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SUMMARY

The optimal control of partial differential equations is a crucial topic in
computational science and engineering. Many techniques from functional
analysis are combined with state-of-the-art numerical schemes and efficient
software technology to efficiently compute solutions to optimal control prob-
lems.

One of the most challenging tasks is the solution of linear systems in
structured form. These systems often represent the computational bottle-
neck of an optimization problem. Linear systems can be found representing
the first order optimality conditions, at the heart of an outer nonlinear solver,
or even in methods for non-smooth problems. One of the key features that
these problems have in common is the large-scale nature of the systems, as
the computation of accurate solutions requires small mesh-parameters. This
problem becomes even more pronounced when the constraining PDE is of
parabolic type as now the curse of dimensionality strikes and the computa-
tional work drastically increases.

The approach that we promote in this thesis is one of discretizing the
problem in both space and time and then simultaneously solving the cor-
responding optimization problem. Assuming a linear PDE and a convex
objective, this means we need to solve a large-scale KKT system represent-
ing the first order conditions. Such a space-time system can only be solved
using iterative solvers. For this we propose methods of Krylov type and
discuss tailored preconditioners. These are needed because the convergence
of the unpreconditioned scheme can be very slow as it will depend on the
system parameters, such as mesh and regularization parameter.

In our proposed methodology we need an efficient approximation of the
leading block and the Schur-complement of the system representing the
first order conditions. Typically, the approximation of the leading block is
straightforward due to the nature of its construction. The Schur-complement
typically involves the sum of potentially complicated operators such as the
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discretized PDE operators. We illustrate an approach where the Schur-
complement is approximated by a simpler operator that is the product of
three matrices that match all terms of the original Schur-complement. It
is often possible to theoretically underpin this approach by proving the ro-
bustness of the eigenvalues of the preconditioned Schur-complement with
respect to variations of the system parameters.

While this approach in many cases provides optimal or nearly optimal
results it can suffer from the storage requirements of the space-time vec-
tors not that space-time matrix. For this we illustrate an elegant solution
that utilizes low-rank techniques to avoid the curse of dimensionality when
dealing with parabolic control systems.
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ZUSAMMENFASSUNG

Die optimale Steuerung von partiellen Differentialgleichungen ist von enormer
Bedeutung in allen Bereichen der computergestützen Wissenschaften oder
den Ingenieurwissenschaften. Viele Techniken aus der Funktionalanalysis
werden mit modernsten numerischen Verfahren und neuester Software kom-
biniert, um die Lösungen der Steuerungsprobleme genau und effizient zu
berechnen.

Eine der größten Herausforderungen ist das effiziente Lösen von linearen
Gleichungssystemen in strukturierter Form, welche das Herzstück vieler Op-
timierungsalgorithmen bilden. Solche Systeme repräsentieren dabei ent-
weder die Optimalitätsbedingungen erster Ordnung oder sind der Kern von
äußeren, nichtlinearen Lösern, wie dem populären SQP-Verfahren. In all
diesen Fällen ist die Systemmatrix sehr groß, da akkurate Lösungen zumeist
kleine Netzparameter erfordern. Diese Eigenschaft ist noch stärker aus-
geprägt, wenn zeitabhängige, parabolische Probleme betrachtet werden und
der Curse-of-dimensionality zuschlägt und daraus resultierend der Arbeits-
aufwand drastisch steigt.

Die in dieser Arbeit präsentierte Technik löst dabei das Optimierungsprob-
lem simultan in Raum und Zeit. Bei linearer PDE-Nebenbedingung und
einer konvexen Zielfunktion bedeutet dies, dass ein großes KKT- oder Sat-
telpunktsystem gelöst werden muss. Systeme dieser Größe können nur von
iterativen Verfahren effizient gelöst werden. Zu diesem Zweck wird das Ver-
wenden von Krylov-Unterraumverfahren vorgeschlagen und die Entwicklung
von speziellen Vorkonditionierern diskutiert.

Diese sind extrem wichtig, um die Konvergenzgeschwindigkeit zu beschle-
unigen und robuste Konvergenz unabhängig von den Systemparametern, wie
den Netz- oder Regularisierungsparametern, zu garantieren.

Dazu wird eine effiziente Approximation des (1, 1)-Blocks und des Schur-
komplements verwendet. Der (1, 1)-Block ist dabei einfach zu approximieren,
was in der Natur der Formulierung liegt, aber nicht prinzipiell für alle Prob-
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leme gilt. Das Schurkomplement besteht typischerweise aus einer Summe
von komplizierten, diskretisierten Differentialoperatoren. Dabei ist ein Ansatz
erfolgreich der möglichst alle Terme des ursprünglichen Schurkomplements
widerspiegelt, aber dabei einfach zu invertieren ist. Hierbei kann in eini-
gen Fällen die Robustheit dieser Approximation bewiesen werden und es
zeigt sich dabei, dass die Eigenwerte der vorkonditionierten Matrix robust
bezüglich Parameterverwänderungen sind.

Dieser Ansatz zeigt häufig optimales oder nahezu optimales Konvergenz-
verhalten. Ein möglicher Nachteil ist der Speicherbedarf für die Raum-Zeit-
Vektoren. Die Raum-Zeit-Matrizen erfordern dabei nahezu den gleichen
Speicherbedarf wie im stationären Fall. Diese Arbeit präsentiert daher eine
elegante Lösung, welcher Niedrigrangansätze aufzeigt, die es erlauben den
Curse-of-dimensionality zu durchbrechen.
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CHAPTER 1

INTRODUCTION

The numerical solution of partial differential equations (PDEs) has been
a core question of numerical analysis from the beginning. Much progress
has been made on understanding the equations, existence of solutions, con-
structing tailored discretizations, developing fast solvers and much more.
This has enabled researchers from all subjects to ask more fundamental
questions. One that is typically asked is to compute the ’optimal setup’ of
complex PDE models that describe measured or desired data. The field of
optimal control with PDEs or PDE-constrained optimization has therefore
received much attention over the last decades with fantastic progress on all
fronts. The contribution of this thesis is mainly concerned with the progress
that has been made for the solution of the discretized linear systems that
arise as the solution of first order optimality conditions or are at the core of
a nonlinear solution technique. The next sections follow the path of such an
optimal control problem from formulation to discretization and further to
solution via iterative solvers. Beyond that, modern compressed formats are
lastly presented and we speculate on what problems will be considered in
the future. This thesis is not intended to give a general introduction to the
subject but rather give a small overview of issues related to the fast iterative
solution of linear systems in saddle point form that arise in PDE-constrained
optimization. There exist excellent introductions to PDE-constrained opti-
mization see [39,41,87] and in particular the theses [60,67] for linear algebra
focused introductions.

The field of PDE-constrained optimization is a research area with prob-
lems coming from all areas of science and engineering. Our strategy in this
thesis is to illustrate our developed methodology on a model problem that
is a representative of a wider class of challenges. We will in places refer to
more general introductions or different applications.

The goal of the following overview is to establish the contribution made
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1.1. A PDE-CONSTRAINED OPTIMIZATION MODEL PROBLEM

in the attached papers (cf. Appendix A.1 to A.9), which focus on the fast
and robust solution of the linear systems that arise in the discretization of
the infinite-dimensional optimization problems. In particular, this thesis
focuses on time-dependent PDEs treated in a simultaneous or all-at-once
approach for which little work existed until recently.

1.1 A PDE-constrained optimization model prob-
lem

The core problem that will be discussed in this work and the associated pa-
pers shown in the appendix is an optimization problem where the objective
function is given by

J(y, u) :=
1

2

∫

Ω1

(y(x)− ȳ(x))2 dx+
β

2

∫

Ω2

u(x)2dx (1.1)

in stationary form or in the transient case defined by

J(y, u) :=
1

2

∫∫

Q

(y(x, t)− ȳ(x, t))2 dxdt+
β

2

∫∫

Σ

u(x, t)2dxdt, (1.2)

where Q = Ω1 × (0, T ),Σ = Ω2 × (0, T ) are space-time cylinders. Here T
is the final time and we have a given desired state ȳ which is specified for
each problem. The goal of the optimization process is to drive the state y as
close as possible to the desired state using the control u. Note, that both Ω1

and Ω2 are subdomains of a Lipschitz domain Ω ∈ Rd. We will frequently
use Ω2 = Ω and occasionally Ω1  Ω. So far we have only introduced the
objective function but the state y and the control u need to be linked in a
meaningful way. For this it is crucial that the underlying ’problem physics’
are well represented. Often naturally, we use as a model problem a partial
differential equation called the state equation that links both quantities. We
consider the following parabolic PDE for the course of this work

yt −4y = u (1.3)

in Ω × (0, T ), with boundary conditions y = 0 on the spatial boundary ∂Ω
and initial condition y(x, 0) = y0(x). We here simply use the heat equation
because it illustrates many of the desired features that require our special
attention later on. In practice, more complex models are needed and in many
instances additional constraints often of algebraic nature are imposed. We
later briefly come back to such cases.

Assuming that Ω is a Lipschitz domain and y, ȳ ∈ L2(Q), Theorem 3.16
in [86] gives the existence of an optimal control u∗, which is unique for β > 0.
We also later need the adjoint PDE to the heat equation constraint defined

14 Martin Stoll



1.1. A PDE-CONSTRAINED OPTIMIZATION MODEL PROBLEM

above. For (1.2), the adjoint equation is given by

−pt −4p = χΩ1(y − ȳ)

p = 0 on ∂Ω

p(x, T ) = 0,

(1.4)

where χΩ1 is an indicator function for the domain Ω1 (see Chapter 3.6.4
in [86] for more details). The adjoint equation with adjoint state p is a
crucial quantity in PDE constrained optimization and p acts as the Lagrange
multiplier used in a Lagrangian (see [41,87] for details).

In order to determine the optimal solution to the optimization problem
described above one would typically follow a Lagrangian approach. The
stationary points of the corresponding Lagrangian function reflect the first
order necessary optimality conditions [41] of our problem. There are two
ways to arrive at such an approximate solution. The first one discretizes the
objective function and PDE-constraint, then considers a discrete Lagrangian
and builds the first order conditions of the discretized problem. This is the
so-called discretize-then-optimize approach.

The second approach first builds a Lagrangian function based on the
infinite dimensional problem and then discretizes the resulting optimality
conditions. This is the so-called optimize-then-discretize approach. In this
approach [87] the optimality conditions are given by the state equation (1.3),
the adjoint PDE (1.4), and the gradient equation

βu+ p = 0, (1.5)

all formulated in function space. Both approaches have favorable properties
and much research has be done to find suitable discretization such that
both approaches commute [39]. Additionally, it can be advantageous not to
discretize the control variable at all but remove it using the gradient equation
(1.5). This is often referred to as the variational discretization concept [36].
As the focus of our work is on the efficient design of fast solvers for the
discretized problem the elimination of the control is often not a crucial step
in this setup and we will not employ the variational discretization.

In this work we follow a discretize-then-optimize strategy for the simple
reason that the resulting linear systems representing the first order con-
ditions are symmetric, which simplifies the choice of the iterative solver.
Nevertheless, the techniques we present are mostly applicable in the non-
symmetric case that could arise when an optimize-then-discretize framework
is employed.

We now discuss this approach in more detail. We begin by discretizing
the functional given in (1.2) using a standard finite-element approach in
space and a trapezoidal rule for the temporal discretization. The discretiza-
tion in time of the PDE uses an implicit Euler scheme and finite elements

Martin Stoll 15



1.1. A PDE-CONSTRAINED OPTIMIZATION MODEL PROBLEM

in space. Note that of course other temporal discretization schemes are pos-
sible and our methodology typically applies in these cases. We here refer
to [2,52] for more details on space-time discretizations and believe that this
area will receive more attention in the coming years.

In more detail, the discretization of (1.2) leads to

J(y,u) =
τ

2
(y − ȳ)TM1/2(y − ȳ) +

βτ

2
uTM1/2u, (1.6)

where

M1/2 =




1
2M

M
. . .

M
1
2M



. (1.7)

Note that we use bold notation for the vectors representing the state, control,
adjoint state and so on. Using the rectangular rule instead would give

J(y,u) =
τ

2
(y − ȳ)TM0(y − ȳ) +

βτ

2
uTM0u, (1.8)

with M0 = blkdiag(M,M, . . . ,M, 0). Here, y = [yT1 ,y
T
2 , . . . ,y

T
N ]T is a

space-time vector representing the discrete state at time-steps 1 to N of
a backward Euler scheme (see below). Next, we perform a time discretiza-
tion of the PDE (1.3) using a backward Euler scheme

yk − yk−1

τ
−4yk = uk (1.9)

with time step τ . A spatial discretization using finite elements leads to

Myk + τKyk = Myk−1 + τMuk. (1.10)

Here, K is the finite element stiffness matrix and M the finite element mass
matrix. Putting all of Equation (1.10) together, the one-shot or space-time
discretization for N time-steps becomes




M + τK
−M M + τK

−M M + τK
. . .

. . .

−M M + τK




︸ ︷︷ ︸




y1

y2

y3
...

yN



− τMu = d,

K
(1.11)
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1.1. A PDE-CONSTRAINED OPTIMIZATION MODEL PROBLEM

where

d =




My0 + c
c
...
c


 , u = [uT1 ,u

T
2 , . . . ,u

T
N ]T , and M = blkdiag(M, . . . ,M).

The vector c represents the boundary conditions of the state equation. Using
this we can write down the discrete Lagrangian for the functional J(y, u) as

L(y,u,p) = J(y,u) + pT (−Ky + τMu + d), (1.12)

with the Lagrange multiplier given as p = [pT1 ,p
T
2 , . . . ,p

T
N ].T In this frame-

work, the Lagrange multiplier also represents a discrete version of the adjoint
state satisfying the adjoint equation. Finally, the first order conditions can
now be written as



τM1/2 0 −KT

0 βτM1/2 τM
−K τM 0






y
u
p


 =



τM1/2ȳ

0
d


 . (1.13)

The first equation in (1.13) is referred to as the adjoint equation, for the
simple reason as it represents a discretization of the adjoint PDE. Namely,
we get

τM1/2y −KTp = τM1/2ȳ.

Note that an Euler discretization would be given by

− pk − pk−1

τ
−4pk−1 = yk−1 − ȳk−1. (1.14)

In order to return to the discussion about whether to optimize first and
then discretize or vice versa we look at the final condition for the adjoint
equation. The final condition for the adjoint PDE has to be represented by
the first equation in (1.13). Note that the last block-line of the first-equation
in (1.13) gives

1

2
M(yN − ȳN ) = (M + τK)pN ,

which does not necessarily coincide with final conditions of the adjoint PDE

−p
N − pN−1

τ
−4pN−1 = yN−1 − ȳN−1.

Note that for the steady version of the heat equation, discretize-then-optimize
and optimize-then-discretize typically coincide while for the transient prob-
lem this is not necessarily the case. For τ → 0 the final condition is fulfilled;
indeed the final condition of the adjoint equation is satisfied to first order

Martin Stoll 17



1.1. A PDE-CONSTRAINED OPTIMIZATION MODEL PROBLEM

accuracy in τ .

We have now in much detail described the discretization of the optimiza-
tion problem constrained by the heat equation. Before we discuss how to
solve the system (1.13), we comment on possible extensions and more general
cases. Obviously, in many applications one needs to consider more complex
objective functions, more difficult PDEs, systems of PDEs, or additional
constraints.

Among the vast amount of research on this topic, we want to point to
the control of the Stokes equations [37,46,70,83,84] (see also Appendix A.5)
and convection diffusion equations [1,15,64,67]. In these examples the PDE-
constraint is a linear PDE, which when ignoring additional constraints on
the state or the control means solving the KKT conditions is sufficient to
determine the optimal control and state.

In contrast, many examples found in the sciences and engineering are of
nonlinear type and it becomes even more important to be able to solve such
problems efficiently. Many of the techniques we later present can be used
for nonlinear problems. Here we do not discuss nonlinear problems and the
numerical techniques needed in any detail. For introductions to nonlinear
PDE-constrained optimization we refer to [39, 41, 87]. A typical way to
solve such problems consists of forming the first order conditions for the
Lagrangian function, which itself is now a nonlinear system of equations.
Such a system can then be solved using Newton techniques, this is the
so-called Lagrange-Newton or SQP scheme see [11, 12, 41, 42, 45, 56, 66, 93]
for more details and Appendix A.7 and A.8 for reaction-diffusion systems
employing Lagrange-Newton techniques. Another very efficient scheme is
the so-called interior point method [75,89,91]. Introductions to these types
of methods are found in [23, 43, 57] for general optimization problems and
in [11, 31, 39, 41, 88] for the particular case of nonlinear PDE-constraints.
Such a nonlinear solver again requires the solution of a linear system similar
to the one shown in (1.13). One technique often used in combination with
SQP schemes is the so-called trust region approach that has recently received
some attention [30,93].

Additionally, one can obtain nonlinear problems when the model also
requires the control to be bounded via

ua ≤ u ≤ ub

where we assume that ua, ub ∈ L2(Σ). This additional constraint presents
a new challenge as the optimality conditions for such a system now involve
variational inequalities. For handling problems of this type, non-smooth
Newton methods have shown great potential [9,35,41] and have been studied
extensively. Non-smooth Newton schemes are also well-suited for the more
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1.2. KRYLOV SUBSPACE SOLVERS

challenging case when the state itself is constrained

ya ≤ y ≤ yb

[10, 16, 41]. We refrain from discussing the last two cases here and refer
to the excellent work found in the literature, see [39, 41, 86, 88] as points of
reference. We refer to [33, 74] for functional analysis motivated approaches
to these problems. Our results for the development of iterative solvers are
found in Appendix A.1 and A.2 representing our work in [81,82].

We now discuss methods that allow the efficient solution of these large-
scale saddle point systems such as the one given (1.13). Our discussion
will focus on iterative solvers of Krylov type. There are also other efficient
schemes such as multigrid methods that we do not discuss but refer to
[13,14,38].

1.2 Krylov subspace solvers

The linear system presented in (1.13) is a system in saddle point form with
system matrix

A =

[
A BT

B 0

]
,

where

A =

[ M1/2 0

0 βτM1/2

]
B =

[
−K τM

]
.

A system of this form is typically referred to as a KKT system as it represents
the first order of an optimization problem [56]. Systems of this type have
been studied extensively within the numerical analysis community, see [7,20]
for superb introductions to the numerical solution of saddle point problems.
While often, especially for two-dimensional systems, direct solvers provide
outstanding performance, these method’s performance typically deteriorates
for higher dimensional or highly structured systems. Hence, there is a crucial
need to construct efficient iterative methods.

The most effective methods to iteratively solve large and sparse linear
systems are so-called preconditioned Krylov subspace solvers. We briefly
discuss the basics needed in our case but refer to [22,24,27,53,72] for more
thorough introductions. There exist many different Krylov subspace solvers
and the choice which one to employ typically depends on the properties of
the system matrix. As our systems are symmetric and indefinite we focus on
the minres method [59], which we explain in the following. In the case of a
symmetric positive definite system the conjugate gradient method [34] is the
method of choice. For nonsymmetric problems it is much less clear which
method to choose [55] and we here refer to gmres [73] and bicgstab [90]
for two of the many available nonsymmetric Krylov methods.

Martin Stoll 19



1.2. KRYLOV SUBSPACE SOLVERS

For minres and all the just mentioned methods, the underlying Krylov-
subspace of dimension k

Kk(A, r0) = span
{
r0,Ar0, . . .Ak−1r0

}

is of utmost importance. Here, r0 = b − Axk is the initial residual but
r0 can be an arbitrary starting vector. With every step of an iterative
procedure the chosen method uses an increased dimension of Kk(A, r0) to
find an approximation to the solution x of the linear system. The method
uses an optimality criterion for the selection of approximation to the solution
x and the quantity that is minimized by a particular method depends mainly
on the properties of the systems matrix A.

The minimal residual method (minres) [59] is an iterative solver for
symmetric systems where, as the name suggests, the minimization of the
residual is its defining characteristic. We start our discussion of it from a
purely algebraic viewpoint. We will later discuss it using the knowledge that
the matrix A comes from the discretization of a partial differential equation.
The discussion is then based on the fact that we have a good understanding
of the mapping properties of the continuous operator underlying the matrix
A.

The minres method is based on the symmetric Lanczos procedure,
which constructs an orthogonal basis for the Krylov-subspace Kk(A, r0).
The Lanczos method is then expressed as

AVk = VkTk + βk+1vk+1e
T
k = Vk+1Tk+1,k

with

Tk+1,k =




α1 β2

β2 α2
. . .

. . .
. . . βk
βk αk

βk+1



.

This scheme can be derived from a tridiagonalization of the matrix A, i.e.,
A = V TV T , and its column-wise consideration. The approximate solution
xk is of the form

xk = x0 + Vkzk (1.15)

for some vector zk, where the columns of Vk form an orthogonal basis of the
Krylov subspace Kk(A, r0). We refer to the condition (1.15) as the space
condition because the current approximation xk is a linear combination of
the starting vector x0 and the current basis of the Krylov space Kk(A, r0).
The vector zk of coefficients is computed such that the 2-norm of the current
residual rk = b − Axk is minimized. Mathematically, this is expressed as

20 Martin Stoll



1.2. KRYLOV SUBSPACE SOLVERS

(ignoring the minimization)

‖rk‖2 = ‖b−Axk‖2
= ‖b−A(x0 + Vkzk)‖2
= ‖r0 −AVkzk‖2
= ‖r0 − Vk+1Tk+1,kzk‖2

(1.16)

and with the typical choice of v1 = r0/ ‖r0‖2 we get

‖rk‖2 = ‖Vk+1(‖r0‖2 e1 − Tk+1,kzk)‖2
= ‖ ‖r0‖2 e1 − Tk+1,kzk‖2.

(1.17)

The term Vk+1 inside the norm can be ignored because its columns are
orthogonal in exact arithmetic. In order to compute the vector zk, we have
to minimize (1.17), i.e., a least squares problem

min ‖rk‖2 = min ‖ ‖r0‖2 e1 − Tk+1,kzk‖2.

A well-known technique to solve least squares systems of this type is the
QR decomposition (cf. [59]). As computing the QR decomposition at every
step could be very costly, we need an alternative. Fortunately, since the
matrix Tk+1,k changes from step to step simply by adding one column and
one row, its QR decomposition can be updated at every step. This can be
done by simply using one Givens rotation [24,85]. In more detail, we assume
that the QR factorization of Tk,k−1 = Qk−1Rk−1 is given with

Rk−1 =

[
R̂k−1

0

]

and R̂k−1 an upper triangular matrix. To obtain the QR factorization of
Tk+1,k we eliminate the element βk+1 from

[
QTk−1 0

0 1

]
Tk+1,k =

[
QTk−1 0

0 1

] [
Tk,k−1 αkek

0 βk+1

]

=

[
Rk−1 QTk−1αkek

0 βk+1

] (1.18)

by using one Givens rotation in rows k, k + 1. There is no need to store
the whole basis Vk in order to update the solution. The matrix Rk of the
QR decomposition of the tridiagonal matrix Tk+1,k has only three non-zero

diagonals. Let us define Ck = [c0, c1, . . . , ck−1] = VkR̂
−1
k . Note that c0 is a

multiple of v1 and we can compute successive columns using that CkR̂k = Vk,
i.e.

ck−1 = (vk − r̂k−1,kck−2 − r̂k−2,kck−3)/r̂k,k, (1.19)
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where the r̂i,j are elements of R̂k. Therefore, we can update the solution

xk = x0 + ‖r0‖2Ck
(
QTk e1

)
k×1

= xk−1 + ak−1ck−1, (1.20)

where ak−1 is the kth entry of ‖r0‖2QTk e1. Implementations of minres are
found in most libraries for scientific computing and even many finite element
packages come with a minres implementation under the hood. We refer
to [20,22] for more details on the implementation.

We have introduced minres as a method to solve the system (1.13) but
need to discuss its convergence as this is typically dependent on the number
of distinct eigenvalues of the system matrix A [27, 49]. Loosely speaking,
the fewer the number of distinct eigenvalues or number of eigenvalues the
faster the convergence. For the PDE-constrained optimization problems,
the eigenvalues of the system matrix A depend on the system parameters
such as the mesh-parameter and the regularization parameter. This means
for many interesting values of these parameters, the eigenvalues are spread
out over the real line with no hope for fast convergence. The goal is now to
overcome this shortcoming and for this reason we are modifying the problem
using a so-called preconditioner such that we can still apply minres but
with enhanced convergence properties. In more detail, the preconditioning
matrix P is used in the following way

P−1Ax = P−1b (1.21)

with the ultimate goal that P−1A has very few distinct eigenvalues or its
eigenvalues are found in a small number of distinct clusters. While P−1A is
not symmetric anymore, a symmetric positive definite preconditioner P still
allows the use of minres using the spectral equivalence of the matrix P−1A
to a centrally preconditioned system R−1AR−T with R being the Cholesky
factor of P. The usual way to obtain the preconditioned version of minres
as it is shown in [19] is to plug in the centrally preconditioned system into the
unpreconditioned minres method and then see that the expensive Cholesky
decomposition is not necessary. Compared to the unpreconditioned method,
the resulting preconditioned scheme only needs little extra storage and the
additional cost of solving a system with the preconditioner P. The derivation
of efficient preconditioners is postponed until the next section.

We now want to discuss a different way of arriving at the preconditioned
minres method. The minimization of the residual that defines the method
is in its standard from done in the 2-norm, but this is not necessary for
the success of the scheme. We here take our motivation from some recent
work in operator preconditioning [28, 32, 74, 76] where the preconditioner is
a crucial ingredient in the well-posedness of minres.

The derivation by Herzog and coauthors who consider the minres method
from a function space perspective [28,32] is based on the mapping properties
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of the operator A, which is defined as A : X → X∗. Here X is a Hilbert
space and X∗ its dual space.

A crucial role in the derivation of the operator preconditioned minres
method is played by the Riesz representer H, which is a bounded linear
operator that maps from the dual space X∗ back to the original space X.
For the minimization of min ‖rk‖H the authors in [28] give the Lanczos
relation

AHV = V T

where the matrix of basis vectors Vk is now H−orthogonal. This can be seen
as a tridiagonalization of the matrix

V THAHV = T.

The initial residual is again of importance as the first vector in V is v1 =
r0/ ‖r0‖H . The Lanczos iteration at step k then uses the k-th column of

AHV ek = V Tek

and in more detail

AHvk = (βk+1vk+1 + αkvk + βk−1vk−1) .

To determine the coefficient αk, we multiply the previous equation on the
left by vTkH to get

vTkHAHvk = βk+1v
T
kHvk+1 + αkv

T
kHvk + βk−1v

T
kHvk−1 (1.22)

= αk. (1.23)

Introducing Hvk =: zk, the parameter is computed via αk = zTk Azk. The
parameters βk are determined via the H-norm of the vectors. The matrix
form of the Lanczos process is then given by

AHVk = Vk+1Tk+1,k

and we can use this to derive the appropriate result for minres. The
residual norm in the H-inner product then becomes

‖rk‖H = ‖b−Axk‖H
= ‖b−Ax0 −AHVkyk‖H
= ‖r0 − Vk+1Tk+1yk‖H
= ‖‖r0‖H e1 − Tk+1yk‖H ,

(1.24)

using the fact that xk = x0 +HVkyk.
Note also that the Riesz representer and the inner product matrix H

given above take the role of the preconditioner, i.e., H = P−1. For more
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recent work regarding the derivation of preconditioners based on the under-
lying PDE operators we refer to [28,32,40,51,76,94] among others.

Here the notion is slightly different than the one presented in [65] where
the author starts with the tridiagonalization of Â

ÂV = V T

and an H− orthogonal matrix V . This would then result in

V THÂV = T

which is not identical to the formulation of Herzog and co-authors if Â =
A. The mapping properties of A and considering Pestana’s approach with
preconditioning it can then be seen that the matrix Â = AH, i.e. the right
preconditioned matrix, represents the correct choice. Note that for this
discussion to remain true we assume that Â is self-adjoint in the H−inner
product.

From the previous discussion and the fact that the inner product matrix
acts as a preconditioner, the residual at step k is expressed via the following
relation

rk = pk(AH)r0

where pk ∈ Πk
0 is the polynomial of degree at most k satisfying pk(0) = 1.

The convergence of minres is then given via

‖rk‖H ≤ min
pk∈Πk0

max
λ∈ρ(AH)

|pk(λ)| ‖r0‖H (1.25)

where ρ(AH) denotes the spectrum of the matrixAH. Herzog and Sachs [32]
present a nice convergence analysis for minres defined in function space.
For the linear algebra formulation we refer to [22,49,50].

We have now realized that the preconditioner P can be identified with
the inner product H, which we will elaborate on in the next section. Ad-
ditionally, we introduce a preconditioning framework that has been widely
used for designing preconditioners for saddle point problems.

1.3 A preconditioning framework

One important result from the above made observations is that the precon-
ditioner needs to define an inner product or in other words a symmetric
positive definite matrix. While other preconditioners can also be used when
different iterative solvers are employed, we here only focus on block-diagonal
preconditioners. Our preconditioning strategy mainly follows a result pre-
sented in [54] for the general construction of preconditioners for saddle point
systems. Similar results are found in [4, 48].
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Lemma 1.1 (Proposition 1, [54]). For the saddle point system

A =

[
A BT

B 0

]

preconditioned by

P =

[
A 0
0 S

]

with S = BA−1BT the negative Schur-complement, the following holds

T (T − I)
(
T 2 − T − I

)
= 0

with T = P−1A the preconditioned system matrix.

Lemma 1.1 implies that a good preconditioner is found when the (1, 1)-
block and the Schur-complement of the matrix are well approximated. A
thorough analysis concerning the behaviour of the eigenvalues of the precon-
ditioned system when both the (1, 1)-block and the Schur-complement are
approximated is given in [58]. We now focus on approximating the (1, 1)-
block and the Schur-complement of the saddle point system (1.13) where it
holds that

A =

[
τM1/2 0

0 βτM1/2

]
, B =

[
−K τM

]
.

We start by discussing the approximation of the (1, 1)-block of the matrix
(1.13), i.e.,

A =

[
τM1/2 0

0 βτM1/2

]
.

