English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Prolonged pharmacological inhibition of cathepsin C results in elimination of neutrophil serine proteases

MPS-Authors
/persons/resource/persons192250

Hamon,  Yveline
Research Group: Enzymes and Inhibitors in Chronic Lung Disease / Jenne, MPI of Neurobiology, Max Planck Society;

/persons/resource/persons207157

Lamort,  Anne-Sophie
Research Group: Enzymes and Inhibitors in Chronic Lung Disease / Jenne, MPI of Neurobiology, Max Planck Society;

/persons/resource/persons38911

Jenne,  Dieter E.
Research Group: Enzymes and Inhibitors in Chronic Lung Disease / Jenne, MPI of Neurobiology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Guarino, C., Hamon, Y., Croix, C., Lamort, A.-S., Dallet-Choisy, S., Marchand-Adam, S., et al. (2017). Prolonged pharmacological inhibition of cathepsin C results in elimination of neutrophil serine proteases. Biochemical Pharmacology, 131, 52-67. doi:10.1016/j.bcp.2017.02.009.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002D-A5D9-1
Abstract
Cathepsin C (CatC) is a tetrameric cysteine dipeptidyl aminopeptidase that plays a key role in activation of pro-inflammatory serine protease zymogens by removal of a N-terminal pro-dipeptide sequence. Loss of function mutations in the CatC gene is associated with lack of immune cell serine protease activities and cause Papillon-Lefevre syndrome (PLS). Also, only very low levels of elastase-like protease zymogens are detected by proteome analysis of neutrophils from PLS patients. Thus, CatC inhibitors represent new alternatives for the treatment of neutrophil protease-driven inflammatory or autoimmune diseases. We aimed to experimentally inactivate and lower neutrophil elastase-like proteases by pharmacological blocking of CatC-dependent maturation in cell-based assays and in vivo. Isolated, immature bone marrow cells from healthy donors pulse-chased in the presence of a new cell permeable cyclopropyl nitrile CatC inhibitor almost totally lack elastase. We confirmed the elimination of neutrophil elastase-like proteases by prolonged inhibition of CatC in a non-human primate. We also showed that neutrophils lacking elastase-like protease activities were still recruited to inflammatory sites. These preclinical results demonstrate that the disappearance of neutrophil elastase-like proteases as observed in PLS patients can be achieved by pharmacological inhibition of bone marrow CatC. Such a transitory inhibition of CatC might thus help to rebalance the protease load during chronic inflammatory diseases, which opens new perspectives for therapeutic applications in humans. (C) 2017 Elsevier Inc. All rights reserved.