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Abstract
Wepresent a quantum simulation scheme for the Abelian-Higgs lattice gauge theory using ultracold
bosonic atoms in optical lattices. Themodel contains both gauge andHiggs scalarfields, and exhibits
interesting phases related to confinement and theHiggsmechanism. Themodel can be simulated by
an atomicHamiltonian, byfirstmapping the local gauge symmetry to an internal symmetry of the
atomic system, the conservation of hyperfine angularmomentum in atomic collisions. By including
auxiliary bosons in the simulation, we showhow theAbelian-HiggsHamiltonian emerges effectively.
We analyze the accuracy of ourmethod in terms of different experimental parameters, as well as the
effect of the finite number of bosons on the quantum simulator. Finally, we propose possible
experiments for studying the ground state of the system in different regimes of the theory, and
measuring interesting high energy physics phenomena in real time.

1. Introduction

The study of natural systems governed by the laws of quantummechanics is a complicated task.Most of the
usual theoretical and numerical techniques employed to tackle the behavior of quantum systems become rapidly
overwhelmed once their size starts increasing. In particular, the computational resources required to simulate a
quantummechanical systemusing a classical computer scale exponentially with the number of its constituents.
This situation led Richard Feynman to think of the concept of a quantum simulator [1]. According to his idea,
such a device would be governed itself by the laws of quantummechanics and, exploiting this fact, could be used
to study other quantummechanical systemsmore efficiently. Feynman’s ideawas formalized as an algorithm
that could be processed by a universal quantum computer [2]. This is referred to as a digital quantum simulation,
since it is based on approximating the simulated system’s dynamics by applying a discrete set of operations
(quantum gates) on a highly-controllable quantumdevice. Quantum computers are very interesting from a
theoretical point of view, since, in principle, they could simulate any other physical systemusing only
polynomial resources, provided that certain locality conditions are fulfilled [2]. From the experimental side,
however—and in spite of the great advances over the last decades regarding themanipulation ofmicroscopic
quantum systems—a practical implementation of a fully operational quantum computer is still a long-
term goal.

Notwithstanding, having these controllable devices sowell studied and reachablemakes quantum
simulation a reality, bymeans of simpler quantumdevices that can perform calculations beyond the scope of
classicalmachines. In particular, the so-called analog quantum simulators, althoughmuchmore limited than an
universal simulator, can be used to study a broad range of quantum systemswithin the reach of today’s
technological progress [3, 4]. Analog simulators act bymapping the degrees of freedomof the simulated system
to those of the simulating one. The latter can be controlled in the laboratory and its dynamics can be tailored (in
particular, the correspondingHamiltonian) to be equivalent to those of the systemwe are trying to study. This
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allows us to obtain information about systems that cannot be accessed experimentally, by investigating others
for which state preparation andmeasurements aremuch easier tasks.

Among the relevant platforms that can serve as quantum simulators, both analog and digital,many atomic
and optical systems stand out due to their remarkable experimental controllability. Some examples include
ultracold atoms [5–9], trapped ions [10–14], photonic systems [15] andRydberg atoms [16]. Ultracold atoms in
optical lattices, in particular, present the possibility of recreatingmany different interactions—such as nearest-
neighbor, long-range forces, on-site interactions, etc—allowing for the simulation of both condensedmatter
and high energy physicsmodels. Solid-state systems, such as quantumdots [17–19] or superconducting circuits
[20, 21], also showprominent results thatmake them interesting candidates to performquantum simulations.

Using these ideas,many condensedmatterHamiltonians have been considered for quantum simulations,
some of them even realized experimentally. Some examples include spin systems [14, 22–24], such as the Ising or
Heisenbergmodels; the Bose–Hubbardmodel [5, 25]; the Tonks–Girardeau gas [26], or copper-oxide
superconductors [18]. External gauge potentials can be simulated as well, allowing for the study of the fractional
quantumHall effect [27] and other topological phenomena [28–31].

Quantum simulations of high energy physicsmodels, althoughmore demanding than their condensed
matter counterparts, are also possible. Some examples include the simulation of theDirac [32–34] andMajorana
equations [35], the Casimir force [36], the Schwingermechanism [37] or the oscillations of neutrinos [38, 39].
Simulations of quantumfield theories [40, 41], gravitational theories [42] and black holes [43, 44] have been
proposed in recent years, some of them realized experimentally as well [45].

Within high energy physics, gauge theories are particularly relevant, since they lie in the core of the Standard
Model of particle physics [46–49]; dynamical gauge degrees of freedom are introduced in quantum field theories
to explain the interactions between the basic constituents ofmatter, such as quarks or electrons.Many
techniques have been developed to study such theories. Some of them rely on perturbative expansions around
small coupling constants. However, thesemethods lose their validity if one tries to apply them for the study of
non-perturbative phenomena, where the relevant coupling constant presents large values. This is the case for the
interaction strength between separated quarks, which growswith the distance between them (running coupling)
[46, 47]. At short distances, the interaction’s coupling constant presents small values (asymptotic freedom) [50],
and the perturbativemethods can be applied. At long distances, however, the growth in the interaction strength
gives rise to the confinementmechanism, implying that no free quarks can be found in nature, a claim that is
supported by the experiments [47]. To deal with this and other non-perturbative phenomena, the lattice
formulation of gauge theories was developed [51, 52], obtaining a proper framework to performnumerical
simulations on these theories—usingMonte Carlomethods, in particular [53].

These techniques provided a great advance in the understanding of particle physics during the last decades.
However, they present some limitationswhen they are applied to certain cases. An example is the sign problem,
which appears in regimeswith afinite chemical potential for fermionic particles [54], and becomes problematic
for the studying of different phases ofQCD, such as the quark-gluon plasma or the color-superconducting phase
[55]. The analysis of real-time dynamics is also lacking, sinceMonte Carlo simulations only allow to calculate
Euclidean space–time correlation functions in imaginary time (after aWick rotation).

In this context, twodifferent approaches have been recently proposed to study lattice gauge theories in regimes
that cannot be accessedusing previous techniques.One involves the applicationofmethods basedon tensornetworks
[56–69]. Another consists onperformingquantumsimulationsusing lowenergyquantumsystems. In contrast to the
case of condensedmattermodels, lattice gauge theories aremore complicated to simulateusing lowenergy systems,
such asultracold atoms, since the gauge andLorentz symmetries are not naturally present in the latter. In addition,
simulatingboth gauge andmatterfields usually requires theuse of bosonic and fermionic atoms,which increases the
experimental complexity. Any attempt to simulate theses theoriesmust take these facts into account [70, 71].

Some examples of simulationproposals for gauge theories usingultracold atoms includeboth the continuous
[72] and lattice versionofQED, focusing especially on the latter case. Inparticular, analog simulations for cQED
were proposedboth in the absence [73, 74] andpresence of dynamicalmatter [75–78], where gauge invariance
emerges as an effective symmetry. Realizations ofU(1) gauge theorieswith dynamical or backgroundHiggsfields,
using effective gauge invariance,were discussed in [79–81]. In [70, 82, 83] the gauge symmetry is obtained exactly by
mapping it to an internal symmetry of the atomic system.Other quantumsystems that have been considered for
quantumsimulations of lattice gauge theories are superconducting circuits [84, 85], trapped ions [86, 87] and
Rydberg atoms [16, 88]. Discrete symmetry groupshave been considered aswell, both for analog [70, 89, 90] and
digital simulations [91, 92], aswell as non-abelian theories [93–100]. A general formalism for digital simulations of
lattice gauge theorieswith ultracold atoms canbe found in [91].

Recently, the first experimental realization of a quantum simulation of a lattice gauge theorywas performed
[101], where the real-time dynamics of the Schwingermodel were simulated on a few-qubit trapped-ion
quantum computer. This experiment opened the door for studying high energy physics beyond the capabilities
of classical simulations.
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The present work is devoted to the quantum simulation of the Abelian-Higgs lattice gauge theory, which
contains both gauge andHiggs scalar fields, using ultracold bosonic atoms confined in optical lattices. This will
be done bymapping atomic symmetries to local gauge invariance. The paper is organized as follows. In section 2,
we introduce the Abelian-Higgsmodel, which is used as toymodel in high energy physics to study theHiggs
mechanism. Thismodel admits a discretized description as a lattice gauge theory, whose phase diagram shows,
apart from thementionedmechanism, a confinement phase for the scalarHiggs field.We consider the
Hamiltonian formulation of themodel,more suited for quantum simulation purposes. In section 3, we
introduce the necessary ingredients to simulate theAbelian-HiggsHamiltonian using ultracold atoms in optical
lattices. First, the basic properties of the simulating system are explained, startingwith the second-quantized
Hamiltonian that describe an atomic system in the ultracold regime, as well as themost important experimental
techniques that are needed to control andmanipulate it. Then, we showhow the degrees of freedom and
interactions of the simulatedmodel—and, in particular, the local gauge symmetry—can bemapped onto the
atomic system.With the help of auxiliary ‘hard-core’ bosons, we showhow the complete Abelian-Higgs
Hamiltonian emerges effectively up to some small corrections. Finally, in section 4, we introduce possible
experiments tomeasure interesting high energy physics phenomena, such as the dynamical breaking of electric
flux lines between scalar charges, effect that is related to confinement [102].

2. The simulatedmodel

The spontaneous breaking of a symmetry refers to a situation characterized by a ground state which is not
invariant under the same set of transformations as the theory’s Lagrangian orHamiltonian. TheHiggs
mechanism [103–106] describes this phenomenon in the presence of a (local) gauge symmetry. It can be applied,
for instance, to the ´( ) ( )SU U2 1 gauge group, associated to the electroweak interaction in the StandardModel
of particle physics, explaining how the corresponding gauge bosons, W andZ, acquire a non-zeromass [107].
The basic features of themechanism can be studied, however, in amuch simpler case, the Abelian-Higgsmodel
[46, 108], involving complex scalar fields coupled to abelian gaugefields (appendix A.1).

TheAbelian-Higgsmodel can be formulated as a lattice gauge theory [109–115], this is, as afield theory on a
discretized space–time, invariant underU(1) local transformations. The phase diagramof the theory shows very
interesting phenomena, related to theHiggsmechanism and the confinement phenomenon (appendix A.2).

