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Transgenic line for the identification of cholinergic release sites in

Drosophila melanogaster
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ABSTRACT

The identification of neurotransmitter type used by a neuron is
important for the functional dissection of neuronal circuits. In the
model organism Drosophila melanogaster, several methods for
discerning the neurotransmitter systems are available. Here, we
expanded the toolbox for the identification of cholinergic neurons by
generating a new line FRT-STOP-FRT-VAChT::HA that is a
conditional tagged knock-in of the vesicular acetylcholine
transporter (VAChT) gene in its endogenous locus. Importantly, in
comparison to already available tools for the detection of cholinergic
neurons, the FRT-STOP-FRT-VAChT::HA allele also allows for
identification of the subcellular localization of the cholinergic
presynaptic release sites in a cell-specific manner. We used the
newly generated FRT-STOP-FRT-VAChT::HA line to characterize the
Mi1 and Tm3 neurons in the fly visual system and found that VAChT is
present in the axons of both cell types, suggesting that Mi1 and Tm3
neurons provide cholinergic input to the elementary motion detectors,
the T4 neurons.

KEY WORDS: VAChT, Acetylcholine, Neurotransmitter, Motion
vision, Mi1 neurons, Tm3 neurons

INTRODUCTION

Understanding of the information processing in neuronal circuits
requires knowledge about connectivity and properties of the cells
involved. The type of neurotransmitter released by a cell defines, to
a large extent, the role of a cell and the range of logical operations
that are performed within a circuit. Thus, the identification of the
cellular neurotransmitter phenotype is of crucial importance for the
functional dissection of neuronal circuits.

Various techniques have been described for the identification of
neurotransmitter systems in the Drosophila melanogaster nervous
system. The most common approach is the detection of
neurotransmitter molecules (Monastirioti et al., 1995; Yuan et al.,
2005; Kolodziejczyk et al., 2008), neurotransmitter-synthesizing
enzymes (Takagawa and Salvaterra, 1996, Featherstone et al., 2000;
Blanco et al.,, 2011) or vesicular neurotransmitter transporters
(Kitamoto et al., 1998; Daniels et al., 2004; Greer et al., 2005;
Romero-Calderon et al., 2008; Fei et al., 2010) with an antibody. In
Drosophila neurons, the major disadvantage of this strategy is that
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either cell bodies or larger neuropil areas are examined for the
antibody staining. Because of the small diameter of the neuronal
processes, reliable localization of the antibody staining within the
individual neurites is beyond the resolution threshold of traditional
confocal microscopy. Therefore, the markers that localize to the
presynaptic regions and are not present ubiquitously in the
cytoplasm or at the cytoplasmic membrane of soma cannot be
easily detected in individual neurons.

The second approach for the identification of neurotransmitter
phenotype is the detection of mRNA transcripts for
neurotransmitter-synthesizing  enzymes or neurotransmitter
vesicular transporters. The in sifu hybridization technique has
been used to study gene expression mainly in fly embryos but also in
other tissues, including the nervous system. Nevertheless, the
demanding process of probe optimization poses a challenge and
therefore this technique is not routinely used to assess
neurotransmitter phenotype. With respect to the specificity and
dynamic range, the current method of choice for transcript profiling
is RNA-seq of a single cell or a homogeneous population of cells
(Henry et al., 2012; Thomas et al., 2012). In addition, other
techniques such as RT-PCR or gene expression microarrays have
been successfully used to study gene expression in Drosophila
neurons (Nagoshi et al., 2010; Takemura et al., 2011). Regardless of
the specific technique, the cell-type-specific transcriptome profiling
requires isolation of labeled somata, nuclei or ribosomes in
sufficient quantity and purity, which is labor-intensive. Also,
contamination of the analyzed sample with mRNA from other cell
types may occur during this process.

The third approach relies on genetic labeling of neurons
expressing the neurotransmitter-synthesizing enzymes or
neurotransmitter vesicular transporters via insertion of a transgene
into 5" UTR or a coding intron of the respective gene (Venken et al.,
2011; Diao et al.,, 2015). When the inserted transgene is a
transcription factor of a binary expression system such as Gal4/
UAS (Brand and Perrimon, 1993) or LexA/lexAop (Lai and Lee,
2006), the complete expression pattern of a particular gene can be
casily identified throughout the whole nervous system. Recently, a
set of LexA knock-in lines for the neurotransmitter vesicular
transporter genes was generated by ends-out homologous
recombination (Simpson, 2016).

