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A sawtooth crash algorithm that can automatically detect irregular sawteeth with strongly

varying crash characteristics, including inverted crashes with central signal increase, has been

developed. Such sawtooth behaviour is observed in ASDEX Upgrade with its tungsten wall,

especially in phases with central ECRH. This application of ECRH for preventing impurity

accumulation is envisaged also for ITER. The detection consists of three steps: a sensitive

edge detection, a multichannel combination to increase detection performance, and a profile

analysis that tests generic sawtooth crash features. The effect of detection parameters on

the edge detection results has been investigated using synthetic signals and tested in an

application to ASDEX Upgrade soft X-ray data.

1. INTRODUCTION

Sawtooth crashes are a common feature in tokamaks as soon as the central safety factor, q0,

is below 1 (see [1] and references therein). They are usually preceded by an internal (1,1) kink

mode (where poloidal and toroidal mode number are 1). Sawteeth consist of a ramp-phase during

which temperatures and particle densities evolve slowly, and a fast crash that basically flattens

these quantities inside the mixing radius1, ρmix. The position where the values remain constant

is the inversion radius, ρinv. The sawtooth crash decreases the values for ρp < ρinv and increases

them for ρinv < ρp < ρmix, provided the pre-crash profile is peaked.

Sawtooth crashes decrease the core confinement but they can help to avoid impurity accumu-

lation in the hot plasma centre, which might be needed to get rid of helium ash in a future fusion

reactor [2]. On the other hand, sawtooth crashes can trigger neoclassical tearing modes (NTMs),

and the probability for triggering increases for long sawtooth periods [3]. Since fast α particles are

expected to have a strongly stabilizing effect on sawteeth [4], future fusion reactors are expected to

have very long sawteeth and thus high probability for NTM triggering. Sawtooth control schemes

therefore mainly aim at keeping sawteeth small and frequent.

Sawtooth control requires reliable crash detection, which ideally should work for all plasma

1 Radial coordinates in this paper are all given in the poloidal flux radius, ρp =
√

(Ψ−Ψa)/(Ψs −Ψa), where Ψ is
the poloidal flux and the indices a and s refer to the magnetic axis and the separatrix, respectively.
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FIG. 1: Time traces of some SXR channels (sample frequency, fs = 5kHz). Manually detected sawtooth

crashes are indicated by vertical dashed lines. Edges with decreasing and increasing signal are enclosed (in

selected channels) by dotted triangles pointing down and up, respectively.

scenarios and sawtooth types. Previous sawtooth detection methods use ECE (Electron cycloton

emission radiation) (e.g., [5–8]) or SXR (soft X-ray) (e.g., [9]) measurements. ECE provides a

local measurement for the electron temperature, Te, which is easy to interpret, but ECE mea-

surements can fail when ne is close to or above the cut-off density [10]. The emissivity in the

SXR range depends on Te and on the densities of electrons and impurities. The Te dependence is

highly nonlinear and varies strongly with the atomic number of the impurities. In addition, SXR

measurements are line-integrated. Despite the more difficult interpretation, SXR is well suited for

sawtooth crash detection because of its usually good plasma spatial coverage and high availability.

In ASDEX Upgrade there are seven SXR pinhole cameras viewing the plasma in the same poloidal

plane with a total of 180 lines-of-sight. The sample frequency is 500 kHz or higher and thus more

than sufficient to detect sawtooth crashes.

In ITER, metal walls and a tungsten (W) divertor will lead to the presence of heavy impurities

in the plasma. In ASDEX Upgrade, with its full W wall, high performance plasmas can usually

only be achieved when central wave heating like ECRH is applied to prevent core W accumulation.

Under these conditions, SXR profiles are often hollow, i.e. they have a local minimum in the

vicinity of the magnetic axis. This is due to hollow tungsten density, nW , profiles. A sawtooth

crash then leads to increase of nW on axis and decrease further out [11, 12], referred to as inverted

crashes in this paper. Often, inverted and normal crashes appear alternatingly (figure 1). Since

Te profiles are usually still peaked when SXR profiles are hollow, there are competing effects: a

sawtooth crash increases the central SXR emissivity due to the increase in nW but decreases it

due to the Te decrease - and vice versa in regions further out. Combined with the non-linear

dependence of SXR emissivity on Te, this leads to a large variety of crash characteristics and often
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small crash amplitudes for inverted crashes.

At ASDEX Upgrade ([13], figures 1 and 2), it has been shown that in plasmas with central

ECRH and hollow nW profiles, resistive (1,1) MHD instabilities can flatten Te inside the q = 1

surface before the sawtooth crash. This leads to strongly reduced crash amplitudes. The changes

in the central ECE signal can be of the same magnitude as such induced by ELMs (Edge Localized

Modes)2. Furthermore, a strong variation of ρinv from crash to crash, depending on the electron

temperature precrash profiles, has been observed [13]. Such currently non-standard sawtooth

features are likely to be important also in future fusion devices with metal walls. For this reason,

we developed a sawtooth crash detector with no prejudice on central crash direction, ρinv or

temporal evolution, which can detect also appearingly small sawtooth crashes.

In section 2 previous sawtooth crash detectors and requirements for a detector for strongly

varying sawteeth are discussed. The sawtooth detection algorithm is described in section 3. Sec-

tion 4 presents a simulation of the influence of detection parameters on edge detection. From this,

expectations for detector performance are deduced and compared with results in an application to

ASDEX Upgrade SXR data in section 5, followed by a summary in section 6.

2. SAWTOOTH CRASH DETECTORS AND REQUIREMENTS

The most characteristic feature of a sawtooth crash is the abrupt flattening of profiles. Previous

detection algorithms therefore search for fast changes (edges) in individual signals, e.g., [5, 7–9],

or for an abrupt change towards a centrally flat profile [6]. In TCV [9], a simple difference filter

is applied to averaged central SXR signals with thresholds slowly adapted to previous sawteeth.

In JET [8] and Tore supra [7], the redistribution character of the sawtooth crash is considered by

using difference filtered signals of channels both inside and outside the assumed ρinv with fixed

detection thresholds.

A single-channel edge detection using multi-scale wavelets was applied to ECE data at TEXTOR

[5], where the detection reliability was increased by combining several channels. This detection is

designed for fast signal increase and decrease similarly and the threshold is self-adaptive. However,

in order to keep the detection latency small, each edge direction is predefined, based on previous

edges, before the crash detection. The idea in this publication is that ρinv is close to the q = 1

flux surface, which is expected to evolve slowly. Removing this restriction would slow down the

2 The effect of ELMs on ECE measurement up to the plasma core is probably similar to the ‘ECE black-out’ reported
for JET [14].
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detection significantly. Additionally, the method is a plain edge detection and does not include

any discrimination for signal edges not caused by a sawtooth crash.