For quantum simulation purposes, it ismore convenient to express the theory in aHamiltonian
formulation. Thismakes themapping between the simulating and the simulated system—in this case, ultracold
atoms in optical lattices—more straightforward, since the latter is described usually in terms of a second-
quantizedmany-bodyHamiltonian.Here, we shall introduce theAbelian-Higgsmodel directly in the
Hamiltonian formulation.We obtained the former by applying the transfermatrixmethod to the standard
lattice gauge action used in the high energy physics literature. The details of these calculations can be found in
appendix B.

TheAbelian-Higgs theory involves two types offields: gauge andHiggsfields.Wewill formulate it on a d
dimensional spatial square lattice, with continuous time, andwillfix the lattice spacing a= 1.

The gaugefields reside on the links of the lattice. They are represented by the unitary operators

º q-ˆ ( ) ˆ
U ek

q q
n,

i kn, , residing on the links (joining the vertices n and + k̂n , with k̂ a unit vector in one of the d
orthogonal directions). q is an integer denoting theU(1) representation; wewill omit it fromnowon and focus
on the case q= 1.On each linkwe introduce another operator, Ê kn, , with the commutation relations

d d=¢ ¢ ¢ ¢[ ˆ ] ( )† †E U U, . 1k k k k kn n n n n, , , , ,

Û kn, and ˆ †
U kn, are unitary operators acting as ladder operators with respect to Ê kn, , which has a discrete spectrum,

ñ = ñ Îˆ ∣ ∣ ( )E m m m m, . 2k k k k kn n n n n, , , , ,

Wewill call the latter the electric field operator. The commutation relations (1) define how the operators Û kn, and

ˆ †
U kn, act on the eigenstates of Ê kn, ,

ñ = - ñ ñ = + ñˆ ∣ ∣ ˆ ∣ ∣ ( )†
U m m U m m1 , 1 . 3k k k k k kn n n n n n, , , , , ,

TheHiggsfields, f º j-ˆ ˆen
i n, which reside on the vertices of the lattice, are unitary operators as well. Their

Hilbert spaces are very similar to these of the gaugefields; we define the operator Q̂n—referred as the charge
operator—obeying the commutation relations

f d f=¢ ¢[ ˆ ˆ ] ˆ ( )† †
Q , , 4n n n n n,
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having Q̂n, again, a discrete spectrum. f̂
†

n and f̂n are unitary operators that act as raising and lowering operators,
respectively,

f fñ = - ñ ñ = + ñˆ ∣ ∣ ˆ ∣ ∣ ( )†
Q Q Q Q1 , 1 , 5n n n n n n

where ñ∣Q n is an eigenstate of the charge operator Q̂n.
All these ingredients appear in the Abelian-HiggsHamiltonian,

å å å åf f= - + + - ++ + +
ˆ ˆ [ ˆ ˆ ˆ ] ˆ ( ˆ ˆ ˆ ˆ )

( )

† †
ˆ ˆ ˆ

† †
H

R
Q

R
U

g
E

g
U U U U

1

2 2
h.c.

2

1

2
h.c. ,

6
k

k k
k

k
ik

i i k k i k
n

n
n

n n n
n

n
n

n n n n2

2 2

,
,

2

,
,

2

2
,

, , , ,

where the sums in n and k run over the vertices and links of a spatial lattice in d dimensions, and the coupling
constantsR and g are introduced to recover the continuous Abelian-Higgsmodel in the limit a 0. The
Hamiltonian (6) is composed of a non-interacting part with local terms (charge and electric field) for the vertices
and links of the lattice, and an interacting part that includes a plaquette-type term (figure 1) that creates electric
field excitations along the four links of a plaquette, and nearest-neighbor vertex couplings,mediated by an
excitation on the link that joins them. The second row in equation (6) corresponds, in particular, to the pure-
gaugeKogut–SusskindHamiltonian [116].

In theHamiltonian formulation of lattice gauge theories, the gauge isfixed in the temporal direction,
q = 0n,0 (appendix B). However, it is notfixed in the spatial directions. Therefore, theHamiltonian is still gauge
invariant under a restricted subset of local transformations applied to the vertices of the spatial lattice,

= a ( )V e . 7n
i n

In this formalism, the gauge transformations are generated, like any other continuous symmetry, by
operators Ĝn that commutewith theHamiltonian of the theory,

=[ ˆ ˆ ] ( )H G, 0, 8n

defined, in this case, locally for each vertex. In the case of theAbelian-HiggsHamiltonian (6), the generators Ĝn

are expressed as

å= - --ˆ ( ˆ ˆ ) ˆ ( )ˆG E E Q . 9
k

k kn n n k n, ,

It is easy to check that such operator commutes with theHamiltonian for every vertex n.
The eigenvalues of the operators Ĝn are called static charges qn, taking, as well, integer values. TheHilbert

space of the system is divided into sectors, each one associated to a different static charge configuration,

 = ⨁ ({ }) ( )
{ }

q , 10
q

n
n

such that

y y yñ = ñ " ñ Îˆ ∣ ({ }) ∣ ({ }) ∣ ({ }) ({ }) ( )G q q q q q, . 11n n n n n n

Since theHamiltonian commutes with the generators of the gauge transformations, the dynamics cannot
mix different sectors. If the initial state belongs to a certain sector, the systemwill remain in the same sector
through its time evolution. The above equation is known as theGauss’s law, and it is crucial for the structure of
the physical states of the system.

In general, the totalHilbert space of the systemwould be the product over the vertices and links of the lattice
of each infinite dimensional localHilbert space.However, Gauss law (9) imposes a constraint on the allowed
states where theHamiltonian (6) acts. Let usfirst consider the pure-gauge Kogut–SusskindHamiltonian, for the

Figure 1.The plaquette term contains the product of four gauge-field terms corresponding to the four links of a plaquette.
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caseR= 0, within the zero-static charge sector ( =q 0n "n). In the strong coupling limit ( g 1), the ground
state of the system is the empty state. This is, every link of the lattice is an eigenstate of the electricfield operator
with eigenvalue equal to zero. As the value of the coupling constant g decreases, the empty state is no longer the
ground state of the system. The plaquette-interaction term can create excitations composed of closed electric
flux lines. The ground state, and the rest of excited states, will be superposition of such loops, with an increasing
number of themwhen the energy of the system grows (figure 2).

Consider now a gauge-invariant sectorwith non-zero static charges in some vertices (figure 3). In this case,
the empty state is not the ground state of the system even in the strong coupling limit. The reason for this is that
Gauss law (9) requires an electric flux line to exist between every pair of static charges, being the ground state in
the strong coupling limit characterized by the shortest of those paths. If the value of the coupling constant g
decreases, closed loopswill be formed all around the lattice, deforming the flux line between the static charges if
they share a common linkwith the latter (figure 3).

Ifmatter is present in the theory, theflux lines will not only fluctuate but can even break. For ¹R 0, the
gauge-matter interaction term can create charge excitations in two nearest-neighbor vertices.We can find, then,
states characterized by separated pairs of dynamical charges joined via fluctuating flux lines, whichwewill call
mesons. The difference with respect to the pure-gauge case is that, now, the flux lines can break, resulting in two
new—and shorter—meson-like states (figure 4). This phenomenon resembles the behavior ofQCD,where, due
to the confinementmechanism, theflux lines between a quark–antiquark pair can break through the creation of
a newpair from the vacuum (string breaking) [47].

Here, we have described some basic features of this latticemodel. The complete phase diagramof the theory
is described in appendix A.2 for different dimensions and different representations of the symmetry group.

Figure 2.The pure-gauge excitations on top of the empty state consist of closed electric flux lines, created by the plaquette interaction
term in theHamiltonian (6). Since the plaquette term is gauge-invariant, these states are gauge invariant aswell. This is clear observing
that theGauss law (9) is fulfilled on each vertex, forcing the closed loop structure. In thefigure, positive values of the electric field are
represented with arrows pointing right or upwards.

Figure 3.Two separated static charges are joined, in the strong coupling limit, by an electric flux line. If the coupling constant
decreases, pure-gauge loopswill appear. If some link in the loop coincides with the electric flux line between the charges (in the
opposite direction), it will result in a deformation of theflux line.
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3.Quantum simulation

We shall nowdescribe a quantum simulation scheme for the lattice Abelian-Higgs theory using ultracold
bosonic atoms trapped in optical lattices. The goal is to impose certain conditions on this highly controllable
atomic system, such that theHamiltonian that describes itmaps, approximately, theHamiltonian under study
(6). Both the parameters appearing in the latter, as well as the degree of approximation, can be controlled
experimentally. This allows to study, for instance, the ground state of thismany-body quantum theory in the
interacting regime, which is a hard task to performusing standard analytical or numerical calculations.

The simulation proposal involves threemain steps. First, starting from themost generalmulti-species
Hamiltonian that describes ultracold bosons, the experimental requirements that are necessary for the
simulationwill be presented. After that, the transformations required formapping the degrees of freedomof the
atomic system to those of the Abelian-Higgs theorywill be introduced. Finally, wewill see how the desired
Hamiltonian is effectively obtained, apart from correction terms, after increasing one of the energy scales of the
system compared to the rest.Most of these corrections can bemade as small as required by changing the
experimental parameters of the atomic system, keeping the freedom tomove through the phase space of the
simulated theory, and by increasing the number of atoms used in the simulation.

3.1. Ultracold atoms in optical lattices
3.1.1. AtomicHamiltonian
Ultracold atomic gases consist of neutral atoms trapped and cooled down to almost absolute zero temperature,
where quantum effects play a significant role. They represent one of themost relevant platforms for the study of
collective quantumphenomena in regimes that are either hard to access experimentally, or where numerical
simulations do not provide sufficiently good results. In particular, the so-called optical lattices—structures
made of counter-propagating lasers—can be prepared in away that emulates a periodic lattice structure with
atoms bound to the vertices [5, 7, 9].Within these lattices, interactions among the atoms can be tuned in order to
recreateHamiltonianmodels describingmany-body systems, both in condensedmatter and in high energy
physics. In this work, wewill consider themost generalmulti-species bosonicHamiltonian [9],

åå å å= +
a b

a b
a b

a b d g

a b d g
a b d g

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ( )
† † †

H t b b U b b b b , 12
i j

i j i j
i j k l

i j k l i j k l
, ,

,
,

, ,
, , , , , ,

, , ,
, , ,

, , , ,

where the latin indices denote the different sites of an optical lattice, and the greek indices represent different
bosonic species (either different kinds of atoms or atomswith different internal levels). The operators ab̂i, and

a
ˆ†
bi, are bosonic creation and annihilation operators, respectively, fulfilling the commutation relations

d d=a b a b[ ˆ ˆ ] ( )
†

b b, . 13i j ij, , ,

The parameters a bti j,
, and a b d gUi j k l, , ,

, , , are constrained by conservation laws and their respective symmetries, and
can befine-tuned using experimental techniques such as (optical) Feshbach resonances [7, 117–119]. Thefirst
term in (12) corresponds to a hopping process of individual atoms along the lattice sites, while the second is a
two-body collision process. For the latter, the conservation of the total angularmomentum F implies, in
particular, that the following conditionmust be fulfilled in each collision,

a b d g+ = +( ) ( ) ( ) ( ) ( )m m m m , 14F F F F

where a( )mF represents the hyperfine angularmomentum state for the atomic speciesα.