Acetylcholine is a major excitatory neurotransmitter in the
Drosophila nervous system. Synthesis of acetylcholine is catalyzed
by the enzyme choline acetyltransferase (ChAT) and its loading
into synaptic vesicles is mediated by the vesicular acetylcholine
transporter (VAChT). Currently, the available tools for
identification of the cholinergic neurons are ChAT antiserum
(Takagawa and Salvaterra, 1996), ChAT Trojan-MiMIC driver lines
(Venken et al., 2011; Diao et al., 2015) and VAChT-LexA knock-in
line (Simpson, 2016).

In the present study, we describe a newly generated FRT-STOP-
FRT-VAChT::HA allele for the reporting of the endogenous
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expression of VAChT that not only identifies neurons with the
cholinergic phenotype but also provides information about the
subcellular localization of the cholinergic presynaptic release sites.

MATERIALS AND METHODS
Fly stocks and genotypes
The flies were raised on a standard cornmeal-agar food at 25°C. The
following stocks were used: yw, Act5C-cas9, ligd (provided by
F. Schnorrer, Max Planck Institute of Neurobiology, Germany)
(Zhang et al., 2014), UAS-FLP (BDSC 4539 and 8208), UAS-
mCD8::GFP (BDSC 5137) (Lee and Luo, 1999), VT25965-Gal4
(T4/T5 line) (provided by B. Dickson, Janelia Research Campus,
USA); R20D01-Gal4 (LPi3-4 line) (BDSC 48889) (Jenett et al.,
2012); VT7747-AD, VT49371-DBD (Mil line) (Ammer et al.,
2015), GMRSS00300-split Gal4 (Tm3 line) (provided by A. Nern,
Janelia Research Campus, USA), MBOOSB (Aso et al., 2014),
MB112C (Aso et al., 2014), UAS-nsyb::GFP (BDSC 6921) (Zhang
et al., 2002) and Act5C-Gal4 (BDSC 4414).

The genotypes of flies used in this study are detailed in Table 1.

Generation of the FRT-STOP-FRT-VAChT::HA allele with the
CRISPR/cas9 system
The target sites for CRISPR/cas9-induced cleavages in the VAChT
gene were designed using a web-based software tool (http:/crispr.mit.
edu/; Hsu et al., 2013). The efficiency of individual guide RNAs
(gRNAs) was tested in S2 cells stably expressing cas9 (provided by
F. Schnorrer) (Bottcher et al., 2014) as described previously (Zhang
et al., 2014). The CRISPR target sites used for genome editing were
AGAGGAAGTCCCAAAGAAAC (TGG) and GGGCTATCGAT-
ACAATCACG (AGQG). The target-specific sequences were cloned
into pU6-Bbsl-gRNA plasmid (provided by M. Harrison,
K. O’Connor-Giles and J. Wildonger; Addgene plasmid 45946)
(Gratz et al., 2013) such that the first base of both sequences was
replaced by G. The gRNA-expressing plasmids and the donor plasmid
for the homology-directed repair were injected into fly embryos of the
genotype yw, Act5C-cas9, ligd. The embryo injections were
performed by BestGene Inc. (https:/www.thebestgene.com/).

The donor fragment for the generation of FRT-STOP-FRT-
VAChHT::HA allele was assembled by PCR fusion of the following

Table 1. Genotypes of flies used in the study

Experiment Genotype
Adult w/w~,yw; Act5C-Gal4/UAS-FLP; FRT-STOP-FRT-VAChHT::
viability HA/FRT-STOP-FRT-VAChT::HA

Fig. 2A w~; UAS-FLP/UAS-mCDS8::GFP; FRT-STOP-FRT-VAChT::
HA/NVT25965-Gal4

Fig. 2B w~; UAS-FLP/UAS-mCD8::GFP; FRT-STOP-FRT-VAChT::
HA/R20D01-Gal4

Fig. 2C UAS-FLP/w~; MB008B-split Gal4/UAS-mCD8::GFP;
MBO008B-split Gal4/FRT-STOP-FRT-VAChT::HA

Fig. 2D UAS-FLP/w~; MB112C-split Gal4/UAS-mCD8::GFP;
MB112C-split Gal4/FRT-STOP-FRT-VAChT::HA

Fig. 3A UAS-FLP/w~; VT7747-AD/UAS-mCD8GFP; VT49371-DBD/
FRT-STOP-FRT-VAChT::HA

Fig. 3B UAS-FLP/w~; GMRSS00300-split Gal4/UAS-mCD8GFP;
GMRSS00300-split Gal4/FRT-STOP-FRT-VAChT::HA