Note that the matrixM1/2 in the case of a distributed observation (Ω1 = Ω)
over all time-steps is a block-diagonal matrix with mass matrices as diag-
onal blocks. This means that in order to approximate M1/2, we need to
approximate the mass matrix M efficiently. In the case when M is lumped,
i.e., diagonal, this is a trivial task. For consistent mass matrices one can
either resort to a diagonal approximation of M or one can use the Cheby-
shev semi-iteration [25, 26] shown in Algorithm 1.1. In the case that we
do not observe the desired state on the full domain Ω, the matrix M1/2 is
a block-diagonal matrix consisting of matrices M1 where this matrix only
contains contributions from the domain Ω1. This means that the matrix M1

is semi-definite. For the preconditioning of this matrix we introduce a small
parameter ν to obtain the preconditioning matrix M̃1 = M1 + νĨ1, where
Ĩ1 is an identity matrix associated with the degrees of freedom in the part
Ω\Ω1. A more detailed description of this parameter is found in [8, 83]. In
general ν will depend on the mesh parameter h, the time-step τ , and the
regularization parameter β.
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1: Set D = diag(M)
2: Set relaxation parameter ω
3: Compute g = ωD−1b̂
4: Set S = (I − ωD−1M) (this can be used implicitly)
5: Set w0 = 0 and w1 = Swk−1 + g
6: c0 = 2 and c1 = ω
7: for k = 2, . . . , l do
8: ck+1 = ωck − 1

4ck−1

9: ηk+1 = ω ck
ck+1

10: wk+1 = ηk+1(Swk + g − wk−1) + wk−1

11: end for

Algorithm 1.1: Chebyshev semi-iterative method to solve Mw = b̂ for a
number of l steps

For nonlinear problems, the (1, 1)-block is typically more complicated in
structure and therefore harder to approximate. Different nonlinear solvers
result in different structures of the (1, 1)-block and tailored preconditioners
need to be devised.

Typically the more challenging part comes from the approximation of
the Schur-complement S. For reasons of exposition we will in this chapter
occasionally discuss solvers for the steady control problem, which in its
discretized form is written as




M 0 −KT

0 βM M
−K M 0






y
u
p


 =



M ȳ

0
c


 . (1.26)

Preconditioners for this problem have been studied extensively in the lit-
erature (cf. [19, 33, 68, 69, 76]). Following the above approach, we see that
approximating the block-diagonal matrix

[
M 0
0 βM

]

is essential and can in this case easily be done using the techniques mentioned
earlier. The Schur-complement

S = KM−1KT +
1

β
M

is typically harder to approximate. For larger values of β ignoring the sec-
ond term 1

βM in S can be successful [68]. A more robust approach for
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approximating S was presented in [63] where the approximation

Ŝ = (K +
1√
β
M)M−1(K +

1√
β
M)T

was presented. Here, we note that K and M are symmetric and positive
definite which makes the transpose used redundant1. The effectiveness of
this approach can be seen by analyzing the eigenvalues of Ŝ−1S. This can
be done looking at the Rayleigh-quotient

vTSv

vT Ŝv
=

vTKM−1KT v + 1
β v

TMv

vT (K + 1√
β
M)M−1(K + 1√

β
M)T v

=
aTa+ bT b

aTa+ bT b+ 2aT b

with a = M−1/2KT v and b = M1/2v. We can now easily show that the
Rayleigh quotient is bounded independent of all the system parameters.
For this we use the fact that

(a− b)T (a− b) ≥ 0⇒ aTa+ bT b ≥ 2aT b

and this gives a lower bound of 1
2 for the Rayleigh quotient. The upper

bound of 1 that we want to establish follows from the fact that

2aT b = 2vTKv ≥ 0

since K is positive semi-definite and in the case of a Dirichlet boundary
condition even positive definite. The result is that the eigenvalues of Ŝ−1S
lie in the interval [1

2 , 1] independent of all system parameters [63]. In a
similar fashion one can obtain an eigenvalue result for the control of the
heat equation. We here only state the result from [62] and refer to the
paper shown in Appendix A.3 for a more detailed discussion.

Theorem 1.2. If

S =
1

τ
KM−1

1/2K
T +

τ

β
MM−1

1/2M, (1.27)

and

Ŝ =
1

τ

(
K +

τ√
β
M
)
M−1

1/2

(
K +

τ√
β
M
)T

, (1.28)

then

λ(Ŝ−1S) ∈ [
1

2
, 1].

1We nevertheless use the transpose as the matrices are not necessarily symmetric for
other problems.
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If we now look at the structure of the matrix

K +
τ√
β
M =




L
−M L

. . .
. . .

−M L




with L = (1 + τ√
β

)M + τK, we see that the inversion of this matrix and also

its transpose are forward and backward substitutions. We thus require the
solution or approximation solution with the diagonal blocks (1+ τ√

β
)M+τK.

As this itself is a costly process due to K and M being large-scale finite
element matrices, we employ an approximate solve for the diagonal blocks
using multigrid techniques. For this both geometric [29, 92] and algebraic
[21,71] multigrid techniques can be used. We here illustrate the performance
of this scheme by showing results from Appendix A.3 in Table 1.1. It can
be seen that the proven robustness can be observed in a practical scenario.
The degrees of freedom listed in Table 1.1 are only the spatial degrees of
freedom. This means the system size is much larger.

DoF minres(T) minres(T) minres(T)

β = 1e− 2 β = 1e− 4 β = 1e− 6

4913 10(2) 12(2) 12(2)
35937 10(14) 12(17) 12(18)
274625 10(148) 12(171) 12(170)

Table 1.1: Results for the robust Schur-complement approximation and an
optimal control problem with distributed control for the heat equation. Var-
ious mesh-sizes and different values for β are computed. We have chosen 20
time steps and a tolerance of 10−4 for convergence of minres.

Employing such a robust Schur-complement approach has proven effi-
cient in many cases. We point to [5, 64, 78, 83] for some examples involving
linear PDEs. For nonlinear problems this approach has also shown promising
results but typically it is harder to theoretically underpin the performance
as was done in Theorem 1.2 for the heat equation with distributed control.
We point to [61,80] for some first results on reaction-diffusion-like systems.
For this we point to Appendices A.6, A.7, and A.8. Similar results could be
proven for time-periodic systems shown in Appendix A.4 and [78].

Another technique to develop preconditioners that has recently received
more attention is the so-called operator preconditioning. For an introduction
to this approach we point to [2,28,51,76,94]. We here briefly introduce the
idea for the steady-state problem and note that for the transient case, first
efforts have been made in [2,74]. For now consider the steady state optimal
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control problem. Following the notation used in [32] we write the steady
control problem with Ω1 = Ω2 = Ω as the following linear system

〈U(y, u, p), (q, g, v)〉 =

∫

Ω
yq + β

∫

Ω
ug +

∫

Ω
∇y · ∇v −

∫

Ω
uv

−
∫

Ω
∇p · ∇q +

∫

Ω
pg

with right hand side

〈b, (q, g, v)〉 =

∫

Ω
ȳq

assuming zero Dirichlet conditions and test functions (q, g, v). The operator
A acts on

X = H1
0 (Ω)× L2(Ω)×H1

0 (Ω)

into the dual space

X∗ = H1
0 (Ω)∗ × L2(Ω)∗ ×H1

0 (Ω)∗

= H−1(Ω)× L2(Ω)×H−1(Ω).

The inner product that we need from the previous section is now given by
the Riesz representer

P−1 =



−∆−1 0 0

0 I−1 0
0 0 −∆−1


 ,

where I : L2(Ω) → L2(Ω)∗. Herzog and Sachs discuss the convergence be-
haviour of minres for this case in [32], and by construction, this precon-
ditioner shows mesh-independent behaviour. We here additionally want to
present a technique presented by Mardal and Winther in [51], which also
shows robustness with respect to the regularization parameter. The idea
presented in [51] is that regularization-parameter dependent spaces are in-
troduced. For this they consider the space

Xβ =
(
L2(Ω) ∩ β1/4H1

0 (Ω)
)
× β1/2L2(Ω)×

(
β−1/2L2(Ω) ∩ β−1/4H1

0 (Ω)
)
.

One needs to establish coercivity of the bilinear form representing the control
problem by showing there exists an α > 0 such that

‖y‖2 + β ‖u‖2 ≥ α
(
‖y‖2 + β1/2 ‖∇y‖2 + β ‖u‖2

)
(1.29)

for all y ∈ H1
0 (Ω) and u ∈ L2(Ω) that satisfy the state equation in the

elliptic case
(∇y,∇v) = (u, v) ∀v ∈ H1

0 (Ω).
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Here, the left hand side of (1.29) represents the bilinear form representing
the contributions of state and control to the objective function and the right-
hand side of the equation α times the norm on the space

(
L2(Ω) ∩ β1/4H1

0 (Ω)
)
×

β1/2L2(Ω). The constraint for v = y now results in

(∇y,∇y) = (u, y)⇒ ‖∇y‖2 ≤ ‖y‖ ‖u‖ .

We start by using

(
‖y‖+

√
β ‖u‖

)2
≥ 0 (1.30)

‖y‖2 + β ‖u‖2 ≥ 2
√
β ‖y‖ ‖u‖ (1.31)

1

2
‖y‖2 +

1

2
β ‖u‖2 ≥

√
β ‖y‖ ‖u‖ ≥

√
β

2
‖y‖ ‖u‖ ≥

√
β

2
‖∇y‖2 . (1.32)

Now adding 1
2 ‖y‖

2 + 1
2β ‖u‖

2 to both sides of (1.32) gives

‖y‖2 + β ‖u‖2 ≥ 1

2

(√
β ‖∇y‖2 + ‖y‖2 + β ‖u‖2

)

and we see that for α = 1
2 the coercivity is satisfied. Furthermore, we need

to check whether the inf-sup condition is also satisfied as then the choice of
the above spaces is well justified. It reads in this case as

sup
(y,u)∈H1

0×L2

(∇y,∇v)− (u, v)
(
‖y‖2 + β1/2 ‖∇y‖2 + β ‖u‖2

)1/2
≥ (1.33)

η
(
β−1 ‖v‖2 + β−1/2 ‖∇v‖2

)1/2
(1.34)

where η is the inf-sup constant. On the other hand, if we choose y = β−1/2v
and u = −β−1v, then

sup
(y,u)∈H1

0×L2

(∇y,∇v)− (u, v)
(
‖y‖2 + β1/2 ‖∇y‖2 + β ‖u‖2

)1/2
≥ (1.35)

β−1/2 ‖∇v‖2 + β−1 ‖v‖
(
β−1 ‖v‖2 + β−1/2 ‖∇v‖2 + β−1 ‖v‖2

)1/2
≥ (1.36)

β−1/2 ‖∇v‖2 + β−1 ‖v‖
√

2
(
β−1 ‖v‖2 + β−1/2 ‖∇v‖2

)1/2
= (1.37)

1√
2

(
β−1 ‖v‖2 + β−1/2 ‖∇v‖2

)1/2
. (1.38)

Since this relation holds for all v including its infimum the inf-sup constant
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in this case is given by η = 1√
2
. With this result we can now establish the

design for our preconditioner in this case. We start by noting that the dual
space is given as

X∗β =
(
L2(Ω) + β−1/4H1

0 (Ω)∗
)
×β−1/2L2(Ω)×

(
β1/2L2(Ω) + β1/4H1

0 (Ω)∗
)
.

The operator mapping

Xβ =
(
L2(Ω) ∩ β1/4H1

0 (Ω)
)
× β1/2L2(Ω)×

(
β−1/2L2(Ω) ∩ β−1/4H1

0 (Ω)
)

to X∗β is then given by



I − β1/2∆

βI

β−1(I − β1/2∆)




and induces the following preconditioner

P−1 =




(I − β1/2∆)−1

β−1I

β(I − β1/2∆)−1


 .

Again as in the result taken from Herzog and Sachs, this preconditioner
needs to be implemented efficiently. The realization of the individual blocks
via a spectrally equivalent approximation such as a multigrid process typi-
cally shows outstanding performance. The resulting blocks obtained in the
preconditioner resemble the blocks obtained in the robust Schur-complement
approximation introduced by Pearson and Wathen [63].

In the case of parabolic control problems first steps for the design of
operator based preconditioners have been made (cf. [2, 74]).

1.4 Data-compressed approximations

We have so far presented methodology to efficiently simultaneous space-time
problems. Convergence theory and numerical results indicate the efficiency
of this approach. Nevertheless, a possible shortcoming is the storage required
for the space-time vectors. We point out that the storage of the matrix
system is only slightly higher than for the steady problem. We now introduce
a technique that we proposed in [79] also described in detail in Appendix
A.9.
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We recall the definition of the Kronecker product

W ⊗ V =



w11V . . . w1mV

...
. . .

...
wn1V . . . wnmV




and note that we can write our linear system (1.13) using Kronecker notation
and get




D1 ⊗ τM1 0 −
(
IN ⊗ L+ CT ⊗M

)

0 D2 ⊗ βτM2 D3 ⊗ τM
− (IN ⊗ L+ C ⊗M) D3 ⊗ τM 0




︸ ︷︷ ︸
A



y
u
p


 =

(1.39)


D1 ⊗ τM1yobs

0
d


 ,

where D1 = D2 = diag
(

1
2 , 1, . . . , 1,

1
2

)
, L = M + τK, and D3 = IN . Addi-

tionally, the matrix C ∈ RN,N is given by

C =




0
−1 0

. . .
. . .

−1 0




and represents the implicit Euler scheme. It is of course possible to use
a different discretization in time. So far we have simply reformulated the
previously given system (1.13). But our goal was to derive a scheme that
allows for a reduction in storage requirement for the vectors y, u, and p. For
this we remind the reader of the definition of the vec operator via

vec(W ) = vec([w1, . . . , wN ]) =



w1
...
wN




as well as the relation

(
W T ⊗ V

)
vec(Y ) = vec(V YW ).

Now employing these definitions and using the following notation

Y = [ y1, y2, . . . , yN ], U = [ u1, u2, . . . , uN ], P = [ p1, p2, . . . , pN ]

32 Martin Stoll



1.4. DATA-COMPRESSED APPROXIMATIONS

we get for the matrix vector multiplication that




D1 ⊗ τM1 0 −
(
IN ⊗ L+ CT ⊗M

)

0 D2 ⊗ βτM2 D3 ⊗ τNT

− (IN ⊗ L+ C ⊗M) D3 ⊗ τN 0






vec(Y )
vec(U)
vec(P )




(1.40)

= vec(




τM1Y D
T
1 − LPITN −MPC

τβM2UD
T
2 + τNTPDT

3

−LY ITN −MYCT + τNUDT
3


).

So far nothing is gained from rewriting the problem in this form. As was
previously done in [6] we assume for now that Y, U, and P are approxima-
tions to the true solutions and that these approximations are represented
by a low-rank representation. Then any iterative Krylov subspace solver
can be implemented using a low-rank version of (1.40) for the matrix vector
multiplication. To see this, we denote the low-rank representations by

Y = WY V
T
Y with WY ∈ Rn1,k1 , VY ∈ RN,k1 (1.41)

U = WUV
T
U with WU ∈ Rn2,k2 , VU ∈ RN,k2 (1.42)

P = WPV
T
P with WP ∈ Rn1,k3 , VP ∈ RN,k3 (1.43)

with k1,2,3 being small in comparison to N and rewrite (1.40) accordingly
to get




τM1WY V
T
Y D

T
1 − LWPV

T
P I

T
N −MWPV

T
P C

τβM2WUV
T
U D

T
2 + τNTWPV

T
P D

T
3

−LWY V
T
Y I

T
N −MWY V

T
Y C

T + τNWUV
T
U D

T
3


 . (1.44)

Note that we skipped the vec operator and instead use matrix-valued un-
knowns. We can write the block-rows of (1.44) as

(first block-row)
[
τM1WY −LWP −MWP

]


V T
Y D

T
1

V T
P I

T
N

V T
P C


 ,

(second block-row)
[
τβM2WU τNTWP

] [ V T
U D

T
2

V T
P D

T
3

]
,

(third block-row)
[
−LWY −MWY τNWU

]


V T
Y I

T
N

V T
Y C

T

V T
U D

T
3


 .

(1.45)
We have now shown that the matrix vector product with the KKT matrix
of our optimization problem can be performed using low-rank methodology.
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This is easily seen from (1.45). While the rank of the matrix

[
τM1WY −LWP −MWP

]

grows with this multiplication, one can condense the result again using for
example a truncated SVD or a QR reduction [47,79].

Using such truncation approaches for the approximation to state, con-
trol, and adjoint state, we can perform a full cycle of an iterative scheme. As
our system matrix is indefinite, we employ minresonce more. Nevertheless,
all other Krylov solvers can be used. In Algorithm 1.2, we show a skeleton
version of minres in the full format and highlight the work intensive parts
of the algorithm. These involve the matrix vector product and the precon-
ditioning step. If both can be performed maintaining the low-rank form the
algorithm can then be rewritten for a low-rank approximation.

Zero-Initialization of v(0), w(0), and w(1).
Choose u(0)

Set v(1) = b−Au(0)
Solve Pz(1) = v(1)

. . .
for j = 1 until convergence do
z(j) = z(j)/γj
δj =

〈
Az(j), z(j)

〉

Compute v(j+1) = Az(j) − δj/γjv(j) − γj/γj−1v
(j−1)

Solve Pz(j+1) = v(j+1)

γj+1 =
√〈

z(j+1), v(j+1)
〉

. . .
if Convergence criterion fulfilled then

Compute approximate solution
stop

end if
end for

Algorithm 1.2: Skeleton of minres algorithm with gray areas illustrating
the computationally expensive parts.

The matrix vector product is a crucial component of any Krylov subspace
solver and (1.45) enables us to proceed to a low-rank Krylov scheme as
shown in Algorithm 1.3. This algorithm is almost identical to the classical
scheme but working with matrix valued unknowns and maintaining the low-
rank nature. One of the crucial steps of the algorithm is illustrated by the
parentheses {} , which indicate the concatenation and truncation process.
To recall this again, relation (1.45) can be truncated using efficient QR or
SVD based reduction techniques where even benign rank increase can be
avoided [47, 79], see also Appendix A.9. Again, preconditioning is crucial
for this scheme and we also refer to Appendix A.9 for details on potential
preconditioners.

The use of low-rank techniques for linear systems coming from high-
dimensional problems has seen a lot of interest as of late [3,47,79] with a vast
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Zero-Initialization of V
(0)
11 , . . . , W

(0)
11 , . . . , and W

(1)
11 , . . . .

Choose U
(0)
11 , U

(0)
12 , U

(0)
21 , U

(0)
22 , U

(0)
31 , U

(0)
32

Set V11, V12, . . . to normalized residual
while residual norm > tolerance do
Z

(j)
11 = Z

(j)
11 /γj , Z

(j)
21 = Z

(j)
21 /γj , Z

(j)
31 = Z

(j)
31 /γj ,

[F11, F12, F21, F22, F31, F32] = Amult(Z
(j)
11 , Z

(j)
12 , Z

(j)
21 , Z

(j)
22 , Z

(j)
31 , Z

(j)
32 )

δj = traceproduct(F11, F12, F21, F22, F31, F32, Z
(j)
11 , Z

(j)
12 , Z

(j)
21 , Z

(j)
22 , Z

(j)
31 , Z

(j)
32 )

V
(j+1)
11 =

{
F11 − δj

γj
V

(j)
11 − γj

γj−1
V

(j−1)
11

}
, V

(j+1)
12 =

{
F12 V

(j)
12 V

(j−1)
12

}

V
(j+1)
21 =

{
F21 − δj

γj
V

(j)
21 − γj

γj−1
V

(j−1)
21

}
, V

(j+1)
22 =

{
F22 V

(j)
22 V

(j−1)
22

}

V
(j+1)
31 =

{
F31 − δj

γj
V

(j)
31 − γj

γj−1
V

(j−1)
31

}
, V

(j+1)
32 =

{
F32 V

(j)
32 V

(j−1)
32

}
{
Z

(j+1)
11 , Z

(j+1)
12 , Z

(j+1)
21 , Z

(j+1)
22 , Z

(j+1)
31 , Z

(j+1)
32

}
=

Aprec(V
(j+1)
11 , V

(j+1)
12 , V

(j+1)
21 , V

(j+1)
22 , V

(j+1)
31 , V

(j+1)
32 )

γj+1 =

√
tracepoduct(Z

(j+1)
11 , . . . , V

(j+1)
11 , . . .)

α0 = cjδj − cj−1sjγj

α1 =
√
α2
0 + γ2j+1

α2 = sjδj + cj−1cjγj
α3 = sj−1γj
cj+1 = α0

α1

sj+1 =
γj+1

α1

W
(j+1)
11 =

{
Z

(j)
11 −α3W

(j−1)
11 −α2W

(j)
11

}
, W

(j+1)
12 =

{
Z

(j)
12 W

(j−1)
12 W

(j)
12

}

W
(j+1)
21 =

{
Z

(j)
21 −α3W

(j−1)
21 −α2W

(j)
21

}
, W

(j+1)
22 =

{
Z

(j)
22 W

(j−1)
22 W

(j)
22

}

W
(j+1)
31 =

{
Z

(j)
31 −α3W

(j−1)
31 −α2W

(j)
31

}
, W

(j+1)
32 =

{
Z

(j)
32 W

(j−1)
32 W

(j)
32

}

if Convergence criterion fulfilled then
Compute approximate solution
stop

end if
end while

Algorithm 1.3: Low-rank minres
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majority of the work considering not just matrix-valued but tensor-valued
equations [18, 44]. As is clear from the algorithm, the initial rank comes
from the right-hand side of the equation as this is the starting vector for our
Krylov subspace. For optimization problems this can often be expected to
have a small rank. A more detailed discussion can be found in [79].

Additionally, one needs to worry about preconditioning. For this, we
recall the system matrix




D1 ⊗ τM1 0 −
(
IN ⊗ L+ CT ⊗M

)

0 D2 ⊗ βτM2 D3 ⊗ τM
− (IN ⊗ L+ C ⊗M) D3 ⊗ τM 0




and our previously discussed strategy to approximate the (1, 1)-block

[
D1 ⊗ τM1 0

0 D2 ⊗ βτM2

]

and the Schur-complement

S = (IN ⊗ L+ C ⊗M) (D1 ⊗ τM1)−1
(
IN ⊗ L+ CT ⊗M

)

+ (D3 ⊗ τM)(D2 ⊗ βτM2)−1D3 ⊗ τM.

The inversion of the (1, 1)-block is again easy and maintains the low-rank
structure of the approximations. The Schur-complement can in a similar
manner to before be approximated using

Ŝ =
(
IN ⊗ L̂+ C ⊗M

)
(D1 ⊗ τM1)−1

(
IN ⊗ L̂+ CT ⊗M

)
,

where L̂ is chosen according to the matching approach presented earlier. In
order to use our presented low-rank approach, the evaluation of Ŝ−1 needs
to maintain this structure. Let us note that the first and last term in Ŝ
are equations resembling generalized Sylvester equations for which low-rank
techniques are available (see [77] and the references mentioned therein).

It is also possible to extend this methodology to the case of a nonlinear
PDE-constraint. Namely, the Navier-Stokes equations, which then results
in a much more complex structure of the matrix blocks. First results for
this approach seem to be promising [17].

1.5 Conclusion

Our introduction presented here was based on a linear algebra view of part
of the field of PDE-constrained optimization. In order to get to this point we
have seen that sophisticated discretization schemes are needed. We showed
that one can find a large-scale, highly structured linear system at the core
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of the optimization procedure. We have focused on linear constraints with a
convex objective function such that the first order conditions are sufficient
to solve the optimization problem. Nevertheless, similar systems are found
at the heart of optimization schemes when nonlinear problems need to be
tackled.

We have discussed the use of minres as an iterative solver and motivated
how the preconditioned version of this algorithm can be derived from looking
at nonstandard inner products. We also discussed that any iterative solver
is enhanced by preconditioning and in the case of minres preconditioners
needs to be symmetric and positive definite. In our application, they can
be thought of as inner product representations for the underlying function
spaces. In particular, we have discussed possible preconditioning strategies
for the optimization problems. We have followed a Schur-complement ap-
proach and illustrated how robustness for this method can be proven for
some cases. We have additionally illustrated that similar constructs are
obtained when operator preconditioning is employed.

While the results obtained for such a space-time approach mostly show
good convergence behaviour, the possible downside of a high-storage demand
remains. In order to avoid this potential pitfall, we discussed a low-rank
framework that allows an optimal low-rank representation of the full solution
and can be efficiently combined with iterative solvers such as minres.
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APPENDIX A

SELECTED PAPERS

A.1 Preconditioning for control constraints

This paper is published as M. Stoll and A. Wathen, Precondition-
ing for partial differential equation constrained optimization with
control constraints, Numer. Lin. Alg. Appl., 19 (2012), pp. 53–71.

Result from the paper

Table A.1 shows results for 3D example with number of iterations for a
nonstandard cg method (BPCG) and minres for the case of no bound
constraints. The iteration numbers for the active set (AS) method with
total number of cg iterations are shown and timings for all methods are
given in brackets. Robust iteration numbers can be observed for a varied
mesh-parameter.

Unconstrained Iterations Simple bounds

BPCG(T) MINRES(T) AS(# BPCG/T)

4913 7(0.65) 7(0.62) 2(15/1.51)
35937 7(6.06) 7(5.84) 5(39/35.36)
274625 7(52.01) 9(62.7) 4(32/247.55)
2146689 8(476.47) 11(609.85) 5(43/2652.73)

Table A.1: Results for 3D example with number of iterations for the
Bramble-Pasciak cg (BPCG) and minres for the case of no bound con-
straints. The iteration numbers for the active set (AS) method with total
number of cg iterations are shown and timings for all methods are given in
brackets.
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SUMMARY

Optimal control problems with partial differential equations play an important role in many applications.
The inclusion of bound constraints for the control poses a significant additional challenge for optimization
methods. In this paper, we propose preconditioners for the saddle point problems that arise when a primal–
dual active set method is used. We also show for this method that the same saddle point system can be
derived when the method is considered as a semismooth Newton method. In addition, the projected gradient
method can be employed to solve optimization problems with simple bounds, and we discuss the efficient
solution of the linear systems in question. In the case when an acceleration technique is employed for the
projected gradient method, this again yields a semismooth Newton method that is equivalent to the primal–
dual active set method. We also consider the Moreau–Yosida regularization method for control constraints
and efficient preconditioners for this technique. Numerical results illustrate the competitiveness of these
approaches. Copyright © 2011 John Wiley & Sons, Ltd.
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Krylov subspace solver

1. INTRODUCTION

Advances in algorithms and hardware have enabled optimization with constraints given by partial
differential equations (PDEs). Problems of this type arise in a variety of applications [1]. Com-
prehensive introductions to this field now titled PDE-constrained optimization can be found in
[1–3]. Problems of this type arising in many applications pose significant challenges to optimization
algorithms and numerical methods in general.

In this paper, we will focus on three numerical optimization algorithms: an active set method
(Section 3), a projected gradient method (Section 4), and a Moreau–Yosida regularization technique.
These are standard methods in the field of practical optimization [4,5], but within the framework of
PDE-constrained optimization, one has to carefully analyze the numerical schemes to solve these
problems as the constraining PDEs typically result in very large dimensional discrete systems.
In particular, we focus on the linear systems arising in these methods and preconditioners to be
employed with iterative methods for their solution. We show in the course of this paper that all three

*Correspondence to: Martin Stoll, Oxford Centre for Collaborative Applied Mathematics, Mathematical Institute, 24–29
St Giles’, Oxford OX1 3LB, U.K.

†E-mail: martin.stoll80@gmail.com
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methods lead to systems in saddle point form, that is�
A BT

B 0

�
„ ƒ‚ … x D b,

K
(1)

where we assume that A 2 Rn,n is symmetric and positive definite and B 2 Rm,n, m < n, is a
matrix of full rank. Under these assumptions, the linear system given in (1) is well defined and has
a unique solution. The system matrix K is symmetric and indefinite, and a variety of methods exists
to solve problems of this type efficiently (see [6] for a survey). In practice, the linear system Kx D b
usually is of sufficiently high dimension that iterative solution methods are needed, and it is never
solved without the application of a preconditioner P chosen to enhance the convergence behavior
of the iterative method. A variety of preconditioners exists to tackle saddle point problems of the
form (1). The aim of this paper is for the different optimization methods to present preconditioners
that are tailored toward an efficient solution of the linear system arising from the discretization of
an optimal control problem involving a PDE.

The problem we are interested in will be presented in detail in Section 2. Our focus in this paper
is to derive efficient preconditioners for the optimal control problems; hence, we introduce all meth-
ods from a linear algebra perspective. The area of PDE-constrained optimization has received an
enormous amount of attention over the last few years, but only a few contributions for the efficient
solution of the corresponding linear systems have been made. We show how for each method the
saddle point system can be preconditioned and efficiently solved using a Krylov subspace technique.
We also derive bounds for the eigenvalues of the preconditioned matrix in some idealized cases, and
the numerical results presented in Section 6 illustrate the competitiveness of this approach.

2. THE PROBLEM

The functional to be minimized over a domain � 2Rd with d D 2, 3 is given by

J.y,u/ WD
1

2
y� Ny2

L2.�/
C
ˇ

2
kuk2

L2.�/
, (2)

where ˇ 2 RC is a regularization parameter and Ny is a given function that represents the desired
state. In many practical applications, this function describes design criteria in the underlying appli-
cation; hence, problems of this type are often called design optimization problems. The state y and
the control u are linked via a PDE problem that we shall take throughout this paper to be the Poisson
equation:

�4yD u in�. (3)

Additionally, we allow for the control to be bounded by so-called box constraints

ua.x/6 u.x/6 ub.x/ a.e in�, (4)

where we assume that ua.x/ < ub.x/ a.e in� and define

Uad WD
˚
u 2 L2.�/ W ua.x/6 u.x/6 ub.x/ a.e in �

�
to be the set of admissible functions. The presented setup can be summarized in the following
optimization system: 8̂̂<

ˆ̂:
min 1

2
ky� Nyk2

L2.�/
C ˇ

2
kuk2

L2.�/
s.t.