Figure 4. If ameson-like excitation is created along the electric flux line of an existingmesonic state, the latter can break, giving birth to
two separated and smallermesons.
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3.1.2. Experimental requirements
Our simulation proposal focuses on the 2+ 1 dimensional case, which is the first ‘non-trivial’ dimension, since it
contains plaquette interactions. In particular, we need two superimposed optical lattices to perform a lattice
gauge theory simulation, whoseminima correspond to the vertices and links of the simulated lattice, respectively
(figure 5(a)). Filling and combining two such lattices is possible in the two-dimensional case, however, it
becomesmore complicated in three-dimensions. All the theoretical calculations are valid, nevertheless, for
+d 1dimensions, with d 2.
To simulate the complete Abelian-HiggsHamiltonian (6)weneed six different bosonic species (figure 5(c)).

Two of them, a and b, are placed on the links of the simulated lattice and represent the gauge degrees of freedom.
Another pair of bosons simulates the scalar fields on the vertices (dynamicalmatter), one species on the odd
vertices, c, and the other one on the even ones, d. The last two species, e and f, are distributed, again, on odd and
even vertices, respectively, acting as auxiliary particles required to obtain the plaquette interactions in an
effective way, as wewill see. Each pair of bosonic species corresponds to the same type of atom, but their internal
level differ in the value of the hyperfine angularmomentum,mF.Wewill denote both types of dynamical bosons
with η, and both auxiliary ones withχ, in those situations where a distinction between the hyperfine angular
momentum level is not important.

Dyn. η Aux.χ

Odd c e

Even d f

3.2. PrimitiveHamiltonian
For dimensions +d 1, with >d 1, theHamiltonians that describe lattice gauge theories, such as the Abelian-
Higgs one (6), include plaquette-type interactionsmade out of the product of four unitary operators (figure 1).
Such four-body interactions are not found in the ultracold atomicHamiltonian. In order to simulate them,we
have to obtain these type of terms effectively [70, 71], as wewill explain in later sections.

We shall call primitiveHamiltonian the one fromwhich the desired Abelian-HiggsHamiltonian can be
obtained effectively, acting only on a low-energy sector. It has the form

 å å å å ål c c m m f f= - + + + + ¢ + ¢ +
c c

+ +
ˆ ˆ ( ˆ ) [ ˆ ˆ ˆ ] ˆ ˆ [ ˆ ˆ ˆ ]

( )

† †
ˆ

† †
ˆH N N U E Q U1 h.c. h.c. .

15
k

k k
k

k
k

k k
n

n n
n

n n n
n

n
n

n
n

n n n
,

,
,

,
2 2

,
,

Figure 5. (a)Two superimposed optical lattices, orientedwith a 45 angle between their links, are required to simulate both thematter
and gauge degrees of freedom. The vertices of one lattice (blue in thefigure) represent the vertices of the simulated one, whereas the
vertices of the rotated lattice (green) correspondwith the links of the latter. The ‘matter’ lattice isfilledwith four types of bosons (c),
two species per site, alternating on even and odd vertices. Two of these bosonic species represent dynamicalmatter (species c and d),
and the other two are auxiliary bosons required for the simulation (species e and f ). The ‘gauge’ lattice, on the other hand, isfilledwith
two types of bosons on each site (species a and b), with no distinction for even and odd links. The characteristics of these latticesmust
be configured such that there is no interactions between bosons fromdifferent sites of the ‘gauge’ lattice—using, for example, deep
potentials—but allowing for interactions between them and the bosons from the nearest-neighbor vertices of the ‘matter’ lattice. This
is the case if the correspondingWannier functions have a non-vanishing intersection (b).
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Thefirst row contains the operators corresponding to auxiliary bosons living on the vertices of the lattice. ĉ †
n

and ĉn are the bosonic creation and annihilation operators, respectively, and c c=
cˆ ˆ ˆ†Nn n n is the corresponding

number operator. The second row contains all the terms of (6) except for the plaquette interaction. The primitive
Hamiltonian is invariant aswell underU(1) local transformations applied on the vertices of the lattice.

Wewill now focus on bringing the atomicHamiltonian to the primitive (intermediate) form (15). Although
only an approximateHamiltonian can be obtained, the level of approximation can be controlled by using a
different number of atoms in the simulation.

3.3.Operator transformations
Thefirst step towards a quantum simulation is to construct a one-to-onemapping between the degrees of
freedomof both the simulating and the simulated systems.Here, this is achieved by defining the operators that
appear in the Abelian-HiggsHamiltonian (6) in terms of bosonic creation and annihilation operators
corresponding to the different atomic species. For afinite number of atoms trapped on the vertices and links of
the optical lattice, the correspondence is not exact, in the sense that the defined operators will act only on a
truncatedHilbert space. However, the approximationwill improvewhen the number of atoms increases, as the
connection between both systems becomes exact in the infinite number of atoms limit.

On the vertices of the lattice (both even and odds), we introduce the operators Q̂n, f̂n and f̂
†

n using the

second-quantized operators ĥn and ĥ
†
n for the dynamical bosons,

h f h f= + = +ˆ ˆ ( ˆ ) ˆ ( ˆ ) ˆ ( )† †
N Q N Q, 16v vn n n n n n0,

1 2
0,

1 2

and

h h= -ˆ ˆ ˆ ( )†Q N , 17vn n n 0,

where N v0, is the density of η bosons.With these relations, both the canonical commutation relations for the
bosonic operators and the commutation relations (4) are fulfilled. According to this definition, the operator Q̂n

is bounded frombelow by-N v0, . For this reason, it is not exactly equivalent to the dynamical charge operator
that appears in (6), however, we can think about it as the latter acting on a truncatedHilbert space—the one
spanned by the basis ñ∣m with Î Ç - ¥[ )m N ,v0, —where it is equivalent to the dynamical charge operator.
For this reason, we use the same notation for both, understanding, in the following, that we are referring to the
operator acting on the truncated space.

Another problem concerning thefiniteness of N l0, is that, by imposing the commutation relations (4), ĥn

and ĥ†
n cannot be unitary, which alsomeans that they are not the exponential of a self-adjoint phase ĵn,

f = j-ˆ ˆen
i n. This is related to the quantum phase operator problem [120–124], and lies in the fact that Q̂n is

bounded frombelow. Aunitary operator is well-defined only in the limit  ¥N v0, , such that the charge
operator is no longer bounded.

We areworkingwith a large, butfinite, number of atoms N v0, on each vertex. The reason it is stillfine, from a
physical point of view, to use these definitions—although they are not formally correct—is that in all the
interaction terms of theHamiltonian the bosonic operators appear in pairs, corresponding to nearest-neighbor
vertices, h h +ˆ ˆ†

k̂n n . Therefore, only phase differences between different vertices are relevant. The phase difference

is awell-defined quantity, since it is canonically conjugate to a number operator, = -ˆ ˆ ˆN N N
c d, which is not

bounded frombelow.
The operators associated to the gaugefields, Ê kn, and Û kn, can be obtained from the bosonic operators on the

links if wefirst represent them in a similar way as the atomic operators on the vertices,

= + = +⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠ˆ ˆ ˆ ˆ ˆ ˆ ( )a U

N
E b U

N
E

2
,

2
, 18k k

a l
k

a
k k

b l
k

b
n n n n n n, ,

0,
,

1 2

, ,
0,

,

1 2

where Û k
a

n, and Û k
b

n, are lowering operators, and

= - = -ˆ ˆ ˆ ˆ ˆ ˆ ( )† †
E a a

N
E b b

N

2
,

2
. 19k

a
k k

l
k

b
k k

l
n n n n n n, , ,

0,
, , ,

0,

Again, if the commutation relations (1) are fulfilled, the canonical relations for the bosonic operators will be
satisfied.

The total number of bosons on each link, N l0, is a conserved quantity,

= +ˆ ˆ ˆ ˆ ( )† †
N a a b b , 20l k k k kn n n n0, , , , ,

since, as we shall see, only products of bosonic operators of the form ˆ ˆ†a bk kn n, , and ˆ ˆ†
b ak kn n, , will appear in the

Hamiltonian. This implies that = - ºˆ ˆ ˆE E Ek
a

k
b

kn n n, , , .We use the latter as the electricfield operator on the link
( )kn, , which can also be expressed as
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= -( ˆ ˆ ˆ ˆ ) ( )† †
E a a b b

1

2
. 21k k k k kn n n n n, , , , ,

Weconstruct the unitary operators acting on the links as

=ˆ ˆ ˆ ( )† †
U U U , 22k k

a
k

b
n n n, , ,

satisfying the correct commutation relations (1)with the electric field (21). Note that, in this case, the operator
E kn, is not bounded frombelow. Û kn, and ˆ †

U kn, are, therefore, well-defined unitary operators, although they only
act on a truncatedHilbert space that growswith N l0, .

Finally, the product of two bosonic operators on the links can bewritten as

=
+

- +

=
+

- +

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

ˆ ˆ ˆ ( ) ˆ ( ˆ )

ˆ ˆ ( ) ˆ ( ˆ ) ˆ ( )

† †

†

a b U
N N

E E

b a
N N

E E U

2

4
1 ,

2

4
1 , 23

k k k
l l

k k

k k
l l

k k k

n n n n n

n n n n n

, , ,
0, 0,

, ,

1 2

, ,
0, 0,

, ,

1 2

,

wherewe used the property = +ˆ ( ˆ) ( ˆ ) ˆU f E f E U1 (see appendix C). In the following, wewill assume this
property—similarly for the operators on the vertices, f f= +ˆ ( ˆ ) ( ˆ ) ˆf Q f Q 1 —to deal with these non-
commuting operators.