Fig. 3C UAS-FLP/w~; VT7747-AD/UAS-nsyb::GFP; VT49371-DBD/
FRT-STOP-FRT-VAChT::HA

Fig. 3D UAS-FLP/w~; GMRSS00300-split Gal4/UAS-nsyb::GFP;
GMRSS00300-split Gal4/ FRT-STOP-FRT-VAChT::HA

Fig. 3E w; VT7747-AD/UAS-mCD8GFP; VT49371-DBD/+

Fig. 3F w~; GMRSS00300-split Gal4/UAS-mCD8GFP;

GMRSS00300-split Gal4/+
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sequences: (1) flippase recognition target (FRT)-flanked cassette
containing transcriptional terminator (hsp70Ab polyadenylation
signal) and the sequence for a screenable eye marker (3xP3-DsRed-
altub_3'UTR), synthesized de novo; (2) DNA fragment containing
the Kozak sequence followed by an open reading frame (ORF) of
the VAChT gene with the sequence for the HA tag inserted after the
first 14 codons from translational start, synthesized de novo; and (3)
two 1 kb homology arms flanking the CRISPR cleavage sites,
amplified from genomic DNA of yw, Act5C-cas9, lig4 flies. The
resulting donor fragment consisted of the upstream homology arm
fused to the FRT cassette, followed by the Kozak sequence, the
ORF with tag sequence and the downstream homology arm. The
donor fragment was blunt-end cloned into pletl.2 vector (Thermo
Fisher Scientific). The nucleotide sequence of the HA tag was TAC
CCA TAC GAT GTT CCA GAT TAC GCT.

Immunohistochemistry

Fly brains were dissected in PBS and fixed in 4% PFA with 0.1%
Triton X for 25 min. Brains were washed in 0.3% PBT and incubated
first with primary (24—72 h) and then secondary (2448 h) antibodies
in 0.3% PBT supplemented with 5% NGS. The brains were mounted
in Vectashield mounting medium (Vector Laboratories) and imaged
on a Leica TCS SP5 or SP8 laser-scanning confocal microscope. The
following antibodies were used: rabbit anti-GFP (Torrey Pines
TP401, 1:400), rat anti-HA (Sigma-Aldrich, clone 3F10, 1:100),
mouse anti-ChAT (DSHB, deposited by P. Salvaterra, 1:50)
(Takagawa and Salvaterra, 1996), goat anti-rabbit Alexa 488
(Thermo Fisher Scientific A-11008, 1:200), goat anti-rat Alexa 647
(Thermo Fisher Scientific A-21247, 1:200) and goat anti-mouse
Alexa 647 (Thermo Fisher Scientific A-21235, 1:200).

RESULTS AND DISCUSSION

Using CRISPR/cas9-based genome editing (Jinek et al., 2012; Gratz
etal.,2013), we generated a new allele of the VAChT gene that carried
an additional HA tag. This new allele was positioned in the original
genomic locus of the VAChT gene and therefore its expression
depended on the endogenous regulatory sequences of VAChT. The
HA tag was placed after the first 14 amino acids from the N terminus,
within the cytoplasmic domain of the VAChT protein. The position
of the tag was chosen such that it would not interfere with
protein folding or signaling sequences known to participate in
the intracellular trafficking of VAChHT (Fei et al., 2008).

Our aim was to restrict the expression of VAChT::HA to a
population of neurons defined by the expression pattern of a Gal4
line of choice. Therefore, we included a transcriptional stop cassette
into the 5" UTR of the VAChT gene that was flanked by two FRT
sites (Fig. 1). The expression of the VAChT::HA was, as a result,

5 UTR ORF )
VAChT
FRT FRT

Fig. 1. Original VAChT allele and FRT-STOP-FRT-VAChT::HA allele. FRT-
flanked transcriptional stop signal in the 5" UTR constrains the expression of
VAChT::HA. Removal of the stop cassette requires FLP recombinase,
introduced by the Gal4/UAS system. Expression of the VAChT::HA is therefore
restricted to cells with active endogenous regulatory sequences of VAChT that
are, in addition, part of the Gal4 expression pattern. The 3xP3-dsRed
sequence encodes a screenable eye marker. ORF, open reading frame.
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confined to cells that were expressing flippase (FLP) recombinase
introduced by the Gal4/UAS system and contained an active
endogenous promoter of VACAT.