A model-based approach is applied to ASDEX Upgrade ECE data [6]. The Te profile is com-

pared in steps of 1ms with model predictions. One model is ‘no crash’, the other models refer to

crashes with different ρmix. This method considers the pre-crash profile explicitly, which should be

well suited to distinguish sawtooth crashes from other fast events. However, while the difference

methods are in principle applicable to any signal that shows abrupt changes for a sawtooth crash,

the model-approach can only compare implemented models, which are currently fully flattened

central Te profiles and ‘no profile change’. Because of the line integration and the unknown density

profiles of tungsten (and other impurities), it is doubtful if an implementation based on radiation

signals is feasible.

For reliably and automatically detecting sawtooth crashes in a tokamak with metal wall cov-

erage in all scenarios, an algorithm is needed that can cope with irregular sawteeth (in time and

amplitude) and with changes in ρinv (and even in direction of signal edges) from crash to crash.

Detection thresholds have to be adapted without any user-intervention. In order to cover also

scenarios with densities that are too high for ECE, we use SXR measurements. To serve its pur-

pose, some specific requirements must be fulfilled by the algorithm. Since the signal changes can

be small, as discussed above, the detection must be very sensitive. One cannot predict in which

plasma region the crashes show up clearly, thus, analysis of signals observing the plasma in differ-

ent regions is essential. Including signals outside (the usual) ρinv requires edge detection in both

directions, which is necessary already for central SXR channels in case of inverted crashes. Finally,

the possible rapid variation of crash characteristics prohibits predefinition of the edge direction,

even from the immediate past.

When designing a detector, there is always a trade-off between false negatives (here: missed

sawtooth crashes) and false positives (here: detections not caused by a sawtooth crash). A highly

sensitive detection in a broad range of signals will lead to a number of false positives, either from

real signal edges caused by events that are not sawtooth crashes, or from ‘noise’, including coherent

oscillations like the (1,1) mode. To eliminate all false positives effectively, a further discriminating

method that considers typical sawtooth crash properties, which apply also for inverted crashes, is

required.
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3. SAWTOOTH CRASH DETECTION ALGORITHM

To fulfill the above requirements, we designed a sawtooth detection method in three steps:

1. The edge detection is performed by convolution with a suitable kernel, transforming the

signal edge into a peak in the convoluted signal. This peak is evaluated and compared to a

threshold to find significant edges.

2. Clustering of detections: An edge must be detected in more than one signal within a certain

time interval in order to be accepted as possible sawtooth crash.

3. The resulting spatial distribution of signal edges is evaluated versus the expectations for a

sawtooth crash. This analysis is carried out only at the preselected time points that passed

the first two steps.

In all three steps, design decisions must be made. In this paper we focus on the first step, the

optimization of edge detection parameters depending on crash characteristics.

3.1. Convolution with first derivative of Gaussian

In image processing, the Canny algorithm [15] is a common method to extract edges from an

image. We use a convolution filter function, k(τ), proportional to the first derivative of a Gaussian

with width σk, which is, according to [15], a good approximation for the optimal filter function

in terms of reliable detection of edges, precise localization and minimizing multiple responses to a

single edge created by noise:

k(τ) := −τ
1

σ2
k

e
−

τ2

2σ2
k . (1)

For an ‘ideal’ edge signal (without noise), stp(t), which is constant apart from a jump from s0 to

(s0 − hedge) at t0,

stp(t) := s0 −
hedge
2

(sgn(t− t0) + 1) , (2)

it can be seen that the convolution with k(τ) gives a Gaussian shaped peak with width σk and its

extremum equal to the step height, hedge, of stp(t):

c(t) :=

∫

∞

−∞

k(τ)stp(t− τ)dτ = hedgee
−

(t−t0)
2

2σ2
k (3)
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FIG. 2: (a)-(c) Time traces for a fast crash, a slow crash and a fast crash with a ramp, respectively. In (c)

noise is overlaid. (d) Convoluted signals of all time traces on the calculation frame, lf . The kernel and its

dimensions are depicted in (a) (rescaled in height, not in time), the crash parameters (hedge, wedge, τSC) in

(a)-(c), and lf in (d).

Owing to the differential filter effect of the kernel, the result depends only on the signal change,

not on the signal level, s0. The kernel function as defined above has infinite length. Since the

kernel edges do not contribute significantly, k(τ) can be restricted. For practical application we

chose ±3.5σk as kernel limits, where the kernel value has dropped to 1.25% of its maximum, such

that the kernel width is lk = 7σk. In reality, we have discrete data, which are digitized with the

sample frequency, fs. Thus, the integrals are replaced by sums over a finite number of data points.

Filtering with the kernel as described by equation (1) is analogue to wavelet-based methods, which

are often used in image processing and in particular also for sawtooth crash detection [5].

3.2. Peak evaluation

A time trace containing a sawtooth crash, and thus a signal edge with height hedge, results in a

convoluted signal with a peak at the edge position (crash time point). The kernel is designed such

that an edge towards smaller and larger values produces a positive and negative peak, respectively.
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FIG. 3: Relation between minimum reliably detectable sawtooth period, τSC,det, and detector parameters

lf and lk := 7σk. (a) Signal with repetitive sawteeth, (b) corresponding convoluted signal. The convolution

kernel (height rescaled) is shown in the top box in the position for the last point of the calculation frame

around the central peak.

The peak height, ph, is similar to hedge for an abrupt crash, but it decreases with increasing crash

duration, wedge (see figure 2)3. However, real signals also comprise noise, which results in local

extrema in the convoluted signal. The detection has to distinguish between significant peaks,

representing signal edges, and insignificant (noise) peaks. A suitable way is a threshold for the

peak height. For automated detection this has to be self-adaptive to the signal, which is fulfilled,

e.g., for thresholds based on a noise level.

In order to allow fast variations of sawtooth characteristics, the background reference (noise

level) should be determined in the vicinity of the crash. Therefore, we analyse the signal in a

calculation frame with length lf , spreading symmetrically around the peak. For the algorithm to

work reliably, we must assume that only one sawtooth crash is within this calculation frame, so

that the corresponding peak is the largest local and thus the global extremum within its frame.

For a given smallest detectable sawtooth period, τSC,exp, this condition implies an upper limit for

lf + 7σk (see figure 3):

τSC,det :=
1

2
(lf + 7σk) ≤ τSC,exp . (4)

In the following we describe three different methods for peak evaluation, two of them making use of

the variance of the convoluted signal for threshold determination, the third one using the kurtosis

instead. All methods are unprejudiced with respect to the direction of the signal edge.