In order to simplify the notation, we define the non-unitary operators



fF º +

º -
+

-

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

ˆ ˆ ˆ

ˆ
( )

( ˆ ˆ ) ˆ ( )

† †

† †

N
Q

N N
E E U

1
1

,

1
4

2
, 24

v

k
l l

k k k

n n n

n n n n

0,

1 2

,
0, 0,

,
2

,

1 2

,

which become the desired unitary ones, f̂
†

n and ˆ †
Un , in the limits  ¥N v0, and  ¥N l0, , respectively. The

connectionwith the atomic operators is summarized in the following relations,





h

h

F = =
+

F = =
+

ˆ ˆ ˆ ˆ ˆ

( )

ˆ ˆ ˆ
ˆ ˆ
( )

( )

†
†

†
†

†

N

a b

N N

N

b a

N N

,
2 4

,

,
2 4

. 25

v
k

k k

l l

v
k

k k

l l

n
n

n
n n

n
n

n
n n

0,
,

, ,

0, 0,

0,
,

, ,

0, 0,

3.4. Gauge-invariant interactions
Local gauge invariance is not a fundamental symmetry in a systemof ultracold atoms. It is essential, however, for
the description of the interactions present in high energy physics, as we have seen. If one aims to correctly
describe the latter, gauge symmetrymust be imposed on the simulating system. This can be done either in a
digital [91] or in an analog simulation framework. For the latter, there are two distinct ways to achieve this [71],
onewhere gauge invariance is obtained effectively, as an emerging, low energy symmetry [73, 74, 76], and
another where it ismapped, exactly, to a fundamental symmetry of the system—such as the conservation of
hyperfine angularmomentum in atomic collisions. In this case, as opposed to an effective gauge symmetry,
gauge invariance is exact,making the simulationmore robust against experimental imperfections. Using the
second approach, quantum simulations of both abelian and non-abelian lattice gauge theories have been
proposed [70, 93]. Here, wewill employ it to simulate theU(1) gauge invariance of the Abelian-Higgsmodel.

In order to obtain the correct ‘gauge-invariant’ interactions, the hyperfine angularmomenta of the six
bosonic speciesmust fulfill certain conditions (figure 6),

- = - = - º D( ) ( ) ( ) ( ) ( ) ( ) ( )m a m b m c m d m e m f m. 26F F F F F F

Since only collision processes that conserve the total angularmomentum are allowed, this condition selects the
type of terms that appear in the atomicHamiltonian. Consider, for instance, the interactions between a
dynamical boson on a vertex and a gauge boson on one of its nearest-neighbor links. The conservation of
hyperfine angularmomentum allows both species-changing collisions (figure 7(a)),

+
+ + + + +

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ( )
† †

ˆ ˆ
† ˆ

†
ˆ ˆd a b c c b a d , 27k k k k k k k k kn n n n n n n n, , , , 2
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and non-species-changing ones,

+ =

+ =
+ + + +

ˆ ˆ ( ˆ ˆ ˆ ˆ ) ˆ ˆ

ˆ ˆ ( ˆ ˆ ˆ ˆ ) ˆ ˆ ( )

† † † †

ˆ
†

ˆ
† †

ˆ
†

ˆ

d d a a b b d d N

c c a a b b c c N . 28

k k k k l

k k k k k k k k l

n n n n n n n n

n n n n n n n n

, , , , 0,

, , , , 0,

The sumof these terms becomes a constant, proportional to the number of bosons, when summed over all
vertices, if the scattering lengths are properly tuned. The same kind of processes appears for the interaction
between gauge and auxiliary bosons (figure 7(b)).

The species-changing collisions can be seen to be equivalent to thematter-gauge interactions in (6), after
applying the canonical transformations

s
+

+

+ +

+

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

ˆ
ˆ ˆ

ˆ
ˆ ( )

ˆ

ˆ

ˆ

ˆ

a

b

a

b
. 29

k

k
x
n n k

k

n

n

n

n

1 2

Both c and d operators can be denoted nowby η, and both e and f byχ. Using the transformations defined in the
last section (25), the species-changing collisions for the dynamical bosons are just

  h h¢ + = ¢ F F +
+ +( ˆ ˆ ˆ ˆ ) ( ˆ ˆ ˆ ) ( )† †

ˆ
† †

ˆa b h.c. h.c. , 30k k k k kn n n n n n n0 , , ,

where a new coupling constant has been defined,

 ¢ = ¢ +( ) ( )N
N N 2

4
. 31v

l l
0 0,

0, 0,

For the auxiliary bosons, the species-changing collisions transform to

  c c c c+ = +
+ +

( ˆ ˆ ˆ ˆ ) ( ˆ ˆ ˆ ) ( )† †
ˆ

† †
ˆa b h.c. h.c. , 32k k k k kn n n n n n n0 , , ,

with

 =
+( ) ( )N N 2

4
. 33l l

0
0, 0,

Note that these kind of interactions are possible provided theWannier functions of the corresponding
bosons on the lattice overlap (figure 5(b)).

Figure 6.The hyperfine angularmomenta of the six bosonic speciesmust fulfill certain conditions, such that the conservation of this
quantity during atomic collisions permits the desired atomic interactions.

Figure 7.The conservation of the total hyperfine angularmomentum in the atomic collisions generates the desired gauge-invariant
interactions between the dynamical (a) and auxiliarymatter (b) on the vertices of the lattice, and the gauge degrees of freedomon the
links.
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The conservation of hyperfine angularmomentum allows the two types of bosons to interact as well. This
would result in non-desired terms in the simulatedHamiltonian. For this reason, the systemmust be prepared
such that this kind of interaction does not occur, using, for example, Feshbach resonances to reduce the
corresponding scattering length.

Consider now the non-interacting terms in (15). Both the charge and the electric field kinetic terms arise
fromon-site collisions. For the vertices we have

å åm h h h h m¢ = ¢ +ˆ ˆ ˆ ˆ ˆ ( )† † Q ‘constants’, 34
n

n n n n
n

n
2

wherewe used the conservation of the total number of bosons on the vertices.
On the links, different on-site collision processes appear. They correspond to the electric field kinetic term if

the right couplings are chosen,

m

m
m

+ -

= - =

( ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ )

( ˆ ˆ ˆ ˆ ) ˆ ( )

† † † † † †

† †

a a a a b b b b a a b b

a a b b E

4
2

4
. 35

k k k k k k k k k k k k

k k k k k

n n n n n n n n n n n n

n n n n n

, , , , , , , , , , , ,

, , , ,
2

,
2

Finally, the hard-core constraint for the auxiliary bosons can be obtained fromon-site collision among
them, as well as atomicmass terms,

å åål c c c c c c l- = -
c c( ˆ ˆ ˆ ˆ ˆ ˆ ) ˆ ( ˆ ) ( )† † † N N 1 . 36

n
n n n n n n

n n
n n

Collecting all the building blocks we see how the atomicHamiltonian corresponds to

  å å å å ål c c m m= - + + + + ¢ + ¢ F F +
c c

+ +
ˆ ( ˆ ) [ ˆ ˆ ˆ ] ˆ ˆ [ ˆ ˆ ˆ ]

( )

† †
ˆ

† †
ˆH N N E Q1 h.c. h.c. ,

37
k

k k
k

k
k

k k
n

n n
n

n n n
n

n
n

n
n

n n n
,

,
,

,
2 2

,
,

which, in the limit  ¥N N,l v0, 0, results in (15). In an experiment, only afinite number of atoms is placed on
each link and vertex.However, thisHamiltonian provides a good approximation, even for a small number of
atoms [83].Wewill discuss the effect that the number of atoms have on the simulation after obtaining the
effectiveHamiltonian.

3.5. EffectiveHamiltonian
3.5.1. Hard-core bosons
We shall next describe how the plaquette interactions can be obtained in an effective way from the primitive
Hamiltonian (37). Themain idea is to impose a strong energy penalty in the atomicHamiltonian, in such away
that the Abelian-HiggsHamiltonian (6) is obtained as a low energy effective approximation, including the
plaquette interactions [70]. The advantage of thismethod is that the building blocks fromwhich the plaquettes
are constructed are already gauge-invariant. Therefore, even if the effective description contains undesired
terms, thesewill not violate the gauge symmetry.

Themethod requires the use of auxiliary particles, which can be either fermions or bosons [71]. In this case,
wemake use of hardcore auxiliary bosons sitting on the vertices of the lattice, whichwe have already introduced
in the primitiveHamiltonian (37). The energy penalty comes from the on-site interaction between auxiliary
bosons,

ål= -
c cˆ ( ˆ ) ( )H N N 1 . 38

n
n nHC

We initialize the systemwith one auxiliary boson per vertex. Ifλ ismuch larger than ò, the hopping of
auxiliary bosons to neighboring vertices implies a large energy penalty. The effectiveHamiltonian acting on the
sector characterized by one boson per vertex contains all the terms in the primitiveHamiltonian (37) that
commutes with the penalty (38). It also includes higher order corrections, related to the virtual hopping of
auxiliary bosons to neighboring vertices, and the return to their original position. In the fourth order, an
auxiliary boson can hop along the links of a plaquette (figure 8), resulting the following effective contribution
(appendixD),


   

l
- + ¹+ +( ˆ ˆ ˆ ˆ ) ( )ˆ ˆ

† †
i k

5

2
h.c. , , 39i i k k i kn n n n

4

3 , , , ,

which is the desired plaquette interaction. Terms of the type  l -n n 1only contribute for even values of n.
Therefore, the latter is, in practice, a second order correction. Apart from the plaquette term,many other terms
appear in the effective expansion.Most of them arise as an effect of the non-unitary behavior of the operators
(24)when the number of atoms is finite, vanishing in the large number of atoms limit.
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The use of hard-core bosons has several advantages, compared to obtaining the effective plaquettes using
auxiliary fermions [70]. First, the penalty term should be easier to implement experimentally, since it is
homegeneous across the vertices of the lattice. Also, as wewill see whenwe apply it to the complete lattice
Abelian-Higgs theory, no undesired divergence terms or inhomogeneous renormalizations appear in the
effectiveHamiltonian, as opposed to in the fermionic case. Finally, the quantum simulationwill only require
bosonic atoms, rather than bosons and fermions, which simplifies the experiment aswell.

3.5.2. Effective expansion
Let us derive the complete effectiveHamiltonian that acts on the sector of the energy constraint characterized by
just one auxiliary boson per vertex.We assume thatλ is large compared to the rest of the coupling parameters,

 l m m¢ ¢ ( ), , , . 40

This can be achieved experimentally using Feshbach resonances. In order to calculate the effectiveHamiltonian,
we use time-independent perturbation theory, following [125, 126]. The effectiveHamiltonian is perturbatively
expanded in terms of l1 .More details about the calculations can be found in appendixD.Here, we present the
results up to fourth order. Notice that all the terms obtained in the effective expansion are gauge invariant, since
the symmetrywas exact in the primitiveHamiltonian (37).