Disruption of both copies of the VAChT gene causes lethality
during embryonic or larval development (Kitamoto et al., 2000).
We did not observe any adult flies homozygous for the newly
generated FRT-STOP-FRT-VACHT::HA allele, confirming that the
stop cassette efficiently disrupts transcription of the VAChT::HA.
When the stop cassette was removed by expressing the FLP
recombinase ubiquitously with Act5C-Gal4 driver line, the flies
homozygous for FRT-STOP-FRT-VAChT::HA allele were viable.
This suggests that the tagged transporter VAChT::HA can fully
substitute the original VAChT transporter at the synapse.

To test the functionality of the FRT-STOP-FRT-VAChT::HA
allele, we chose the T4/T5 neurons. T4/T5 neurons are the
elementary motion detectors of the fly, sensitive to motion of
bright (T4) and dark (T5) edges (Maisak et al., 2013). These cells
have been shown previously to synthesize and release acetylcholine
(Mauss et al., 2014; Shinomiya et al., 2014). In accordance with
these prior findings, we detected VAChT::HA in the axon terminals
of the T4/T5 neurons in the lobula plate (Fig. 2A). A weaker HA
signal was present also in the dendrites of T4/T5 neurons in medulla
and lobula. This finding is in line with a previous study reporting
existence of the dendritic presynaptic release sites in the T4 neurons
(Takemura et al., 2013). To show that the expression of VAChT::HA
is absent in non-cholinergic neurons, we looked at the expression of

anti-GFP
anti-HA

anti-GFP Kenyon cells

S

anti-HA

VAChT::HA in the LPi3-4 neurons that have been previously
identified as glutamatergic (Mauss et al., 2015). As expected, we
could not detect any expression of the VAChT::HA in the LPi3-4
neurons (Fig. 2B).

To demonstrate that FRT-STOP-FRT-VAChT::HA allele reliably
captures the endogenous expression pattern of the VAChT gene in a
variety of neuronal populations, we additionally examined the
expression of VAChT::HA in the mushroom body neurons. We
detected VAChT::HA in the Kenyon cells in o/ lobes of the
mushroom body (Fig. 2C) that have recently been shown to release
acetylcholine (Barnstedt et al., 2016). On the contrary, we did not
observe any HA signal in the GABAergic mushroom body output
neurons ylpedc>o/B (Aso et al., 2014) (Fig. 2D).

Mil and Tm3 neurons synapse onto dendrites of T4 neurons
(Takemura et al., 2013) and are involved in visual detection of the
moving bright edges (Behnia et al., 2014; Ammer et al., 2015).
Despite the functional characterization of the responses of Mil and
Tm3 neurons (Behnia et al., 2014) and the reported effects of the
synaptic silencing of Mil and Tm3 on the motion vision circuit
(Ammer et al., 2015), the exact contribution of the Mil and Tm3
neurons to direction-selective responses of the T4 neurons is not
clear (Maisak et al., 2013; Haag et al., 2016), nor is it known
whether the synaptic input that Mil and Tm3 neurons provide to T4
neurons is excitatory or inhibitory. Therefore, we employed the
newly generated FRT-STOP-FRT-VAChT::HA allele to investigate
the neurotransmitter system used by Mil and Tm3 neurons.

dsRed
anti-GFP
anti-HA

‘anti-HA

Fig. 2. VAChT::HA is detectable exclusively in the cholinergic neurons. (A) The expression of VAChT::HA in T4/T5 neurons is localized to the axons in the
lobula plate and dendrites in the medulla and lobula. (B) In the LPi3-4 neurons, no expression of VAChT::HA can be detected. The fluorescence of DsRed

in the R7/R8 photoreceptor terminals in the medulla confirms the presence of the FRT-STOP-FRT-VAChT::HA allele in the fly genome. (C) Kenyon cells in the o/p
lobes of the mushroom body show expression of VAChT::HA. (D) No co-localization of the HA signal and GFP staining in the mushroom body output