�4yD u in �
yD Ny on �
ua.x/6 u.x/6 ub.x/ a.e in �.

(5)

Problems of this type are well studied, and we refer to [1–3, 3, 7–9] for more details. Note that it
is not necessary to restrict y to Ny on the boundary.
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We want to discuss the discretization of our problem as we will follow a discretize-then-optimize
approach as we discretize first and then look at the first-order conditions of the discrete problem.
One way to discretize the optimization problem (5) is to use the finite element method [10].

Our choice is here Q1 elements using the deal.II [11] framework; to guarantee that necessary opti-
mality conditions are satisfied, we use lumped mass matrices. Note that using piecewise constant
finite elements for the control u and the Lagrange multipliers �a and �b would be sufficient. Our
approach leads to a more convenient notation, but everything also holds for the case when piecewise
constants elements are used for the control and the Lagrange multipliers. Now, the resulting discrete
optimization problem is given by

8<
:

min 1
2
.y � Ny/T M .y � Ny/C ˇ

2
uTMu s.t.

Ky DMu� d
ua 6 u6 ub,

(6)

where K and M represent the stiffness and lumped mass matrices of the appropriate finite element
space, respectively. The vector d represents the boundary data and ua, ub represent projections
onto the finite elements space in an analogous way to u. We want to solve this problem using the
Lagrange multiplier approach (cf. [2, 3, 9]). The Lagrange function is given by

L.y,u,�/D 1
2
.y � Ny/T M .y � Ny/

Cˇ
2
uTMu� �T .Ky �MuC d/,

(7)

and the stationarity conditions for the Lagrange function L.y,u,�/ are

ryL.y
�,u�,��/DMy� �M Ny �KT �� D 0 (8)

and

r�L.y
�,u�,��/D�Ky�CMu� � d D 0. (9)

The last optimality condition considering the box constraints on the control can be written as

.u� u�/TruL.y
�,u�,��/D .u� u�/T .ˇMu�CM��/> 0 8u 2 Uad. (10)

Condition (10) follows from the variational inequality

F 0.u�/.u� u�/> 0 8u 2 Uad,

where F.u/ can be obtained by using the state equation to remove y from the objective function
and to solely work with the control u. In more detail, we obtain the reduced discretized optimization
problem as

min
Uad

F.u/D
1

2

�
K�1.Mu� d/� Ny

�
M
�
K�1.Mu� d/� Ny

�
C
ˇ

2
uTMu, (11)

where we define the admissible set as Uad D fu 2Rn W ua 6 u6 ubg. Note that in the absence of
box constraints on the control u, (10) would reduce to ˇMu�CM�� D 0, and the solution can be
found by solving a linear system in saddle point form (see [7] for details). Now, we want to further
rewrite the optimality system to get rid of the condition (10).

With Uad as defined previously, we obtain the component-wise expression of u�

.u�/i D

8<
:
D .ub/i if .ˇu�C ��/i < 0
2 Uad if .ˇu�C ��/i D 0
D .ua/i if .ˇu�C ��/i > 0

(12)

as M is a lumped mass matrix. From the second equation in (12), we have that

u� D�
��

ˇ
whenever ˇu�C �� D 0. (13)

Copyright © 2011 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2012; 19:53–71
DOI: 10.1002/nla



56 M. STOLL AND A. WATHEN

Relation (12) can be used to define a new Lagrange function by introducing two Lagrange
multipliers:

�a WD
�
ˇu�C ��

�C
and �b WD

�
ˇu�C ��

��
, (14)

where

.�a/i D
�
ˇu�C ��

�
i

whenever .ˇu�C ��/i is positive; otherwise .�a/i will be zero. Similarly,

.�b/i D
ˇ̌�
ˇu�C ��

�
i

ˇ̌
if .ˇu�C ��/i is negative; otherwise .�b/i is zero. This gives the complementary slackness
condition

�a > 0, ua � u
� 6 0,

�
ua � u

�
�T
�a D 0

�b > 0, u� � ub 6 0, .u� � ub/
T �b D 0.

(15)

3. ACTIVE SET METHOD

On the basis of the description in the last section, we introduce numerical methods to solve problem
(6). The first is an active set method. Active set methods have a long history in optimization for linear
programming in terms of the simplex method [12] or in quadratic programming [13]. The approach
we follow was introduced in [14], and we follow its derivation in [8]. For reasons of convenience,
we use a new Lagrange multiplier � instead of �a and �b that is defined as follows:

� WD �a ��b D ˇuC �, (16)

and we have for the optimal control

.u�/i D

8<
:
D .ua/i if ��i > 0
2 Uad if ��i D 0
D .ub/i if ��i < 0.

(17)

The first equation in (17) gives that .u�/i D .ua/i , and hence, .��/i > 0 that results in .u����/i <
.ua/i . Analogously, the third equation in (17) gives that .��/i < 0 and .u� � ��/i > .ub//i . The
second equation in (17) shows that for .��/i D 0 the relation .u� ���/i D .u�/i holds.

Thus, the quantity u � � is an indicator whether a constraint is active or inactive; with this, an
active set strategy can be implemented. For a general introduction to active set methods, we refer to
[4, 5]; in the particular case of a primal–dual active set strategy for PDE-constrained optimization,
we recommend [2, 3, 9, 14].

First, we define the active sets as

AC D fi 2 f1, 2, : : : ,N g W .u��/i > .ub/ig (18)

A� D fi 2 f1, 2, : : : ,N g W .u��/i < .ua/ig (19)

AI D f1, 2, : : : ,N g n .AC [A�/ . (20)

We now introduce the control u.k/ at step k of an iterative procedure as the approximation to the
optimal solution u�. In a straightforward fashion, this notation will be used for the state and
the adjoint state. The active sets A.k/

� , A.k/
C , and A.k/

I are defined using u.k�1/ and �.k�1/. The
following conditions have to hold in each step of an iterative procedure (see Algorithm 3)

My.k/ �M Ny �KT �.k/ D 0 (21)

�Ky.k/CMu.k/ D d (22)
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ˇMu.k/CM�.k/ �M�.k/ D 0 (23)

�.k/ D 0 on A.k/
I (24)

u.k/ D ua on A.k/
� (25)

u.k/ D ub on A.k/
C . (26)

Following a technique given in [8], we partition the control u according to the dimension of the
sets A.k/

I , A.k/
� , and A.k/

C and using the fact that the u is known on the sets A.k/
C and A.k/

� to obtain2
6666664

M 0 0 0 �K

0 ˇMA.k/
I

,A.k/
I 0 0 MA.k/

I
,W

0 0 ˇMA.k/
C

,A.k/
C 0 MA.k/

C
,W

0 0 0 ˇMA.k/� ,A.k/� MA.k/� ,W

�K M W,A
.k/
I M W,A

.k/
C M W,A

.k/
� 0

3
7777775

2
66664

y.k/

uA.k/
I

ub

ua

�.k/

3
77775D

2
66664

M Ny
0

.M�/A
.k/
C

.M�/A
.k/
�

d

3
77775 .

(27)
This can now be reduced to the final linear system2

64
M 0 �K

0 ˇMA.k/
I

,A.k/
I MA.k/

I
,W

�K M W,A
.k/
I 0

3
75
2
4 y.k/

uA.k/
I

�.k/

3
5D

2
4 M Ny
0

�M W,A
.k/
C ub �M

W,A.k/� uaC d

3
5 . (28)

Once this system is solved, we can update the Lagrange multipliers associated with the sets A.k/
C

and A.k/
� :

.M�/A
.k/
C D ˇMA.k/

C
,A.k/
C ubCM

A.k/
C

,W�.k/

.M�/A
.k/
� D ˇMA.k/� ,A.k/� uaCM

A.k/� ,W�.k/
(29)

In [14], it is shown that when the active sets stay unchanged in two consecutive steps, the method
has found a local minimum and the algorithm can be terminated.

3.1. Equivalence to a semismooth Newton method

In this section, we want to emphasize the connection of the active set method to a semismooth
Newton method as given in [15]. For an introduction to semismooth Newton methods, we refer
to [1, 9, 16]. Recall that we introduced the reduced optimization problem for F.u/ in (11). To use
Newton’s method for solving (11), we have to compute the gradient of F , which is given by

rF.u/DMK�TMK�1Mu�MK�TMK�1d �MK�TM Ny C ˇMu
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Again, we can use Ky DMu� d to simplify this and obtain

MK�TMy �MK�TM Ny C ˇMu. (30)

If we introduce � as the solution of the adjoint system

KT �DM.y � Ny/, (31)

the gradient finally becomes

rF.u/DM�C ˇMu. (32)

Note the equivalence to the definition of � in the active set method presented in the previous section.
The Lagrange multiplier � represents the gradient of the function F.u/. The Hessian of F can now
easily be obtained as

r2F.u/DMK�TMK�1M C ˇM , (33)

which is a symmetric and positive definite matrix.
It is possible to show that the active set method is equivalent to a semismooth Newton method.

In [15], Hintermüller et al. show that the primal–dual active set method is a semismooth Newton
method. On the basis of [1], we want to derive the equivalence of the active set method for the
optimality system (5) and a semismooth Newton method solely written in linear algebra terms as
this will provide useful information for developing good preconditioners. For more details on non-
smooth Newton methods, we refer to [1, 9, 16–18]. In our case, the optimality condition for F.u/
becomes

ˆ.u/ WD PŒua,ub�.u�D.ˇMuCH 0.u///� uD 0,

where D is a diagonal matrix with positive entries and H 0.u/ DMK�TMK�1Mu�MK�TM Ny
(see Theorem 5.2.4 in [19]). Note that the gradient of F.u/ is given by rF.u/ D ˇMuCH 0.u/;
with the choice D DM�1, we obtain

ˆ.u/ WD PŒua,ub�.u� ˇu�M
�1H 0.u//� uD 0.

As ˆ.u/ now represents a nonsmooth functional, the Newton system becomes

Mks
.k/
u D�ˆ.u

.k�1//, (34)

where the generalized differential is given by

Mk DG � ˇG �GK
�TMK�1M � I

with

.G/jj D

�
0 u�� …

�
ua,ub

�
1 otherwise

and � D ˇuCM�1H 0.u/ (this is equivalent to (16)). Without loss of generality, we can assume
that the variables are ordered such that

G D

�
0 0

0 I

�
.

Note that solving the system (34) with Mk can be achieved by solving2
4 M 0 �KT

0 �I CG � ˇG �G
�K M 0

3
5
2
64 s

.k/
y

s
.k/
u

s
.k/

�

3
75D

2
4 0

�ˆ.u.k�1//
0

3
5 . (35)

We could stop here for the implementation of a semismooth Newton method; however, as we
want to obtain the implementation of the active set method presented earlier as well as obtain a
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symmetric linear system that can be solved much more efficiently than the one given in (35), we use
the definition

ˆ.u.k�1//DPŒua,ub�.u
.k�1/ � .ˇu.k�1/CM�1H 0.u.k�1///� u.k�1/

DPŒua,ub�.u
.k�1/ ��.k�1//� u.k�1/

with �.k�1/ defined as in (16). We now use this equation to rewrite (35) to have2
4 M 0 �KT

0 �I CG � ˇG G

�K M 0

3
5
2
4 y.k/ � y.k�1/

u.k/ � u.k�1/

�.k/ � �.k�1/

3
5D

2
4 0

�ˆ.u.k�1//
0

3
5 , (36)

which is also equivalent to2
4 M 0 �KT

0 �I CG � ˇG �G
�K M 0

3
5
2
4 y.k/

u.k/

�.k/

3
5D

2
4 �KT �.k�1/CMy.k�1/

�ˆ.u.k�1//C .�I CG � ˇG/u.k�1/ �G�.k�1/

�Ky.k�1/CMu.k�1/

3
5

D

2
4 M Ny

�ˆ.u.k�1//
d

3
5 . (37)

We now have to take care of the part in (37) that corresponds to the control u. For that we are
splitting the control in its parts corresponding to the active sets based in u.k�1/ and consider the
following three cases:

ˆ.u.k�1//

8̂<
:̂
D .ua � u

.k�1//i for all i 2A.k�1/
�

D .u.k�1/ ��.k�1/ � u.k�1//i for all i 2A.k�1/
I

D .ub � u
.k�1//i for all i 2A.k�1/

C ,

(38)

where A.k�1/
� , A.k�1/

C , and A.k�1/
I are defined as in Section 3. For convenience, we neglect the

indices of the active sets in the linear systems. We can equivalently split up �ˆ.u.k�1//C .�I C
G � ˇG/u.k�1/ �G�.k�1/ using (38) and the definition of � to have

�ˆ.u.k�1//C .�I CG � ˇG/u.k�1/ �G�.k�1/

8̂<
:̂
D�ua for all i 2A.k�1/

�

D 0 for all i 2A.k�1/
I

D�ub for all i 2A.k�1/
C .

(39)

Putting this together into a linear system now gives2
66664

M 0 0 0 �KT

0 �I 0 0 0

0 0 �I 0 0

0 0 0 ˇI GAI ,W

�K M W,AC M W,A� M W,AI 0

3
77775

2
666664

y.k/

u
.k/
AC
u
.k/
A�
u
.k/
AI
�.k/

3
777775D

2
6664
M Ny
�ub

�ua
0

d

3
7775 . (40)

We are almost there and now eliminate the rows corresponding to u.k/AC and u.k/A� and also mul-

tiply the row corresponding to u
.k/
AI by MAI ,AI , a diagonal matrix, and using the fact that

MAI ,AI .G/AI ,W DM
AI ,W to have

2
4 M 0 �KT

0 ˇMAI ,AI MAI ,W

�K M W,AI 0

3
5
2
666664

y.k/

u
.k/
AC
u
.k/
A�
u
.k/
AI
�.k/

3
777775D

2
4 M Ny

0

d �M W,ACub �M
W,A�ua

3
5 . (41)
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This shows that the active set method is a semismooth Newton method. For the convergence prop-
erties of the active set or equivalently semismooth Newton method, we refer to [14, 15]. Note that
the semismooth Newton method converges superlinearly if the initial guess is sufficiently close to
the solution of the optimality system (see [1, 9] for more details).

3.2. Solving the linear system

The costly part of the active set method presented earlier is the solution of the saddle point system
(28) where the system matrix is

KD

2
64

M 0 �K

0 ˇMA.k/
I

,A.k/
I MA.k/

I
,W

�K M W,A
.k/
I 0

3
75 . (42)

It has to be noted that working with this matrix is not convenient in a practical environment as the

matrix MA.k/
I

,A.k/
I will change with every step of the semismooth Newton method.

We will now show that we can implicitly work with the matrix

KD

2
4 M 0 �K

0 ˇM M

�K M 0

3
5 (43)

for every step of the Newton method (see also [20]). In a Krylov subspace method, only matrix vec-
tor multiplications with the system matrix K are required; if the right hand side is chosen carefully,
then the matrix vector product with (42) in Algorithm 2 can be replaced by the matrix product with
(43)

Kp D

2
6666664

M 0 0 0 �K

0 ˇMA.k/
I

,A.k/
I 0 0 MA.k/

I
,W

0 0 ˇMA.k/
C

,A.k/
C 0 MA.k/

C
,W

0 0 0 ˇMA.k/� ,A.k/� MA.k/� ,W

�K M W,A
.k/
I M W,A

.k/
C M W,A

.k/
� 0

3
7777775

2
66664
py.k/
p
u

A.k/
I

0

0

p�.k/

3
77775 (44)

and then annihilating the entries in Kp corresponding to the positions of the variables in A.k/
C and

A.k/
� . This means that if the initial residual r0 has zeros in the positions corresponding to the active

sets A.k/
C and A.k/

� , the matrix vector multiplication will not take any contributions from the matrix
blocks associated with these variables, and the annihilation of the additional entries after multipli-
cation in the blocks corresponding to A.k/

C and A.k/
� will guarantee that this property holds in all

steps of the algorithm. We will now discuss how to solve a linear system with this system matrix
efficiently.

The matrix in (43) is symmetric and indefinite, and thus, we could employ MINRES [21] to solve
the linear system. For MINRES to be applicable when the matrix A is preconditioned, we need the
preconditioner P to be symmetric and positive definite. For a general survey of how to precondition
saddle point problems, we refer to [6, 10]. In the case when no constraints are imposed on the con-

trol u, that is, MA.k�1/
I

,A.k�1/
I DM , Rees et al. presented a block-diagonal preconditioner that can

be used to solve the saddle point system [7]. Recently, Rees and Stoll showed that block triangular
preconditioners can be employed for the solution of the linear system with K in case no constraints
are given for the control [22]. In this section, we show that both techniques can efficiently be used
to solve the system arising as part of the active set method.
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We consider here two preconditioners: the block-diagonal preconditioner

PBD D

2
4 A0 0 0

0 A1 0

0 0 S0

3
5 (45)

and the block triangular preconditioner

PBT D

2
4 A0 0 0

0 A1 0

�K M �S0

3
5 . (46)

The preconditioner PBD is a preconditioner that is typically used within the MINRES framework
because it is symmetric and positive definite whenever the blocks A0, A1, and S0 are chosen to
be symmetric and positive definite. The block triangular preconditioner PBT is typically used when
the now nonsymmetric preconditioned matrix bK D P�1BT K is used with a symmetric and positive
definite inner product defined by hx,yiHBT D x

THBTy where

HBT D

2
4 M �A0 0 0

0 ˇM �A1 0

0 0 S0

3
5 . (47)

It is easily seen that the definition of HBT imposes the restriction on the preconditioners A0 and
A1 that M � A0 and ˇM � A1 both have to be symmetric and positive definite. If this criterion
is fulfilled, methods such as the Bramble–Pasciak CG method can be used [23–26]. Assuming that
HBT defines an inner product, these methods use the fact that the preconditioned matrix bKD P�1BT K
is symmetric and positive definite in h., .iHBT , and hence, a CG method can be used [25, 27, 28] (see
Algorithm 2).

We will now motivate the use of the preconditioner by considering an idealized case with
A0 D M , A1 D ˇM , and S0 D KM�1KT as an approximation to the Schur complement of
the matrix S D KM�1KT C ˇ�1M . Note that in this case the inner product would be degenerate
(H is singular), but we expect the eigenvalues for a more realistic setup to be close to the ones that
we analyze in the following. With this choice, the eigenvalues of P�1K can be read off the diagonal
blocks of the upper triangular matrix

P�1BT KD

2
4 I 0 �M�1KT

0 I ˇ�1I

0 0 I C ˇ�1K�TMK�1M

3
5 . (48)

In particular, we have 2n eigenvalues at 1, and the remaining eigenvalues satisfy .I C
ˇ�1K�TMK�1M/x D �x. A similarity transformation

M
1
2 .I C ˇ�1K�TMK�1M/M�

1
2 D I C ˇ�1M

1
2K�TMK�1M

1
2
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reveals that the eigenvalues of the last diagonal block are the eigenvalues of the symmetric matrix
I C ˇ�1M

1
2K�TMK�1M

1
2 . With a field of value‡ analysis, we want to obtain bounds on the

eigenvalues of P�1K. Thus, the upper bound can be obtained from

xTˇ�1M
1
2K�TMK�1M

1
2 x

xT x
D
ˇ�1

�
´TM´

� �
xTMx

� �
yTK�TK�1y

��
xT x

� �
yT y

� �
´T ´

� (49)

with y D M
1
2 x, ´ D K�1y. And as the matrices K and M are symmetric, the eigenvalues of

ICˇ�1K�TMK�1M are bound from below by 1 and from above by 1Cˇ�1
�
�
.M/
max

	2
�
.K�TK�1/
max .

For this, we need bounds on the eigenvalues of the mass matrix and the stiffness matrix. Propo-
sition 1.29 and Theorem 1.32 in [10] provide these bounds for Q1 elements, that is, consistent
mass matrix and the stiffness matrix. We have ch2 6 xTMx=xT x 6 Ch2 for the mass matrix
with the constants c and C independent of the mesh size h. For the stiffness matrix K, we obtain
dh2 6 xTKx=xT x 6 D for mesh-independent constants d and D. We now get that the largest
eigenvalue of K�TK�1 as K DKT is bounded by

�.K
�TK�1/

max 6 1

d2h4
.

Hence, the eigenvalues of ˇ�1K�TMK�1M are bounded above by

�.ˇ
�1K�TMK�1M/

max 6 ˇ
�1C 2h4

d2h4
D
ˇ�1C 2

d2
,

which is a constant independent of h. This results in the following Theorem.

Theorem 3.1
For the consistent mass matrix M and the stiffness matrix K of a Q1 finite element space, the
eigenvalues of the matrix

I C ˇ�1K�TMK�1M

lie in the interval


1, 1C .ˇ�1C 2=d2/

�
.

This illustrates that for the idealized case, the eigenvalue lies in an interval independent of the
mesh size, and good approximations A0, A1, and S0 should result in a similar behavior. Thus, we
now have to discuss the choice of these preconditioners.

Note that methods based on a nonstandard inner product given by HBT usually suffer from the
drawback of appropriately scaling A0 and A1. In [29], Wathen and Rees emphasize the fact that
for the approximation A0 to M , a linear operator should be chosen to guarantee that the overall
process; that is, the employed Krylov subspace method is a linear operator itself. On the basis of the
eigenvalue bounds for the mass matrix given in [30], they identify that the appropriate Chebyshev
iteration gives a highly effective linear operator in this context. Building further on these results,
Rees and Stoll show in [22] that an appropriate scaling for the preconditioning blocks A0 and A1
can easily be obtained when one is interested in solving problems from PDE-constrained optimiza-
tion. Rees et al. [7] propose to employ the Chebyshev semi-iteration for the blocks A0 and A1 (see
Algorithm 3). For more details on the Chebyshev semi-iterative method, we refer to [29, 31–33].
It has to be noted that the analysis in [22, 29] uses consistent mass matrices; as for lumped mass
matrices, preconditioning and scaling are not an issue.

The block S0 should represent a good approximation to the Schur complement

KM�1KT C
1

ˇ
M . (50)

‡The field of values of a matrix A is given by xTAx=xTx 8x¤ 0 2Rn.
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Some choices proposed in Rees et. al. [7] are to neglect the term .1=ˇ/M in (50) as already carried
out in Theorem 3.1 and to only use an S0 that approximates the termKM�1KT . One typical choice
for S0 D OKM�1 OKT is to use a fixed number of algebraic multigrid V cycles from the Trilinos ML
package [34] to approximate the stiffness matrixK by OK. It is also important that this is also a linear
operator. The cost of MINRES with PBD and the Bramble–Pasciak CG with PBT are the same when
it comes to the number of applications of preconditioners A0, A1, and S0. The Bramble–Pasciak CG

is slightly more expensive as it requires one additional multiplication by the .2, 1/-block of the 2�2
saddle point matrix [20,35]. A comparison of these two methods for the unconstrained case is given
in [22]. In addition, we want to mention the fact that for the evaluation of the inner products with
HBT the preconditioners never need to be known explicitly; that is, the application of the inverse or
rather the solution of a linear system with P as coefficient matrix is all that is required in practice
[23, 25].

4. THE PROJECTED GRADIENT METHOD

In [4, Section 16.6], Nocedal and Wright present a projected gradient method to solve a quadratic
optimization problem with box constraints. Similar approaches using a projection of the gradient
are also described in [2, 3, 19, 36]. We focus on the approach used by Nocedal and Wright in more
detail and will describe different variants on how to choose the search direction.

4.1. Steepest descent direction

In (11), we identified the problem of minimizing J.y,u/ with the problem of minimizing F.u/
where y and u are linked via the state equation. Hence, the minimization problem min J.u,y/ can
be identified with the discrete optimality system�

minF.u/ s.t.
ua 6 u6 ub

(see also (11)). The projected gradient method takes steps toward the steepest descent direction
p D �rF.u.k�1// and maintains the feasibility of the iterate at step k by projecting the Cauchy
point onto the box given by Uad. We explain this procedure here step by step. To calculate the gradi-
ent rF.u.k�1//, we have to check the definition of F.u/ in more detail. The gradient of F is given
by

rF.u/DM�C ˇMu (51)

(cf. (32)). By introducing indices k indicating the step k of an algorithmic procedure, we can
compute the gradient at every iteration once the forward Poisson equation

Ky.k/ DMu.k�1/ � d (52)
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is solved and also the solution to the adjoint equation given by

KT �.k/ DM.y.k/ � Ny/ (53)

is computed.
On the basis of the previous observations, we can now compute u.k/ by the following process

using projected gradients. The new iterate u.k/ at step k is given by the projection of

u.k�1/ � ˛p.k�1/

onto Uad where ˛ denotes the step size and p.k�1/ represents the gradient at step k. Hence, the
feasibility of the next iterate u.k/ is guaranteed. Following Section 16.6 in [4], the optimal step size
˛ can be explicitly determined.

For a stopping criterion for this method, we refer the interested reader to [19, Section 5.4]. The
results shown in Section 6 were computed by simply using the difference between two consecutive
controls as an indicator for convergence. This will be sufficient here as we want to improve on this
method in the next Section and will see there that a stopping criterion is given naturally.

4.2. Scaled and Newton directions

It is well known that when the steepest descent method is used to solve linear systems, the conver-
gence can be very slow because it is possible to take steps into previously chosen search directions.
In the case of a linear system, the Conjugate Gradient method introduced in [37] is an alternative
that guarantees for the search directions to be orthogonal with respect to the positive definite system
matrix.

Here, we now want to look at an approach where the steepest descent direction is scaled by a
matrix L (see [38]). In more detail, instead of moving into the direction �p.k�1/ where p.k�1/ is
the gradient of F , we move into the direction �Lp.k�1/. In [38], Bertsekas requires the matrix L to
be positive definite and diagonal with respect to the active sets A� and AC; that is, L is diagonal
for every index in A� and AC, and positive definite otherwise.

In our case, we will choose L to be a reduced Hessian (see [19] for more information). In more
detail, the search direction p.k�1/

h
is the solution to the linear system

R.u.k�1/,r2F.u.k�1///p.k�1/
h

D�rF.u.k�1//

where

R.u.k�1/,r2F.u.k�1///D

�
ıij if i 2AC [A� or j 2A� [A�
.r2F.u.k�1///ij otherwise

and r2F.u.k�1// is the Hessian as derived in (33). The sets A� and AC are defined as follows:

AC D
n
i W .ub/i � .u

.k�1//i < 0
o

and A� D
n
i W .u.k�1//i � .ua/i < 0

o
.

Equipped with this new p
.k�1/

h
, we can employ the same technique that we already used for the

projection of the steepest descent direction onto the box defined by Uad.
For reduced Hessians R.u.k�1/,r2F.u.k�1/// that are uniformly positive definite, a global con-

vergence theorem for the scaled steepest descent direction is given by Theorem 5.5.2 in [19].
Whenever the reduced Hessian is symmetric and positive definite, which in our case is trivially ful-
filled, the aforementioned procedure can be modified. In more detail, we define the reduced Hessian
(cf. [19]) by

r2RF.u/D

�
ıij if i 2AC [A� or j 2A� [A��
r2F.u/

�
ij

otherwise. (54)
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We then have to solve the following equation

r2RF.u/p
.k�1/

h
D�rF.u.k�1//

using that r2F.u/DMK�TMK�1M CˇM . Without loss of generality, we assume that r2RF.u/
can be written as

r2RF.u/D

�
I 0

0 …Tr2F.u/…

�
,

where … is a projection consisting of columns of the identity corresponding to entries in AI . We
look at the block …Tr2F.u/… in more detail using MATLAB notation:

…Tr2F.u/…D …TMK�TMK�1M…C ˇ…TM…

D MAI ,WK�TMK�1M W,AI C ˇMAI ,AI (55)

The part corresponding to free variables uI in the linear system r2RF.u/p
.k�1/

h
D �rF.u.k�1//

can now be written as

MAI ,WK�TMK�1M W,AI C ˇMAI ,AIp.k/uI D��
.k�1/
AI (56)

using the definition that � D rF.u/ D M� C ˇMu. We can then, similar to before, build a
corresponding saddle point system2

4 M 0 �KT

0 ˇMAI ,AI MAI ,W

�K M W,AI 0

3
5
2
64 s

.k/
y

s
.k/
uI

s
.k/

�

3
75D

2
4 0

��
.k�1/
AI
0

3
5 .

The last system can now equivalently be rewritten as2
4 M 0 �KT

0 ˇMAI ,AI MAI ,W

�K M W,AI 0

3
5
2
4 y.k/

u
.k/
I

�.k/

3
5D

2
64

M Ny

��
.k�1/
AI

d �M W,ACu.k�1/AC �M W,A�u.k�1/A�

3
75 ,

which is similar to the linear system at the heart of the active set method introduced in Section 3
(see (28)), and for a critical point, we obtain �.k�1/AI D 0 [19]. This shows that the active set method
and the projected gradient method with Newton acceleration are related depending on the choice of
the active sets and the step size in the projected gradient method. This will be when the projected
gradient algorithm diverges from the implementation described in Algorithm 3. The superlinear
convergence for the projected gradient method can be found in [38, Proposition 4.]. More details
can also be found in [39].

5. MOREAU–YOSIDA FOR CONTROL CONSTRAINED PROBLEMS

The Moreau–Yosida regularization (see [40, 41] and the references mentioned therein) is a popular
technique for the case when state constraints are present. As discussed in [41], this case provides
challenging problems from the linear algebra point of view, and we refer to [42] for preconditioning
strategies.

To complete the discussion of possible methods for control constraint problems, we briefly
introduce the Moreau–Yosida regularization for control constraints and discuss the arising linear
systems. The problem of minimizing (2) when there are bound constraints on the control using the
Moreau–Yosida penalty function is expressed as minimization of

J.y,u/ WD
1

2
ky� Nyk2C

ˇ

2
kuk2C

1

2"
kmax f0, u� ubgk

2C
1

2"
kmin f0, u� uagk

2. (57)
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The Moreau–Yosida approach then leads to the following linear system [41]:2
4 M 0 �KT

0 ˇM C "�1GAMGA M

�K M 0

3
5
2
4 y

u

�

3
5D

2
4 M Ny

"�1
�
GACMGACubCGA�MGA�ua

�
d

3
5 ,

(58)
where the sets AC D fi W ui > .ub/ig, A� fi W ui < .ua/ig are the active sets associated with the
bound constraints on the control u in a similar way to before (we have AD AC [A�), and G is a
matrix variant of the characteristic function for the corresponding sets (see also Section 3.1).