Thefirst order contributions to the effectiveHamiltonian include all the terms in the primitive one (37) that
commutewith the penalty term (38),

 å å åm m= + ¢ + ¢ F F ++
ˆ ˆ ˆ ( ˆ ˆ ˆ ) ( )( ) † †

ˆH E Q h.c. . 41
k

k
k

k k
n

n
n

n
n

n n neff
1

,
,

2 2

,
,

The second order contribution is a renormalization of the electric part of theHamiltonian,

 ål
=

+
ˆ

( )
ˆ ( )( )

H
N N

E
4

2
. 42

l l k
k

n
neff

2 2

0, 0, ,
,

2

In the third and fourth order, we get, apart fromdifferent renormalizations of thefirst order terms (41), new
contributions that were not present in the primitiveHamiltonian (37). Themost important one is the already
mentioned plaquette interaction (39). Due to the non-unitary character of the operators (24), the effective
expansion provides, as well, a plethora of interaction terms that do not appear in the simulatedHamiltonian (6).
Most of these corrections can bemade negligible (see appendixD). The only extra terms that could affect the
simulation in some regimes are the following fourth order contributions,






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l
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+
+
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-¢ ¢ ¢ ¢

⎛
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N N N N
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E E E E
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4

3
0, 0,

2

2
0, 0,

,
4

4

3
0, 0,

2
“n.n.”

, , ,
2

,
2

where the last term involves an interaction between nearest-neighbor links. The importance of the correction
terms is analized now for different situations.

3.6. Pure-gauge theory
Before discussing the complete effectiveHamiltonian, let us consider the pure-gauge theory.Most of the
discussion generalizes when dynamicalmatter is present. Here, the situation corresponds to a quantum

Figure 8.The plaquette interactions are obtained as fourth order correction in the effectiveHamiltonian. A virtual process consisting
on one auxiliary particle hopping four times along the links of a plaquette, and returning to its original positions, results in the correct
product of four unitary operators, each one attached to one link, that gives rise to the plaquette term.
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simulation of theKogut–SusskindHamiltonian [116],

å å= - ++ +
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Bymaking  ¢ = 0, the effectiveHamiltonian simplifies significantly.Most of the correction terms disappear,
andwe are left with
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ThisHamiltonian, although simplified, still contains some non-desired correction terms.We study nowhowwe
can control them experimentally.

3.6.1. Large number of atoms
First, consider the limit where a very large number of atoms is placed on each link of the lattice,  ¥N l0, . Every
correction term, except for a fourth order renormalization of the electric field, disappears in this limit. The non-
unitary operators (24) converge to the correct unitary ones, and the effectiveHamiltonian becomes theKogut–
SusskindHamiltonian (44),

 å åm
m
l l

= - - ++ +

⎛
⎝⎜

⎞
⎠⎟ ˆ ( ˆ ˆ ˆ ˆ ) ( )ˆ ˆ

† †
H E U U U U1

5

2
h.c. , 46k

ik
i i k k i k

n
n

n
n n n neff

2

3 ,
2 4

3
,

, , , ,

up to higher order corrections. These are, in the next orders, proportional to m l4 4, m l3 2 4 and  l6 5.We
will see that the last correction is themost relevant one.Note that, since no terms of order  l -n n 1, for n odd,
appear in the effective expansion, it is enough to impose  l ( ) 12 tomake higher order correction negligible.
This also applies to the rest of the situations wewill consider. It is important to notice that, at the fourth order,
the effectiveHamiltonian in the large atom limit does not include any non-desired contribution, agreeing
perfectly with theKogut–SusskindHamiltonian.

Wewrite now the experimentally controllable parameters, ò andμ, in terms of the coupling constant g of the
Kogut–SusskindHamiltonian (44). In order to do so, sincewe are only interested in the ratio between the electric
and themagnetic part of theHamiltonian, wemultiply everything by a constantα, whose effect is just to rescale
the energy. This constant, and the coupling g, are defined as
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The effectiveHamiltonian can then be expressed as
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where themost important higher order corrections are written explicitly, allowing us to discuss their importance
in the different regimes of the theory.

By using the Feshbach resonance technique tofine-tune the ratios 
l
and



m , one can explore the phase

diagramof theKogut–SusskindHamiltonian. Consider, in particular, two extreme relevant limits.

• Strong coupling limit ( g 1)
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To achieve this, we require



l
m
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⎝

⎞
⎠ ( ). 49

3

In this limit, only the electric part of theHamiltonian is relevant. All the corrections are negligible as well.

• Weak coupling limit ( g 1)

In this case, we need



m
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⎝
⎞
⎠ ( ). 50

3

Here, the electric part vanishes and the plaquette interaction becomes relevant. Thefirst two corrections in
(48) are small compared to the latter, since  m is very large. Therefore, the biggest correction in this limit is of
order  l( )2 compared to the plaquette interaction.

From this, we conclude that both  l and m lmust be small in order tomake the higher order corrections
in (48)negligible. However, we still have freedom to change the ratio  m to achieve different values of g.

3.6.2. Finite number of atoms
Consider now amore realistic case, where the number of atoms on each link isfinite, and non-desired
contributions appear in the effectiveHamiltonian. At the same time, a different approach to generate the electric
field operators is introduced.We set m = 0, and use the renormalization terms that were obtained in the
effective expansion (at the second order) as the electric field part of theHamiltonian. Proceeding this way,many
correction terms disappear, andwe are left with the following effectiveHamiltonian,
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Defining, as before, the coupling constant in terms of the systemparameters in a properway,



l
l

º
+

+
⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥( )

( )g
N N

8

5 2
1

18

4
, 52

l l0, 0,

2

2

2

2

1 4

andmultiplying everything by a constant
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the effectiveHamiltonian can bewritten as
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Since N l0, is afixed quantity, once the experiment starts, the coupling g is controlledwith the ratio  l( )2.
Consider, again, theweak and strong coupling limits.

• Strong coupling limit ( g 1)

To access this regime, the experimental parametersmust be chosen such that



l ⎜ ⎟⎛
⎝

⎞
⎠ ( )N . 55l

2

0,
2

Higher order corrections will be negligible provided that  l  1. In this limit, the electric part of the
Hamiltonian dominates. Therefore, even for a small number of atoms in each link, the atomicHamiltonian
accurately simulates theKogut–Susskind one.
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• Weak coupling limit ( g 1)

This regime ismore problematic, and the accuracy of the simulation depends strongly on the number of
atoms used in the experiment. To access it, we have to impose



l ⎜ ⎟⎛
⎝

⎞
⎠ ( )N 1, 56l0,

2
2

where the second condition is required tomake higher order corrections negligible. In this regime, the number
of atoms (and correspondingly, the eigenvalues of the electric field operator) are not good quantumnumbers,
since the corresponding operators undergo largefluctuations. But as long as condition (56) is satisfied, the non-
unitary operators are close enough to = q-ˆ ˆ

U ekn,
i kn, , with q̂ kn, awell-defined hermitian phase operator. The latter

provides good quantumnumberswhen largefluctuations are present.
In this regime, the non-desire fourth-order terms become important. All of them are of the order -( )N l0,

4 ,
but En k, can take valuesm, depending on the state, from-N 2l0, to N 2l0, . Higher values of ∣ ∣m are relevant
when the plaquette interaction dominates over the electric part, however, their influence rapidly decreases with
N l0, . In particular, for a large number of atoms, the non-desired corrections vanish faster than ̂ kn, converges to

Û kn, ; the latter problem again being themost important one.
Afinal comment about the energy scale of the simulatedHamiltonian is in order. To be able to obtain a

plaquette interaction term that dominates over the electric field one, the latter should bemade smaller.
Therefore, the energy scale of the simulatedHamiltonian in theweak limit is very small. As a consequence, one
would have towait a longer time to be able to observe relevant physical phenomena. In this situation, the
coherence time of the experimental systemplays an important role.

Apart from the two extreme limits, it is especially interesting to consider the intermediate case, with ~g 1.
This corresponds to the condition



l
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2
2

This situation is not as hard to achieve in an experiment as theweak limit, but it is very relevant sincemost of the
usual analytical approaches to study lattice gauge theories fail in this intermediate region [116].

Setting m = 0 has several advantages with respect to themore conventional approach [70]. Aswe have seen,
it eliminates some of the non-desired correction terms. Also, the condition to enter theweak regime is easier to
realize here, compared to (50). In this case, we can access the regime bymaking l smaller than N l0, . The ratio
should still be larger than 1, but just enough tomake higher order corrections small.

3.7. Complete Abelian-Higgs theory
Let us consider now the complete Abelian-Higgs theory. Following the discussion of the pure-gauge case, we
choose, again, m = 0. This automatically removesmany of the correction terms obtained in the last section.

Again, wemultiply the effectiveHamiltonian by a properly chosen constantα, and define g as before (52). In
order to get the correct coupling constant in front of the charge term, and the interaction termbetween the
dynamical charges and the electric field, we defineR as
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Once g isfixed through l ,R can befine-tuned by changing the ratio  ¢∣ ∣ . Note that  ¢must be negative,
since the charge term and the gauge-matter interaction have opposite signs in the simulatedHamiltonian (6).

The total effectiveHamiltonian reduces, then, to
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up to higher order effective contributions, which are negligible for all values of g provided that the conditions

introduced in the pure-gauge case are fulfilled. ¢Ĥeff comprises the non-desired effective corrections (up to fourth
order) that are small enough to neglect (appendixD.2).
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The phase diagramof the theory can be explored by changing the ratios 
l
and 



¢∣ ∣ , at the same time aswe

maintainmost of non-desired terms small enough. For small values ofR and large values of g, the atomic system
maps exactly to the Abelian-Higgs theory.WhenR grows and g decreases, the effect of the non-unitary character
of the operators ̂ kn, and F̂n becomes important, as well as the relevance of the non-desired electric field terms,
as it was discussed for the pure-gauge case.Making N l0, and N v0, larger will allow us to performbetter
simulations, going deeper into the largeR and small g regime. The discussion for the strong regime inR is
analogous to theweak regime in g, and vice versa.