3 For wedge = σk: ph ≈ 0.94hedge, for wedge = 7σk: ph ≈ 0.36hedge.
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3.2.1. POS - Peak-over-Sigma

A threshold, ph,min, for the absolute peak height, |ph|, can be based on the noise level of the

convoluted signal, c = ci (i ∈ {1, . . . , n}, where n is the number of data points in the calculation

frame). The sample estimate of the standard deviation, σc, is

σ̂c =

√

√

√

√

1

n− 1

n
∑

i=1

(ci − µ̂c)2 , (5)

with µ̂c the estimated mean of c. Here we use σ̂c as a practical measure of the noise level of

c. Owing to the convolution with the kernel, σc (and also σ̂c) for a pure noise signal is different

from the standard deviation of the original noise signal, σs. In [15], section VI, the autocovariance

function of white noise filtered by the first derivative of a Gaussian is given. This includes an

unspecified proportionality factor (k3), the absolute value of which is equal to the variance, σ2
c , of

the convoluted signal, c. For the kernel in equation (1) one can derive σ2
c =

√
πσ2

s/(2σkfs), where

σkfs corresponds to the number of points within σk. For σkfs = 14.286 (as used in the simulation

in section 4) and σkfs = 2.0 (which is - according to our experience with ASDEX Upgrade time

traces - a safe lower limit for sufficient kernel resolution), one gets σc ≈ 0.25σs and σc ≈ 0.66σs,

respectively.

An adaptive threshold is defined by ph,min := thPOS · σ̂c, where thPOS is a constant detector

parameter, which only depends on the detector settings, but not on the edges to be detected. Thus,

a possible condition for peak acceptance is |ph|/σ̂c ≥ thPOS , where ph is the (signed) ci with the

highest absolute value. However, a ramp with constant inclination in the signal leads to an offset

of c (see figure 2, (c) and (d)). Since in sawtoothing signals, ramps are a common feature, the

mean of c has to be subtracted from the peak height and thus we define the peak weight for the

POS-method as

WPOS :=
|ph − µ̂c|

σ̂c
. (6)

Peaks with WPOS ≥ thPOS are accepted.

Here, µ̂c and σ̂c are calculated from the entire signal, so the peak itself contributes to these

values, which leads unavoidably to an underestimation of the peak weight, especially for narrow

calculation frames.
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3.2.2. POSR - Peak-over-Sigma-reduced

In order to avoid the influence of the peak on mean and standard deviation, the peak can be

excluded from their calculation. The peak does not only consist of one data point, but has a finite

width and thus several points increased with respect to the background. Its width is proportional

to the kernel width, σk, as long as the edge is not too broad, i.e., the crash is not too slow. We

exclude the number of data points corresponding to the full kernel length, lk = 7σk, to get µ̂r and

σ̂r, the estimated mean and standard deviation of the reduced data set, respectively. However,

instead of excluding the data points inside ±3.5σk around the position of the peak extremum, we

exclude the largest absolute values within the whole calculation frame, no matter at which time

they appear. This results in a better noise reference, and thus more reliable edge detection, in

the presence of a second (slightly smaller, negative or positive) peak in the calculation frame. A

similar method has been applied in [15]. The peak weight is defined as

WPOSR :=
|ph − µ̂r|

σ̂r
. (7)

3.2.3. Kurtosis

The third method we have applied makes use of the kurtosis, of which the large sample analogue

is

Kurt(c) :=
1

n

n
∑

i=1

(

ci − µ̂c

σ̂c

)4

. (8)

We use the kurtosis as a measure of the significance of outliers, since in view of the 4th power,

they strongly influence Kurt(c). Applied to the convoluted signal, it is thus a measure for the

significance of the peak with respect to the signal variance. Therefore equation (8) is applied to

the whole data set in a calculation frame, also in cases of relatively small n, where the sample

variance of this estimator is quite large. The peak weight for the kurtosis method is simply defined

as

WKurt := Kurt(c) . (9)

A second peak within the calculation frame increases WKurt and thus the sensitivity of the kurtosis

method - as long as there is also sufficient ‘normal’ background in the frame.



10

3.3. Multichannel analysis

Using multiple signals increases the detector performance by increasing the probability of de-

tecting every sawtooth crash. Multichannel analysis can also help in reducing the false positive

rate, as will be discussed below.

3.3.1. Clustering

Detection due to pure noise is unlikely to be observed simultaneously in several signals. The

condition that an edge must be observed in at least two channels is therefore already effective in

reducing false positives. A sawtooth crash appears (nearly) simultaneously in all channels inside

the mixing radius. However, detections in different signals for the same crash will - with high

temporal resolution - not always be observed at the very same sample. Therefore, a time interval,

tclust, must be defined, during which detections are regarded as belonging to the same edge. This

should be chosen as short as possible in order not to combine detections from different events, but

also long enough to catch all detections from the same event. We use tclust = 0.5ms, which is

above the typical time scatter with which crashes show up in different areas of the mixing region,

but sufficient to separate edges as close as 1ms.

3.3.2. Profile analysis

The line-integrated SXR signals are mapped to the minimum ρp along the line-of-sight. To

distinguish between the two sides of the camera with respect to the magnetic axis, the signals on

one side are labelled with negative ρp values. In the following, the difference of the SXR profiles,

observed from a single SXR pinhole camera, before and immediately after a detected edge, is

referred to as crash profile, irrespective of the type of detected event.

The crash profile has characteristic features in case of a sawtooth crash. However, the classical

assumptions - a sawtooth crash reduces Te and radiation in the centre, and ρinv and the sawtooth

period are slowly evolving quantities - are no longer applicable for sawtooth characteristics as

described in section 1. We therefore use only history-independent assumptions that test generic

sawtooth features. Although ρinv is not necessarily identical to the q = 1 location [16] and has been

observed to vary strongly from crash to crash, the existence of an inversion is an important feature

of a sawooth crash. Furthermore, a sawtooth crash profile must generally be roughly symmetric

with respect to the magnetic axis. In [13] we have already presented a sawtooth discrimination
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method for SXR signals using empirical parameters, which we repeat here for convenience.

The crash profile is represented well by the convolutions of the signals observed at different ρp,

taken at the edge time point, c(ρp)|tSC
(see figure 4, (c) and (d)). We chose a region |ρp| ≤ ρm := 0.7

in order to safely cover the full mixing region for the profile analysis. The channel selection for

edge detection was smaller but also included channels outside ρinv. The crash profiles, originally

only defined at the SXR measurement positions, are interpolated to an equidistant grid in ρp for

the following calculations.