Our focus is again on the efficient solution of the linear systems in (58), which is of saddle point
type. Note that the block blkdiag.M ,ˇM C "�1GAIMGAI / is symmetric and positive definite as
we have a mass matrix on the one hand and a mass matrix plus a submatrix of a mass matrix on the
other. Again, considering an idealized preconditioner, we obtain

P D

2
4 M 0 0

0 L 0

�K M �S0

3
5 ,

where LD ˇM C "�1GAIMGAI . The preconditioned matrix is given by

P�1KD

2
4 M�1 0 0

0 L�1 0

�S�10 KM�1 S�10 ML�1 �S�10

3
5
2
4 M 0 �KT

0 L M

�K M 0

3
5

2
4 I 0 �M�1KT

0 I L�1I

0 0 S�10 .KM�1KT CML�1M/

3
5 ,

(59)

which shows that it has 2n eigenvalues at 1 and n eigenvalues are given by the eigenvalues of
S�10 .KM�1KT CML�1M/. Assuming S0 DKM�1KT , this simplifies to

I CK�TMK�1ML�1M .

We again use a similarity transformation

L�
1
2M.I CK�TMK�1ML�1M/M�1L

1
2 D I CL�

1
2MK�TMK�1ML�

1
2 .

The eigenvalues of this symmetric matrix can now be estimated in a similar way to Theorem 3.1.

xTL�
1
2MK�TMK�1ML�

1
2 x

xT x
D
.xTL�1x/.yTM 2y/.´TK�TK�1´/.wTMw/

.xT x/.yT y/.´T ´/.wTw/.yT y/
(60)

with y D L�1=2x, ´ D My, w D K�1´. From (60), we see that we can use eigenvalue bounds
from Section 3.2 for both mass matrix and stiffness matrix. Note the only term that has not been
analyzed before is given by xTL�1x D xT

�
ˇM C "�1GAMGA

��1
x. We will start analyzing

xTLx=xT x to have bounds for the eigenvalues of L and use these to establish bounds for L�1.
With ch2 6 xTMx=xT x 6 Ch2, we see that

ˇch2 6 x
T .ˇM C "�1GAMGA/x

xT x
6
�
ˇC "�1

�
Ch2.

Now this finally gives for L�1

xT .ˇM C "�1GAMGA/�1x

xT x
6 1

ˇch2
.
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The upper bound for the eigenvalues can now be established as

�.K
�TMK�1ML�1M/

max 6 C 3

ˇcd2
. (61)

We have thus proven the following Theorem.

Theorem 5.1
For the consistent mass matrix M and the stiffness matrix K, the eigenvalues of the matrix

I CK�TMK�1ML�1M

lie in the interval


1, 1C .C 3ˇcd2/

�
.

We remark that the bounds are similar to the ones obtained in Theorem 3.1 and again the inter-
val depends on the parameter ˇ. We will compare this approach with the active set method from
Section 3 in Section 6.

6. NUMERICAL EXPERIMENTS

In this section, we will illustrate the effectiveness of the presented methods for a simple problem.

6.1. Setup

We illustrate our method using the following example, which is Example 5.2 in [7]. Let�D Œ0, 1�m,
where mD 2, 3, and consider the problem

min
y,u

1

2
ky� Nyk2L2.�/C

ˇ

2
kuk2L2.�/

s.t. �r2yD u in � (62)

yD Ny on @� (63)

where

NyD

�
exp

�
�64

�
.x1 �

1
2
/2C .x2 �

1
2
/2
��

if .x1, x2/ 2 Œ0, 1�2

exp
�
�64

�
.x1 �

1
2
/2C .x2 �

1
2
/2C .x3 �

1
2
/2
��

if .x1, x2, x3/ 2 Œ0, 1�3.

That is, Ny is Gaussian with peak at unit height at the center of the unit cube. Figure 1 shows the state
and the control for the optimal control problem without control constraints with ˇ D 1e � 2.

For the active set method, Bergounioux et al. [14] use different initial setups to start the method.
We only introduce the setup that proved best for the examples analyzed in [14], that is,8̂̂̂

<̂
ˆ̂̂̂:

u.0/ D ub

Ky.0/ DMu.0/

KT �.0/ DMy.0/ �M Ny

�.0/ D ˇMu.0/CM�.0/.

(64)

We do not show any results for the projected gradients method without scaling as this is known
to converge slowly and was also observed when implemented. Our goal is to demonstrate the effi-
ciency of the semismooth Newton method in combination with efficient preconditioning strategies
as will be shown now for various examples.
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(a) State (b) Control

Figure 1. State and control for 2D case.

Table I. Results for 2D example with number of iterations for the
Bramble–Pasciak CG and MINRES for the case of no bound constraints.

Unconstrained iterations Simple bounds

BPCG(T) MINRES(T) AS(#BPCG/T)

289 8(0.02) 9(0.02) 3(24/0.08)
1089 8(0.09) 9(0.08) 5(38/0.42)
4225 8(0.32) 11(0.4) 4(36/1.54)
16641 10(1.84) 13(2.24) 3(33/6.36)
66049 11(9.55) 15(12.32) 5(53/48.56)
263169 13(47.49) 19(65.97) 4(51/193.54)
1050625 17(251.44) 25(352.3) 4(69/1038.97)

The iteration numbers for the active set (AS) method with total number of
CG iterations are shown, and timings for all methods are given in brackets.
BPCG, Bramble–Pasciak CG.

6.2. Results

6.2.1. Semismooth Newton method. We now want to present the results for the semismooth Newton
method to illustrate its superiority over the projected gradient method with steepest descent direction
presented in Section 4.1. The lower bound is given by

ua D

�
0.5x1 exp

�
�x21 � x

2
2/
�

in 2D
0.1x1 exp

�
�x21 � x

2
2 � x

2
3/
�

in 3D.
(65)

The upper bound is defined as

ub D

�
1 in 2D
0.5 in 3D.

(66)

Table I shows the results for the computations performed in two dimensions, and Figure 1 shows
the control and state for this setup. In Table II, we can see the results for the computations in three
space dimensions, and the corresponding state and control are shown in Figure 2. For the results
shown in this section, we used ˇ D 1e�2 and the matrices are formed on a 2N �2N grid. We com-
pare the unconstrained problem and the constrained problem with active set method. Each stiffness
matrix K is here approximated by two V cycles of the algebraic multigrid method. The tolerance
for MINRES as well as the Bramble–Pasciak CG is set to 10�6 for the relative residual given in the
2-norm. The results given in Tables I and II illustrate the mesh-independent performance of both
MINRES and Bramble–Pasciak CG for the unconstrained problem. Note that the Bramble–Pasciak
method needs less iterations than MINRES. The active set (semismooth Newton) method shows
mesh-independent convergence for the problems considered here.
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Table II. Results for 3D example with number of iterations for the
Bramble–Pasciak CG and MINRES for the case of no bound constraints.

Unconstrained iterations Simple bounds

BPCG(T) MINRES(T) AS(# BPCG/T)

125 7(0.01) 9(0.01) 7(48/0.08)
729 7(0.08) 7(0.07) 2(14/0.18)
4913 7(0.65) 7(0.62) 2(15/1.51)
35937 7(6.06) 7(5.84) 5(39/35.36)
274625 7(52.01) 9(62.7) 4(32/247.55)
2146689 8(476.47) 11(609.85) 5(43/2652.73)

The iteration numbers for the active set (AS) method with total number of
CG iterations are shown and timings for all methods are given in brackets.
BPCG, Bramble–Pasciak CG.

(a) State (b) Control

Figure 2. State and control for 3D case.

6.2.2. Moreau–Yosida regularized Newton method. We finally show results that indicate the per-
formance of the Moreau–Yosida regularized method described in Section 5 as a competitor to the
primal–dual active set method. We here restrict ourselves to the 2D case with the following setup:

ua D 0 and ub D sin .2�x1x2/ (67)

Table III shows results for " D 1e � 6 and ˇ D 1e � 2 for both the active set method and the
Moreau–Yosida approach. As can be seen, the results for the Moreau–Yosida approach and the
active set method are nearly indistinguishable. Figure 3 shows the state and control for the setup
used here.

7. CONCLUSIONS

In this paper. we presented efficient preconditioning strategies that can be employed when a PDE-
constrained optimization problem has to be solved. Our main focus was the solution of linear
systems in saddle point form that arise when bound constraints for the control are introduced. We
presented results for different preconditioners and considered different optimization algorithms that
are well suited for problems in optimal control with PDEs subject to control constraints.

We first considered a primal–dual active set method and derived the same linear system from
its interpretation as a semismooth Newton method. On the other hand, we looked at a projected
gradient method with steepest descent direction. Because the results for this method were not very
encouraging, we considered a Newton acceleration and were able to show that this leads to the same
semismooth Newton method that is represented by the active set method. For completeness, we
also looked at the Moreau–Yosida approach to the control constraint case and found very similar
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Table III. Results for Moreau–Yosida and PDAS with "D 1e � 8 and
ˇ D 1e � 2.

n MY(# BPCG) PDAS(# BPCG) kuMY � uPDASk2

289 4(26) 2(14) 2.862e � 11
1089 4(26) 2(14) 5.795e � 11
4225 4(28) 3(22) 5.884e � 12
16641 3(20) 3(20) 1.146e � 11
66049 3(22) 6(44) 1.387e � 09
263169 3(23) 3(23) 3.516e � 11
1050625 3(27) 3(27) 1.398e � 10

Shown are the number of iterations plus the total number of CG solves. MY,
Moreau–Yosida; PDAS, primal–dual active set; BPCG, Bramble–Pasciak CG.

(a) State (b) Control

Figure 3. State and control for 2D case from the Moreau–Yosida regularized method.

results to the active set method. All numerical results given indicate the competitiveness of these
approaches.
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A.2. PRECONDITIONING FOR STATE CONSTRAINTS

A.2 Preconditioning for state constraints

This paper is published as

J. W. Pearson,M. Stoll, and A. Wathen, Preconditioners for state
constrained optimal control problems with Moreau-Yosida penalty
function, Numer. Lin. Alg. Appl., 21 (2014), pp. 81–97.

Result from the paper

In this paper we derive robust preconditioners for the problem when the state
is constrained. Table A.2 shows the number of cg iterations per Newton
step for different values of β and ε, a parameter needed for a regularization
of the state-constrained problem.

ε ↓ β → 1e-2 1e-4 1e-6

1e-4 19 27 26
1e-6 26 34 28
1e-8 32 36 28

Table A.2: Number of cg iterations per Newton step for different values of
β and ε, using a direct factorization of K + M̂ . The example was again the
2D-results for non-zero Dirichlet boundary and upper box constraint at 0.1.
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SUMMARY

Optimal control problems with partial differential equations as constraints play an important role in many
applications. The inclusion of bound constraints for the state variable poses a significant challenge for
optimization methods. Our focus here is on the incorporation of the constraints via the Moreau–Yosida
regularization technique. This method has been studied recently and has proven to be advantageous
compared with other approaches. In this paper, we develop robust preconditioners for the efficient solution
of the Newton steps associated with the fast solution of the Moreau–Yosida regularized problem. Numerical
results illustrate the efficiency of our approach. Copyright © 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Optimization problems with constraints given by PDEs arise in a variety of applications (see [1]).
Comprehensive introductions to this field can be found in [1,2]. Throughout this paper, we consider
the minimization of a functional J.y,u/ defined as

J.y,u/ WD
1

2
ky � ydk

2
L2.�/

C
ˇ

2
kuk2

L2.�/
, (1)

with � � R
Nd , Nd 2 f2, 3g. In (1), ˇ 2 RC represents a regularization parameter, and yd is a given

function that represents the desired state. The state y and the control u are linked via the Poisson
equation

�4y D u in �, (2)

with boundary conditions y D g on @� or

�4y C y D u in �, (3)

with boundary conditions @y=@nD 0 on @�. We decide to consider both (2) and (3) as both play a
significant role in the literature. The choice of g will typically be 0 or the projection of yd onto the
box defined by constraints. The introduction of box constraints on the control and the state, that is,

u6 u6 u (4)

*Correspondence to: Martin Stoll, Computational Methods in Systems and Control Theory, Max Planck Institute for
Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106 Magdeburg, Germany.

†E-mail: martin.stoll80@gmail.com
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and

y 6 y 6 y, (5)

is of practical interest. In this paper, we will focus on the numerical solution of the optimization
problem given when state constraints are present. Effective preconditioning strategies for the control
constrained case can be found in [3, 4]. Recently, operator preconditioning for the state-constrained
case has also received more attention [5].

We will later show that a semismooth Newton method applied to the Moreau–Yosida regulariza-
tion of (1) leads to a linear system of saddle point form. The saddle point matrix is symmetric and
indefinite, and a variety of methods exists to solve problems of this type efficiently (see [6] for a
survey). In practice, the linear system is usually of sufficiently high dimension that iterative solution
methods are needed, and it is never solved without the application of a preconditioner P , which is
chosen to enhance the convergence behavior of the iterative method. A variety of preconditioners
exists to tackle saddle point problems. The aim of this paper is to present preconditioners that are tai-
lored towards the efficient solution of the linear system arising from the discretization of an optimal
control problem involving a PDE and state constraints. In general, the state-constrained problem is
a considerably harder problem (see Section 2) than the control constrained problem. In this paper,
we will introduce preconditioning strategies that allow for robust solution of the linear system with
respect to both the regularization parameter ˇ and the parameter coming from the Moreau–Yosida
penalty term.

The paper is organized as follows. The problem we are interested in will be presented in detail in
Section 2. Our focus in this paper is to derive efficient preconditioners for the optimal control prob-
lems, and hence, our focus is to introduce all methods from a linear algebra perspective. We show
how for each method the saddle point system can be preconditioned and efficiently solved using
a Krylov subspace technique. We successively introduce three preconditioners, where the first is
derived from previous results for PDE-constrained optimization and the others follow a recent tech-
nique focusing on robustness with respect to the regularization parameters. The numerical results
presented in Section 4 illustrate the performance of the presented methods.

2. THE MOREAU–YOSIDA FORMULATION

We consider the case when state constraints are introduced and assume that the functional J.y,u/
(1) has to be minimized for functions y and u defined over a domain � � R

Nd . The problem of
minimizing (1) when bound constraints on the state are given is more complicated than the control
constrained case [1, 7, 8] as in general the Lagrange multiplier is only a measure. Several remedies
have been proposed for this problem. In [9], Meyer et al. consider regularized state constraints,
that is,

y 6 "uC y 6 y. (6)

An alternative approach is given by changing the objective function (1) using the Moreau–Yosida
penalty function [10] to give

J.y,u/ WD
1

2
ky � ydk

2
L2.�/

C
ˇ

2
kuk2

L2.�/
C
1

2"
kmax f0,y � y gk2

L2.�/

C
1

2"
kmin

n
0,y � y

o
k2
L2.�/

,
(7)

subject to the aforementioned state equations with appropriate boundary conditions. For the
remainder of this manuscript, we will assume that the state equations and hence J.y,u/ are
considered in discretized form using an appropriate finite element discretization [3].
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The discretized version of state Equations (2) and (1) is given by

Minimize
1

2
.y � yd /

TM.y � yd /C
ˇ

2
uTMu

C
1

2"
max f0,y � ygT M max f0,y � yg

C
1

2"
min f0,y � ygT M min f0,y � yg

subject to Ky DMu� f .

(8)

Here, K represents the finite element stiffness matrix and M the mass matrix. We will only con-
sider the lumped mass matrix here but comment later on how to precondition for the consistent
mass matrix. Note that y, u, yd , y, and y now represent vectors. The optimality system of (8) looks
as follows:

�KT �D�M.y � yd /� "
�1�ACM max f0,y � yg � "�1�A�M min

n
0,y � y

o
(9)

ˇMuCM�D 0 (10)

�Ky CMuD f (11)

with �AC being the characteristic function for the indices where y � y > 0 and �A� the character-

istic function for the region where y�y < 0. Note that AC D fi W yi > yig and A� D
n
i W yi < yi

o
are the active sets associated with the bound constraints on the state y at step k. If we now wish to
apply a semismooth Newton method to (9)–(11), we must solve the following system at every step:24 M C "�1GAMGA 0 �KT

0 ˇM M

�K M 0

3524 y.kC1/

u.kC1/

�.kC1/

35D
24 cA

0

f

35 , (12)

where cA D Myd C "
�1
�
GACMGACy CGA�MGA�y

�
defines part of the right hand side,

ADA�[AC, and theG matrices are projections onto the active sets defined by A. The application
of the semismooth Newton method to these problems has been previously studied (see [3, 10, 11]).
Our task is the efficient solution of the linear system in (12), which is of saddle point form. Note
that we do not focus on the discussion of the inexact semismooth Newton method here but rather
refer to [12] where it was observed that with suitable preconditioning this method performed just as
well as the exact semismooth Newton method.

In the case of the state equation being defined by (3), we defineK WDKN CM , whereKN is the
stiffness matrix for a pure Neumann problem, and obtain the same formulation as shown previously.

The Moreau–Yosida regularization has also recently been analyzed for semilinear elliptic
problems (see [13]).

3. SOLUTION OF THE LINEAR SYSTEM AND EIGENVALUE ANALYSIS

The system matrix

K WD

24 L 0 �KT

0 ˇM M

�K M 0

35 (13)

is symmetric and indefinite; we define LDM C"�1GAMGA for the remainder of this paper. Note
that the block blkdiag.L,ˇM/ is symmetric and positive definite, as we have a mass matrix as one
term and a mass matrix plus a submatrix of a mass matrix as the other. The matrix K is the stiffness
matrix associated with the weak formulation of (2) or (3) – it is symmetric and positive definite.

Copyright © 2012 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2014; 21:81–97
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Benzi et al. [6] discuss properties and numerical methods to solve matrices of saddle point form. As
K is a large and sparse, symmetric and indefinite matrix, a Krylov subspace solver [14–16] will be
our method of choice. For smaller (and typically 2D) examples, direct methods [17, 18] will prove
very efficient, but for large and/or 3D problems, these methods are likely to run out of memory.

The choice of preconditioners that we mention in this section is motivated by an observa-
tion about the eigenvalues of the preconditioned system P�1K for certain preconditioners P .
Murphy et al. show in [19] that for some idealized preconditioners, the matrix P�1K has only a
small number of eigenvalues (3 for a block-diagonal preconditioner and 2 for a block-triangular
preconditioner).

One method that is a standard choice for symmetric and indefinite systems is the minimal
residual method (MINRES) introduced in [20], which is a method for minimizing the residual
krkk2 D kKxk � bk2 over the current Krylov subspace

span
n
r0, Kr0, K2r0, : : : , Kk�1r0

o
.

To be able to use MINRES, we need the preconditioner to be symmetric and positive definite, and
hence, block-diagonal preconditioners would present a natural choice [14,21]. A preconditioner for
MINRES and the aforementioned problem could look like the following:

P D

24 A0 0 0

0 A1 0

0 0 bS
35 , (14)

withA0,A1, andbS being approximations to the .1, 1/-block, the .2, 2/-block, and the Schur comple-
ment, respectively. The use of MINRES for optimal control problems has been recently investigated
in [22–26]. Note that MINRES is also applicable in the case of a semidefinite .1, 1/-block, which is
the case if we were to consider the minimization of J.y,u/ as in (1), but with the ky � ydk2 term
given on some subdomain �1 �� (as opposed to � itself). This problem was investigated in [27].
We believe that the results presented here can be applied to the subdomain case when MINRES is
employed with a block-diagonal preconditioner.

Another class of methods that has proven to be of interest is based on the fact that for some
preconditioners, the preconditioned saddle point matrix P�1K is symmetric and positive defi-
nite in an inner product defined by a matrix H, that is, hP�1Ax,yiH D hx, P�1AyiH where
hx,yiH D xTHy. There exists a variety of such methods [28–33], which can also be combined
to give rise to new methods [34, 35]. Herzog and Sachs [3] analyzed the method of Schöberl and
Zulehner [33] for state and control constrained optimal control problems.

We wish to focus our attention on the so-called Bramble–Pasciak conjugate gradient (CG) method
introduced in [29], a method that uses a block-triangular preconditioner

P D

24 A0 0 0

0 A1 0

�K M �bS
35 , (15)

with A0, A1, and bS being approximations just as previously mentioned. Once the preconditioner is
applied to K, the resulting preconditioned matrix bK D P�1K is not symmetric anymore but self
adjoint in a nonstandard inner product defined by

HD

24 L�A0 0 0

0 ˇM �A1 0

0 0 bS
35 . (16)

It is clear that for H to define an inner product, the diagonal blocks have to be symmetric and pos-
itive definite. Although this is in general a rather tricky issue requiring an eigenvalue estimation
problem, in the case of (lumped) mass matrices, scaling is straightforward [4]. Further, for the case
of a consistent mass matrix, Rees and Stoll showed that the scaling issues can be easily removed
[24]. For more details on the implementation and properties of the nonstandard inner product solver,
we refer to [3, 24, 29, 33, 34, 36, 37] and Algorithm 1.
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3.1. First preconditioner

The Schur complement of K is given by

S DKL�1KT C ˇ�1M . (17)

For the caseLDM , it was proposed [23] to neglect the term ˇ�1M , which would in our case result
in an approximationbS0 DKL�1KT to S . For a symmetric system, the clustering of the eigenvalues
will govern the convergence of the iterative scheme, and we want to analyze the eigenvalue distri-
bution of bK D P�1K for an idealized case. We consider now the block-triangular preconditioner
with the choice A0 D L, A1 D ˇM , and bS0 D KL�1KT – in this case, the eigenvalues of the
preconditioned matrix P�1K can be read off the diagonal blocks, that is,

P�1KD

24 I 0 �L�1KT

0 I ˇ�1I

0 0 I C ˇ�1K�TLK�1M

35 , (18)

which shows that there are 2n eigenvalues equal to 1 and n eigenvalues are given by the eigenvalues
of I C ˇ�1K�TLK�1M . Thus, we wish to find eigenvalue bounds for I C ˇ�1K�TLK�1M .
The eigenvalue bounds may be obtained from a field of value analysis.‡ Note that the matrix
I Cˇ�1K�TLK�1M is similar to the symmetric matrixM 1=2

�
I C ˇ�1K�TLK�1M

�
M�1=2 D

I C ˇ�1M 1=2K�TLK�1M 1=2 and

xT xC ˇ�1xTM 1=2K�TLK�1M 1=2x

xT x
D 1C

ˇ�1.´TL´/.xTMx/
�
yTK�TK�1y

�
.xT x/.yT y/.´T ´/

(19)

with y D M 1=2x and ´ D K�1y. The second term on the right-hand side of (19) can be bounded
using the results of Proposition 1.29 and Theorem 1.32 in [14], which provide bounds for the eigen-
values of the consistent mass matrix and the stiffness matrix. Namely, with h being the mesh size of
our finite element, we have that

ch2 6 x
TMx

xT x
6 Ch2 and dh2 6 x

TKx

xT x
6D

with c,C , d , andD being mesh-independent constants. Note that these are the bounds for a 2D prob-
lem. For 3D bounds, we also refer to [14] but do not discuss them here. This directly gives bounds
for almost all the terms in (19), and the only term that we need to analyze further is ´TL´=´T ´.
Using the definition of L, we obtain

�
´TM´C "�1´TGAMGA´

�
=´T ´, which obviously can be

bounded above by .1C "�1/Ch2. Hence, the overall bound is given by

�.ICˇ
�1K�TLK�1M/

max 6 1C C 2

ˇd2
C

C 2

ˇ"d2
. (20)

‡The field of values of a matrix A 2Rn,n is a set given by xTAx

xT x
8x¤ 0,x 2Rn.
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Similarly, the minimum eigenvalues are given by

16 1C c2h4

ˇD2
C
c2h4

ˇ"D2
6 �.ICˇ

�1K�TLK�1M/
min . (21)

Theorem 3.1
For the consistent mass matrix M and the stiffness matrix K of a Q1 finite element space, the
eigenvalues of the matrix

I C ˇ�1K�TLK�1M

lie in the interval
h
1, 1C C2

ˇd2
C C2

ˇ"d2

i
.

We remark that the eigenvalue distribution depends on the regularization parameter ˇ as was pre-
viously observed for other cases (see [4, 23]). It also depends on the value of the penalty parameter
": with decreasing value of ", the upper bound for the eigenvalues in Theorem 3.1 will increase.

We used the block bS0 D KM�1K as an approximation for the Schur complement of the sys-
tem matrix K. This choice results in good clustering of the eigenvalues but is too expensive for
practical purposes as bS�10 involves the term K�1 (the discretized PDE) twice. One now has to
approximate the matrix K as best as possible. For this, it is very important to take the structure of
the infinite-dimensional problem into account. For both PDEs (2) and (3), the underlying operators
are elliptic PDEs, and hence, multigrid provides a suitable and optimal preconditioner. The most
efficient method would certainly be a geometric multigrid method as described in [38,39]. It is well
known that algebraic multigrid (AMG) provides very good approximations to the aforementioned
operators while allowing greater flexibility than their geometric counterparts [40,41]. As we imple-
mented our method within the deal.II framework [42], we use the available interface to Trilinos [43]
and the smoothed aggregation AMG method implemented there [44]. Our choice will be to approx-
imate K by a small number of V-cycles and a fixed number of steps of a Chebyshev smoother. The
mass matrix M can be efficiently approximated using a variety of methods. In our case, as we only
work with lumped mass matrices, we can solve for M cheaply. For consistent mass matrices, the
Chebyshev semi-iteration [45, 46] provides a powerful preconditioner [24, 47].

3.2. Two improved preconditioners

When testing the preconditioner in the previous section, we observe, both theoretically and in prac-
tice, strong dependence on the regularization parameters ˇ and ". We therefore wish to introduce
ideas for modifying the preconditioner, so as to improve the performance of our iterative solvers
for small values of ˇ and ". We base our ideas on recent efforts [48–50] for PDE-constrained
optimization problems without state constraints.

We now motivate our first modified preconditioner. It is based on the observation that if all mass
matrices are lumped, the matrix L can be split up in the following way:

LD

�
MI 0

0 .1C "�1/MA

�
,

where MI is the part of the mass matrix that corresponds to the free variables and MA analogously
to the active sets. Our aim is to propose a Schur complement preconditioner of the form

bS1 D �K CcM�
L�1

�
K CcM�

, (22)

where we have constructedbS1 to approximate the Schur complement S DKL�1KCˇ�1M better
than bS0. Hence, we examine bS1 in more detail,bS1 DKL�1K CcML�1cM CKL�1cM CcML�1K, (23)
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and look for a way forcML�1cM to approximate the term ˇ�1M in the best possible manner. Writing

cM D � ˛MI 0

0 �MA

�
,

for some parameters ˛ and � , gives that if cML�1cM D ˇ�1M , then�
˛2MI 0

0 �2.1C "�1/�1MA

�
DcML�1cM D ˇ�1M D � ˇ�1MI 0

0 ˇ�1MA

�
. (24)

This yields that

˛ D
1p
ˇ

and � D

p
1C "�1p
ˇ

, (25)

which we then use for cM in our approximation to bS1 in (22).
We find that the Schur complement approximation derived leads to much improved convergence

properties when the resulting preconditioner is used in conjunction with MINRES. This is what was
observed in [49] and [51] for the Poisson control and convection–diffusion control problems, respec-
tively, without state constraints. For these cases, it was possible to prove robust eigenvalue bounds
using simple algebraic manipulation and Rayleigh quotient arguments, respectively.§ We find that in
this case, proof of such a rigorous result is not as straightforward because of the ill-conditioning of
the .1, 1/-block for small values of � – we present below a Rayleigh quotient analysis on the basis
of that of the previous section and [51] in 2D (the 3D case is similar).

We note that the eigenvalues of the matrix bS�11 S are bounded by the extreme values of the
Rayleigh quotient

vTSv

vTbS1v D vTKL�1KvC ˇ�1vTMv

vTKL�1KvC ˇ�1vTMvC vTcML�1KvC vTKL�1cMv
(26)

D

 
1C

vTcML�1KvC vTKL�1cMv

vTKL�1KvC ˇ�1vTMv

!�1
DWR. (27)

The term of interest here is

vTcML�1KvC vTKL�1cMv

vTKL�1KvC ˇ�1vTMv
D
bT aC aT b

aT aC bT b
,

with aD L�1=2Kv and b D L�1=2cMv. We note first that we may write

.a� b/T .a� b/> 0, aT bC bT a

aT aC bT b
6 1

for any a, b. Using this along with the fact that aT aC bT b > 0 gives immediately that R > 1=2 for
all v.

For the upper bound of R, we first note that excluding multiplicative constants of O.1/, �.K/ 2
Œh2, 1�, �.M/D h2, �.L/D Œ1, 1C ��1�. Further, as

cML�1 D L�1cM D 1p
ˇ

�
I 0

0 .1C ��1/�1=2I

�
,

§For these cases, it was shown that the eigenvalues of the preconditioned Schur complement were contained within the
interval Œ 1

2
,1� independently of the two parameters involved in the problem: h and ˇ . It is in some sense unsurprising

that the same cannot be rigorously proved for this problem, as there are now three parameters involved: h, ˇ , and ".

Copyright © 2012 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2014; 21:81–97
DOI: 10.1002/nla



88 J. W. PEARSON, M. STOLL AND A. J. WATHEN

we have that �
�cML�1

�
D �

�
L�1cM�

2
�
ˇ�1=2,ˇ�1=2.1C ��1/�1=2

	
. We are now in a

position to consider the upper bound of R, which corresponds to the largest negative value of�
bT aC aT b

�
=
�
aT aC bT b

�
. We write (using the eigenvalue bounds stated)

bT aC aT b

aT aC bT b
> � 2ˇ�1=2���1=2

�2��1h�2C ˇ�1h2
DW �

2

! C!�1
, where ! D ˇ1=2���1=2h�2 > 0,

where � 2 Œdh2,D�, � 2 Œ1, 1C ��1�, and ! D ˇ1=2���1=2h�2 > 0, again excluding multiplicative
constants. Therefore,

R 6


1�

2

! C!�1

��1
,

and hence,

�.bS�11 S/ 2
"
1

2
,



1�

2

! C!�1

��1#
.