4. Possible experiments

In the last section, we derived the experimental conditions underwhich theHamiltonian describing a systemof
ultracold bosons is well approximated by theHamiltonian associated to the Abelian-Higgs lattice gauge theory
(6). Once this is achieved, several experiments can be performed on such a system, providing useful information
about different high energy physics phenomena.

4.1. Initialization: static charge sectors
As afirst step, the atomic system is initialized in the ground state of the non-interacting part of theHamiltonian
(6). Therefore, we choose the experimental parameters such that g 1 (52) andR= 0 (58) and consider the
vertices of the lattice. Any dynamical charge configurationmaps directly to the number of dynamical bosons of
species c and d (17). The ground state corresponds, in particular, to an initial atomic systemwith N v0, dynamical
bosons on each vertex (of the corresponding species, with the same number for each case), such that there are no
dynamical charges present at the beginning of the simulation (figure 9(a)). In addition, the vertices of the lattice
are alsofilledwith one auxiliary boson per site, alternating the two species (e and f ) on odd and even vertices, as
we described in section 3.5.

For the links, there is also amapping between the eigenstates of the electric part of theHamiltonian and the
difference in thenumber of gauge bosons of species a andb (21), noting that their roles interchange (29). The
differencehere is that the ground state of theHamiltonian does not correspond, in general, to the product of the
ground states of each link (zero electricfield configuration). As a consequence of gauge invariance, theHilbert
space of the system is divided into different sectors (10)—characterizedbydifferent static charge configurations—
and the states that belong to themare constrained by theGauss law (9).

Figure 9. In thefigure, the state of both the simulating and the simulated systems is represented in two different situations. Figure (a)
corresponds to the state of the system at the beginning of the simulation, withR= 0 and g 1. In this situation, the ground state of
the simulated system, in a sector characterized by two static charges of opposite sign ( = +q 1 and = -q 1), corresponds to an electric
flux line ( = +m 1) between the static charges, and zero dynamical charges. The latter is achieved by placing =N 4v0, bosons on each
vertex. The electricfield on the links, on the other hand, depends on the difference between the number of atoms of species a and b,
which interchange their role in alternating links.WhenR is increased, the state represented in (a) is no longer an eigenstate of the
Hamiltonian. The electricflux line can break (b), alongwith the appearance of two dynamical charges ( = +Q 1 and = -Q 1),
leaving the system in a superposition of the states (a) and (b)—notice that both of them fulfill the correspondingGauss law at each
vertex (9). The dynamical breaking of electricflux lines can be observed, in real time, bymeasuring the state of the ultracold atomic
system.

16

New J. Phys. 19 (2017) 063038 DGonzález-Cuadra et al



Consider, for example, the sector characterized by two static charges of opposite sign (figure 9(a)). The states
that belong to such a sector present an electric flux line—or a superposition of them—that joins the two vertices
where the static charges are placed. Consequently, some of the linkswill be in excited states of the electric part of
theHamiltonian, whereas others remain in the ground state—since, altogether, everythingmust satisfy all the
local Gauss laws (9). The ground state corresponds to the shortest path of electricfield excitations between the
charges, in this case, a straight line. This is the situation, in general, for any gauge-invariant sector. Therefore, any
configuration of static charges can be achieved by initializing the atomic systemwith the proper number of
atoms of type a and b. Since this numberwill not be the same on every link for a non-zero static charge
configuration (as opposed to the vertices), single-atom addressing techniques will be required [127].

4.2. Turning on the interactions
Once the system is initialized in the ground state of the non-interacting part of theHamiltonian, the interactions
can be introduced bymodifying the value of the coupling constantsR and g, tuning the corresponding
experimental parameters (58). This can be done either adiabatically or suddenly (quench). If the change is
adiabatic, the systemwill adapt to a new state that corresponds to the ground state of the newHamiltonian.
Measuring the new state allows us to explore the phase diagramof the system. In the case of a quench, the system
will not have enough time to adapt to the change in theHamiltonian. Instead, it will remain in the initial state,
whichwill correspond now to an excited state of the newHamiltonian.Here,measuring the state of the system
will provide uswith information about the non-equilibrium and thermalization properties of the theory.

4.3. Real-time dynamics
Wepropose two different dynamical effects that can bemeasured in this setup.

4.3.1. Fluctuation of electric flux lines
An initial state withwell-defined electricflux lines is an eigenstate of the non-interacting part of the
Hamiltonian. Reducing the value of g increases the probability of a plaquette-type electric flux loop to appear
(figure 3). If we change this parameter adiabatically,more of theseflux loopswill appear, being the state of the
system a superposition ofmany different electric field configurations. The initial straight flux line can be
deformed if one plaquette excitation coincides with one of its links (figure 3). This effect can be detected
dynamically bymeasuring the state of the atoms on the links of the lattice.

4.3.2. Breaking of electric flux lines
Another effect that could bemeasured dynamically is the breaking of electric flux lines (figure 9). By increasing
the value ofR, the probability of new pairs of dynamical charges of opposite sign to appear grows. If such
excitations coincidewith an existing electric field line between other pair of charges, it will cause the breaking of
the latter, resulting in two newpairs joined by shorter lines (figure 9).

This phenomenon, relevant in the understanding of confinement ofmatter in gauge theories, is hard to
study using analytical or numerical techniques, since real-time dynamics are difficult to simulate using standard
Monte Carlomethods. Using this quantum simulation scheme, the dynamical breaking of electric fluxes could
be accuratelymeasured.

4.4.Measuring the state of the system
We showed that there is amapping between the state of the simulated system in the basis of the eigenstate of the
electric field and charge operator, and the number of atoms of each species on the vertices and links of the lattice.
Therefore, in order to know the state of the system at any point of the simulation, it is enough tomeasure the
number of atoms locally, using single-atomdetection techniques [128]. By doing that we could obtain a detailed
picture of the flux lines and dynamical charge configuration that characterizes the state of the system.

5. Summary

In this paper, we proposed a quantum simulation scheme for the lattice version of theAbelian-Higgs theory,
using ultracold bosonic atoms trapped in an optical lattice. The interest in performing such simulation is
twofold.On the one hand, and despite its simplicity, thismodel shows very interesting high energy physics
phenomena. It allows the possibility to study both the Brout–Englert–Higgsmechanism and the confinement of
dynamicalHiggsmatter. On the other hand, it can serve as a benchmark to study the validity of several quantum
simulation techniques, since the phase diagramof this theory is well known from conventional theoretical and
numerical calculations, and can be compared to the one obtained in a quantum simulation.
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Starting from the lattice action of the Abelian-Higgs theory [109], the corresponding quantumHamiltonian
was obtained using the transfermatrixmethod (6). Such aHamiltonian is a generalization of the pure-gauge
Hamiltonian obtained byKogut and Susskind [116], including, as well, the degrees of freedom corresponding to
the scalarmatterfields.

The quantum simulation of thismodel using ultracold atoms is achieved by utilizing two superimposed
optical lattices, filledwith six different bosonic species. These correspond to three different types of atoms, each
one possessing two accessible hyperfine angularmomentum levels. One type of atom simulates the gauge
degrees of freedom, and another one the dynamicalmatter. The last type of atom serves as auxiliary particles,
required for obtaining the plaquette interactions. An intermediate ‘primitiveHamiltonian’ isfirst obtained by
selecting the correct hyperfine angularmomentum levels for the six species, and tuning some atomic scattering
lengths using Feshbach resonances. After transforming the atomic degrees of freedomand expressing them in
terms of the lattice Abelian-Higgs operators, the atomicHamiltonian results in a gauge-invariantHamiltonian.
The corresponding operators are approximatedwith the bosonic ones, improving the approximationwhen the
number of bosons increases. The primitiveHamiltonian contains all the terms of theAbelian-Higgs
Hamiltonian except for the plaquette interactions. From the former, andwith the help of the ‘hard-core’
auxiliary bosons, the Abelian-HiggsHamiltonian can be approximated effectively, provided that the energy
scales of the system are tuned correctly. The degree of approximation can be controlled by increasing the
number of atoms used in the simulation,making the non-desired correction terms in the effective expansion
negligible.

Finally, we described an experimental scheme formeasuring, in real time, interesting phenomena such as the
fluctuation and breaking of electricflux lines, and for adiabatically preparing the system in the ground state,
which could help to explore the phase diagramof this high energy physics theory.

Next steps toward a complete understanding of the Abelian-Higgs theorymight include higher dimensional
cases, as well as non-fundamental representations of the gauge group ( >q 1), allowing a richer phase diagram to
be accessed in a quantum simulation experiment. In amore general context, scalarHiggsmatter could also be
studied for non-abelian theories.
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AppendixA. TheAbelian-Higgsmodel

A.1. Reviewof the Brout–Englert–Higgsmechanism
Consider the following Lagrangian density,

* * * * f f f f f f
l

f f= ¶ + ¶ - + - -m m m m mn
mn( )( ) ( ) ( )gA gA m F Fi i

2

1

4
, A.12 2

where f ( )x is a complex scalarfield, m ( )A x is amassless vector (gauge)field—whichwewill call the photonic
field—and g is the interaction strength (charge). Finally, mnF is the usual electromagnetic field tensor,

= ¶ - ¶mn m n n m( ) ( ) ( ) ( )F x A x A x . A.2

This theory is invariant under the group of localU(1) transformations,

f f a  - ¶a
m m m( ) ( ) ( ) ( ) ( ) ( )( )x x A x A x

g
xe ,

1
, A.3xi

parametrized by a( )x , which can be different at each space–time point, locally.
The Lagrangian also includes a quartic potential for the scalar field, theHiggs potential,

f f
l

f= - +( ) ∣ ∣ ∣ ∣ ( )V m
2

. A.42 2 4

A semiclassical approximation for the expectation value of thefieldf in the ground state is obtained by
minimizing the above potential, obtaining a non-zero value for >m 02 ,
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For <m 02 , however, theminimum is found for fá ñ = 00 .
To take into account the effect of quantumfluctuations, one can expand the complex field f ( )x around the

semiclassical result, using two real scalar fields, s ( )x and p ( )x , such that

f
s

=
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R x

2
e . A.6x Ri

Plugging this expression into (A.1), the Lagrangian can be expressed in terms of the newfields. In particular, the
terms containing the gaugefieldAμ alone are now the following,

 = - + +mn
mn m

m ( )F F m A A
1

4

1

2
..., A.7A

2

with ºm gRA . Thus, the non-zero expectation value of the scalarfieldf generates amass term for the gauge
fieldAμ or, in otherwords, the photon becomesmassive, which shows how theHiggsmechanism takes place in
this simplemodel.