The first parameter represents the significance of a crash event:

Anorm :=
Acrash

Arad

=
A+ +A−

Arad

=

∑

(|c(ρp)|+ |c(−ρp)|)
∑

(s(ρp) + s(−ρp))
, (10)

where c is the convoluted and s the original signal at tSC . This and the following summations are

over the np interpolated values with 0 < ρp ≤ ρm. A+ and A− represent the areas of gains and

losses in the crash profile, respectively (figure 4). Anorm might serve as crash amplitude, but it

strongly depends on the precrash profile shape, and a proper quantification is still to be determined.

We found values as low as 2 % for inverted crashes in SXR, which is due to the competing effects

of W density and Te redistribution. Thus, we set the condition for acceptance as sawtooth crash
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to Anorm ≥ 2 %.

The second parameter is determined by the redistribution:

Anet :=
|A+ −A−|
Acrash

=
|∑ (c(ρp) + c(−ρp))|

Acrash

(11)

is the absolute value of the integrated crash profile divided by Acrash. We set the criterion for

acceptance as Anet < 90%, i.e., neither A+ nor A− must be smaller than 5% of the total crash

area, Acrash = A+ +A−.

One type of false positives arises from slow strong (1,1) mode oscillations with large growth or

decay rate. Since the (1,1) mode has opposite phase on opposite sides of the magnetic axis, the

related crash profiles are strongly asymmetric for mode induced detections. A similar effect can

appear for ELMs: they can lead to diplacements and distortions of the plasma column that cause

the SXR line-integrated emissivity to increase on one side of the magnetic axis and decrease on

the other side. The third parameter therefore quantifies the profile asymmetry:

pasym :=

√
∑

(c(ρp)− c(−ρp))2

Acrash

. (12)

This parameter can only be applied to measurements that extend to both sides of the magnetic

axis, such as SXR at ASDEX Upgrade. We set the criterion for accepted sawtooth crashes to

pasym ≤ 1. A drawback is that also sawtooth crashes that are preceded by a very slow (1,1) mode

can be rejected, depending on the mode phase at tSC .

The threshold values of the profile criteria are determined empirically from analysis of a few

ASDEX Upgrade discharges. This has to be refined in the future, e.g., by replacing the fixed

numbers by a combination of probabilities and by consideration of precrash profile features. In

this paper we concentrate on the edge detection. However, we will keep in mind that the analysed

crash profiles are the result of the convolution. Thus, the convolution kernel should be chosen such

that the crash profiles represent the sawtooth crash well.

4. EFFECT OF DETECTOR PARAMETERS ON SYNTHETIC SIGNALS

The first step in our sawtooth detection algorithm is the edge detection in individual channels.

Once the peak evaluation method and kernel shape are chosen, there are still three parameters to

optimize for an edge detection based on convolution with a kernel as defined in equation (1): The

width of the convolution kernel, σk, the frame in which the peak weights are calculated, lf , and

the threshold thj (j ∈ {POS, POSR,Kurt}) for the peak weight, Wj . The detection parameters
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‖fs‖ = 14.286 and various acceptable false positive rates, fpracc, (from 0.15 % (darkest) to 5 % (lightest)).

have to be adjusted to the boundary conditions. These are determined by the sawtooth crashes to

be detected: the minimum sawtooth period, τSC,exp, the maximum edge width, wedge,max (crash

duration) and the minimum edge height, hedge,min (signal change due to crash). Furthermore, the

signal-to-noise-ratio and the sample rate, fs, of the diagnostic signal as well as the quality stan-

dards (acceptable false positive rate, fpracc, and acceptable false negative rate, fnracc) have to be

considered. Another important influence on detection results comes from coherent perturbations,

such as the sawtooth precursor. This is not included in the simulation but discussed later as an

additional constraint.

To study the influence of parameter variation, we produce normally distributed noise, with

mean zero and standard deviation, σs, by a random number generator. To these noise signals we

add an edge symmetrically around t = tSC , which can be varied in its width, wedge, and its height,

hedge. Pure noise signals are represented by hedge = 0. To account for the repetitive sawtooth

character, a ramp between sawtooth crashes can be added. The sawtooth period is the sum of

ramp and crash duration (see figure 2). For each parameter set, we generate N = 4000 signals,

which are mutually uncorrelated in their noise component, and calculate the peak weights, Wj

(with j ∈ {POS, POSR,Kurt}). From these distributions with 4000 values, the error rate for a

given threshold can be determined with a resolution of 0.025%. For a signal with an edge, an error

(a false negative) is a peak weight below the threshold, while for pure noise signals, a peak weight

above the threshold is an error (a false positive). Additionally, we have generated one noiseless

signal for each parameter set to determine the noiseless detection limits.
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4.1. Threshold determination

Before detecting edges in the signals, a reasonable threshold for the peak weight has to be deter-

mined, which has to reject most peaks that result from noise. For this purpose, we generate signals

with no edge but only noise. The parameters for noise signals are: sample rate, fs, peak weight

method, frame length, lf , kernel width, σk, and the acceptable false positive rate, fpracc. Since

scaling in the temporal direction does not modify the data points, there are only two parameters

independent out of fs, lf and σk. We normalize the temporal values to σk, i.e. ‖lf‖ := lf/σk and

‖fs‖ := fsσk.

For a given threshold, thj , all Wj ≥ thj are false positives. So - within the same distribution -

each threshold value is related to a false positive rate, fpr, through the complementary cumulative

distribution function, thj 7→ fpr(thj) with domain R
+. However, we have to find the appropriate

thj for a given fpracc. Therefore, we are interested in the inverse function, thj(fpracc), which,

strictly speaking, does not exist for discrete data. However, for N = 4000, it can be approximated

with sufficient precision by the 100(1− fpracc)th percentile of the distribution4.

In order to reach a small uncertainty of the threshold values, which are important for all our

further studies, we generate M = 50 distributions (each consisting of N = 4000 signals) for each

parameter set. For each fpracc value (1/4000 . . . 3999/4000) we calculate the mean, 〈thj〉, and the

empirical standard deviation, σ̂thj
, of the M = 50 thj values. The uncertainty of 〈thj〉 is given by

the estimated standard deviation of the mean, u = σ̂thj
/
√
M . The simulation was performed only

for ‖lf‖ ≥ 8, in order to leave a sufficient part of the data set for the calculation of σ̂r and µ̂r.

Figure 5 shows the dependencies of the thresholds and their uncertainties, u, on ‖lf‖ for our

three methods. The most relevant range for application is 10 < ‖lf‖ < 60, as will be discussed in

section 5.