We note that from this analysis that the lower bound for �
�bS�11 S� is concrete for all values of h,

ˇ, and ". However, we observe that we cannot prove a universal, clean upper bound for �
�bS�11 S�,

because of the nonsymmetry of the matrices cML�1K and its transpose, and the ill-conditioning of
the matrix L. As such, the presentation of the upper bound should be regarded as heuristic guidance
as to the combination of parameters our approximation should work best for, as opposed to rigorous
proof. The obvious worst-case scenario of this analysis occurs when ! D 1, in which case bS�11 S
could have an infinitely large eigenvalue. However, we can easily argue that this will not happen, as
it would either correspond to the quantity vTSv in the aforementioned analysis being infinite (which
clearly cannot happen) or the quantity vTbS1v being equal to 0 (which will not occur because the
matrices K CcM and L, which make up bS , are both invertible).

We observe that if the value denoted ! is not too close to 1, the heuristic upper bound presented
earlier will be close to 1, and we observe that this occurs in many practical cases. In Figure 1, we
present graphs of eigenvalues of bS�11 S for a variety of values of h, ˇ, and � to demonstrate that
in almost all cases of practical interest, our Schur complement approximation is highly effective.
These figures not only validate the lower bound we have proved but also indicate that the upper
bound of �.bS�11 S/ is of O.1/ in the majority of cases. (The figures consist of parameter regimes
that are close to the worst case in terms of the largest eigenvalue of bS�11 S .) As numerical evidence
indicates the effectiveness of this Schur complement, but theoretical study indicates that it is diffi-
cult to rigorously prove this, we would describe the resulting preconditioner as parameter robust as
opposed to parameter independent.

We find that another potentially potent Schur complement approximation is given by

bS2 D "K C 1p
ˇ
M



I C

1
p
�
GA

�#
M�1

G

"
K C

1p
ˇ
M



I C

1
p
�
GA

�#T
,

where MG D
�
I C

�
1=
p
�
�
GA

�
M
�
I C

�
1=
p
�
�
GA

�
. Note that the matrices GA are projections

onto the active sets used in the semismooth Newton method. We perform a Rayleigh quotient
analysis on this approximation, aiming to demonstrate that

S �K

�

I C

1
p
�
GA

�
M



I C

1
p
�
GA

���1
KT C

1

ˇ
M WDeS �bS2,

which we do by considering the eigenvalues of eS�1S and bS�12 eS , using Rayleigh quotients.
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(a) Different cardinalities of the active set for    =
1 − 2 and = 1 − 6.
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(b) Only one free variable,       − 2, and    =1 = 1   −
6 for varying matrix dimensions.
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(c) For    − 1 degrees of freedom in the active sets,
varying regularization and penalty parameter.
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(d) For    / 2 degrees of freedom in the active sets and
varying regularization parameter.
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Figure 1. Eigenvalue distributions ofbS�1
1
S for various problem set-ups.

We first examine the Rayleigh quotient

R1 WD
vT
�
M C ��1GAMGA

�
v

vT
�
I C ��1=2GA

�
M
�
I C ��1=2GA

�
v
D

aT1 a1C b
T
1 b1

.a1C b1/T .a1C b1/
,

where a1 D M 1=2v and b1 D ��1=2M 1=2GAv. We can see by straightforward algebra (using
that aT1 a1 > 0 by positive definiteness of M ) that R1 > 1=2. Further, using the fact that
aT1 b1 D bT1 a1 > 0 (by virtue of the diagonal and positive definite structure of the lumped mass
matrix M and the diagonal and positive semidefinite structure of the projection matrix GA), we
can show that R1 6 1. From these bounds, it is a simple matter to show that the Rayleigh quotient
vTSv=vTeSv 2 Œ1, 2�.

Looking now at the eigenvalues of bS�12 eS , we examine the Rayleigh quotient vTeSv=vTbS2v,
writing

R2 WD
vTeSv
vTbS2v D aT2 a2C b

T
2 b2

.a2C b2/T .a2C b2/
D



1C

aT2 b2C b
T
2 a2

aT2 a2C b
T
2 b2

��1
,

where a2 D M�1=2.I C ��1=2GA/�1KT v and b2 D ˇ�1=2M 1=2v. By algebraic manipula-
tion (using that bT2 b2 > 0), it is clear that

�
aT2 b2C b

T
2 a2

�
=
�
aT2 a2C b

T
2 b2

�
6 1 and hence

that R2 > 1=2. For the upper bound of R2, we consider the maximum negative value of�
aT2 b2C b

T
2 a2

�
=
�
aT2 a2C b

T
2 b2

�
. Using that (excluding multiplicative constants of O.1/) �.K/ 2

Œh2, 1�, �.M/D h2, and �.I C ��1=2GA/ 2 Œ1, 1C ��1=2�, we may use a very similar approach as
for bS1

aT2 b2C b
T
2 a2

aT2 a2C b
T
2 b2
> � 2ˇ�1=2�	�1

�2	�2h�2C ˇ�1h2
D�

2


C 
�1
, where 
 D ˇ1=2�	�1h�2 > 0

and therefore that R2 6
�
1� .2=.
C 
�1//

��1
. Here, � is as defined, 	 2 Œ1, 1 C ��1=2�, and


 D ˇ1=2�	�1h�2 > 0 up to a multiplicative constant of O.1/.
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Figure 2. Eigenvalues for n=2 variables in the active sets and varying values of ˇ.

As for the Schur complement approximationbS1, we are able to demonstrate a clean lower bound
for the eigenvalues of the preconditioned Schur complement but not a concrete upper bound. Simi-
larly, as for bS1, the limiting case 
 D 1 is potentially a problem here, but we can easily argue that
this value will never be attained in the same way (as the matricesKC .1=

p
ˇ/M

�
I C .1=

p
"/GA

�
and MG are both invertible). It is clear that the bound shown is tight if the value denoted 
 is far
from 1. We again find that this is frequently the case in practical situations and provide numeri-
cal evidence to demonstrate that the eigenvalue distribution in practice is tight for a wide range
of practical situations. Figure 2 shows the eigenvalues for a small example using the Schur com-
plement approximation bS2. Once again, we describe the preconditioner resulting from our Schur
complement approximation as parameter robust as opposed to parameter independent.

We therefore believe that both bS1 and bS2 are viable and often effective Schur complement
approximations for the problem we are considering.

As we only focus on lumped mass matrices in this paper, we refrain from showing results for the
nonlumped case in Section 4, although some results still hold for consistent mass matrices.

We note that the analytical results of this section were obtained for an idealized case where we
use approximations of the form

bS D .K CcM/L�1.K CcM/ with bS�1 D .K CcM/�1L.K CcM/�1.

However, in practice, we always use

bS�1 D 3

.K CcM/�1L
3

.K CcM/�1,

where

3

.K CcM/�1

denotes the application of an algebraic or geometric multigrid method to the matrix K CcM . Note
that as cM changes with every Newton iteration, we must recompute it at the beginning of each
Newton step. Nevertheless, the reduction in iteration numbers is so significant that this is clearly the
preferred approach, especially for small values of the regularization parameters.

3.3. Nested approach

A strategy that will prove useful in the context of solving state-constrained problems is the so-called
nested approach [3]. This technique starts by computing the solution to the state-constrained prob-
lem on a very coarse grid. In the next step, a uniform refinement is performed for the mesh, and the
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solution from the coarse level is prolonged onto the fine mesh. This solution is then used as an initial
guess for the Newton method on the fine level. Once the solution is computed to a desired accuracy,
we can proceed in the same way onto the next finer grid. It is hoped (and will be shown in the next
section) that this strategy reduces the number of Newton steps significantly.

4. NUMERICAL EXPERIMENTS

All results shown in this section were computed using the deal.II [42] framework with an imple-
mentation of the Bramble–Pasciak CG method that uses the 2-norm of the relative preconditioned
residual (10�6) as the stopping criterion. The Newton method is stopped whenever the active sets
remain unchanged [52]. For the approximation via AMG, we use 10 steps of a Chebyshev smoother
and four V-cycles of the smoothed aggregation AMG method implemented in Trilinos [44]. As for
the domain �, we consider the unit square or cube. All results are performed on a Centos Linux
machine with Intel(R) Xeon(R) CPU X5650 at 2.67 GHz CPUs and 48 GB of RAM.

4.1. Results for Dirichlet problems

2D results. The first example we compute is a Dirichlet problem with boundary condition y D
PŒy,y�.yd / on @� defined by

PŒy,y�yi D

8̂<̂
:
yd i if y

i
< yi < yi

yi if yi > yi
y
i

if yi 6 yi .

Figure 3 shows the desired state yd , computed control u, and state y for the case without bound
constraints. In Figure 4, we show the computed state and control for a bound constrained problem.
The problem is unconstrained from below, and the upper bound is given by y D 0.1. It can be
seen that there is a small active set where yd is attained, which results in the ‘hole’ in the control
(see Figure 4(b) and the active set (black contour) in Figure 4(a)). Here, the desired state is given by

yd D sin.2�x1x2/.

Table I shows results for ˇ D 1e � 2, "D 1e � 6, and the upper bound y D 0.1. It can be seen that
for this set-up, the preconditioner as well as the Newton method behave almost independently of
the mesh parameter. In our experience, the performance of the AMG preconditioner deteriorates for
meshes with smaller mesh size h. The increase in iteration numbers could not be observed if a fac-
torization of K CcM was used; however, for large problems, this is not feasible. Hence, we chose a
rather large number of V-cycles, namely 4, to approximate the matrix well. A parameter-independent
approximation ofKCcM should be investigated in future research. Note that the timings shown also
include the set-up of the preconditioner for each Newton step in the improved preconditioner. As
we can see from Table II where we show results for the same set-up but with the nonrobust precon-
ditioner presented in Section 3.1, the improvement is substantial as for the set-up with ˇ D 1e � 2,
" D 1e � 6; however, the Newton method did not converge within 50 iterations. For ˇ D 1e � 2,
" D 1e � 4, we show the results with four multigrid cycles in Table III and observe good con-
vergence for this set-up of parameters. As for the nonrobust preconditioner, the AMG only has to
approximate K, a smaller number of V-cycles produces the results shown in Table IV. Note that as
observed in [12], the quality of the preconditioner determines the convergence of the semismooth
Newton method with inexact solves.

The next comparison we wish to make is that of the quality of the preconditioner for different
values of the parameters. As we mentioned earlier, some dependence of the AMG routine on the
parameters could be observed. Hence, our choice is a factorization of K CcM for a smaller mesh
with 16, 641 degrees of freedom. The results shown in Table V show that having no deterioration in
the approximation of K CcM results in almost constant low iteration numbers for the CG steps per
iteration. In practice, one should of course use approximations to K CcM .
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(a) Desired state (b) State (c) Control

Figure 3. Desired state, state, and control for unconstrained problem.

(a) Computed state (b) Computed control

Figure 4. Computed state and control for constrained problem.

Table I. 2D results for nonzero Dirichlet boundary, ˇ D 1e � 2, "D 1e � 6, and y D 0.1.

Total conjugate Conjugate gradient
Degrees of freedom Newton steps gradient per Newton Time for Newton

1089 14 259 18 11.27
4225 8 138 17 12.63
16,641 7 108 15 30.3
66,049 7 118 16 123.54
263,169 6 103 17 462.78
1,050,625 7 183 26 3267.28

Table II. 2D results for nonzero Dirichlet boundary, ˇ D 1e � 2, "D 1e � 6, and y D 0.1.

Total conjugate Conjugate gradient
Degrees of freedom Newton steps gradient per Newton Time for Newton

1089 14 780 55 29.31
4225 2 14 7 1.25
16,641 5 59 11 13.63
66,049 10 170 17 131.98

263,169 No convergence after 50 Newton steps
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Table III. 2D results for nonzero Dirichlet boundary, ˇ D 1e � 2, "D 1e � 4, and y D 0.1 with
four V-cycles.

Total conjugate Conjugate gradient
Degrees of freedom Newton steps gradient per Newton Time for Newton

1089 9 145 16 5.55
4225 3 21 7 1.87
16,641 4 34 8 7.75
66,049 4 39 9 31.26
263,169 9 172 19 530.38

Table IV. 2D results for nonzero Dirichlet boundary, ˇ D 1e � 2, "D 1e � 4, and y D 0.1 with
two V-cycles.

Total conjugate Conjugate gradient
Degrees of freedom Newton steps gradient per Newton Time for Newton

1089 9 150 16 5.64
4225 3 24 8 1.76
16,641 7 124 17 22.63
66,049 8 307 38 191.54
263,169 10 1059 105 2507.48

Table V. Number of conjugate gradient iterations per Newton step
for different values of ˇ and ", using a direct factorization of
KCbM . The example was again the 2D results for nonzero Dirichlet

boundary and y D 0.1.

" # ˇ! 1e � 2 1e � 4 1e � 6

1e � 4 19 27 26
1e � 6 26 34 28
1e � 8 32 36 28

Table VI. 3D results for zero Dirichlet boundary and y D 0.1.

Total conjugate Conjugate gradient
Degrees of freedom Newton steps gradient per Newton Time for Newton

729 4 48 12 1.05
4913 4 53 13 6.17
35,937 4 53 13 37.78
274,625 3 41 13 228.05

3D results. We now wish to show results for the 3D example with the desired state given by

yd D sin.2�x1x2x3/

and a zero Dirichlet boundary condition. In this case, we again consider the upper bound y D 0.1
and the parameters ˇ D 1e�2 and "D 1e�4. The results shown in Table VI show that the iteration
numbers per Newton step as well as the number of Newton steps stays almost constant.

To illustrate the robustness of our approach, we present in Table VII iteration numbers for the
Newton method and average number of CG iterations for a 3D problem. The desired state is
given by

yd D sin.2�x1x2x3/

with a lower bound fixed at y D 0. All results are obtained for a fixed mesh with 4913 degrees
of freedom, and for this to resemble a realistic scenario, we refrain from using a factorization as

Copyright © 2012 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2014; 21:81–97
DOI: 10.1002/nla



94 J. W. PEARSON, M. STOLL AND A. J. WATHEN

Table VII. Number of conjugate gradient iterations per Newton step for different values
of ˇ and ", using an algebraic multigrid for the approximation of K C bM . The example is

3D with 4913 degrees of freedom.

" # ˇ! 1e � 2 1e � 4 1e � 6
AS(¿ conjugate gradient) AS(¿ conjugate gradient) AS(¿ conjugate gradient)

1e � 4 2(14) 4(20) 3(22)
1e � 6 2(14) 5(21) 3(22)
1e � 8 2(14) 5(21) 3(22)

Table VIII. Number of conjugate gradient iterations per Newton step for different values of
ˇ and ", using an algebraic multigrid for the approximation of K C bM . The example is 3D

with 35, 937 degrees of freedom.

" # ˇ! 1e � 2 1e � 4 1e � 6
AS(¿ conjugate gradient) AS(¿ conjugate gradient) AS(¿ conjugate gradient)

1e � 4 2(14) 7(23) 5(25)
1e � 6 2(14) 7(26) 5(25)
1e � 8 2(15) 7(27) 5(25)

Table IX. 3D results for Neumann boundary and y D 0.2.

Total conjugate Conjugate gradient
Degrees of freedom Newton steps gradient per Newton Time for Newton

729 6 78 13 1.95
4913 4 63 15 7.49
35,937 4 72 18 51.61
274,625 4 75 18 413.21
2,146,689 5 104 20 4458.58

was carried out in [5] but rather use the AMG with four V-cycles and 10 steps of a Chebyshev
smoother. As was pointed out in [12], the convergence of the outer Newton iteration depends on the
quality of the preconditioner, and to allow for a fair comparison of the parameter set-ups, we solve
rather accurately to a tolerance of 1e � 10 for all parameter values. We can see that for both mesh
sizes, the iteration numbers are very low and almost constant. We believe that the slight increase in
Newton iterations can be avoided using the nested approach, which we did not employ for Tables VII
and VIII.

4.2. Results for Neumann boundary

In this section, we only consider 3D results for the problem with the state equation given by (3). We
start with the desired state given by

yd D sin.2�x1x2x3/

and the lower bound y D 0 – the results are shown in Table IX. Here, we take ˇ D 1e � 3 and
"D 1e � 5. An illustration of the desired state and the constrained state is shown in Figure 5.

We next compute an example presented in [3] where the desired state is given by

yd D

�
1 if x0 < 0.5
�2 otherwise.

(28)

The upper bound is given by y D 0 and ˇ D 1e�2 and "D 1e�4. The results are shown in Table X
where, in contrast to [3], we observe parameter-robust convergence.
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(a) Desired state (b) State

Figure 5. Desired state and state with lower bound y D 0 for problem in 3D.

Table X. 3D results for Neumann boundary and y from Herzog and Sachs.

Total conjugate Conjugate gradient
Degrees of freedom Newton steps gradient per Newton Time for Newton

729 5 52 10 1.32
4913 1 13 13 1.67
35,937 2 30 15 22.19
274,625 2 32 16 181.56
2,146,689 1 16 16 758.11

5. CONCLUSIONS AND OUTLOOK

In this paper, we introduced preconditioners for a state-constrained PDE-constrained optimization
problem when solved using the Moreau–Yosida penalization. The Krylov subspace solvers we used
showed very promising performance as we could observe robust convergence of the preconditioned
Krylov solver for a wide range of parameters.

In the future, it would be useful to investigate the problem where the L2 norm of y � yd is
measured on a subdomain of �, as opposed to � itself. This, like the problem considered in
this manuscript, could be solved using the preconditioned MINRES algorithm. Also, the choice
of multilevel method for the parameter dependent matrix K CcM should be reconsidered, as we
could observe dependence on the parameters for smaller meshes within the AMG preconditioner.
Geometric multigrid and more advanced AMG preconditioners should be investigated, and incor-
poration of a more sophisticated scheme for the parameter " would also be desirable for future
implementations. Finally, a significant piece of future work would be to extend the results presented
here to time-dependent problems, as well as to more difficult PDEs.
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A.3 Regularization Robust Preconditioning

This paper is published as

J. W. Pearson, M. Stoll, and A. J. Wathen, Regularization-robust
preconditioners for time-dependent PDE-constrained optimization
problems, SIAM J. Matrix Anal.Appl, 33 (2012), pp. 1126–1152.

Result from the paper

We develop a robust Schur-complement approximation for the time-dependent
optimization problem. The proven eigenvalue bounds are independent of all
system parameters. Table A.3 shows the iteration numbers and comput-
ing time for 20 time-steps and various mesh and regularization parameters.

DoF minres(T) minres(T) minres(T)

β = 1e− 2 β = 1e− 4 β = 1e− 6

98,260 10(2) 12(2) 12(2)
1,918,740 10(14) 12(17) 12(18)
5,492,500 10(148) 12(171) 12(170)

Table A.3: Results for Discretize-then-Optimize approach via trapezoidal
rule.
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Abstract. In this article, we motivate, derive, and test effective preconditioners to be used with
the Minres algorithm for solving a number of saddle point systems which arise in PDE-constrained
optimization problems. We consider the distributed control problem involving the heat equation
and the Neumann boundary control problem involving Poisson’s equation and the heat equation.
Crucial to the effectiveness of our preconditioners in each case is an effective approximation of the
Schur complement of the matrix system. In each case, we state the problem being solved, propose
the preconditioning approach, prove relevant eigenvalue bounds, and provide numerical results which
demonstrate that our solvers are effective for a wide range of regularization parameter values, as well
as mesh sizes and time-steps.
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1. Introduction. The development of fast iterative solvers for saddle point
problems from a variety of applications is a subject attracting considerable atten-
tion in numerical analysis [12, 46, 57, 14]. As such problems become more complex, a
natural objective in creating efficient solvers is to ensure that the computation time
taken by the solver grows as close to linearly as possible with the mesh parameter of
the discretized problem. In more detail, it is desirable that if the problem size doubles
due to refinement of the mesh, then the computation time roughly doubles as well.

Recently, due to the development of efficient algorithms and increased computing
power, the solution of optimal control problems with PDE constraints has become an
increasingly active field [55, 27, 29]. The goal is to find efficient methods that solve the
discretized problem with the objective in mind of creating preconditioners that again
scale linearly with decreasing mesh size. The interested reader is referred to [48, 22, 40,
44, 50] and the references therein for steady (time-independent) problems and to [52,
53, 39, 51, 4] for unsteady (time-dependent) problems. There are also multigrid [20]
approaches to both time-dependent and time-independent optimal control problems
[25, 26, 54, 6, 7, 1, 19, 18].

Often, designing solvers that are insensitive to the mesh size is found to com-
promise the performance of the solver for small values of the regularization parame-
ter inherent in PDE-constrained optimization problems, unless the approximation of
the Schur complement of the matrix system is chosen carefully. Therefore, recently
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research has gone into developing preconditioners which are insensitive to the regu-
larization as well as the mesh size; see [37, 48] for instance for such solvers for the
Poisson control problem.

Here, we consider whether it is possible to build solvers for the time-dependent
analogue of this problem, that is, the optimal control of the heat equation. We con-
sider the distributed control problem and attempt to minimize a functional that is
commonly used in the literature [55]. We also investigate solvers for the boundary
control problem, first in the time-independent Poisson control case and then in the
time-dependent heat equation control case. Further, we develop a solver for a dis-
tributed subdomain problem of this type.

This paper is structured as follows. In section 2, we outline some prerequisite
saddle point theory, state the problems that we consider the iterative solution of,
and describe a solver for the distributed Poisson control problem (originally detailed
in [37]) that we base our methods on. In section 3, we motivate and derive the
preconditioners that we apply for the problems stated, proving relevant eigenvalue
bounds of the preconditioned Schur complements of the matrix systems when our
recommended approximations are used. In section 4, we provide numerical results for
a variety of test problems to demonstrate the effectiveness of our approaches, and in
section 5 we make some concluding remarks.

2. Problems and discretization. This section is structured as follows. In sec-
tion 2.1, we briefly detail elements of saddle point theory that we utilize throughout
the remainder of this paper. In section 2.2, we describe work that has been undertaken
on the (time-independent) distributed Poisson control problem and state the formu-
lations of the time-dependent problem that we consider. In section 2.3, we describe
the time-independent and time-dependent Neumann boundary control problems we
consider in this paper.

2.1. Saddle point theory. The problems we discuss in this paper are all of
saddle point structure, i.e., of the form

[
A BT

B 0

]

︸ ︷︷ ︸
A

[
x1

x2

]
=

[
b1

b2

]
,(2.1)

where A ∈ Rm×m is symmetric and positive definite or semidefinite, B ∈ Rp×m with
m ≥ p and the matrix A is nonsingular. The properties and solution methods for
such systems have been an active field of research for two decades. State-of-the-art
numerical methods for solving saddle point problems can be found in [3, 12] and the
references therein.

Throughout this paper, we consider block diagonal preconditioners for such saddle
point systems of the form

P =

[
Â 0

0 Ŝ

]
,

which is symmetric and positive definite. To apply this preconditioner, we therefore
require a good approximation Â to the (1, 1)-block of the matrix system, A, and Ŝ
as an approximation to the (negative) Schur complement, S := BA−1BT . Note that

in general we are only interested in the application of Â−1 and Ŝ−1, which allows the
use of multigrid [20] or algebraic multigrid (AMG) [45, 13] methods, for example.
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Such a preconditioner is known to be effective because the spectrum of the matrix
P−1A is given by

λ(P−1A) =

{
1,

1

2
(1 ±

√
5)

}
,

provided P−1A is nonsingular, when Â = A, and Ŝ = S (see [34] for details). In
this case, an appropriate Krylov subspace method applied to the system (2.1) will
converge in three iterations with this preconditioner. Throughout the remainder of
this paper, we apply the Minres algorithm of Paige and Saunders [35] to saddle point
systems of the form A, with preconditioner P as in (2.2).

Note that many other preconditioners are possible such as block triangular pre-
conditioners [34, 8, 42, 49] or constraint preconditioners [11, 30, 59]. These usually
have to be combined with different iterative solvers, either symmetric ones [8, 16] or
nonsymmetric ones such as Gmres [47].

2.2. Distributed control problems. One of the most common problems em-
ployed in PDE-constrained optimization for the study of numerical techniques is the
distributed Poisson control problem with Dirichlet boundary conditions [55]. This is
written as

min
y,u

1

2
‖y − ȳ‖2L2(Ω1)

+
β

2
‖u‖2L2(Ω2)

(2.2)

s.t − ∇2y = u in Ω,

y = f on ∂Ω,

where y is referred to as the state variable with ȳ some known desired state and u
as the control variable. Here Ω1 and Ω2 are subsets of the domain Ω ⊂ Rd, where
d ∈ {2, 3}, on which the problem is defined with boundary ∂Ω, and β > 0 is the
(Tikhonov) regularization parameter. Note that we will limit ourselves to the cases
Ω2 = Ω and Ω2 = ∂Ω—the boundary control problem is addressed in the next section.

There are two common approaches for solving this optimization problem. One
can consider the infinite-dimensional problem, write down the Lagrangian, and then
discretize the first order conditions, which is referred to as the optimize-then-discretize
approach, or one can first discretize the objective function and then build a discrete
Lagrangian with corresponding first order conditions. The latter is the discretize-
then-optimize approach. Recently, the paradigm that both approaches should coincide
was used to derive discretization schemes for PDE-constrained optimization (see, for
example, [25]).

The problem (2.2) represents a steady problem, i.e., y = y(x), where x denotes the
spatial variable. Using a Galerkin finite element method [12] and a discretize-then-
optimize strategy, with the state y, control u, and adjoint state or Lagrange multiplier
p all discretized using the same basis functions [40, 37], leads to the following first
order system:




M1 0 K
0 βM −M
K −M 0






y
u
p


 =




M ȳ
0
c


 ,(2.3)

where y, u, and p denote the vectors of coefficients in the finite element expansion in
terms of the basis functions {φj , j = 1, . . . , n} of y, u, and p, respectively, ȳ is the



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

PRECONDITIONERS AND PDE-CONSTRAINED OPTIMIZATION 1129

vector corresponding to ȳ, and c corresponds to the Dirichlet boundary conditions
imposed. Here, M denotes a finite element mass matrix over the domain Ω; similarly,
M1 is the finite element mass matrix for the domain Ω1 and K a stiffness matrix over
Ω. The matrices are of dimension n × n with n being the degrees of freedom of the
finite element approximation. These are defined by

M = {mij , i, j = 1, . . . , n}, mij =

∫

Ω

φiφj dΩ,(2.4)

K = {kij , i, j = 1, . . . , n}, kij =

∫

Ω

∇φi · ∇φj dΩ.

Note that we often consider M to be a lumped mass matrix, that is,

M = diag(mii), mii =

n∑

j=1

∣∣∣∣
∫

Ω

φiφj dΩ

∣∣∣∣ .

The matrix M1 can be obtained analogously to the above by replacing Ω by Ω1.
In literature such as [37, 48], solvers are designed which solve (2.3) in computa-

tional time independent of the mesh size h and any choice of regularization parameter
β. The solver that we consider is based on the block diagonal preconditioner discussed
in [37], in which the system (2.3) is written in classical saddle point form (2.1) with

A =
[

M 0
0 βM

]
and B =

[
K −M

]
. The (1, 1)-block is then approximated by

the application of Chebyshev semi-iteration to each mass matrix for consistent mass
matrices [58] or by simple inversion for lumped mass matrices, and the (negative)
Schur complement

S = BA−1BT = KM−1K +
1

β
M

is approximated by

Ŝ =

(
K +

1√
β
M

)
M−1

(
K +

1√
β
M

)
.

It is shown in [37] that λ(Ŝ−1S) ∈ [ 12 , 1] for any choice of step-size h and regular-
ization parameter β when this approximation is used. Using a multigrid process to
approximate the inverse of the matrix K + 1√

β
M gives a viable solution strategy.

In this paper, we attempt to extend this preconditioning framework to time-
dependent analogues of the above problem. Specifically, we will consider the optimal
control of the heat equation. This problem may be written as

min
y,u

J(y, u)(2.5)

s.t yt − ∇2y = u, for (x, t) ∈ Ω × [0, T ],

y = f on ∂Ω,

y = y0 at t = 0

for some functional J(y, u), where f and y0 may depend on x but not t. The functional
that we consider here is a functional where we have observations (desired state) on
the whole time-interval

J1(y, u) =
1

2

∫ T

0

∫

Ω1

(y(x, t) − ȳ(x, t))
2
dΩ1dt+

β

2

∫ T

0

∫

Ω2

(u(x, t))
2
dΩ2dt.(2.6)
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Note that it is also possible to consider a problem where the desired state is only
defined at a more limited set at times, for example, at only t = T , which would
correspond to a functional of the form [36]

J2(y, u) =
1

2

∫

Ω1

(y(x, T ) − ȳ(x))2 dΩ1 +
β

2

∫ T

0

∫

Ω2

(u(x, t))2 dΩ2dt.

We consider here only the problem relating to the functional J1(y, u), which we refer
to as the “all-times case.” Note that the state, control, and adjoint state are all now
time-dependent functions. For now we again assume that Ω2 = Ω.

As illustrated in [52], the matrix system arising from solving the problem (2.5)
with J(y, u) = J1(y, u) varies according to whether a discretize-then-optimize or
optimize-then-discretize strategy is applied. Applying the discretize-then-optimize
approach, using the trapezoidal rule and the backward Euler scheme with Nt time
steps of (constant) size τ to discretize the PDE in time, gives the matrix system [52]




τM(1)
1/2 0 KT

0 βτM1/2 −τM
K −τM 0






y
u
p


 =




τM(1)
1/2ȳ

0
d


 ,(2.7)

where y, u, ȳ, and p are vectors corresponding to the state, control, desired state,
and adjoint at all time-steps 1, 2, . . . , Nt, and

M1/2 =




1
2M

M
. . .

M
1
2M



, M =




M
M

. . .

M
M



,(2.8)

M(1)
1/2 =




1
2M1

M1

. . .