neurons (MBON) y1pedc>a/B can be detected. All scale bars: 20 um. Me, medulla; Lo, lobula; LP, lobula plate.
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Using the FRT-STOP-FRT-VAChT::HA line, we identified the
Mil and Tm3 neurons as cholinergic. The expression of VAChT::
HA could be detected in all medullar and lobular layers where Mil
and Tm3 neurons laterally extend their neurites (Fig. 3A,B). The
VACT::HA signal was strongest for both the Mil and Tm3 neurons
in the medullar layer 9/10, where Mil and Tm3 neurons synapse on
the dendrites of T4 neurons (Takemura et al., 2013). In order to
examine whether the localization of VAChT::HA corresponds to the
presynaptic release sites in the Mil and Tm3 neurons, we expressed
a marker for presynaptic sites, the GFP-tagged neuronal
synaptobrevin (nsyb::GFP) (Zhang et al., 2002), in Mil and Tm3
neurons. We observed that the subcellular localization of nsyb::GFP
in both Mil and Tm3 neurons shows the same pattern as VAChT::
HA (Fig. 3C,D), confirming that the subcellular distribution of
VAChT::HA corresponds to the presynaptic release sites. The
expression of nsyb::GFP in Mil and Tm3 neurons was stronger than
the expression of VAChT::HA and could be detected also in the
neuronal fibers. This is likely due to overexpression of the nsyb::
GFP transgene with the Gal4/UAS system. To prove the cholinergic
phenotype of the Mil and Tm3 neurons by another line of evidence,

Mi1 neurons

A

anti-GFP
anti-HA

anti-GRP" >

an‘f e

2

we stained fly brains with ChAT antiserum (Takagawa and
Salvaterra, 1996) and looked at the presence of ChAT
immunostaining in the cell bodies of Mil and Tm3 neurons. We
detected the presence of ChAT immunoreactivity in the cell bodies
of both Mil and Tm3 neurons (Fig. 3E,F), confirming that Mil and
Tm3 neurons use acetylcholine as their neurotransmitter.

When using the FRT-STOP-FRT-VAChT::HA allele, one
important aspect to consider is choosing a Gal4 line with as
specific an expression pattern as possible. Even very weak
expression of the FLP can lead to genomic excision of the FRT-
flanked transcriptional stop cassette and, as a result, to expression of
the VAChT::HA. As the expression level of VAChT::HA depends
on the endogenous regulatory sequences and not on the amount of
Gal4 molecules present, it may occur that the expression of
VAChHT::HA is stronger than that of Gal4-driven GFP. When using a
Gal4 line containing cells with various strength of Gal4 expression,
we noticed the presence of VAChT::HA also in the neurons that
were barely detectably labeled with GFP. We believe that this is the
reason for the unspecific dotted pattern of the anti-HA staining in
the optic lobe of the Tm3 line (Fig. 3B).

Tm3 neurons

anti-GFP
anti-HA

anti-GFP

% ¥ ’
T4k
anti-GFP

Fig. 3. The Mi1 and Tm3 neurons are cholinergic. The VAChT::HA can be found in all layers of the medulla and lobula in which Mi1 (A) and Tm3 (B) neurons
laterally extend their processes (white arrowheads). The subcellular localization of the presynaptic marker nsyb::GFP in the Mi1 (C) and Tm3 (D) neurons

(white arrowheads) corresponds to that of VAChT::HA. The insets in C and D show close-ups of the medulla regions containing presynaptic release sites of Mi1
and Tm3 neurons labeled by VAChT::HA and nsyb::GFP. Anti-ChAT staining co-localizes with the GFP-labeled somatic cytoplasmic membrane of the Mi1 (E) and
Tm3 (F) neurons. White asterisks mark the position of the GFP-labeled cell bodies of the Mi1 and Tm3 neurons. All scale bars: 20 yum. Me, medulla; Lo, lobula; LP,

lobula plate.
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The decision about which approach to use for the identification of
cholinergic neurons should be based on the driver line inspected.
For the Gal4 lines with a narrow expression pattern and the split-
Gal4 lines, the FRT-STOP-FRT-VACKT::HA allele is the tool of
choice. When using the FRT-STOP-FRT-VACKT::HA allele, there
is no need for further experiments to determine which neurites
contain presynaptic release sites. In contrast, for the Gal4 lines with
a broader expression pattern, the examined neurons should instead
be tested for co-localization with the expression pattern of the ChAT
Trojan-MiMIC driver line (Venken et al., 2011; Diao et al., 2015),
the VAChT-LexA knock-in line (Simpson, 2016) or with ChAT
antiserum (Takagawa and Salvaterra, 1996).

A previously reported method for synaptic tagging with
recombination using bruchpilot protein as a general marker of
presynaptic release sites (Chen et al., 2014) served as an inspiration
for the generation of the transgenic allele described in this study.
The combination of the conditionally tagged bruchpilot protein and
the conditionally tagged VAChT might enable enumeration of the
total presynaptic release sites and cholinergic release sites
simultaneously in a single neuron, assuming that a specific and
sparse Gal4 line is provided.
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