In the limit l  ¥m, , with lm2 fixed, the radial fieldσ decouples, and the effective Lagrangian for the
remainingfields is just

 p p p= ¶ ¶ + - ¶ -m
m

m
m

m
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mn ( )m A A m A F F
1

2

1

2

1

4
. A.8A Aeff

2

A.2. Lattice gauge action
TheAbelian-Higgsmodel can be formulated as a lattice gauge theory [109–115], this is, as afield theory on a
discretized space–time. The Euclidean lattice action corresponding to the effective theory (A.8) has the following
form, after aWick rotation is applied [109],
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where thefields f º j-en
i n reside on the vertices of a +d 1dimensional square lattice with lattice spacing a,

whereas the fields ºm
q- m( )U en

q q
,

i n, reside on the links that joins the vertices n and m+ ˆn a , with m̂ a unit vector in
one of the +d 1orthogonal directions. The coupling constantsR and g are introduced to obtain the correct
expression in the continuum limit. Finally, q is an integer number denoting the representation of theU(1) group
underwhich theHiggsfield is transforming, where the fundamental one corresponds to q= 1.

Thefirst term in (A.9) is an interaction between nearest-neighbor vertices,mediated by the link that
connects them. The second one is a plaquette interaction, which involves the fields on the four links of a
plaquette.

The phase diagramof this lattice gauge theory depends on the specific group representation under which the
Higgsfield transforms. In particular, onefinds a phase diagramwith two phases if the representation is the
fundamental one (q = 1), and another onewith three phases if any other representation is used [109, 114].We
shall describe now the properties of the possible phases one can find in the theory for +d 1 4, based on the
results from [109]. If theHiggsfield transforms according to a representation ofU(1)with >q 1, the theory
presents three different phases (figure A1(a)):

• Higgs phase (largeR, small g). In this phase the photon ismassive (Higgsmechanism), the force between
different particles is short-ranged, and there is no confinement of charges.

• Coulomb phase (smallR, small g). Here, the photon ismassless, and the charges are free, as well.

• Confinement phase (large g). In this regime there are no free charges (confinement) and the photon has a
finitemass.

In the fundamental representation (q = 1), it can be shown that there is no phase boundary between the
Higgs and confining regimes [109]. The theory presents only two different phases (figure A1(b)), a Coulomb
phase as in the previous case, and aHiggs-confinement phase, characterized bymassive photons, short-ranged
forces, and the absence of free charges.
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In the 2+ 1 dimensional case there is noCoulombphase for finite coupling constants. In the fundamental
representation, there is only one phase, theHiggs-confinement one, whereas for >q 1, there is a phase
boundary separating theHiggs and confinement regimes [109].

Appendix B.Hamiltonian formulation

Wecompute the quantumHamiltonian corresponding to the Abelian-Higgs action (A.9) by applying the
transfermatrixmethod. The application of themethod to the pure-gauge theory leads to the standardKogut–
SusskindHamiltonian [52]. Here, we extend it to thematter part of the action for the fundamental
representation ofU(1) (q = 1),

å= - +
m

j q j
-

-m m+[ ] ( )ˆS
R a

2
e e e h.c. . B.1

d

n

2 1

,

i i in n n,

First, we separate the temporal and the spatial directions.We introduce the notation m = ( )k0, , with k=
1,K, d, and = ( )n n n,0 , where thefirst component corresponds to the temporal direction and the second to the
d spatial ones. Both n0 and n take integer values from0 toN.We also consider the temporal gauge,

q = ( )0. B.2n,0

The action is expressed, then, as

å åj j j j q= - - - - -
t

t+
-

+( ) ( ) ( )ˆS
R a

a
R a acos cos , B.3

d

n
n n

d

k n
k n n k n

n
n n

n
n n n

2

,
, 1 ,

2 2

, ,
, , , ,

0

0 0

0

0 0 0

where aτ and a are the lattice spacings in the temporal and spatial directions, respectively. To obtain the correct
continuum limit, thefieldsjn should depend on aτ asj j- µ t+ an nn n, 1 ,0 0

. Therefore, we can expand the cosine
in terms of this parameter.We get, disregarding irrelevant terms (in the limit ta 0),

å åj j j j q= - - - -
t

t+
-

+( ) ( ) ( )ˆS
R a

a
R a a

2
cos . B.4

d

n
n n

d

k n
k n n k n

n
n n

n
n n n

2

,
, 1 ,

2 2 2

, ,
, , , ,

0

0 0

0

0 0 0

In order to connect the path integral and theHamiltonian formulations of quantummechanics, it is useful
to consider the partition function,

ò ò j j= = j j- - +˜ ˜ ( )( )Z D De e , B.5S

n

S ,n n

0

0 1 0

wherejn0
denotes the set offields variablesj nn, 0

for all n, and j̃ refers to the complete set ofjn0
, for all n0. In the

previous expression, the actionwas split into a sumof different terms,

å j j= +( ) ( )S S , , B.6
n

n n1

0

0 0

Figure A1.Qualitative phase diagram, based on the results of [114], of the Abelian-Higgs lattice theory in +d 1dimensions, with
d 3 for q= 1 (a) and q= 2 (b). The solid lines represent first-order phase transitions, broken lines represent higher-order

transitions.
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with

å å

å

j j j j j j q

j j q

= - - - -

- - -

t
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+ +
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+
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+ + + +

( ) ( ) ( )
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ˆ

S
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R a a
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n n

d

n n

d

k
k n n k n

d

k
k n n k n

n
n n

n
n n n

n
n n n

1

2

, 1 ,
2

2 2

,
, , , ,

2 2

,
, 1 , 1 , , 1

0 0 0 0 0 0 0

0 0 0

The transfermatrix elements are defined as j j¢ = j j- ¢( ) ( )T , e S , , and can be thought as thematrix elements

of a transfer operator T̂ over a complete and orthonormal product basis j jñ =  ñ{∣ ∣ }n n ,

j j j já ¢ ñ = ¢∣ ˆ∣ ( ) ( )T T , . B.8

The partition function is expressed in terms of the transfer operator as

ò òj j j j j j j= á ñ = á ñ+ + +˜ ∣ ˆ∣ ∣ ˆ ∣ ( )Z D T D D T , B.9
n

n n N N
N

1 0 1 1 0

0

0 0

where, in the last equality, the completion relation for the basis,

 ò j j j= ñá∣ ∣ ( )D , B.10

was used -N 1 times. Using periodic boundary conditions,j j j= ºN0 , the partition function can be
expressed as a trace,

ò j j j= á ñ =∣ ˆ ∣ ( )Z D T Ttr . B.11
N N

Motivated by the latter, a quantumHamiltonian is defined through the transfer operator,

= t- - tˆ ( ) ⟶ ( )ˆ ˆT e e , B.12H N a H1

taking the continuum limit in the temporal direction,  ¥N , ta 0, with t = tNa fixed.
In order to get an expression for the transfer operator, we introduced the second-quantized operators ĵn and

Q̂n, following the commutation relations:

j d=¢ ¢[ ˆ ˆ ] ( )Q, i . B.13n n n n,

ĵn is defined such that

j j j jñ = ñˆ ∣ ∣ ( ). B.14n n

It can be shown that the following property holds,

j j
j j

á ¢ - ñ µ -
¢ -

t
t

-⎛
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⎞
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( )
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R
a Q

R a

a
exp

2
exp

2
, B.15

d d

n
n n

2

2 2 2

by using the commutation relations (B.13).With this, it is easy to see that the transfer operator can be expressed
as

å å

å

j j q

j j q

= - - - -

´ - - -

t t

t

-

+

-

-

+

⎡
⎣
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⎦
⎥⎥
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cos exp
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d
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n n n

n
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n
n n n

2 2

,
, 2

2

2 2

,
,

where q̂ kn, is a quantumoperator corresponding to the gaugefield q kn, , obtained after applying the similar
procedure to the gauge degrees of freedomon the links [52].

Taking the continuum limit in the time direction, aτ, one can read theHamiltonian (up to irrelevant
constants) from the transfer operator, using equation (B.12),

å å f f= - +
- -

+
ˆ ˆ [ ˆ ˆ ] ( )† †

ˆH
a

R
Q

R a
U

2 2
h.c. , B.17

d d

k
k k

n
n

n
n n n2

2 2 2

,
,

where f º j-ˆ ˆen
i n and º q-ˆ ˆ

U ekn,
i kn, . In order to avoid the quantumphase operator problem [120–124], the

operator Q̂n must be unbounded frombelow.Only in that case ĵei n is a well-defined unitary operator. The
situation is equivalent for the conjugatemomentumof q̂ kn, , Ê kn, , defined in [52] to derive the pure-gauge part of
theHamiltonian via the commutation relations

q d d=¢ ¢ ¢ ¢[ ˆ ˆ ] ( )E, i . B.18k k k kn n n n, , , ,
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The completeHamiltonian associated to the Abelian-Higgs theory, including the pure-gauge part [52], is

å å å åf f= - + + - ++ + +
ˆ ˆ [ ˆ ˆ ] ˆ ( ˆ ˆ ˆ ˆ )

( )

† †
ˆ ˆ ˆ

† †
H

R
Q

R
U

g
E

g
U U U U

1

2 2
h.c.

2

1

2
h.c. ,

B.19
k

k k
k

k
ik

i i k k i k
n

n
n

n n n
n

n
n

n n n n2

2 2

,
,

2

,
,

2

2
,

, , , ,

wherewe set a= 1.

AppendixC.Non-commuting operators

Let Â, B̂ and Ĉ be operators, fulfilling the commutation relation

=[ ˆ ˆ] ˆ ˆ ( )A B CB, , C.1

with =[ ˆ ˆ ]A C, 0 and =[ ˆ ˆ ]B C, 0. Then, for any analytical function f, acting on the operators through its Taylor
series, the following property holds,

= +( ˆ ) ˆ ˆ ( ˆ ˆ ) ( )f A B Bf A C . C.2

To see this, let usfirst prove that

= +ˆ ˆ ( ˆ ˆ ) ( )A B B A C , C.3
n n

where n is any positive integer.We do this by induction. The case n= 1 is (C.1). Assume it is true for n= k. For
+k 1, we have

= + = ++ +ˆ ˆ ˆ ˆ ( ˆ ˆ ) ˆ ( ˆ ˆ ) ( )A B A B A C B A C , C.4
k k k1 1

where the property (C.1)was used in the first equality, and the induction hypothesis in the second. Therefore,
property (C.3) is true for >n 1.