M1
1
2M1



,

K =




M + τK
−M M + τK

. . .
. . .

−M M + τK
−M M + τK



, d =




My0 + c
c
...
c
c



.

Note that if n is the number of degrees of freedom in the spatial representation only,
then each of the matrices in (2.8) belongs to RnNt×nNt with blocks as indicated, where
M,M1,K ∈ Rn×n. The overall coefficient matrix in (2.7) is of dimension 3nNt×3nNt.

If, alternatively, the optimize-then-discretize approach is used with J(y, u) =
J1(y, u), the matrix system becomes [52]




τM0 0 KT

0 βτM1/2 −τM
K −τM 0






y
u
p


 =




τM0ȳ
0
d


 ,(2.9)
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where

M0 =




M1

M1

. . .

M1

0




∈ RnNt×nNt .

The matrix systems (2.7) and (2.9) are the systems corresponding to the time-
dependent distributed control problem. The efficient solution of these saddle point
systems will be considered in this paper.

2.3. Neumann boundary control problems. Another important problem in
the field of PDE-constrained optimization is the class of Neumann boundary control
problems. Note that this problem corresponds to Ω2 = ∂Ω in (2.2). In practical
applications, these are perhaps the most useful class of problems. We start once more
by considering the boundary control of Poisson’s equation written as

min
y,u

1

2
‖y − ȳ‖2L2(Ω) +

β

2
‖u‖2L2(∂Ω)(2.10)

s.t − ∇2y = f in Ω,

∂y

∂n
= u on ∂Ω,

where f is the known source term, which may be zero, and the control, u, is applied
in the form of a Neumann boundary condition. As for the distributed control case,
we discretize y, u, and p using the same finite element basis functions.

The first order optimality conditions of a discretize-then-optimize approach yield
the following matrix system:




M 0 K
0 βMb −NT

K −N 0






y
u
p


 =




M ȳ
0
f


 ,(2.11)

where M and K are as before (see (2.4)), Mb here denotes the boundary mass ma-
trix over ∂Ω, and N corresponds to entries arising from terms within the integral∫
∂Ω utr(v)ds (with u the boundary control and tr(v) denoting the trace function act-
ing on a member of the Galerkin test space). The vector f corresponds to f , the
source term of Poisson’s equation. The matrix in (2.11) is essentially of dimension
(2n+ nb) × (2n+ nb), where n is the number of degrees of freedom for y and nb the
number of degrees of freedom for the boundary control, u.

As well as this problem, we also investigate the time-dependent analogue, that is,
the Neumann boundary control of the heat equation. We write the problem that we
consider as

min
y,u

1

2

∫ T

0

∫

Ω

(y(x, t) − ȳ(x, t))
2
dΩdt+

β

2

∫ T

0

∫

∂Ω

(u(x, t))
2
dsdt,(2.12)

s.t. yt − ∇2y = f for (x, t) ∈ Ω × [0, T ],

∂y

∂n
= u on ∂Ω.
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Note that this is related to the distributed control problem (2.5) with J(y, u) =
J1(y, u). Although we could seek to solve the optimize-then-discretize formulation
of this problem in a similar way as for the distributed control problem, we focus
our attention on the discretize-then-optimize formulation. In this case, applying the
backward Euler scheme in time and the trapezoidal rule, we obtain the matrix system




τM1/2 0 KT

0 βτM1/2,b −τN T

K −τN 0






y
u
p


 =




τM1/2ȳ
0
g


 ,(2.13)

where M and K are as defined in (2.8), and

M1/2,b =




1
2Mb

Mb

. . .

Mb
1
2Mb



,

N =




N
N

. . .

N
N



, g =




My0 + f
f
...
f
f



.

We will consider the iterative solution of the matrix systems (2.11) and (2.13), in
addition to the distributed control problems previously stated, in section 3.

2.4. Possible extensions. In this section we wish to introduce some extensions
of the above problems that in one form or another frequently appear in the field of
optimization with PDE constraints. In many applications so-called box constraints
for the state and/or the control have to be included. Here we highlight pointwise
control constraints

ua(x) ≤ u(x) ≤ ub(x)

as well as pointwise state constraints

ya(x) ≤ y(x) ≤ yb(x).

These additional constraints can be handled very efficiently by so-called semismooth
Newton methods [27, 23, 56, 28], whereas due to the reduced regularity of the Lagrange
multiplier the state-constrained problem presents a more difficult problem [9]. It is
also possible to include different or additional regularization terms in the objective
function. A popular choice is the inclusion of a so-called sparsity term where the
control u is given in the L1-norm for which we write ‖u‖1 . This term can efficiently
be treated as part of the semismooth Newton method (see [22]). Another possibility
is to have differential operators acting on the control as part of the objective function,
for which we write ‖Lu‖2. In this case efficient preconditioning depends on the nature
of the operator L and how well it can be approximated. Recent examples for this can
be found in [43, 4]. Combinations of all the above are of course possible and we
address some possibilities in the next section.
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3. Preconditioning. In this section, we motivate and discuss our proposed pre-
conditioners for the matrix systems stated in section 2. These will be applied within
the Minres algorithm [35]. This section is structured as follows. In section 3.1.1,
we propose a preconditioner for the matrix system (2.7) corresponding to a time-
dependent distributed control problem, minimizing (2.6) and using a discretize-then-
optimize formulation. We start with the case Ω1 = Ω and discuss the subdomain
case next. In section 3.1.2, we motivate a preconditioner for (2.9), which is the same
problem except with an optimize-then-discretize strategy employed. We then consider
Neumann boundary control problems for the case Ω1 = Ω; in section 3.2, we discuss
the time-independent case corresponding to (2.11), and in section 3.3 we extend this
theory to the time-dependent case, relating to (2.13). We only discuss the subdomain
case Ω1 ⊂ Ω for the time-dependent problem in section 3.4. In section 4, we present
numerical results to demonstrate that all our proposed solvers are effective in practice.

3.1. Time-dependent distributed control.

3.1.1. Minimizing J1 with discretize-then-optimize. We start by consid-

ering the case Ω1 = Ω, which gives M(1)
1/2 = M1/2. Equation (2.7), which is the

discretize-then-optimize formulation of (2.5) with J(y, u) = J1(y, u), can be written
as a saddle point system with

A =

[
τM1/2 0

0 βτM1/2

]
, B =

[
K −τM

]
,

in the notation of (2.1). The (negative) Schur complement of this system is therefore
given by

S =
1

τ
KM−1

1/2KT +
τ

β
MM−1

1/2M.(3.1)

For this matrix system, we seek a (symmetric block diagonal) preconditioner of
the form

P̂ =

[
Â 0

0 Ŝ

]
(3.2)

to be used with Minres.
For the approximation Â, we apply a similar approach as for the Poisson control

problem and take

Â =

[
τM̂1/2 0

0 βτM̂1/2

]
,(3.3)

where M̂1/2 denotes the approximation of M1/2. Here a Chebyshev semi-iteration
process is again taken to approximate consistent mass matrices or a simple inversion
for lumped mass matrices.

We now wish to develop a result which enables us to find an accurate approxima-
tion to (3.1), as well as to approximate Schur complements that we will consider in
section 3.1.2.

We start by noting that the matrix system (2.7) is of the form



Φ1 0 KT

0 βΦ1 −Φ2

K −Φ2 0
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with Schur complement given by

S = KΦ−1
1 KT +

1

β
Φ2Φ

−1
1 Φ2,(3.4)

where Φ1 and Φ2 are symmetric positive definite, as they are block matrices solely
consisting of mass matrices. (In section 3.1.2, we will consider approximations of Schur
complements of the form (3.4), where Φ1 and Φ2 have the same such properties.)

We note that in all the cases we consider, the matrix Φ−1
1 Φ2 simply involves scaled

(positive) multiples of identity matrices. That is, all the relevant blocks are scalings
of the same matrix I ∈ Rn×n. We may use the straightforward resulting observation
that MΦ−1

1 Φ2 = Φ−1
1 Φ2M with M defined as in (2.8) to demonstrate one further

property that we will require in our analysis: that KΦ−1
1 Φ2 + Φ−1

1 Φ2KT is positive
definite. We show this by applying Theorem 1 below with ∆ = Φ−1

1 Φ2.
Theorem 1. The matrix K∆ + ∆KT , where ∆ = blkdiag(α1I, α2I, . . . , αNtI),

α1, . . . , αNt > 0, I ∈ Rn×n, and K is as defined in (2.8), is positive definite.

Proof. We show thatwT (K∆+∆KT )w > 0 for allw :=
[
wT

1 wT
2 · · · wT

Nt−1 wT
Nt

]T
with w1, . . . , wNt ∈ Rn, and

∆ =




∆1

. . .

∆Nt


 , ∆j ∈ Rn×n, j = 1, . . . , Nt,

with ∆j = αjI, j = 1, . . . , Nt.
Using the symmetry of the mass and stiffness matrices M and K,

K∆+∆KT =




Λ1 −∆1M
−M∆1 Λ2 −∆2M

. . .
. . .

. . .

−M∆Nt−2 ΛNt−1 −∆Nt−1M
−M∆Nt−1 ΛNt



,

where Λj = (M + τK)∆j +∆j(M + τK) for j = 1, . . . , Nt and therefore by straight-
forward manipulation that

wT (K∆+∆KT )w =

Nt∑

j=1

wT
j [M∆j +∆jM + τK∆j + τ∆jK]wj

−
Nt−1∑

j=1

wT
j (M∆j)wj+1 −

Nt∑

j=2

wT
j (∆j−1M)wj−1

= 2τ

Nt∑

j=1

wT
j (K∆j)wj +

Nt−1∑

j=1

(wj − wj+1)
T (M∆j)(wj − wj+1)(3.5)

+wT
1 (M∆1)w1 +wT

Nt
(M∆Nt)wNt ,

where we have used the facts that M∆j = ∆jM and K∆j = ∆jK for j = 1, . . . , Nt,
which are clear by the definition of ∆.

As we now have that wT (K∆+∆KT )w is a sum of positive multiples of (symmet-
ric positive definite) mass and stiffness matrices, we deduce thatwT (K∆+∆KT )w > 0
and hence that K∆+∆KT is positive definite.
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Having demonstrated the properties required, we are now in a position to prove
a result bounding the eigenvalues of Ŝ−1S, where

Ŝ =

(
K +

1√
β
Φ2

)
Φ−1

1

(
K +

1√
β
Φ2

)T

(3.6)

and S is given by (3.4). To do this, we consider the Rayleigh quotient R := vTSv

vT Ŝv
.

This may be written as

R =
aTa+ bTb

aTa+ bTb+ aTb+ bTa
,(3.7)

where

a = Φ
−1/2
1 KTv, b =

1√
β
Φ

−1/2
1 Φ2v.

Now, as aTb + bTa = 1√
β
vT [KΦ−1

1 Φ2 + Φ2Φ
−1
1 KT ]v > 0 due to Theorem 1 with

∆j = Φ−1
1 Φ2 = Φ2Φ

−1
1 , it is clear from (3.7) that R < 1.

Further, showing that R ≥ 1
2 is a simple algebraic task, which requires only the

fact that bTb > 0 because of the positive definiteness of Φ1 and Φ2. (See [38] for
further details.)

We have hence proved the next theorem.
Theorem 2. If S and Ŝ are of the form stated in (3.4) and (3.6) respectively,

with Φ1, Φ2 symmetric positive definite and Φ−1
1 Φ2 = blkdiag(α1I, α2I, . . . , αNtI),

α1, . . . , αNt > 0, I ∈ Rn×n, then

λ(Ŝ−1S) ∈
[
1

2
, 1

]
.

We note that Theorem 2 is an extension to a result discussed in [38] concerning
convection-diffusion control.

We may now apply Theorem 2 with Φ1 = τM1/2 and Φ2 = τM, as Φ1 and
Φ2 defined in this way are clearly symmetric and positive definite and are such that
∆ = Φ−1

1 Φ2 is symmetric positive definite and satisfies M∆ = ∆M. We therefore
deduce that

Ŝ =
1

τ

(
K +

τ√
β

M
)

M−1
1/2

(
K +

τ√
β

M
)T

(3.8)

is an effective approximation to the Schur complement of the matrix system (2.7).
We note that applying the inverses of the matrix K + τ√

β
M and its transpose would

not be feasible as this essentially means solving the PDE directly, which in itself is
a computationally expensive task. Hence, for a practical algorithm we approximate
Ŝ using multigrid techniques for K + τ√

β
M and its transpose, that is, we require

a multigrid process for each of the diagonal blocks M + τK + τ√
β
M ∈ Rn×n. We

apply a few cycles of such a multigrid process Nt times to approximate the inverse of

K + τ√
β
M and Nt times to approximate the inverse of

(
K + τ√

β
M
)T

.

In conclusion, for an effective iterative method for solving (2.7), we recommend

a Minres method with a preconditioner of the form (3.2), with Â and Ŝ as in (3.3)
and (3.8). In section 4, we provide numerical results to demonstrate the effectiveness
of our proposed preconditioner.
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3.1.2. Minimizing J1 with optimize-then-discretize. We now turn our at-
tention to (2.9), the optimize-then-discretize formulation of (2.3) with J(y, u) =
J1(y, u). Again, we may write this as a saddle point system of the form (2.1) with

A =

[
τM0 0
0 βτM1/2

]
, B =

[
K −τM

]
.

We note that the (1, 1)-block of this system, A, is not invertible, due to the rank-
deficiency of M0, so when prescribing an approximation for a preconditioner, we
recommend considering a perturbation of the matrix M0

Mγ
0 =




M
M

. . .

M
γM




for some constant γ such that 0 < γ ≪ 1, and taking as our approximation to A the
following:

Â =

[
τM̂0 0

0 βτM̂1/2

]
,(3.9)

where M̂0 and M̂1/2 denote approximations to Mγ
0 and M1/2, generated by using

Chebyshev semi-iteration in the case of consistent mass matrices, or, in the case of
lumped mass matrices, themselves.

Now, due to the noninvertibility of M0, the Schur complement of the matrix
system (2.9) does not exist. Therefore it is less obvious what the (2, 2)-block of our
block diagonal preconditioner of the form (3.2) should be. The heuristic we use is

to examine the perturbed saddle point system
[

Â BT

B 0

]
and consider the Schur

complement of this matrix system. This is given by the quantity

S̃ :=
1

τ
KM̂−1

0 KT +
τ

β
MM−1

1/2M.

Now, by simple manipulation, we observe that

S̃ =
1

τ
KM̂−1

0 KT +
τ

β
Γ1M̂−1

0 Γ1,

where

Γ1 =




√
2M

M
. . .

M √
2γM



.

By applying Theorem 2 with Φ1 = τM̂0 and Φ2 = τΓ1, we therefore deduce that

Ŝ =
1

τ

(
K +

τ√
β
Γ1

)
M−1

0

(
K +

τ√
β
Γ1

)T

(3.10)
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satisfies

λ(Ŝ−1S̃) ∈
[
1

2
, 1

]
,

which tells us that Ŝ is a good Schur complement approximation to the perturbed
matrix system we have considered. As the matrix system (2.9) is very similar in
structure to this perturbed system, it seems that this would also be a pragmatic
choice for the (2, 2)-block of our block diagonal preconditioner for this system.

Therefore, within the Minres algorithm for solving (2.9), we again recommend a

preconditioner of the form (3.2) with Â and Ŝ as in (3.9) and (3.10). The numerical
results of section 4 demonstrate that this is indeed an effective approach.

3.2. Time-independent Neumann boundary control. We now consider
preconditioning the system (2.11), which arises when solving the time-independent
Poisson boundary control problem. If we write the saddle point system in the form
(2.1) with

A =

[
M 0
0 βMb

]
, B =

[
K −N

]
,

then constructing an approximation Â to the (1, 1)-block A is relatively straightfor-
ward, as we treat both mass matrices M and Mb as before. However, an issue arises
when we consider the effective approximation of the Schur complement of (2.11)

S = KM−1K +
1

β
NM−1

b NT .

Because of the rank-deficiency of the 1
βNM−1

b NT term of the Schur complement, it

is not as simple to find a clean and easy-to-invert approximation Ŝ to S such that
the eigenvalues of Ŝ−1S may be pinned down into an interval independent of both
h and β, as for the distributed control case in section 2.2. We therefore seek an
approximation which is robust for a range of h and β. We first wish to motivate our
choices before analyzing them in more detail.

We assume now that all mass matrices are lumped. It is then easy to see that
NM−1

b NT is a diagonal matrix with nonzero entries on the diagonal for every bound-
ary node. For simplicity we assume the degrees of freedom are ordered in such a way
that the nodes located on the boundary can be found in the lower right corner of
NM−1

b NT , i.e.,

NM−1
b NT =

[
0 0
0 Mb

]
.

Now our task is to approximate the Schur complement S via

Ŝ =

(
K +

1√
β
M̂

)
M−1

(
K +

1√
β
M̂

)

for some matrix M̂ in such a way that the structure of the original Schur complement
is maintained as much as possible. If we look at the last equation we see this gives
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Ŝ = KM−1KT +
1

β
M̂M−1M̂ +

1√
β

(
KM−1M̂ + M̂M−1K

)
.

We now look at the terms separately. The first one is part of the original Schur
complement. The second one needs to be looked at more carefully. Hence

[
0 0
0 αMb

] [
M−1

y,i 0

0 M−1
y,b

] [
0 0
0 αMb

]
=

[
0 0
0 α2MbM

−1
y,bMb

]

with i and b denoting interior and boundary, respectively, and for some constant α.
This tells us now that if

α2MbM
−1
y,bMb ≈ Mb,

we have found a good approximation to the Schur complement of the original matrix,
which can be evaluated efficiently. A simplification will now motivate our choice of α
as, if we approximate Mb = hIb (where Ib is the identity matrix of dimension equal
to the number of boundary nodes) and My,b = h2I, we obtain that

α2MbM
−1
y,bMb = Mb ⇐⇒ α2hh−2hI = α2I ≈ hI,(3.11)

and hence a good choice for α seems to be α =
√
h. As a result, our recommended

Schur complement approximation is now defined as

Ŝ1 =

(
K +

√
h

β
MΓ

)
M−1

(
K +

√
h

β
MΓ

)
,

i.e., the matrix M̂ introduced earlier is given by
√
hMΓ. We note that because of

the diagonal nature of the mass matrices the matrix MΓ = NM−1
b NT is simple to

evaluate. Another choice with a similar motivation is given by

Ŝ2 =

(
K +

√
h

β
MΓ

)
(hM̂Γ)

−1

(
K +

√
h

β
MΓ

)
.

Here M̂Γ is given by the matrix Mb in the boundary components and a small scalar
of order h for all nodes corresponding to the degrees of freedom on the interior, i.e.,

M̂Γ = MΓ + hIi,

with Ii a diagonal matrix with ones on the diagonal for all interior degrees of freedom
and zeros elsewhere. We now wish to analyze these two preconditioners in more
detail by considering the eigenvalue distributions of Ŝ−1

1 S and Ŝ−1
2 S. Our analysis

is based on the two-dimensional problem, however it can be easily extended to the
three-dimensional case.

Eigenvalues of Ŝ−1
1 S. Here we must consider the Rayleigh quotient

vTSv

vT Ŝ1v
=

vTKM−1Kv + 1
βv

TMΓv

vTKM−1Kv + h
βv

TMΓM−1MΓv +
√

h
βv

T [MΓM−1K +KM−1MΓ]v

=
vTKM−1Kv+ vT

(
1
βMΓ

)
v

vTKM−1Kv + h
βv

TMΓM−1MΓv + 2
√

h
βv

TMΓM−1Kv
,

which will provide us with the eigenvalues of Ŝ−1
1 S.
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If v ∈ null(MΓ), then
vTSv

vT Ŝ1v
= 1. If not, then we can write the above also as

vTSv

vT Ŝ1v
=

1

vTKM−1Kv+h
β vTMΓM−1MΓv

vTKM−1Kv+ 1
β vTMΓv

+
2
√

h
β vTMΓM−1Kv

vTKM−1Kv+ 1
β vTMΓv

.(3.12)

Using the fact thatMΓ

(
1
hM

)−1
MΓ = hMΓM

−1MΓ andMΓ are spectrally equivalent,
we can see that

0 <
vTKM−1Kv + h

βv
TMΓM

−1MΓv

vTKM−1Kv + 1
βv

TMΓv
=: D1 = O(1),

where D1 is a mesh and β-independent constant.
We now examine the term

2
√

h
βv

TMΓM
−1Kv

vTKM−1Kv + 1
βv

TMΓv
=:

T1

T2
,

in particular its maximum and minimum values, more carefully. We assume now
that M ≈ h2I and MΓ ≈ hI, ignoring all multiplicative constants. Furthermore,
we note that the eigenvalues of K are within the interval

[
cKh2, CK

]
, where cK and

CK are constants independent of h and β (apart from a single zero eigenvalue with a
corresponding eigenvector of ones—this corresponds to an arbitrary constant being a
solution of the continuous Neumann problem for Poisson’s equation).

As we work with lumped mass matrices throughout our work on Neumann bound-
ary control, we observe that T1 ≥ 0, as it relates to a positive constant multiplied by
the product of two matrices (MΓM

−1, which we have assumed to be approximately
h−1I, and K, which is symmetric positive definite). We also note that T2 must be
strictly positive.1

We now consider the maximum and minimum values of T1

T2
. We consider the

maximum such value by writing

T1

T2
=

β−1/2h1/2h1h−2c

h−2c2 + β−1h
=

β−1/2h−1/2c

h−2(c2 + β−1h3)
=

ac

c2 + a2

with a = h3/2β−1/2 and c corresponding to the relevant eigenvalue of K. Here, both
a and c are positive. Therefore, in this case, ac

c2+a2 ≤ 1
2 by straightforward algebraic

manipulation. This means that the denominator in (3.12) will be bounded above by
a constant independent of h, β, and τ , as both terms are of O(1). This gives us a
lower bound for λmin.

As T1 and T2 are both nonnegative, we may write that T1

T2
≥ 0 and hence that

vTSv

vT Ŝ1v
≥ 1

D1
, giving us an upper bound for λmax.

Putting our analysis together, and reinstating multiplicative constants, we con-
clude that

λmin(Ŝ
−1
1 S) = c1, λmax(Ŝ

−1
1 S) = C1,

where c1 and C1 are positive constants independent of h, β, and τ .

1This may be argued as follows. Both vTKM−1Kv and 1
β
vTMΓv are nonnegative terms. The

former will be strictly positive unless v is the vector of ones, which corresponds to the zero eigenvalue
of K. In this case, it is clear that the vTMΓv term will be strictly positive, as none of the entries of
MΓ are negative. So for each v, at least one term will be strictly positive.
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Eigenvalues of Ŝ−1
2 S. We may carry out a similar analysis for the approxima-

tion Ŝ2 of S by considering the Rayleigh quotient

vTSv

vT Ŝ2v
=

vTKM−1Kv + vT
(

1
βMΓ

)
v

vTK(hM̂Γ)−1Kv+ h
βv

TMΓ(hM̂Γ)−1MΓv + 2
√

h
βv

TMΓ(hM̂Γ)−1Kv
,

and writing that M ≈ h2I, M̂Γ ≈ hI, and MΓ ≈ blkdiag(0, hIb).

Proceeding as we did for the analysis of Ŝ1, we obtain that

λmin(Ŝ
−1
2 S) = c2, λmax(Ŝ

−1
2 S) = C2,

where c2 and C2 are positive constants independent of h, β, and τ , provided we use
lumped mass matrices.

We emphasize that due to the rank-deficient nature of the 1
βNM−1

b NT term of the
Schur complement S, it is more difficult to obtain a complete picture of the eigenvalue
distributions of Ŝ−1

1 S and Ŝ−1
2 S than for the preconditioned Schur complement in

the distributed control case. Consequently, the bounding of λ(Ŝ−1
1 S) and λ(Ŝ−1

2 S)
by constants of O(1) is less descriptive than the more specific bound outlined for
distributed control in [37] and discussed in section 2.2.

However, the conclusion that the eigenvalues of Ŝ−1
1 S and Ŝ−1

2 S are certainly
real and bounded above and below by constants of O(1), independently of h, β, and
τ , indicates that either S1 or S2 should serve as an effective approximation of S—a
hypothesis which is verified by the numerical results presented in section 4. We note
that in the above analysis, we have assumed that lumped mass matrices are being
used; however, numerical tests indicate that we still obtain a clean bound when using
consistent mass matrices.

3.3. Time-dependent Neumann boundary control. In the case of the time-
dependent boundary control problem, we are interested in approximating the Schur
complement

(3.13) S =
1

τ
KM−1

1/2KT +
τ

β
NM−1

1/2,bN T

of the saddle point matrix A. We want to approximate the above by

(3.14) Ŝ3 = τ−1

(
K +

τ√
β

M̂
)

M−1
1/2

(
KT +

τ√
β

M̂
)
,

and for this to be a good approximation the choice of M̂ is again crucial. We recall
that we assumed M1/2,b to be a block diagonal matrix of lumped boundary mass
matrices and also that M1/2 consists of lumped mass matrices over the domain Ω.

Hence the first term in (3.14) is given by τ−1KM−1
1/2KT , which means that the first

term in the Schur complement (3.13) is well represented in our approximation. We
then obtain the next term from (3.14) as

τ−1ττ√
β
√
β

M̂M−1
1/2M̂ =

τ

β
M̂M−1

1/2M̂.

To understand how this approximates NM−1
1/2,bN T , we need to study the structure of

both matrix products more carefully. We recall that M1/2,b = blkdiag(12Mb,Mb, . . . ,
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Mb,
1
2Mb) and that with some abuse of notation N = blkdiagrec(N, . . . , N), giving

for the overall structure

NM−1
1/2,bN T =




2NM−1
b NT

NM−1
b NT

. . .

NM−1
b NT

2NM−1
b NT



.

We see that as M1/2 = blkdiag
(
1
2M,M, . . . ,M, 1

2M
)
and M̂ = blkdiag(M̂, . . . , M̂),

the structure of the large problem looks as follows:

M̂M−1
1/2M̂ =




2M̂M−1M̂

M̂M−1M̂
. . .

M̂M−1M̂

2M̂M−1M̂



.

This indicates that it is important for M̂M−1M̂ ≈ NM−1
b NT , which we split up even

further now. Consider an ordering of the degrees of freedom on the boundary and in
the interior as before,

M̂M−1M̂ =

[
0 0
0 αMb

] [
M−1

y,i 0

0 M−1
y,b

] [
0 0
0 αMb

]
=

[
0 0
0 α2MbM

−1
y,bMb

]
,

and now note that

NM−1
b NT =

[
0 0
0 Mb

]
,

where My,i and My,b denote the splitting of the mass matrix M into its interior and

boundary parts, respectively. Similar to before, we can show that α =
√
h is a good

choice. A choice not very different from the above is given by the approximation

(3.15) Ŝ4 = τ−1

(
K + τ

√
h

β
M̂
)
(hM̂Γ)

−1

(
K + τ

√
h

β
M̂
)T

,

where M̂Γ consists of block diagonal matrices that have the boundary mass matrix
for the boundary nodes and a suitably scaled identity matrix for the interior nodes.
(See also the time-independent case.)

Eigenvalues of Ŝ−1
4 S. We now search for the eigenvalues of Ŝ−1

4 S, where

(3.16) Ŝ4 = τ−1

(
K + τ

√
h

β
M̂
)
(hM̂Γ)

−1

(
K + τ

√
h

β
M̂
)T

,

by considering the Rayleigh quotient

vTSv

vT Ŝ4v
=

τ−1vTKM−1
1/2KTv + τβ−1vTM̂v

τ−1vTK(hM̂Γ)−1Kv + τh
β vTM̂(hM̂Γ)−1M̂v + 2

√
h
βv

TK(hM̂Γ)−1M̂v
,



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1142 J. W. PEARSON, M. STOLL, AND A. J. WATHEN

Fig. 3.1. Singular values of L and K for a small example.

using the fact that M̂Γ = NM−1
1/2,bN T . Assuming that v ∈ null(M̂), we obtain that

vTSv

vT Ŝ4v
= O(1).

So we now consider the case where v is not in this nullspace; we then examine the
term

1

τ−1vT K(hM̂Γ)−1Kv+ τh
β vT M̂(hM̂Γ)−1M̂v

τ−1vT KM−1
1/2

KTv+τβ−1vT M̂v
+
√

h
β

vT (K(hM̂Γ)−1M̂+M̂(hM̂Γ)−1KT )v
τ−1vT KM−1

1/2
KTv+τβ−1vT M̂v

.

So if we now assume (neglecting constants for now) that hM̂Γ ≈ M1/2 ≈ h2I and

M̂ ≈ M̂(hM̂Γ)
−1M̂ ≈ hI, we see that

τ−1vTK(hM̂Γ)
−1Kv + τh

β vTM̂(hM̂Γ)
−1M̂v

τ−1vTKM−1
1/2KTv + τβ−1vTM̂v

= O(1).

In order to simplify the analysis at this stage we simply assume that K is approximated
by its block diagonal, i.e., L ≈ K (see Figure 3.1). We use this to approximate the
above by

√
h

β

vT
(
L(hM̂Γ)

−1M̂ + M̂(hM̂Γ)
−1L

)
v

τ−1vTLM−1
1/2Lv + τβ−1vTM̂v

=:
T1

T2
.

We may proceed as in section 3.2 for the time-independent boundary control case to
obtain (neglecting constants)

T1

T2
=

h1/2β−1/2h−1c

τ−1h−2c2 + τβ−1h
=

β−1/2h−1/2c

h−2τ−1(c2 + τ2β−1h3)
=

τβ−1/2h3/2c

c2 + τ2β−1h3
=

ac

c2 + a2
≤ 1

2
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with a = τβ−1/2h3/2 and c ∈
[
cKτh2 + cMh2, Ckτ + CMh2

]
. This shows that the

results for the time-independent case can be used here as well. For the minimum
value of T1

T2
, we may apply a similar analysis as in the case of Ŝ−1

1 S and working once
more with lumped mass matrices. We obtain that (reintroducing constants)

λmin(Ŝ
−1
4 S) = c4, λmax(Ŝ

−1
4 S) = C4,

where c4 and C4 are positive constants independent of h, β and τ .
A similar analysis can be carried out for Ŝ−1

3 S. As for the time-independent case,
it is more difficult to develop a complete picture of the eigenvalue distribution of the
preconditioned Schur complement than for the distributed control case; however, it is
useful to see that we may bound the eigenvalues by constants of O(1) independently
of the parameters h, β, and τ . Indeed, the results shown in section 4 show that the
performance for the preconditioners for the time-dependent and time-independent
boundary control problems is quite similar, and we find that both approximations Ŝ3

and Ŝ4 are effective for this problem for a wide range of parameters.