For POSR there is a strong increase of the threshold for small ‖lf‖. This results from the

elimination of the largest absolute values, which leads to reduction of σ̂c for small ‖lf‖, and thus

increase of WPOSR. In the investigated range 0.15% ≤ fpracc ≤ 5%, fpracc has a relatively

small effect on the thresholds. However, its effect on detection still has to be determined. The

dependency on ‖fs‖ is very weak (not shown). The thresholds do not depend on the noise level

itself, because of the scaling invariance of the peak weights. In the following simulations and also

for the application to ASDEX Upgrade data, described in section 5 5.3, 〈thj〉 (for the corresponding

4 The peak weights are counted, starting from the highest, until the number of false positives corresponding to
fpracc is reached. The corresponding value of Wj is taken as thj for the chosen fpracc.



15

0 50 100 150 200
0

2

4

6

8

10

12

14

Kurt  
fpracc=5%

|| 
w

eg
de

 ||

POSR  
fpracc=5%

0

2

4

6

8

10

12

14

POS,  fpracc=5%

0

2

4

6

8

10

12

14

|| 
w

eg
de

 ||
|| 

w
eg

de
 ||

|| lf || || lf || || lf ||
0 10 30 5020 40 0 10 30 5020 40

Kurt, steplike

POSR, steplike

POS, steplike

Kurt, ramplike

POSR, ramplike

POS, ramplike
steplike

ramplike
fpracc=5%

fpracc=0.15%

fpracc=5%

fpracc=0.15%

33.9
9.9
6.8
5.1
3.7
2.8
2.0

|| hedge ||

FIG. 6: Contour lines for ‘reliable’ detection (fnr ≤ 0.15%) for the three methods: POS (top), POSR

(middle), Kurt (bottom) with normalized sample frequency ‖fs‖ = 14.286. The noiseless limits are plotted

as bold black lines. The left column compares steplike (solid lines) and ramplike (dashed lines) signals for

fpracc = 5%. The middle and right column repeat these limits for fpracc = 5% in a smaller range of ‖lf‖
and compare them to limits for fpracc = 0.15% for both signal types (middle: steplike, right: ramplike

signals). The legends for the line styles in the top boxes apply to the respective columns. The colour code

is shown in the bottom right box.

‖lf‖, ‖fs‖, method j and fpracc) serves as peak weight threshold.

4.2. Steplike signals

Simulation of time traces containing a sawtooth crash requires additional parameters: the edge

height, hedge, and its width, wedge, which is the crash duration. First, we consider time traces

which are at a constant level outside the crash. Since the signal level itself is not visible in the

convoluted signal, the relative signal change, hedge/s0, where s0 is the signal before the edge, is not
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a suitable simulation parameter. We use ‖hedge‖ := hedge/σs instead, where σs is the noise level,

represented by the standard deviation, of s(t). Similar to the other temporal parameters, the edge

width is normalized to the kernel width, ‖wedge‖ := wedge/σk. A typical value for the sawtooth

crash duration in ASDEX Upgrade is 0.1ms, but ≈ 1ms is occasionally observed.

We generate M = 5 distributions at a fixed normalized sample rate of ‖fs‖ = 14.286, corre-

sponding to 101 data points within lk = 7σk. From these signals, the peak weights are calculated

for our three methods and compared with the respective threshold. Since there is an edge in the

signals, which should be detected, now all values below the threshold are errors: false negatives.

The rate of false negatives depends on the kernel width and the frame length, and additionally on

fpracc, which determines the thresholds. The variances of the false negative rates are ignored in

the following.

In figure 6 (left column) the limits for ‘reliable’ detection with fnracc = 0.15%, and thus high

sensitivity, are shown for all three methods as solid contour lines in the ‖lf‖-‖wedge‖-plane for

various ‖hedge‖ and fpracc = 5%. A particular edge with ‖wedge‖ below and above the contour

line for its ‖hedge‖ will be detected with a probability above and below 99.85%, respectively. Large

‖wedge‖ and small ‖lf‖ are detrimental for edge detection. For large ‖hedge‖, the contour lines

approach the one for noiseless signals, marked by a bold black line. The most remarkable feature is

that the POSR method works reliably with significantly smaller ‖lf‖ than the other two methods.

The middle column of figure 6 depicts the effect of fpracc on detection. The limits are shifted

to larger ‖lf‖ for smaller fpracc. Small edges are more affected than large ones. The shift for large

edges is smallest for the POSR and largest for the POS method.

4.3. Ramplike signals

Sawteeth are repetitive events, so we have to consider the neighbouring crashes. The detection

of a peak in c is reliable only if there are no other peaks (of similar or larger size) in the same

calculation frame, which is reflected by equation (4) and figure 3. In a stationary plasma with

regular sawteeth, the signal after a crash recovers to its precrash value before the next crash.

There is an infinite number of possible signal shapes between the crashes. However, a typical

one, which led to the name sawteeth, is a ramp with constant inclination. The biggest effect is

expected for the steepest ramp, which is correlated to τSC,exp = 1/2(lf +7σk) (see figure 2, (c)). In

order not to add another crash parameter to the simulation, we restrict on analysing signals with

this shortest possible ramp with constant inclination. Thus, we analyze only the extreme signal
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shapes: fully steplike and fully ramplike signals. Slower ramps should lead to detection results in

between the two extrema. However, strongly non-stationary variations of the signal level can lead

to reduction of the peak weight, mainly due to increased σ̂c, and thus possible rejection of an edge.

The limits for ‘reliable’ detection of a sawtooth crash surrounded by ramps with constant

inclination are shown in figure 6, left column, as dashed lines for fpracc = 5%. For all methods,

the tolerable edge width at large ‖hedge‖ and large ‖lf‖ is smaller than for steplike signals. Only

for the POSR method there is also a strong deviation for small ‖lf‖: its detection capability at

very small ‖lf‖ ≤ 15 vanishes for ramplike signals. The ramp character relevant for the detection

depends on the detector settings: for τSC,det ≪ τSC,exp the analyzed signal part covers a small

fraction of the sawtooth period and thus the signal is almost steplike.

The effect of fpracc is shown in the right column of figure 6 and is very similar to that observed

for steplike signals.

4.4. Sample frequency

When a signal, consisting of pure white noise, is sampled with a lower frequency5, fs, σs scales

with
√
fs, such that ‖hedge‖ scales with 1/

√
fs. The minimum detectable ‖hedge‖ in the simulations,

at fixed detector and other edge parameters, also scales with 1/
√
fs. Thus, the detection of an

edge does not depend on the sample rate.

