日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Automated synaptic connectivity inference for volume electron microscopy

MPS-Authors
/persons/resource/persons208333

Dorkenwald,  Sven
Department: Electrons-Photons-Neurons / Denk, MPI of Neurobiology, Max Planck Society;

/persons/resource/persons208338

Schubert,  Philipp J.
Department: Electrons-Photons-Neurons / Denk, MPI of Neurobiology, Max Planck Society;

/persons/resource/persons208342

Killinger,  Marius F.
Department: Electrons-Photons-Neurons / Denk, MPI of Neurobiology, Max Planck Society;

/persons/resource/persons94371

Mikula,  Shawn
Department: Electrons-Photons-Neurons / Denk, MPI of Neurobiology, Max Planck Society;

/persons/resource/persons118241

Svara,  Fabian N.
Department: Electrons-Photons-Neurons / Denk, MPI of Neurobiology, Max Planck Society;

/persons/resource/persons125729

Kornfeld,  Jörgen
Department: Electrons-Photons-Neurons / Denk, MPI of Neurobiology, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Dorkenwald, S., Schubert, P. J., Killinger, M. F., Urban, G., Mikula, S., Svara, F. N., & Kornfeld, J. (2017). Automated synaptic connectivity inference for volume electron microscopy. Nature Methods, 14(4), 435-442. doi:10.1038/nmeth.4206.


引用: https://hdl.handle.net/11858/00-001M-0000-002D-BA13-0
要旨
Teravoxel volume electron microscopy data sets from neural tissue can now be acquired in weeks, but data analysis requires years of manual labor. We developed the SyConn framework, which uses deep convolutional neural networks and random forest classifiers to infer a richly annotated synaptic connectivity matrix from manual neurite skeleton reconstructions by automatically identifying mitochondria, synapses and their types, axons, dendrites, spines, myelin, somata and cell types. We tested our approach on serial block-face electron microscopy data sets from zebrafish, mouse and zebra finch, and computed the synaptic wiring of songbird basal ganglia. We found that, for example, basal-ganglia cell types with high firing rates in vivo had higher densities of mitochondria and vesicles and that synapse sizes and quantities scaled systematically, depending on the innervated postsynaptic cell types.