3.4. The subdomain case. We now wish to address the case when the desired
state is only given on a subdomain Ω1 of Ω. The saddle point system is then defined by

A =

[
τM(1)

1/2 0

0 βτM1/2

]
, B =

[
K −τM

]
,

and we note that the matrix A is only positive semidefinite as the matrix M(1)
1/2

is semidefinite. However, we wish to obtain an invertible approximation of A, as
well as an effective Schur complement approximation, as in previous sections. For

that purpose we introduce a parameter γ ∈ R such that the matrix M(1,γ)
1/2 =

blkdiag
(
1
2M

γ
1 ,M

γ
1 , . . . ,M

γ
1 ,

1
2M

γ
1

)
with Mγ

1 defined as

(Mγ
1 )Ω�Ω1 = γI or (Mγ

1 )Ω�Ω1 = γMΩ�Ω1 .

Note that we use the same notation for the small parameter, namely, γ, dealing with
the zero parts of the (1, 1)-block and believe it will be clear from the context what
γ represents. The (1, 1)-block of this perturbed problem may now be approximated

by Â = blkdiag(τM̂(1,γ)
1/2 , βτM̂1/2), where M̂(1,γ)

1/2 now denotes the relevant approx-

imation of mass matrices (Chebyshev semi-iteration or diagonal solves) within the

matrix M(1,γ)
1/2 . The Schur complement of this perturbed problem that we now wish

to approximate is given by

S̃ =
1

τ
K(M(1,γ)

1/2 )−1KT +
τ

β
MM−1

1/2M.

Again our goal is to derive an approximation to the Schur complement that exhibits
robustness with respect to the regularization parameter. For this we consider

Ŝ =
1

τ
(K + M̂)(M(1,γ)

1/2 )−1(K + M̂)T ,

where we have to define M̂. Ideally, we have agreement between the terms
1
τ M̂(M(1,γ)

1/2 )−1M̂ ≈ τ
βMM−1

1/2M. Assuming now that all mass matrices are lumped

we can give an elementwise description of what we wish to achieve, i.e.,

m̂2
ii =

τ2

β

(
m(1,γ)

)
ii
mii,
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that is,

(3.17) m̂ii =
τ√
β

√(
m(1,γ)

)
ii

√
mii.

We now have to distinguish between indices i that represent degrees of freedom within
Ω1 or in Ω � Ω1. In more detail,

(3.18)
(
m(1,γ)

)
ii
=

{
mii if i ∈ Ω1,
γ otherwise.

We have now established an expression for the elements of M̂ in the case of the
distributed control problem. We find that the resulting Schur complement approxi-
mation works well in practice—we demonstrate this once again with numerical results
in section 4.

Choice of γ. We now explain how we select in practice the “perturbation param-
eter” γ that we have utilized in previous sections. We start by deriving the parameter
γ for the case when optimize-then-discretize is used for the distributed control prob-
lem. We assume that we want both terms of the Schur complement

S = KM̂−1
0 KT + τβ−1M2

with M̂0 = blkdiag(M, . . . ,M, γM), M2 = blkdiag(2M,M. . . . ,M, 2M) to be “bal-
anced” (see [4, 52]). We simplify this task by replacing K by its block diagonal
L := blkdiag(L, . . . , L), where L = M + τK. We now wish to balance the terms in
this new approximation with a particular focus on the parameter γ, i.e.,

Ŝ = LM̂−1
0 LT + τβ−1M2.

Comparing the blocks in Ŝ that involve γ, we obtain

(3.19) γ−1h−2L2 ≈ τβ−1h2I,

using the approximation M = h2I for a two-dimensional problem. In this heuristic,
we want to balance the smallest eigenvalues of both terms; for L2 = τ2K2 + τKM +
τMK +M2 these will be of the order τ2h4 (neglecting constants). In order for γ to
balance both terms in (3.19), we get

γ−1h−2τ2h4 ≈ τβ−1h2

and therefore that

(3.20) τβ ≈ γ.

Note that the above heuristic holds for the two-dimensional case. In complete analogy,
we can derive that

(3.21) τβ ≈ γ

is also a good choice for problems in three dimensions. If one wants to balance the
largest eigenvalues in both terms the parameter γ might not be small, depending on
the choice of τ and β. In a very similar way we can derive a heuristic for the parameter
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γ in the subdomain case. To solve the distributed control problem we replace the zero
entries by γ to give

(3.22) γ−1τ2h4 ≈ τβ−1h2 ⇒ γ = τβh2.

Rees and Greif [41] also introduce a similar parameter γ that is part of a perturbation
of the (1, 1)-block of a saddle point problem coming from the treatment of a quadratic
program using interior point methods. They construct a preconditioner with an aug-
mented (1, 1)-block, i.e., A+γ−1BBT , using the classical saddle point notation, where
their parameter γ is chosen to balance the two summands A and BBT , similar to our
heuristic above.

4. Numerical results. The results presented in this section are based on an im-
plementation of the above described algorithms within the deal.II [2] framework using
Q1 finite elements. For the AMG preconditioner, we used the Trilinos ML package [15]
that implements a smoothed aggregation AMG. Within the AMG we typically used 10
steps of a Chebyshev smoother in combination with the application of two V-cycles.
Our implementation of Minres was taken from [12] and was stopped with a tolerance
of 10−4 for the relative pseudoresidual. Our experiments are performed for T = 1 and
τ = 0.05, i.e., 20 time-steps. We consider homogeneous Dirichlet conditions for dis-
tributed control problems, though we are of course not limited to them, and also a
zero forcing term f = 0 for Neumann boundary control problems. We carried out the
examples on the domain Ω = [0, 1]3. Whenever we show the degrees of freedom these
are only the degrees of freedom for one grid point in time (i.e., for a single time-step).
Implicitly, we are solving a linear system of dimension three times the number of time-
steps (Nt) times the degrees of freedom of the spatial discretization (n). For example,
a spatial discretization with 274,625 unknowns and 20 time-steps corresponds to an
overall linear system of dimension 16,477,500. All results are performed on a Centos
Linux machine with Intel Xeon CPU X5650 at 2.67 GHz CPUs and 48 GB of RAM.

4.1. Distributed control. We start by giving results for the distributed control
examples presented earlier. For the distributed control problems we impose a zero
Dirichlet condition. This results in the computed state not matching the desired
state quite as well very close to the boundary. Another option would be to impose a
Dirichlet condition where the state corresponds to the desired state on ∂Ω.

4.1.1. The all-times case—whole domain. The example we consider for the
distributed control problem is given by the all-times case, where the functional J(y, u)
contains observations for all time-steps. We have the choice of using the trapezoidal
rule (which corresponds to the discretize-then-optimize formulation) or the rectan-
gular rule (which corresponds to the optimize-then-discretize formulation) for the
discretization of the state integral. We will show results for both cases that desired
to drive the state close to the desired state given by

ȳ = 64t sin
(
2π
(
(x0 − 0.5)2 + (x1 − 0.5)2 + (x2 − 0.5)2

))

with a zero initial value. An illustration of the desired state, the computed state, and
the control is shown in Figure 4.1 for one particular point in time, i.e., one particular
time-step. The results with the Schur complement approximation as presented in
section 3.1.1 (trapezoidal rule) are shown in Table 4.1 and the results for the approach
presented in section 3.1.2 (rectangular rule) are shown in Table 4.2. We can see that
the number of iterations remains constant with varying mesh size and regularization
parameter β.
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4.1.2. The all-times case—subdomain problem. We now show results for
the subdomain problem when the desired state is again defined by

ȳ = 64t sin
(
2π
(
(x0 − 0.5)2 + (x1 − 0.5)2 + (x2 − 0.5)2

))

and the domain Ω1 is defined by

Ω1 =
{
x ∈ [0, 1]3 : 0.4 ≤ x1, x2 ≤ 0.7

}
.

Results for this case are shown in Table 4.3, where we can again see that the iteration
numbers are small and robust with respect to the mesh parameter and the regulariza-
tion parameter. The timings are slightly higher than in the case for the whole domain.
This is because in our experience the AMG approximation sometimes deteriorates for
small parameters and as we now include γ in our approximation we decided to use
four V-cycles instead of two.

4.2. Boundary control. We now present results for the time-independent and
time-dependent Neumann boundary control problems discussed earlier.

4.2.1. Time-independent boundary control. The time-independent bound-
ary control problem example that we present starts from initial value zero, matching

Fig. 4.1. Control, desired state, and state for distributed control with β = 1e − 4 at grid point
15 in time.

Table 4.1
Results for discretize-then-optimize approach via trapezoidal rule.

DoF Minres(T) Minres(T) Minres(T)

β = 1e − 2 β = 1e − 4 β = 1e − 6
4913 10(2) 12(2) 12(2)
35937 10(14) 12(17) 12(18)
274625 10(148) 12(171) 12(170)

Table 4.2
Results for optimize-then-discretize approach via rectangular rule.

DoF Minres(T) Minres(T) Minres(T)

β = 1e − 2 β = 1e − 4 β = 1e − 6
4913 12(3) 10(2) 8(1)
35937 12(16) 10(14) 10(14)
274625 14(196) 10(152) 10(147)
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Table 4.3
Results for discretize-then-optimize approach via trapezoidal rule for a subdomain problem.

DoF Minres(T) Minres(T) Minres(T)

β = 1e − 2 β = 1e − 4 β = 1e − 6
4913 12(5) 13(5) 15(5)
35937 12(28) 15(35) 17(38)
274625 12(332) 15(386) 19(495)

Table 4.4
Results obtained with Schur complement approximation Ŝ1.

DoF Minres(T) Minres(T) Minres(T)

β = 1e − 2 β = 1e − 4 β = 1e − 6
4913 26(1) 28(1) 22(1)
35937 32(2) 38(2) 30(2)
274625 34(22) 48(31) 46(29)
2146689 38(211) 60(289) 64(314)

the desired state given by

ȳ =

{
sin(x1) + x2x0 if x0 > 0.5 and x1 < 0.5,

1 otherwise.

The desired state, computed state, and control are shown in Figure 4.2. The CPU
times and iteration numbers for the Minres algorithm with varying mesh size and
regularization parameter are shown in Table 4.4 for the Schur complement approx-
imation Ŝ1 and in Table 4.5 for Ŝ2. We see that Ŝ1 performs better in all cases,
although the results for Ŝ2 are not dramatically different. We see for both approaches
a slow growth in the iteration numbers, which is expected when dealing with a pure
Neumann problem (see [5]). We observe some rather small growth with decreasing
β, especially for small meshes, but with the iteration numbers still reasonably small.
We also observe improved preformance when h3 and β are further apart. The results
we experience matched our expectations based on the theory detailed in section 3.2.

4.2.2. Time-dependent boundary control. The setup for the example time-
dependent boundary control problem we present again starts with an initial value of
zero and the following time-dependent desired state:

ȳ =

{
sin(t) + x0x1x2 if x0 > 0.5 and x1 < 0.5,

1 otherwise.

Fig. 4.2. Control, desired state, and state for boundary control with β = 1e − 4.
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Table 4.5
Results obtained with Schur complement approximation Ŝ2.

DoF Minres(T) Minres(T) Minres(T)

β = 1e − 2 β = 1e − 4 β = 1e − 6
4913 38(1) 38(1) 30(1)
35937 44(3) 54(3) 44(3)
274625 48(31) 74(48) 70(44)
2146689 54(263) 98(466) 108(513)

Table 4.6
Results obtained with Schur complement approximation Ŝ3.

DoF Minres(T) Minres(T) Minres(T)

β = 1e − 2 β = 1e − 4 β = 1e − 6
4913 34(7) 38(7) 28(6)
35937 38(49) 48(62) 38(48)
274625 48(620) 62(800) 58(725)

Table 4.7
Results obtained with Schur complement approximation Ŝ4.

DoF Minres(T) Minres(T) Minres(T)

β = 1e − 2 β = 1e − 4 β = 1e − 6
4913 40(8) 42(8) 36(7)
35937 50(65) 59(73) 42(54)
274625 62(808) 80(1002) 68(855)

The desired state as well as the computed state and control are depicted for grid
point 20 in time (i.e., the 20th time step) in Figure 4.3 and for grid point 10 (the
10th time step) in Figure 4.4. We again computed results for both Schur complement

approximations presented earlier; the results are given in Table 4.6 for Ŝ3 and in Table
4.7 for Ŝ4. We again see higher iteration numbers for the second approximation Ŝ4

and benign growth with respect to the mesh size, but again with improved results if
h3 and β are far apart. The results here reflect the results for the time-independent
case, which we expect due to our theoretical study presented in section 3.3.

5. Concluding remarks and outlook. We have presented various setups for
the optimal control of the heat equation. We derived the discretized first order condi-
tions for the distributed and boundary control cases and showed that both problems

Fig. 4.3. Control, desired state, and state for boundary control with β = 1e − 6 at grid point
20 in time.
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Fig. 4.4. Control, desired state, and state for boundary control with β = 1e − 6 at grid point
10 in time.

lead to a linear system with saddle point structure. We then extended the analysis for
a regularization-robust preconditioner from the time-independent distributed control
case to the time-dependent distributed control case. We also provided some bounds for
the case of Neumann boundary control for the time-dependent and time-independent
setups. We then gave an extensive numerical study of the preconditioners derived
earlier and showed that the dependence with respect to the mesh size, regularization
parameter, and time-step could be removed for the distributed control case. The nu-
merical results for the pure Neumann control problem illustrated a benign dependence
on the mesh size (similar to the forward problem) and very little dependence with
respect to the regularization parameter β. These results have already been used in a
different work on time-periodic parabolic problems with control constraints (see [51]),
where good numerical results were obtained. The work presented in this paper also
serves as a framework for the consideration of other time-dependent optimal control
problems. The techniques presented could be adapted for the case where the control
is only applied in a subdomain, or examples with additional constraints such as box
constraints being imposed on the state or control.

A possible future extension of this work would be to develop robust precondi-
tioners for more complicated PDEs with respect to all parameters involved. As well,
one could generate solvers for the subdomain case, as discussed in this manuscript,
or the boundary control setting. Furthermore, one drawback of the procedure de-
scribed in this paper, which could be tackled in future work, is the necessary storage
requirement for the vectors corresponding to the control, state, and adjoint. Although
it is possible to condense the system by, for example, eliminating the control, more
research would be required here. Various approaches have been applied to time-
dependent PDE-constrained optimization in the past. For instance, checkpointing
[17], a method which involves storing only certain checkpoints of the state and com-
puting the adjoint state based on these, has been investigated. We note that our
one-shot approach is not ideally suited for this method but rather could be treated
using ideas based on instantaneous control [10, 24, 21], multiple shooting [21], and
parareal schemes [31, 32, 33]. Possibly the simplest idea of all is to split up the interval
into subintervals and use our approach to solve the relevant subproblems, for which all
the analysis presented here carries over. However, we note that the solution obtained
using this approach is suboptimal [21]. Parareal and shooting methods maintain the
splitting into subintervals but ensure agreement of the control and state where the
time-slices meet each other. We believe that the techniques presented here can be
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used within multiple shooting methods such as that presented in [21]—this is another
area of further work which will be investigated.
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A.4. TIME-PERIODIC HEAT EQUATION AND PRECONDITIONING

A.4 Time-periodic heat equation and precondition-
ing

This paper is published as

M. Stoll, All-at-once solution of a time-dependent time-periodic
PDE-constrained optimization problems, IMA J. Numer Anal,, 34
(2014), pp. 1554–1577.

Result from the paper

In this paper we develop robust preconditioners for time-periodic problems.
In some instances we make use of the circulant structure within the dis-
cretization. For such a circulant preconditioner Table A.4 shows minres
iterations and timings for various meshes and values of the regularization
parameter β applied to a boundary control problem.

DoF minres(t) minres(t) minres(t)
β = 1e− 2 β = 1e− 4 β = 1e− 6

36880 30(14) 26(12) 20(9)
227280 32(83) 32(82) 26(67)

1560400 34(384) 40(450) 36(403)
11476560 36(2671) * *

Table A.4: Circulant preconditioner: minres iterations and timings for
various meshes and values of the regularization parameter β applied to a
boundary control problem with only one step for the Uzawa iteration.
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In this paper we describe the efficient solution of a partial differential equation (PDE)-constrained opti-

mization problem subject to the time-periodic heat equation. We propose a space-time formulation for

which we develop a monolithic solver. We present preconditioners well suited to approximating the Schur

complement of the saddle point system associated with the first-order conditions. This means that, in

addition to a Richardson iteration-based preconditioner, we also introduce a preconditioner based on the

tensor product structure of the PDE discretization, which allows the use of an FFT-based preconditioner.

We also consider additional bound constraints that can be treated using a semismooth Newton method.

Moreover, we introduce robust preconditioners with respect to the regularization parameter. Numerical

results will illustrate the competitiveness and flexibility of our approach.

Keywords: PDE-constrained optimization; saddle point systems; time-dependent PDE-constrained opti-

mization; preconditioning; Krylov subspace solver.

1. Introduction

For many years the solution of partial differential equation (PDE) problems has been the focus of the

numerical analysis and scientific computing community. The progress made over recent decades has

enabled the search for, in some sense, optimal solutions of PDEs. This task in the field often labelled

PDE-constrained optimization is to minimize an objective function subject to constraints given by

PDEs. Introductions to the field can be found in Ito & Kunisch (2008), Hinze et al. (2009) and Tröltzsch

(2010).

A typical example will look like the following:

min J(y, u) (1.1)

s.t L(y, u) = 0, (1.2)

where J(y, u) is the function we want to minimize and L(y, u) = 0 represents an equation constraint,

typically a PDE, that links the state y and the control u. We assume that suitable boundary conditions are

given and in the case of time-dependent problems initial conditions are specified. Often the introduction

of additional constraints, such as bound constraints on the control and/or the state poses additional

challenges (see Ito & Kunisch, 2008; Hinze et al., 2009; Tröltzsch, 2010 and the references mentioned

therein for suitable methods to deal with this).

Our focus in this paper is to solve a problem of the above type where the PDE constraint is equipped

with appropriate boundary conditions and the state y exhibits time periodicity, i.e., y(0, ·) = y(T , ·),

c© The authors 2013. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
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where T is the final time we are interested in. Problems of this type have recently been analysed, for

example, in Abbeloos et al. (2011) and Potschka et al. (2012). The motivation for optimal control

problems of this type is that many applications incorporate time periodicity; see, e.g., Kawajiri & Biegler

(2006) for so-called simulated moving bed reactors.

The paper is organized as follows. In the next section, we introduce the problem formulation and

the PDE constraint with time periodicity. We will discuss the discretization and then give the first order

optimality system, which shows additional structure due to the time periodicity. In Section 3 we briefly

introduce a technique based on the semismooth Newton method (cf. Kummer, 1988; Pang, 1990; Qi

& Sun, 1993; Bergounioux et al., 1999; Hintermüller et al., 2002) that will allow us to handle box

constraints on the control. We will then briefly motivate our choice of the Krylov subspace solver. In

Section 5, we discuss the preconditioners that are suitable for our approach as the matrix structure is

different from the case when nonperiodic boundary conditions are given. Note that parts of our approach

are similar to previous work by the author (see Pearson et al., 2012b) but the special structure in the time-

periodic case introduces additional structure that can be exploited within a numerical treatment. Namely,

we discuss a stationary iteration-based preconditioner and also a preconditioner using the circulant

structure of the discretized PDE. We discuss fast solvers for the case of a boundary control problem

focusing on the numerical issues that arise for a varying regularization parameter. Numerical results in

Section 6 illustrate the efficiency of our approach.

2. Problem and discretization

In this paper, we analyse tracking-type functionals subject to a time-periodic PDE. The functional that

we want to minimize is given by

J1(y, u) := 1

2

∫ T

0

∫

Ω1

(y(x, t) − ȳ(x, t))2 dx dt + β

2

∫ T

0

∫

Ω2

(u(x, t))2 dx dt, (2.1)

where Ω1,2 ⊆ Ω are domains in Rd with d = {2, 3}, y is the state, ȳ is the desired state and u is the

control. We want to minimize this functional subject to the time-periodic heat equation that links the

state and the control and is hence called the state equation. In more detail, the equation now reads as

yt − △y = χΩ2
u (2.2)

defined over Ω × [0, T] with χΩ2
the characteristic function of the domain Ω2. Also we impose the

Dirichlet boundary condition y = 0 on the spatial boundary ∂Ω and the time-periodic condition y(x, 0) =
y(x, T). In addition, we allow for variations of this problem. The first is the so-called boundary control

problem given by

Jbnd(y, u) := 1

2

∫ T

0

∫

Ω1

(y(x, t) − ȳ(x, t))2 dx dt + β

2

∫ T

0

∫

∂Ω

(u(x, t))2 dx dt, (2.3)

subject to

yt − △y = f , (2.4)

with Neumann boundary condition

∂y

∂n
= u,
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and some fixed forcing term f that we assume to be zero. Additionally, the introduction of bound con-

straints on the control and/or the state poses additional challenges to numerical algorithms. Bounds such

as

ua � u � ub and ya � y � yb

have to be accounted for by more sophisticated algorithms (Ito & Kunisch, 2008; Hinze et al., 2009).

We discuss the necessary approaches for control constraints in later parts of this paper (see Section

3). There are two ways to proceed from the above problems. First, one can write down the infinite-

dimensional first-order conditions and then discretize them; this is the so-called optimize-then-discretize

approach. The other approach is to discretize first and then write down the first order or Karush-Kuhn-

Tucker (KKT) conditions; this is the so-called discretize-then-optimize approach. For many problems it

is desirable that these two approaches coincide, which is taken into account when devising discretization

schemes such as the ones derived in Hinze et al. (2008). We here follow the discretize-then-optimize

approach. Hence, we discretize both the functional and the PDE using standard Galerkin Q1 finite

elements, rectangular in our case because of the underlying use of deal.II (see Bangerth et al., 2007),

which does not use triangular elements.

For the time discretization of the PDE we use a backward Euler scheme that leads to the semidis-

cretized form of (2.2),

yk − yk−1

τ
− △yk = uk , (2.5)

with τ being the time step, and the number of grid points in time is denoted by nt. The second PDE

(2.4) is treated similarly. The finite element discretization in space is straightforward and putting all

time steps into one system, a so-called one-shot approach, leads to




M + τK −M

−M M + τK

−M M + τK

. . .
. . .

−M M + τK




︸ ︷︷ ︸




y1

y2

y3

...

yN




− τN u = d,

K

(2.6)

where M and K are the finite element (lumped) mass and stiffness matrix, respectively, and d the right-

hand side representing the boundary conditions and forcing terms. The finite element stiffness and mass

matrices are constructed from

Kij =
∫

Ω

∇φi · ∇φj and Mij =
∫

Ω

φiφj,

respectively, where the φ functions are the basis functions that are used both for the trial and test space

(see Elman et al., 2005). The mass lumping is obtained by a particular choice of numerical quadrature,

i.e., the trapezoidal rule for our Q1 elements. Note that K exhibits a circulant structure, which we will

discuss in more detail later. Further, we have the matrix N = blkdiag(N , N , . . . , N),1 where N can be a

rectangular matrix, depending on the nature of the optimal control problem and its discretization. For

the distributed control problem, as discretized here N is a square mass matrix because u is discretized

with the same trial functions as y and these are also the basis for the test functions. In the case of u being

1 Here we use the MATLAB notation blkdiag to describe a matrix in block-diagonal form.
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discretized using different finite element trial functions from the ones used for the state y, e.g., piecewise

constant elements for the control and linear finite elements for the state, or if u is a boundary control,

then N is a rectangular matrix. In the case of a boundary control N , will consist of entries coming from

the integral
∫

∂Ω
u tr(v), where u is the boundary control and tr is the trace operator acting on the test

function v from the test space used for the discretization of the state y.

We now need to discretize the objective function J(y, u) and for this we use the trapezoidal rule to

get the discretized objective function as

J(y, u) = τ

2
(y − ȳ)TMy(y − ȳ) + τβ

2
uTMuu, (2.7)

where My = blkdiag(1/2My, My, . . . , 1/2My), where My is the mass matrix over the domain Ω1, and

Mu = blkdiag(1/2Mu, Mu, . . . , 1/2Mu), where Mu represents the mass matrix for the domain Ω2.

Once all these ingredients are available, we can combine them into a Lagrangian and write down

the first-order conditions, which can be written as the following KKT system:




τMy 0 −KT

0 βτMu τN T

−K τN 0






y

u

p


=




Myȳ

0

d


 . (2.8)

Note that (2.8) represents a saddle point system with a symmetric and positive semidefinite (1, 1) block

given by blkdiag(τMy, βτMu) and a full rank block [−K τN ]. For the case of a singular K we refer

the reader to Section 5.5. Here, p represents the discrete Lagrange multiplier or equivalently the solution

to the adjoint PDE. These conditions are sufficient for the invertibility of the saddle point system. In a

optimize-then-discretize approach one would obtain the adjoint PDE from the Lagrangian formulation.

Its existence and uniqueness is discussed in Tröltzsch (2010, Lemma 3.17). Here, the first row in (2.8)

represents a discretization of the adjoint PDE obtained from a discretize-then-optimize approach and

the existence of its solution follows from the existence of the solution to the state equation.

Note that in the case of a discretization of the objective function via the rectangular rule the block

blkdiag(τMy, βτMu) would contain zero blocks. In the case of only a final time observation where the

first term in J(y, u) is given by

1

2

∫

Ω1

(y(x, T) − ȳ(x, T))2 dx,

the (1, 1) block of the saddle point system, will be highly singular (see Benzi et al., 2011; Simoncini,

2012; Stoll & Wathen, 2010, 2013). Note that the above linear system will typically be of very large

dimension, i.e., the dimension is given by 3nnt, where n is the number of the degrees of freedom of the

PDE discretization.

Note that a reduction in the dimensionality of the above system is possible by eliminating the

control u, a technique that is also discussed in Hinze (2005) and Simoncini (2012). In the case where

the (1, 1) block is positive definite, we can also only work with the Schur-complement reduction as the

mass matrices are lumped and hence the evaluation of M−1
y and M−1

u is trivial. This case would enable

the use of the classical conjugate gradient (CG) method (see Hestenes & Stiefel, 1952) but the challenge

in developing good preconditioners for the Schur complement stays intact. Note this does not apply if

My and Mu are not invertible, e.g., Ω1 � Ω .
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3. Bound constraints

Bound constraints on the control and the state represent additional challenges with regard to the design

of numerical methods. For this purpose the development of semismooth Newton methods has received

much attention over the last decade. In the context of PDE-constrained optimization this method was

first introduced as a primal–dual active set method (see Bergounioux et al., 1999) for problems with

control constraints. It was later shown in Hintermüller et al. (2002) that this method is equivalent to

a semismooth Newton method. Since then the semismooth Newton method has been employed for

many problems in PDE-constrained optimization. The field of nonsmooth Newton methods is vast and

we refer the reader to Kummer (1988), Pang (1990), Qi & Sun (1993), Hintermüller et al. (2002) and

Ulbrich (2011) and the references mentioned therein.

In Stoll & Wathen (2012) the efficient solution of the linear systems arising within the semismooth

Newton method for steady control-constrained problems was discussed. Here, we want to use a tech-

nique that again employs the semismooth Newton method but applied to a slightly different set-up.

In more detail, we replace the objective function (2.1) and the control constraints by a penalized objec-

tive function, which for PDE-constrained optimization problems is often referred to as the Moreau–

Yosida regularization (see Bergounioux & Kunisch, 2002). This function looks as follows:

J̃(y, u) := J(y, u) + 1

2ε

∫ T

0

∫

Ω2

(max{0, u(x, t) − ū(x, t)})2 + (min{0, u(x, t) − u(x, t)})2 dx dt, (3.1)

again subject to the time-periodic heat equation that links the state and the control. The parameter ε is

assumed to be small and can be interpreted as a penalization parameter associated with the box con-

straints on the control. We again proceed with a discretization utilizing finite elements and the implicit

Euler scheme to obtain a discretized version of the Moreau–Yosida regularized problem. It was shown

previously (see Herzog & Sachs, 2010) that the semismooth Newton method can be used to solve the

Moreau–Yosida regularized problem. At the heart of this method again lies the solution of a linear

system in saddle point form, i.e.,




My 0 −KT

0 βMu + ε−1GA(k)MuGA(k) N T

−K N 0







y(k)

u(k)

p
(k)




=




Myȳ

ε−1(GA(k)
+

MuGA(k)
+

u + GA(k)
−

MuGA(k)
−

ū)

d


 . (3.2)

The matrices G are block-diagonal matrices with blocks G that are again diagonal matrices. These matri-

ces represent the generalized derivatives with respect to the nonsmooth parts of the objective function

associated with the control constraints at each grid point in time where we define the active sets as

A(k)
+ := {i : ui � ūi} and A(k)

− := {i : ui � ui}.

We note that these sets consist of nt different active sets for each grid point in time. Additionally, we

have that

A(k) = A(k)
+ ∪ A(k)

− .
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To briefly summarize, the active sets defined above simply store the indices where the control attains the

upper or lower bound. Note that the matrix βMu + ε−1GA(k)MuGA(k) is a block-diagonal matrix where

each block is the sum of a scaled (by β) mass matrix and a scaled (by ε−1) submatrix of a mass matrix

defined on the domain Ω2 (the control domain). The goal now is to solve the system (3.2) efficiently

and we come back to this in Section 5.