The former is valid if the kernel is the dominant low-pass filter. The absolute value of the

Fourier transform of the kernel function (see equation (1)) has similar shape as the kernel with

the amplitude maximum at fres := 1/(2πσk). The amplitude at 2 (3, 4) fres is at 45 (5.5, 0.22)%

of its maximum, such that frequencies beyond 3fres are damped effectively by the kernel. When

the highest detectable frequency, fN := fs/2, is well above this limit, the edge detection result

is insensitive to fs. One point per σk interval (i.e. fN = πfres) is marginal for effective kernel

filtering and also does not allow to span the full kernel region up to ±3.5σk. Therefore, it seems

sensible to take at least two points per σk interval, corresponding to fs = 4πfres = 2/σk.

5 The precondition is that the power spectral density up to fs/2 is preserved. This requires a suitable lowpass filter,
either included in the downsampling of already digitized data, or as a hardware component for sampling of an
analog signal with a smaller frequency.
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5. CHOICE OF DETECTOR SETTINGS

The experimentally determined quantity hedge/s0 can be regarded as the sawtooth crash am-

plitude. In principle, it is connected with the simulation relevant quantity ‖hedge‖ := hedge/σs by

the signal-to-noise ratio of the measured signal. However, the ‘noise’ in real time traces usually

is not white but has higher amplitudes at characteristic frequencies. This is especially true for

sawtooth detection, since a feature of the sawtooth crash is a precursor. Thus, a comparison of

the noise levels of measured time traces with the simulation only makes sense for the convoluted

signals using the same kernel width. Moreover, fast growth and decay rates of perturbations lead

to non-stationary spectra and thus a dependency of the signal variance on the calculation frame

length. Considering also the statistical nature of the simulation results, it is not possible to predict

the success of edge detection for each individual sawtooth crash. Still, a suitable range of detec-

tor settings for given boundary conditions can be derived. This will be shown by comparison of

expectations based on the simulation with results of the sawtooth detection for ASDEX Upgrade

SXR data.

5.1. Influence of perturbation frequencies

In addition to the simulation results, the influence of perturbation frequencies must be consid-

ered. Oscillations can cause problems for the crash detection if their frequency is below 2 . . . 3fres,

since then their amplitude is not sufficiently suppressed by the kernel filtering. In such cases two

things can happen. Either the edge detection can fail or the profiles can be rejected due to large

asymmetry. The latter is the consequence of the odd (1,1) sawtooth precursor symmetry. In order

to avoid the mode influence, the lowest frequency6 of significant perturbations, fmode, sets a lower

limit to the kernel width:

σk ≥ 1 . . . 1.5

πfmode

. (13)

Using equation (4), one gets ‖lf‖ = 2τSC,det/σk − 7 = 4πτSC,detfres − 7. For the condition fmode ≥
2fres this gives ‖lf‖ ≤ 2πτSC,detfmode − 7, such that ‖lf‖ has an upper limit for a given fmode and

τSC,det (see figure 7).

6 Here we only consider frequencies above fres. Very low frequencies are also damped by the kernel filtering. At
0.28 and 0.033 fres the amplitude damping is similar to that at 2 and 3 fres, respectively.
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5.2. Expected effects of parameter choice

The two main detector parameters to choose are the ratio and the sum of lf and lk = 7σk, the

latter corresponding to 2τSC,det. Considering the simulation only (see figure 6), ‖lf‖ for detecting

extremely small sawtooth crashes is bounded below to ‖lf‖ > 40 for POSR and kurtosis, and

to ‖lf‖ > 60 for POS. However, increasing ‖lf‖ beyond this should not necessarily improve the

detection. Increasing ‖lf‖ with constant τSC,det results in a shorter kernel and thus higher fres,

such that higher perturbation frequencies can disturb the sawtooth detection. Increasing ‖lf‖
and also τSC,det, such that the kernel width is constant, leads to a larger minimum detectable

sawtooth period, which can result in missed crashes when the sawtooth period in the signals,

τSC,exp, is smaller than τSC,det. Additionally, it has to be kept in mind that the simulation considers

only ramps with constant inclination (including flat signals) around the crash. For strongly non-

stationary signals, we cannot expect to see the same positive effect of increasing ‖lf‖.
For a real-time implementation, the latency for a detection of an individual sawtooth crash

should be as small as possible. The time range after a sawtooth crash, that is used for detection

is equal to τSC,det = (lf + 7σk)/2. Reducing lf will usually force a reduction of ‖lf‖ in order

to keep fres low enough. Therefore, POSR is expected to be the best of the three methods for

short latency, since it allows very small ‖lf‖ for steplike signals. In order to keep this advantage

of steplike signals, the sawtooth period in the signals, τSC,exp, should be significantly larger than

τSC,det, because only then the ramp character of the crashes is small. For fully ramplike signals, the

kurtosis method is expected to detect sawteeth at smaller ‖lf‖ than the POSR method. However,
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with small τSC,det it is likely that τSC,det ≪ τSC,exp.

lf σk τSC,det ‖lf‖ fres fs,min

name (ms) (ms) (ms) (kHz) (kHz)

small crashes 10.3 0.25 6.0 42 0.65 8

short latency 1.33 0.095 1.0 14 1.67 21

intermediate 5.18 0.25 3.45 21 0.65 8

11ms steplike 5.33 0.38 4.0 14 0.42 5.3

11ms ramplike 14.7 1.05 11.0 14 0.15 1.9

TABLE I: Detector parameters and correlated quantities for the settings applied in this paper: calculation

frame lf , kernel width σk, minimum reliably detectable sawtooth period τSC,det := (lf +7σk)/2, normalized

frame length ‖lf‖ := lf/σk, kernel resonance frequency fres = 1/(2πσk) and recommended minimum sample

frequency, fs,min.

Table I lists the detector settings used in the application. For the ‘small crashes’ and ‘interme-

diate’ settings we designed the kernel to damp perturbations with frequencies fmode ≥ 1.25 kHz by

at least a factor of two. The ‘short latency’ setting uses only a short time interval of τSC,det = 1ms

after the crash for its determination but requires a smaller kernel width with higher fres. Two

special settings for testing the effect of varying τSC,det in the low ‖lf‖-region in discharge #31258

are also listed in table I.