By Taylor expanding ( ˆ)f A ,

å=( ˆ ) ˆ ( )f A c A , C.5
n

n
n

it is easy to obtain (C.2),

å å= = + = +( ˆ ) ˆ ˆ ˆ ˆ ( ˆ ˆ ) ˆ ( ˆ ˆ ) ( )f A B c A B B c A C Bf A C . C.6
n

n
n

n
n

n

Consider, as an example, the operators Ê and ˆ †
U , such that

=[ ˆ ˆ ] ˆ ( )† †E U U, . C.7

In that case, Ĉ is the identity, and the property (C.2) reduces to

= +( ˆ) ˆ ˆ ( ˆ ) ( )† †f E U U f E . C.8

AppendixD. EffectiveHamiltonian

D.1. Effective expansion
Here, details about the calculations thatwere carried out to obtain the effectiveHamiltonian are provided. The
property introduced in appendix Cwill be assumed henceforth.We follow the notation of [125, 126]. The
starting point is the primitiveHamiltonian,

  å å å å ål c c m m= - + + + + ¢ + ¢ F F +
c c

+ +
ˆ ˆ ( ˆ ) [ ˆ ˆ ˆ ] ˆ ˆ [ ˆ ˆ ˆ ]

( )

† †
ˆ

† †
ˆH N N E Q1 h.c. h.c. .

D.1
k

k k
k

k
k

k k
n

n n
n

n n n
n

n
n

n
n

n n n
,

,
,

,
2 2

,
,

An effectiveHamiltonian, acting on a subspace (sector) generated by an eigenvalue of the hard-core
constraint

ål= -
c cˆ ˆ ( ˆ ) ( )H N N 1 D.2

n
n nHC

is obtained perturbatively—provided thatλ ismuch larger than the rest of the energy scales.
The hard-core constraint is diagonal in the number basis of the auxiliary bosons, denoted byχ. Its

eigenvalues are largely degenerate, each of them associatedwith a set of distributions of auxiliary bosons over the
vertices of the lattice. The ground state sector includes all the states characterized by either zero or one particle on
each vertex. Our goal is to obtain an effectiveHamiltonian that acts on the latter. The quantum simulator will be
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initialized, in particular, in a state with one auxiliary boson sitting at each vertex. In this situation, some of the
fourth order corrections in the perturbative expansion of the effectiveHamiltonian (figure 8) turn out to be the
desired plaquette interactions of the Abelian-HiggsHamiltonian (6). There are, of course, other contributions to
the effectiveHamiltonian.Here, wewill analyze some of them. Instead of focusing on the detailed calculations,
wewillmotivate the appearance of the correction terms by viewing them as virtual physical processes.

The primitiveHamiltonian (D.1) contains two types of terms, apart from the hard-core constraint. First, we
have those that do not commutewith the latter. In particular, the hopping of auxiliary bosons to nearest-
neighbor vertices,mediated by the gauge-field operators on the corresponding links, take the systemout of the
ground state sector. They formwhat wewill call the interacting part of theHamiltonian,

 å c c= +
+

ˆ ( ˆ ˆ ˆ ) ( )† †
ˆH h.c. , D.3

k
k k

n
n n nint

,
,

where the notation introduced in (24) is assumed. The rest of the terms in (D.1), on the other hand, keep the
system inside the same sector.

The effectiveHamiltonianwill be composed of terms that commutewith the hard-core constraint and, on
top of them, higher order correctionsmade out of product of terms from Ĥint. The latter can be seen as non-
trivial contributions resulting from virtual processes where the auxiliary bosons hop to nearest-neighbor
vertices and then return to their original positions. Since the final state of the auxiliary bosonswill not change,
these degrees of freedom can be traced out of the effectiveHamiltonian.

D.1.1. First order. Thefirst order contributions to the effectiveHamiltonian are given by P HP0 0, where P0 is the
projection operator to the ground state sector0,


å f f= ñá

fñÎ

ˆ ∣ ∣ ( )
∣

P . D.40
0

In the case where the system is initialized in a state with one auxiliary boson per vertex, represented by f ñ∣ 0 , the
projector reduces to f fñá∣ ∣0 0 , since the conservation of the total number of auxiliary particles prevents the
system frombeing in other states from this sector—which have zero auxiliary bosons in some vertices, and one
in the rest. At this order, only the terms that commutewith the hard-core constraint contribute,

 å å åm m= + ¢ + ¢ F F ++
ˆ ˆ ˆ ( ˆ ˆ ˆ ) ( )( ) † †

ˆH E Q h.c. . D.5
k

k
k

k k
n

n
n

n
n

n n neff
1

,
,

2 2

,
,

D.1.2. Second order. The second order contributions are given by

= -a
ˆ ˆ ˆ ˆ ˆ ˆ ( )( )

H P H K H P , D.6eff,
2

0 int int 0

where


å

f f
=

ñá
-f fñÏ

ˆ ∣ ∣ ( )
∣

K
E E

D.7
00

projects to states outside the ground state sector. The expression (D.6) can be interpreted as second order virtual
processes for the auxiliary bosons (figureD1).

Note that, if the operators on the linkwere unitary, theywould cancel with the respective adjoint operators,
resulting in a constant contribution. Since this is not the case, however, for a finite number of atoms N l0, , the
second order virtual processes result in non-trivial corrections to the effectiveHamiltonian.We calculate them
explicitly in this case, for clarity. Other higher contributions can be obtained in a similar way.

The operator K̂ can bewritten as

ål
f f= ñá

f

ˆ ∣ ∣ ( )K
1

2
, D.81 1

1

where states f ñ∣ 1 correspond to a distributionwith zero auxiliary bosons at a single vertex, two in a nearest-
neighbor one, and one in the rest of them. The factor l2 comes from the difference in energy between f ñ∣ 1 and

FigureD1. Second order contributions to the effectiveHamiltonian can be viewed as a virtual hopping of an auxiliary boson (red ball)
to a nearest-neighbor vertex, where other boson lies (black ball), and then hopping back to its original position.
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the ground state. The total contribution to (D.6) is


 åå ål

f f c c f f c c f f= - ñá + ñá + ñá
f ¢ ¢
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h.c. h.c. . D.9
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k k k k
n n

n n n n n neff
2 2

, ,
0 0 , 1 1 , 0 0

1

The terms including hoppingmust connect the states f ñ∣ 0 and f ñ∣ 1 twice. The second order contribution to the
effectiveHamiltonian reduces, then, to

 
   å ål l

= - + =
+

ˆ ( ˆ ˆ ˆ ˆ )
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2

0, 0, ,
,

2
0

Since this operator is acting on the ground state sector, P0 can be removed.

D.1.3. Third order. There are two types of third order contributions,

= -ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ { ˆ ˆ ˆ ˆ ˆ ˆ } ( )( ) ( ) ( )
H P H K H K H P P H K H P H

1

2
, . D.11eff

3
0 int eff

1
int 0 0 int

2
int 0 eff

1

Thefirst one involves, again, the virtual hopping of auxiliary bosons to the nearest-neighbor vertices. The
difference is that, in this case, the theHamiltonian ( )Heff

1 (which does not change the sector) is applied before the
auxiliary boson comes back to its original vertex. This gives rise to non-local contributions, however, theywill
cancel with the second part of (D.11), which is itself non-local. The latter is composed of thefirst and second
order corrections. Performing similar computations as in the second order case, we obtain the following local
terms,
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Weget another renormalization of the electric part of theHamiltonian, as well as a new term that correct the
hopping termof dynamical bosonswith a function of the electric field on the link. These correction terms
disappear in the limit  ¥N l0, .

D.1.4. Fourth order. Many virtual processes contribute to the fourth order corrections to the effective
Hamiltonian,

= +
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Most of these terms are composed offirst, second and third order processes. As in the third order case,many
non-local contributions arise, but they all cancel out in the end. Let us consider first the last term in (D.13). It
involves the four virtual hopping steps of an auxiliary boson, returning to its original position. There are two
main processes attached to this. Thefirst one, already explained, related to the hopping of an auxiliary boson
around the fourth links of a plaquette (8), contributing to the plaquette-type interaction,


   ål

- ++ +( ˆ ˆ ˆ ˆ ) ( )ˆ ˆ
† †5

2
h.c. . D.14

ik
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4

3
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The second non-trivial contribution comes from the virtual process that involves hopping twice to a next-
nearest-neighbor vertex, and then hopping back to the original position. This can be done inmany different
ways (figureD2). The total contribution, after canceling out the non-local terms, involve interactions between
the electricfields of nearest-neighbor links,

 ål
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+
-¢ ¢ ¢ ¢( ( ))
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2

The rest of the terms in (D.13) providemany other contributions. Apart from renormalizations to the
electric part of theHamiltonian, we obtain terms that also depend on different powers of the electric field
operator,
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Wealso obtain interactions between the electric field on the links and the dynamical charge operators on the
vertices,
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Again, as in the third order, we get corrections to the interaction termbetween the links and the vertices, that
depend, in this case, on the electric field and the charge operators,
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Finally, two new interaction terms appear in the effectiveHamiltonian, consisting on applying twice the
hopping term. Thefirst one acts on the same link,
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whereas the second involves hopping processes in two nearest-neighbor links,
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and it is written in terms of the commutator between them.

D.2. Relevant corrections
We study the importance of the correction terms (for the case m = 0), obtained in the effective expansion of the
Hamiltonian, by expressing them, first, in terms of the simulated parameters,R (58) and g (52), andmultiplying
everything byα (53). Let us consider the terms proportional to  l( )4. They are proportional to the following

FigureD2.Many fourth order virtual hopping processes contribute to the effective nearest-neighbor electric field interaction. All the
possibilities are represented for two linkswhen thefirst one is traversed first. The same number of themalso appear if one starts from
the second link, which are symmetric to the ones represented above.
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coupling constants,
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which correspond to the electric field interaction between nearest-neighbor links (D.15) and the quartic electric
field term (D.16), respectively. These terms become relevant in theweak regime.However, their importance
decreases rapidly when the number of atoms increases.

The rest of the non-desired contributions are proportional to the following parameters,
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All of them are negligible, since 
l
can bemade small enough to compensate for the possible growth due toR and

g.We denote all the terms of this typewith ¢Ĥeff . In general, we can say that only the corrections of order  l( )4

are important, since this is the order of the effective plaquettes, and is themost relevant one in theweak regime.
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