi-

tudinal Mcol excludes demagnetization effects in Eint
m

while the transversal Mem provides ESC
m ≠ 0. The striking

similarity of ΔEP
m and ΔENL

m at t < 1 ps [Fig. 4(a)]
indicates a negligible contribution of the spin polarization
of reflected electrons. Within the single-particle approach,
we treat an electron with spin s⊥Mcol representing its wave
function jΨ⊥i ¼ ðjΨ↑i þ jΨ↓iÞ=

ffiffiffi

2
p

as a superposition of
the spin eigenfunctions [48] corresponding to s↑↑Mcol and
s↓↑Mcol which were discussed above for P and A
configurations. Considering diagonal transmission opera-
tors, we obtain that the transmittance for electrons with
s⊥Mcol is the average of transmittance for electrons with
s↑↑Mcol and s↓↑Mcol. A limiting case of TP ¼ 1 and

TA ¼ 0 is illustrated in Fig. 4(b): only the spin-up (-down)
component of the incoming wave is transmitted (reflected).
In other words, all electrons with orthogonal spins inter-
acting with FM rotate their spins into parallel and anti-
parallel states with equal probabilities. Subsequently,
electrons with parallel spins are transmitted and antiparallel
reflected; i.e., the two spin components are separated in
space like in the Stern-Gerlach experiment. This rotated
spin polarization does not contribute to ΔENL

m , which
explains the similarity of the latter to ΔEP

m.
In the general case, transmittances differ from 1 and 0

[Fig. 4(c)] resulting in nonzero residual (s⊥Mcol) spin
polarization s⊥ in both reflected and transmitted currents

[48], jsR⊥j ≤
ffiffiffiffiffiffiffiffiffiffiffiffi

RPRA
p

js⊥j and jsT⊥j ≤
ffiffiffiffiffiffiffiffiffiffiffi

TPTA
p

js⊥j, where
R ¼ 1 − T. The rotated components (sjjMcol) are given
by sRjj ¼ ðRP − RAÞjs⊥j=2 and sTjj ¼ ðTP − TAÞjs⊥j=2.
These sjj and s⊥ are addressed in N and NL configurations,
respectively. Using Eqs. (1)–(2), we obtain ΔENðtÞ ¼
ðΔEP þ ΔEAÞ=2, in line with Ref. [48]. Experimentally,
this holds for both ΔEe;m thus indicating the key role of sRjj
in the positive ΔEN

m observed at 0.5 < t < 2 ps. The
negligible effect of the spin polarization of reflected
electrons in NL configuration agrees well with the calcu-
lated RP;A for which jsR⊥j does not exceed js⊥j=5.
The angular momentum conservation upon interaction

with the Au/Fe interface together with the quantum
decoherence of the jΨ↑i þ jΨ↓i superposition (sT⊥ can
be up to s⊥=2) within the inelastic mean free path λ↓Fe <
1 nm [25], leads to the emergence of ΔMcol⊥Mcol in the
vicinity of the interface [Fig. 4(b)]. This ultrafast spatially
confined spin transfer torque effect inducing ΔMcol

y at
the interface is responsible for the small deviation of
ΔENL

m from ΔEP
m observed in Fig. 4(a) at t < 0.5 ps.

Subsequently, several lowest standing spin wave modes
at the frequencies up to 0.6 THz are excited in the
collector resulting in the nonmonotonic behavior of
ΔENL

m at t > 1 ps [Fig. 4(a)], see Ref. [42].
Summarizing, using the high sensitivity of nonlinear-

optical probe to the transient inversion symmetry break-
ing, we have demonstrated the generation of ultrashort
spin current pulses in Fe=Au=Fe epitaxial multilayers. The
measured pulse shape agrees with the proposed non-
thermal spin-dependent Seebeck effect and indicates
ballistic transport of spin-polarized electrons in Au.
The pulse duration (∼250 fs) is determined by the electron
thermalization time in Fe. We have shown the large
difference in transmittance of the Au=Fe interface for
the spin-polarized electrons with E − EF < 1.5 eV. This
results in a high spin rotation efficiency of 70% at the
interface, where the transmitted (reflected) current loses
its orthogonal spin component and becomes polarized
parallel (antiparallel) to the Fe magnetization. These
findings facilitate the development of metal-based sources
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of ultrashort spin current pulses and nondissipative
reflective or transmittive spin polarizers and rotators for
ultrafast spintronics.
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