The crash duration, wedge, and the perturbation frequency, fmode, both cause a lower bound

for the kernel width. At ASDEX Upgrade, a typical crash duration is ≤ 0.1ms, while some

crashes last up to around 1ms. Let us consider the example of the POSR method and steplike

sawteeth (see central box in figure 6 or figure 12). For the ‘small crashes’ setting, the maximum

’reliably’ detectable normalized edge width is ‖wedge‖ ≈ 8 for relatively large crashes (large ‖hedge‖),
corresponding to wedge ≈ 2ms. Thus, having eliminated the influence of perturbation frequencies

with fmode ≥ 1.25 kHz, a negative effect of the crash duration can mainly be expected for very

small sawtooth crashes. For the ‘short latency’ setting, large crashes are limited to ‖wedge‖ < 5,

corresponding - due to the smaller kernel width - to wedge ≈ 0.5ms. For this setting, slow crashes

will hamper the detection even if they are very large.

For the POS method, a second peak in the frame increases the variance of the data set and thus

the peak weight is decreased (see equation (6)). For POSR, this effect is strongly reduced by design,

because we ignore the data points with the largest absolute values, no matter in which part of the

frame they lie. The kurtosis method is intrinsically insensitive to the position of outlier values,
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such that a second peak in the detection frame does not decrease the sensitivity. In conclusion,

POS should not only have disadvantages for very small crashes, but also for such that are closer

to each other than τSC,det.

method fpracc setting fs

(%) (kHz)

trace A POS 5.0 small crashes 20

trace B POSR 5.0 small crashes 20

trace C Kurt 5.0 small crashes 20

trace D POSR 5.0 short latency 100

trace E POSR 5.0 intermediate 100

trace F POSR 0.15 small crashes 100

dots all 5.0 short latency 100

TABLE II: Detector parameters and sample frequency for the results shown in figure 8.

5.3. Application to ASDEX Upgrade soft X-ray data

To demonstrate the effect of detection parameters for experimental data, we choose discharge

#33186, because of its strongly different heating schemes (figure 8, top) and thereby sawtoothing

phases. In the early phase (1.0-1.4 s) with only ohmic heating, the frequency of the precursor,

which exists only for a half cycle for many crashes, is about 1.25 kHz. In the phase 1.4-2.0 s, when

NBI heats the plasma, the plasma rotation (and hence the (1,1) frequency) speeds up. During

the ECRH heating phase (2.0-4.0 s), hollow SXR emissivity profiles and inverted sawtooth crashes,

as described in [11], appear. The sawtooth period is strongly decreased with respect to the pure

NBI phase and additionally intermediate crashes appear. In the phase with ICRF heating (4.0-

6.0s), SXR profiles are peaked. In the following, we compare the results of the sawtooth detection,

including clustering (with tclust = 0.5ms) and profile analysis, with the expectations derived in

section 5 5.2.

Figure 8 (middle graph) shows all edge detections after clustering for discharge #33186 from

1.0 s to 6.4 s with the ‘small crashes’ setting (see table I) for the POSR method and fpracc = 5%.

As expected from the rather high fpracc there are several false positives after edge detection in

the sense that they do not correspond to sawtooth crashes. Especially in the late phase with large

long sawteeth ELMs lead to several edge detections.
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FIG. 8: Top: heating time traces for discharge #33186. Middle: central SXR channel (sample frequency

fs = 20 kHz) with clustered edge detections for POSR method with parameters for ‘small crashes’ (see

table I) and acceptable false positive rate fpracc = 5%. Accepted edges after profile analysis are depicted

by vertical dashed bold lines, rejected ones by grey narrow lines. Bottom: time difference to the previous

detected crash for various detector settings, each trace shifted up by 30ms with respect to the previous one.

Table II lists the applied settings, methods, fpracc and frequencies for traces A-F and the dots in the top

right corner.

In the early ohmically heated phase nearly all crashes are detected by each of the three methods,

as can be seen by the smooth sawtooth period traces A-C in figure 8, bottom. In the late ICRF

heated phase with big sawteeth all sawtooth crashes are clearly detected and all false positives

rejected by the profile analysis. At first sight, the variation in the sawtooth period between 2 s

and 4 s, seems to show detection errors, namely not rejected false positives. However, figure 9

reveals that the detected short sawtooth periods are correct. Since τSC,det = 6ms was chosen
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edge detections with SXR (‘small crash’ setting), dotted vertical lines show the manually detected sawtooth

crashes in ECE signals.

and the distance between crashes can be as short as ≈ 3ms, detection of these close-by crashes is

not expected to be complete7. The detection results of POSR and kurtosis are nearly identical,

the deviations only being in few close-by crashes. POS misses some crashes completely, i.e., not

even one of a group of close-by crashes is detected. This is because for two or more peaks in one

calculation frame, the POS peak-weight is reduced.

The effect of a small kernel width in the presence of perturbation frequencies is demonstrated

by the detection of a single sawtooth crash (discharge #33186 at 6.084 s) with τSC,det = 1ms

and two different ‖lf‖ (see figure 10). With ‖lf‖ = 42, the kernel width is σk = 0.041ms and

fres = 3.9 kHz, such that even the high precursor frequencies around 8 kHz in the ICRF phase

hamper the sawtooth detection. The crash profile is too asymmetric and rejected by the profile

analysis. The longer kernel with fres = 1.67 kHz for ‖lf‖ = 14 (which corresponds to the ’short

latency’ setting) results in a sufficiently symmetric crash profile. Scanning fres, the sawtooth crash

is accepted up to 3.3 kHz. This corresponds to fmode ≈ 2.4fres, which is in the expected range for

the disappearing influence of a large mode. The detection results for the POSR method with the

’short latency’ setting (‖lf‖ = 14) in discharge #33186 are represented by trace D in figure 8. In

the early phase with small perturbation frequencies, this setting is not suitable, while in the late

phase sawtooth crashes are detected reliably. The superiority of the POSR method at ‖lf‖ = 14

for steplike signals is confirmed by the detection results in the last phase for the ‘short latency’

7 For a group of crashes significantly closer than τSC,det, only the largest of them can be detected in a single time
trace. However, in another time trace, another of these edges can be larger. Thus, detection of the entire group of
close-by crashes is still possible.
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FIG. 10: Detection of a single sawtooth crash with the same τSC,det = 1ms but different kernel widths

σk,1 = 0.095ms and σk,2 = 0.041ms, corresponding to resonance frequencies fres,1 = 1.67 kHz and fres,2 =

3.9 kHz. (a) Time trace of SXR channel with the two kernels plotted at the detected edge time point, (b)

convoluted signals for σk,1 and (c) for σk,2, (d) crash profiles for both kernels. The position of the SXR

channel shown in (a) is marked by filled symbols.

settings (dots in bottom part of figure 8). The other two methods do not even detect these large

sawtooth crashes reliably.

Sawtooth detection at ‖lf‖ ≈ 14 is a special case because the results depend strongly on the

signal type (steplike or ramplike) for the POSR method, but hardly for the kurtosis method. For

the same time trace with sawteeth, the signal type for the detector depends on the selected τSC,det:

A sawtooth period of 11ms will give fully ramplike signals for τSC,det = 11ms but nearly steplike

signals for τSC,det = 4ms, because the latter analyses only a small fraction of the sawtooth cycle.

In figure 11 we therefore compare the detection results for the POSR and the kurtosis method
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for different τSC,det, and thus signal type, for another discharge (#31258, with pure NBI heating,

switched off at 4.4 s). For τSC,det = 4ms, all crashes are nearly steplike, while for τSC,det = 11ms

the second half of the crashes is fully ramplike. As expected from figure 6 (middle row, left),

detection with the POSR method for steplike crashes is very good, while many ramplike crashes

are missed at ‖lf‖ = 14 (red dots in figure 11). The kurtosis method performs much better for

τSC,det = 11ms, i.e. ramplike signals, revealing that the failure of POSR is not only in identifying

peaks that are closer than τSC,det. The kurtosis method has similar detection performance for

steplike and ramplike signals in the simulation (see figure 6 (bottom, left)), such that for ramplike

signals, the kurtosis method can still detect sawteeth at ‖lf‖ = 14, where POSR fails. However,

the normalized edge width must be sufficiently small. In the first half of figure 11, many crashes

have a duration in the order of 1ms. This results in ‖wedge‖ ≈ 1 for τSC,det = 11ms, which is in

the detectable range in the simulation, but in ‖wedge‖ ≈ 2.5 for τSC,det = 4ms, which does not

allow reliable sawtooth detection for the simulated signals. These observations are thus directly

predicted from the simulations.

Traces E and F in figure 8 represent the detection results for an acceptable false positive rate

of fpracc = 5% with the ‘intermediate’ setting (‖lf‖ = 21) and for fpracc = 0.15% with the ‘small

crashes’ setting (‖lf‖ = 42), respectively. Both detections use the POSR method with the same

kernel width (σk = 0.25ms, corresponding to fres = 0.65 kHz). According to figure 12, the ’small

crashes’ setting with fpracc = 0.15% should perform similarly as, or better than, the ’intermediate’

setting with fpracc = 5%. However, in the ECRH phase the detection results for POSR are much

better for larger fpracc (trace E) than for larger ‖lf‖ (trace F). The other two methods show similar

behaviour, which confirms that an increase of ‖lf‖ in case of non-stationary signal evolutions is

less beneficial for detection performance than in the simulation.

6. SUMMARY AND OUTLOOK

Sawtooth crashes in tokamaks with metal walls can show strong variations from one crash to the

next in terms of inversion radius, amplitude and even in the direction of the central signal change.

In ASDEX Upgrade, this irregular behaviour is connected to central wave heating, especially

during ECRH. Soft X-ray (SXR) signals are more affected than ECE. However, large fluctuations

of inversion radius and crash amplitude have been observed also for ECE measurements. In such

scenarios, detection methods that rely on predefined or slowly changing crash characteristics are

not suited to reliably detect sawtooth crashes.
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We designed an automatic sawtooth crash detection method with self-adjusting thresholds,

unprejudiced in terms of sawtooth evolution and able to detect also very small crashes under a

wide range of plasma conditions. This is done in three steps: The first step is an edge detection

in individual time traces by convolution with a filter being shaped as the Gaussian first derivative

(equation (1)), which results in a peak at the crash time point. The convoluted signal is evaluated

in a calculation frame around the peak. For a fully adaptive edge detection, we use peak thresholds

based on the noise level in the vicinity of the crash.

A twofold combination of detections over a range of diagnostic channels follows. First, a detec-

tion must prove its significance by appearing in at least two traces within a small time window.

Then the spatial distribution is evaluated (see equations (10) to (12)) in terms of generic crash char-

acteristics, such as relative amplitude with respect to the precrash values, symmetry with respect

to the magnetic axis and a significant redistribution (i.e., both, gains and losses are observed). For

the last step, a signal set which covers the mixing region well, is required. The first two steps can

be performed with a smaller set of signals. In order to be independent of the ECE cut-off electron

density restriction, we based the detection on SXR signals, as they are available in basically all

scenarios. However, the method should be adaptable to other diagnostic methods, like e.g. ECE,

provided the temporal resolution and spatial coverage are sufficient.

The effect of edge detection parameter choice has been simulated with synthetic signals. Three

methods for evaluation of the convoluted signals have been compared (equations (6) to (9)). A

method that corrects the noise reference for the influence of the peak (POSR) shows the best

results, followed by the method that uses the kurtosis of the convoluted signal. The latter is a

measure for the significance of the peak in its noisy background. The simulation considers the

crash height and its duration but only with white noise. The presence of a sawtooth precursor thus

necessitates consideration of specific perturbation frequencies in addition to the simulation results.

Depending on boundary conditions and preferences, suitable detection parameter settings can

be extracted. Detection of very small sawtooth crashes requires a sufficiently large ratio of the

frame length to the width of the convolution kernel. Extended crash duration or low perturbation

frequencies require a large kernel width. The sum of frame length and kernel length (which is

proportional to the kernel width), is limited by the minimum distance between sawtooth crashes

and by the desired latency for real-time applications. Detection of very small crashes or crashes

with a low-frequency precursor will conflict with very short latencies. Thus, for future real-time

applications it must be decided whether the detection should be very fast and possibly miss some

crashes, or if it is allowed to take few milliseconds longer but detect reliably virtually each sawtooth
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crash. The same applies for the choice of acceptable false positive rate, fpracc. Few false positives

after edge detection are preferable, since the profile analysis has to be performed for all detected

edge time points. However, we have shown that the detection in a phase with inverted crashes

can suffer from a low fpracc. To overcome these restrictions, different settings could be used in

parallel. The parameter choices listed in table I were applied to ASDEX Upgrade SXR data with

strongly different sawtooth features. The results confirm to a large extent our expectations based

on the simulation and frequency considerations.

In the future, we will analyse differences in detection for the two more succesful methods (POSR

and kurtosis) and for different parameter sets on a broad basis of discharges. Application to two

or more SXR cameras simultaneously could reduce sawtooth crash rejections. This will use the

fact that the asymmetry of the crash profile due to a slow precursor with odd symmetry depends

on the viewing angle. A real-time implementation of the algorithm with the shortly available real-

time ASDEX Upgrade SXR data will be started within 2017. The presented automated sawtooth

detection algorithm already routinely provides sawtooth crash times which are used to support

equilibrium reconstruction [17].
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