4. Choice of Krylov solver

As the dimensionality of the linear system is very large and the applications are likely to be three-

dimensional, direct methods based on a factorization of the saddle point system (cf. Duff, 1996; Davis,

2005) will not be applicable for realistic scenarios of the above-described problem. Therefore, we apply

iterative Krylov solvers. These methods build up a so-called Krylov subspace,

Kk(A, r0) = span{r0, Ar0, . . . , Ak−1r0},

and then construct an approximation to the solution of the linear system based upon some optimality

criteria for the current iteration. In the case of a symmetric and positive-definite upper left block, CG

methods (see Hestenes & Stiefel, 1952) can be applied, typically with a nonstandard inner product.

There are a number of candidates that are based upon a nonstandard inner product, usually employing

different preconditioners and hence different inner products. The Bramble–Pasciak CG method intro-

duced in Bramble & Pasciak (1988) is a very successful method coming from finite element solutions of

the Stokes problem and has recently been used for optimal control problems (see Rees & Stoll, 2010).

Schöberl & Zulehner (2007) proposed another method that also has been used successfully for optimal

control problems by Herzog & Sachs (2010). Our method of choice here will be the minimal resid-

ual method (MINRES) of Paige & Saunders (1975), which minimizes the residual rk = b − Kxk over

the current Krylov space. This method needs a symmetric and positive-definite preconditioner, which

typically would look like

P =
[

A0 0

0 S0

]
, (4.1)

where A0 approximates the upper left block and S0 approximates the Schur complement of the saddle

point system. These choices within P are motivated by a result given in Murphy et al. (2000), where

it is shown that the choices of A0 as the unchanged upper left block and S0 as the negative Schur

complement lead to three distinct eigenvalues in the preconditioned system. Our goal is hence to find

good approximations to both the Schur complement and the upper left block.

The problem of solving time-periodic PDE problems is not a new one and a variety of methods

have been proposed to solve the forward problem; see Vandewalle & Piessens (1992) for a multigrid

approach or Bomhof & van der Vorst (2001) and Bomhof (2001) for a GMRES technique applicable

to cyclic systems. The method given in Vandewalle & Piessens (1992) has been used for the optimal

control problem studied in Abbeloos et al. (2011). In Ernst (2000) an overview of iterative methods that

apply to p-cyclic matrices is presented.

5. Preconditioners

As we have seen in the previous section the choice of approximations for the (1, 1) block of our system

and the Schur complement

τ−1KM−1
y KT + τβ−1NM−1

u N T, (5.1)
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1: Set D = diag(M )

2: Set relaxation parameter ω

3: Compute g = ωD−1b̂

4: Set S = (I − ωD−1M ) (this can be used implicitly)

5: Set zk−1 = 0 and zk = Szk−1 + g

6: ck−1 = 2 and ck = ω

7: for k = 2, . . . , l do

8: ck+1 = ωck − 1
4
ck−1

9: ϑk+1 = ω(ck/ck+1)

10: zk+1 = ϑk+1(Szk + g − zk−1) + zk−1

11: end for

Algorithm 1: Chebyshev semiiterative method for a number of l steps

where we assume that My and Mu are both invertible, is crucial. Note that this is not the case if Ω1 � Ω

or a rectangular rule is used for the approximation of the time integral, but even in that case, we can get

good preconditioners that approximate an equation that somewhat resembles (5.1). Note that we initially

follow a strategy used in Rees et al. (2010b) to drop the second term τβ−1NM−1
u N T, but we later

comment on and introduce alternatives. For expository purposes we will introduce all approximations

for the first approach and later introduce a slight change in these approximations that allows for a more

robust approach but can in a straightforward manner be used with the previously introduced techniques.

5.1 (1, 1) Block

Our goal in this section is to derive effective approximations to the upper left block and the Schur

complement. The upper left block is given by blkdiag(τMy, βτMu). This leaves us with the problem

of efficiently approximating mass matrices. This is a trivial task once the mass matrices are lumped

and hence diagonal. If we did not employ the trapezoidal rule, we would obtain a nondiagonal mass

matrix, the so-called consistent mass matrix, which can be handled via the Chebyshev semiiteration

(see Algorithm 1). This method is a viable tool for preconditioning and has been used successfully for

optimal control applications (see Rees et al., 2010a,b). Going to the case of control constraints we note

again that the (2, 2) block consists of blocks of the form

βMu + ε−1GA(k)
i

MuGA(k)
i

,

where the index i in the active set refers to the ith block corresponding to the ith grid point in time. Note

that these blocks are again symmetric positive-definite matrices and the Chebyshev semiiteration can

be applied. We frequently consider diagonal (lumped) mass matrices, which means that this matrix can

be easily inverted at almost no computational cost.

5.2 Schur complement: stationary iteration

In Stoll & Wathen (2010) we studied all-at-once approaches for the heat equation. In contrast to our

previous results where the matrix representing the one-shot discretization was a lower block-triangular

matrix, we now have an additional term in the upper right corner of K coming from the periodicity

condition. Our goal is to derive preconditioners that deal with the Schur-complement approximation

Ŝ = KM̂−1KT, where M̂ represents a symmetric positive-definite approximation to τMy, e.g., in the
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case of the trapezoidal rule and Ω1 = Ω this will simply be τMy. We now approximate Ŝ−1 by approx-

imating K−1 and K−T using the stationary iteration. The idea of a stationary iteration is rather simple as

we can use a trivial identity

Kx = Ix + (K − I)x = b,

and, rearranging the last part, we get

x = (I − K)x + b. (5.2)

We can now turn this into an iterative method in the following way:

x(k+1) = (I − K)x(k) + b. (5.3)

It is well known (see Saad, 2003) that this method converges if the eigenvalues of the matrix I − K lie

within the unit disc; this is easily seen by subtracting (5.2) from (5.3). To improve the convergence of

this approach a preconditioner P can be introduced:

P−1Kx = Ix + (P−1K − I)x = P−1b,

resulting in the iteration

x(k+1) = (I − P−1K)x(k) + P−1b,

or equivalently

x(k+1) = x(k) − P−1rk ,

with rk = Kxk − b the residual. Many well-known methods fit into this scheme and we refer the reader

to Saad (2003) for details. For our problem we decide to use the preconditioner

P =




L̂

−M L̂

−M L̂

. . .
. . .

−M L̂




for the forward PDE, where L̂ is an approximation to the matrix L = τK + M . We will use a fixed

number of algebraic multigrid (AMG) cycles as L̂−1. This approach is feasible as we are not interested

in the solution of the PDE problem but only in an approximation as part of the preconditioner. Note

that, for L̂ = L, this simply is the block Gauss–Seidel method. Similarly, we proceed for the adjoint PDE

represented by KT with the preconditioner PT. Note that, for the Schur-complement approximation to

be symmetric, we need to use a right-preconditioned stationary iteration for the adjoint PDE.

It would also be possible to use other preconditioners such as the one used in Jacobi’s method, i.e.,

a block diagonal with the blocks given by L̂.
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5.3 Schur complement: circulant approach

We will now focus on a different approximation of the Schur complement. For this we study the structure

of the discretized forward problem defined by the one-shot operator




M + τK −M

−M M + τK

−M M + τK

. . .
. . .

−M M + τK




,

which can be written as

K = I ⊗ τK + C ⊗ M , (5.4)

with

C =




1 0 0 0 −1

−1 1 0 0 0

0 −1 1 0 0

0 0
. . .

. . . 0

0 0 0 −1 1




a circulant matrix. It is well known from Chen (1987) that the matrix C can be diagonalized using the

Fourier matrix F, i.e.,

C = F diag(λ1, λ2, . . . , λnt
)FH.

If we apply the fast fourier transform (FFT) to the matrix Ky = g, we get

(FH ⊗ Int
)K(F ⊗ Int

)(FH ⊗ Int
)y = (FH ⊗ Int

)g,

and, using the definition of K, this becomes

(FH ⊗ Int
)K(F ⊗ Int

) = (FH ⊗ Int
)(I ⊗ τK + C ⊗ M )(F ⊗ Int

) (5.5)

= FHF ⊗ τK + FHCF ⊗ M (5.6)

= I ⊗ τK + diag(λ1, λ2, . . . , λnt
) ⊗ M . (5.7)

The eigenvalues λj can be determined via

λj = c0 + [c1 + cn−1] cos

(
(j − 1)2π

k

)
+ i[c1 − cn−1] sin

(
(j − 1)2π

k

)
,

for j = 1, . . . , nt (see Chen, 1987). In our case we get c1 = 0, c0 = 1 and cn−1 = −1, and hence

λj = 1 − cos

(
(j − 1)2π

k

)
+ i sin

(
(j − 1)2π

k

)
.

All of this results in a block-diagonal matrix with the diagonal elements in the form

Wj = τK + λjM = τK +
(

1 − cos

(
(j − 1)2π

k

))
M + i sin

(
(j − 1)2π

k

)
M .
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The matrix Wj represents one of the blocks of the block-diagonal matrix that we now have to solve for.

First, we have to point out that the application of the Fourier transform will in general result in complex-

valued systems. In more detail, the diagonal blocks mentioned above represent nt complex-valued linear

systems, i.e.,

(
τK +

(
1 − cos

(
(j − 1)2π

k

))
M + i sin

(
(j − 1)2π

k

)
M

)
(yr + iyc) = (gr + igc) ∀j, (5.8)

or equivalently [
U −V

V U

] [
yr

yc

]
=
[

gr

gc

]
, (5.9)

using

U = τK +
(

1 − cos

(
(j − 1)2π

k

))
M and V = sin

(
(j − 1)2π

k

)
M .

The linear system can also be written in symmetric form to give

[
U −V

−V −U

] [
yr

yc

]
=
[

gr

−gc

]
. (5.10)

Once the solution to the system (5.10) is computed we have to transform the solution back using the

Fourier transform F. Note that the same has to be done for the adjoint PDE as we have to approximate

the solution of both the forward and the adjoint PDE in order to approximate the Schur complement.

Note that the one-shot discretization of the adjoint PDE is characterized by




M + τK −M

M + τK −M

M + τK
. . .

. . . −M

−M M + τK




,

which can be written as

K = I ⊗ τK + C̃ ⊗ M , (5.11)

with

C̃ =




1 −1 0 0 0

0 1 −1 0 0

0 0 1
. . .

0 0 0
. . . −1

−1 0 0 0 1




.

Similarly to the forward PDE we see that C̃ is a circulant matrix, which means that we can diagonalize

it using the Fourier matrix to get

I ⊗ τK + diag(λ1, λ2, . . . , λnt
) ⊗ M ,
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where the eigenvalues λ are determined from

λj = c0 + [c1 + cn−1] cos

(
(j − 1)2π

k

)
+ i[c1 − cn−1] sin

(
(j − 1)2π

k

)
,

with c0 = 1, c1 = −1 and cn−1 = 0 to give

λj = 1 − cos

(
(j − 1)2π

k

)
− i sin

(
(j − 1)2π

k

)
.

These are simply the complex conjugates of the eigenvalues of the forward circulant matrix. Again, we

have to solve a complex linear system and we use the above-presented approach to get

(
τK +

(
1 − cos

(
(j − 1)2π

k

))
M − i sin

(
(j − 1)2π

k

)
M

)
(yr + iyc) = (gr + igc), (5.12)

or equivalently [
U V

V −U

] [
yr

yc

]
=
[

gr

−gc

]
. (5.13)

Again, the solution to the complex linear system has to be transformed back using F via the FFT. We

now discuss how to solve the linear systems associated with the complex-valued system. Note that

preconditioning a matrix of block-circulant type was also recently studied for the solution of a forward

time-periodic PDE (see Greidanus, 2010).

5.4 Solving the complex linear system

As we have already seen in the previous section, the circulant approach to both the forward and the

adjoint problem leads to a complex-valued linear system. We want to solve the complex systems in their

real form shown in (5.10) and (5.13). As these systems arise within an outer MINRES iteration we need

the iterative solver for both systems to represent a linear operator. Note that a changing preconditioner

would require a flexible method as an outer iteration (Saad, 1993). This would not be achieved in the

case when a Krylov solver is used, due to its nonlinearity. Instead, we propose to use a fixed number

of steps of an inexact Uzawa-type method as has already been proposed for Stokes control in both the

steady (see Rees & Wathen, 2011) and the unsteady (see Stoll & Wathen, 2013) case. The main iteration

of the inexact Uzawa method can be cast in the form

xk+1 = xk + ωP−1rk ,

which means that we need to multiply by the system matrices

[
U V

V −U

]
and

[
U −V

−V −U

]
, (5.14)

with U = τK + (1 − c)M and V = sM , where s and c are abbreviations for the sine and cosine values

used before. Matrices that resemble the ones used in (5.14) can be found in the numerical solution

of the bidomain equations (see Pennacchio & Simoncini, 2009, 2011). There we have a two-by-two

block matrix that has mass matrix plus stiffness matrix terms as diagonal blocks and the off diagonals

are mass matrices. We want to use a preconditioner P = blkdiag(A0, A1), where A0 approximates the
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(1, 1) block of (5.10) or (5.13). For the bidomain equations the choice of A1 approximating the (2, 2)

block also gives good results. As the Schur complement is rather complicated, one way could be to

use U + V diag(U)V T as an approximation. Here, we will stay with the choice of an AMG method

for both the (1, 1) and the (2, 2) block. In fact, in our computations we simply use the AMG that we

need for the L = τK + M block as an approximation of U . This is because we would otherwise need nt

different preconditioners for one space-time solve as all the diagonal blocks in the circulant approach

are different; this would be infeasible.

5.5 Singular constraints

As we also consider boundary control, it has to be noted that this means that the stiffness matrix of

the Laplace part can only be positive semidefinite. The operator and hence the matrix K have a one-

dimensional kernel that, for the matrix K, is written as 1, the vector of all 1s of the appropriately chosen

dimension, i.e., K1 = 0. It can easily be seen that the vector [1T, 1T, . . . , 1T]T is in the null space of

the one-shot discretization K of the time-dependent PDE (see (2.2)–(2.4)). Note that the saddle point

system is well defined as the (1, 1) bock is positive definite on the null space of the constraint matrix.

Problems of a similar type occur in applications such as the treatment of the hydrostatic pressure in

the solution of Stokes flow (see Elman et al., 2005). Hence, for singular problems we refer the reader

to Elman et al. (2005, Section 2.3), where it is stated that iterative methods will be able to handle the

singularity since any stationary method will converge as long as all nonzero eigenvalues of the iteration

matrix are inside the unit disc.

In the case of the circulant approach we note that the first of the diagonal blocks will become a

pure Neumann problem for both the real and the complex parts. Hence, the system we want to solve is

given by
[
τK 0

0 τK

] [
yr

yc

]
=
[

gr

gc

]
, (5.15)

with K a Neumann Laplacian. As a consequence we have to solve two uncoupled pure Neumann prob-

lems. The solution of pure Neumann problems is a fundamental problem in many applications and has

to be treated carefully since the system matrix τK has a one-dimensional kernel spanned by 1. Bochev

& Lehoucq (2005) present a review of techniques to overcome this dilemma, i.e., we instead solve the

system

ΠTKΠx = ΠTb,

where Π is the projection operator

Π = I − wcT

cTw
,

with c being in the span of 1, and w ∈ Rn is chosen such that cTw > 0.

5.6 Dependence on the regularization parameter

There has recently been a surge in the development of preconditioners that show not only mesh-

independent convergence behaviour but also have independence with respect to the regularization

parameter β (see Schöberl & Zulehner, 2007; Takacs & Zulehner, 2011; Pearson & Wathen, 2012;
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Pearson et al., 2012b) and also the penalization parameter ε (see Pearson et al., 2012a; Schiela &

Ulbrich, 2012). In the case of distributed control, the dependence on β for many values of the parameter

could be observed to be very benign for the Schur-complement approximation given by

Ŝ = τ−1K̂MK̂T.

For boundary control and smaller values of the regularization parameter this observation is no longer

true.

In Pearson & Wathen (2012) a different approximation of the Schur complement of a time-dependent

distributed control problem was introduced, namely, the approximation

Ŝ =
(

K + 1√
β

M

)
M −1

(
K + 1√

β
M

)
, (5.16)

which can be obtained by dropping the term −(2/
√

β)K from the Schur complement

S =
(

K + 1√
β

M

)
M −1

(
K + 1√

β
M

)
− 2√

β
K.

Note that, for our problem, we can also use this technique which was recently shown to be effective

for the heat equation in the standard non-time-periodic set-up (see Pearson et al., 2012b). We illus-

trate this for the distributed control example over the whole domain My = Mu = M and use a result of

Pearson et al. (2012b) to show its effectiveness. The Schur complement of the time-dependent problem

is given by

S = τ−1KM−1
y KT + τβ−1NM−1

u N T,

and this will now be approximated by

Ŝ = τ−1(K + M̂)M−1
y (KT + M̂). (5.17)

The choice of M̂ will be explained now. In the distributed control case we have Mu = My and

N = M := blkdiag(M , . . . , M ) being block matrices containing the mass matrix M . Note that, using

this notation, we have τβ−1NM−1
u N T = τβ−1MM−1

y MT. We want to determine M̂ such that the

two terms of the Schur complement S are exactly matched. This leads us to the choice M̂ = (τ/
√

β)M
such that τ−1M̂M−1

y M̂ = τβ−1MM−1
u MT. The effectiveness of this approach depends on the qual-

ity of the approximation Ŝ−1S and, using Pearson et al. (2012b, Theorems 1 and 2), we can show that

the eigenvalues of Ŝ−1S are confined in the interval [ 1
2
, 1). In order to prove such a result we need

to show that the matrix K∆ + ∆KT is positive definite. Note that we now have ∆ = τ−1M̂M−1
y =

τ−1M−1
y M̂ = blkdiag(α1I, α2I, . . . , αnt

I), αj > 0, I ∈ Rn×n. Here, we repeat (Pearson et al., 2012b,

Theorem 1) adjusted for the time-periodic set-up.

Theorem 5.1 The matrix K∆ + ∆KT, where ∆ = blkdiag(α1I, α2I, . . . , αnt
I), α1, . . . , αnt

> 0, α1 =
αnt

, I ∈ Rn×n, and K is as defined previously, is positive definite.
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Proof. We show that wT(K∆ + ∆KT)w > 0 for all w := [wT
1 wT

2 · · · wT
nt−1 wT

nt
]T with w1, . . . , wnt

∈
Rn, and

∆ =




α1I

. . .

αnt
I


 .

Using the symmetry of the mass and stiffness matrices M and K,

K∆ + ∆KT =




Λ1 −α1M −αnt
M

−α1M Λ2 −α2M

. . .
. . .

. . .

−αnt−2M Λnt−1 −αnt−1M

−αnt
M −αnt−1M Λnt




,

where Λj = 2αj(M + τK) for j = 1, . . . , nt, and therefore by straightforward manipulation,

wT(K∆ + ∆KT)w =
nt∑

j=1

2αjw
T
j [M + τK]wj −

nt−1∑

j=1

αjw
T
j M wj+1 −

nt∑

j=2

αj−1wT
j M wj−1

− αnt
wT

1 M wnt
− αnt

wT
nt

M w1 (5.18)

= 2τ

nt∑

j=1

αjw
T
j (K)wj +

nt−1∑

j=1

αj(wj − wj+1)
TM (wj − wj+1)

+ α1wT
1 M w1 + αnt

wT
nt

M wnt
− αnt

wT
1 M wnt

− αnt
wT

nt
M w1 (5.19)

= 2τ

nt∑

j=1

αjw
T
j Kwj +

nt−1∑

j=1

αj(wj − wj+1)
TM (wj − wj+1)

+ α1(w1 − wnt
)TM (w1 − wnt

), (5.20)

where we have used the fact that α1 = αnt
. As we now have that wT(K∆ + ∆KT)w is a sum

of positive multiples of (symmetric positive-definite) mass and stiffness matrices, we deduce that

wT(K∆ + ∆KT)w > 0, and hence that K∆ + ∆KT is positive definite. �

We have now shown that the cross terms from the Schur-complement approximation generate a

positive-definite matrix and (Pearson et al., 2012b, Theorem 2) can be applied, which means that the

eigenvalues of the preconditioned Schur complement Ŝ−1S are confined in [ 1
2
, 1) independently of the

parameters h and β.

The set-up for the boundary control case is much more intricate and the results tend to be less

rigorous. Here, we only introduce the approximations for this case, and illustrate their competitiveness

with our numerical results in Section 6. We again construct a preconditioner of the form

Ŝ = τ−1(K + M̂)M−1
y (KT + M̂), (5.21)

where M̂ = blkdiag(0, τ
√

(h/β)Mu) if we assume that the degrees of freedom corresponding to nodes

on the boundary are ordered so that they appear in the last components. Note that h is the mesh size and
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this scaling has to be introduced to compensate for the different order of the boundary mass matrix and

the mass matrix over the whole domain. We remember at this stage that NM−1
u N T will be a diagonal

matrix with Mu a block-diagonal matrix consisting of lumped boundary mass matrices.

One important fact about these new Schur-complement approximations is that the preconditioning

strategies mentioned earlier, i.e., stationary iteration and the circulant approach, apply with almost no

changes to this case since the matrices M̂ only introduce positive-definite perturbations of the diagonal

blocks of K. Hence, we will not discuss how to implement these new approximations efficiently but

rather use them immediately in Section 6.

5.7 Preconditioning the control constraints

We have already introduced a preconditioner for the (1, 1) block in the case of control constraints but

now need to focus on an efficient approximation of the Schur complement

S = τ−1KM−1
y KT + τNM̄−1

u N T,

with M̄u := βMu + ε−1GA(k)MuGA(k) . As in the previous section we want to construct an approxima-

tion

Ŝ = τ−1(K + M̂)M−1
y (KT + M̂),

where M̂ is chosen such that the terms τ−1M̂M−1
y M̂ and τNM̄−1

u N T match. For the individual

blocks of these block-diagonal matrices this means that

τ−1M̂iM
−1
y M̂i ≈ τNM̄ −1

i,u NT, (5.22)

where M̄i,u = βMu + ε−1GA(k)
i

MuGA(k)
i

. The matrices GA(k)
i

represent the generalized derivatives with

respect to the active sets associated with grid point i in time. Note that we also introduced the index

i for the blocks of M̂ since each of these will vary corresponding to the active sets associated with

grid point i in time. Note that NM̄ −1
i,u NT is a diagonal matrix with nonzero entries corresponding to

the boundary degrees of freedom. As all the matrices in (5.22) are diagonal, and ignoring for now the

different scalings between boundary mass matrices and mass matrices over the whole domain, we get

the following expression for the nonzero entries of M̂i:

m−1
y,jjm̂

2
i,jj =

τ 2m2
u,jj

m̄ui,jj

⇒ m̂i,jj = τ

√
my,jjm

2
u,jj

m̄ui,jj

,

where the subscripts y and u refer to entries from the state and control mass matrices, respectively. We

have already mentioned that the boundary mass matrix scales differently compared with the mass matrix

on the whole domain by one order of h, e.g., using the approximations My ≈ h2I and Mu ≈ hI. Using the

fact that, roughly speaking, my,jj ≈ hmujj, we change the previous approximation to

m̂i,jj = τ
√

h

√
m3

u,jj

m̄ui,jj

,

with m̄ui,jj = βmu,jj for the free variables and m̄ui,jj = βmu,jj + ε−1mu,jj for degrees of freedom in the ith

active set.
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6. Numerical experiments

6.1 Set-up and implementation details

In this section we provide numerical experiments for the methods presented above. For the discretization

we use the deal.II library (see Bangerth et al., 2007), which is implemented in C++ using quadrilateral

elements. As deal.II provides easy access to the Trilinos ML AMG package, our multigrid approxi-

mations were performed using Trilinos’ smoothed aggregation preconditioners (see Gee et al., 2006).

We approximated the blocks involving L as the sum of a mass matrix and stiffness matrix, also the

matrices possibly involving scalar factors in front of M or K, by a fixed number of steps of an AMG

V-cycle and typically 10 steps of a Chebyshev smoother, which has proved to be effective for symmetric

matrices representing discretized elliptic operators (see Gee et al., 2006). The stationary iteration-based

preconditioner uses a fixed number of steps for both the adjoint and the forward problem. The circulant-

based preconditioner also uses a small but fixed number of steps of the inexact Uzawa method for every

complex linear system. The application of the FFT needed for the circulant approach was provided

by employing FFTW (see Frigo & Johnson, 1998, 2005). We use a relative tolerance of 10−4 for the

pseudo-residual ‖rk‖P−1 and τ = 0.05 with T = 1, i.e., nt = 20 unless mentioned otherwise. All experi-

ments are performed on a Centos Linux machine with Intel(R) Xeon(R) CPU X5650 @ 2.67 GHz CPUs

and 48 GB of RAM.

6.2 Distributed control

The first example is a distributed control example with zero Dirichlet boundary condition. The desired

state is given by

ȳ(t) = 210tx0x2x1(x0 − 1)(x1 − 1)(x2 − 1),

which for ȳ10 (the desired state at grid point 10 in time) is depicted in Fig. 1(a). Figure 1(b) shows a

spherical slice of the computed state that approximates ȳ10.

Note that the Dirichlet boundary condition y = 0 on ∂Ω could force the state to differ drastically

from the desired state on the boundary. Better results are typically obtained if the desired state and the

Dirichlet boundary condition coincide, i.e., in Rees et al. (2010b) the Dirichlet boundary condition is

chosen to match boundary values of the desired state. These choices clearly depend on the underlying

problem and the requirements coming from an application and cannot be altered for the sake of better

numerical behaviour. The boundary control problem is often more relevant for practical applications

and we show results for this case in the next subsection. Here, we compare the results of the stationary

iteration-based preconditioner and the circulant preconditioner, both in their more robust form intro-

duced in Section 5.6. Table 1 gives the results for the stationary iteration and Table 2 for the circulant-

based approach. In both cases we look at the performance over a variety of meshes and different values

of the regularization parameter β. It can be seen that both methods perform in a robust manner with

respect to mesh size and β values. Also, both methods give comparable iteration numbers. The number

of degrees of freedom given in the Tables 1 and 2 represents the size of the whole-saddle point system.

The difference in timings is due to the fact that we perform two stationary iterations versus two inexact

Uzawa steps for every complex system. The circulant preconditioner needs to solve nt complex systems

and each of these solves uses a Uzawa method with a double-sized matrix and two applications of the

preconditioner.

In Table 3 we show results for a fixed mesh with 294780 unknowns for a large variety of values of

the regularization parameter β.
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Fig. 1. Spherical slice of the desired and computed state at grid point 10τ in time for the distributed control problem evaluated

with the regularization parameter β = 1e−4. (a) ȳ10 and (b) y10.

Table 1 Stationary iteration preconditioner: MINRES iterations and timings for various meshes

and values of the regularization parameter β applied to a distributed control problem

Degrees of freedom MINRES(t), β = 1e−2, MINRES(t), β = 1e−4 MINRES(t), β = 1e−6

43740 8 (1) 6 (1) 4 (1)
294780 8 (4) 8 (4) 6 (4)

2156220 8 (29) 8 (28) 6 (23)
16477500 8 (297) 8 (298) 6 (213)

Table 2 Circulant preconditioner: MINRES iterations and timings for various meshes and values

of the regularization parameter β applied to a distributed control problem

Degrees of freedom MINRES(t), β = 1e−2 MINRES(t), β = 1e−4 MINRES(t), β = 1e−6

43740 12 (2) 8 (2) 4 (1)
294780 12 (12) 8 (9) 6 (6)

2156220 12 (86) 8 (61) 6 (51)
16477500 12 (924) 8 (673) 6 (550)

Table 3 Stationary iteration and circulant preconditioner: MINRES iterations and timings for various

values of the regularization parameter β applied to a distributed control problem on a system with

294780 unknowns

MINRES(t), MINRES(t), MINRES(t), MINRES(t), MINRES(t),
Degrees of freedom β = 1e−2 β = 1e−4 β = 1e−6 β = 1e−8 β = 1e−10

Stationary iteration 8 (12) 8 (13) 6 (9) 2 (5) 2 (5)
Circulant 12 (48) 8 (34) 6 (28) 2 (13) 2 (14)
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Table 4 Stationary iteration preconditioner: MINRES iterations and timings for various meshes and

values of the regularization parameter β applied to a distributed control problem

Stationary iteration Circulant

MINRES(t), MINRES(t), MINRES(t), MINRES(t),
Degrees of freedom β = 1e−4 β = 1e−6 β = 1e−4 β = 1e−6

143740 28 (7) 22 (6) 26 (12) 20 (9)
294780 40 (37) 30 (28) 32 (81) 26 (67)

2156220 50 (198) 40 (163) 40 (443) 36 (405)

In Table 4 we show the comparison of both Schur-complement approximations when the number of

stationary iterations is reduced to one and also the Uzawa method for the complex linear systems using

only one iteration.

6.3 Boundary control

Our next task is to illustrate the performance of the preconditioners proposed for the boundary control

problem presented earlier. In the case of boundary control it was noted previously (see Pearson et al.,

2012b) that the approximation for the Schur complement given by

τ−1KM−1KT

is often not sufficient to guarantee convergence within a reasonable number of iterations. Hence, we

developed the preconditioners presented in Section 5.6 that can use all the techniques presented for the

original approximation as the structure for both the stationary iteration and also the circulant structure

remain untouched. We will now illustrate the performance of the new Schur-complement approximation

again for the stationary iteration and the circulant approaches. We compare the two different approxi-

mations for S given a three-dimensional example defined by the following desired state:

ȳ =
{

sin(t) + x0x1x2, x0 > 0.5 and x1 < 0.5,

1 otherwise.

Figure 2(a) shows the desired state ȳ10, and Fig. 2(b,c) show the computed state y10 and control u10,

respectively. In Tables 5 and 6 we again show results for the stationary and the circulant iteration

approach, respectively. Again, both methods perform rather robustly with respect to the mesh parameter

and the regularization parameter. We believe that the growth in iteration numbers is due to the low rank

nature of the second term in the Schur complement involving the rectangular matrices N . Also, the

discretized Laplacian is now only positive semidefinite as we are dealing with a pure Neumann prob-

lem. Nevertheless, the iteration numbers are consistently low for linear systems with several million

unknowns in three dimensions.

We now want to investigate the effect of reducing the number of stationary iterations/Uzawa iter-

ations for both Schur-complement approximations. We need to have a fixed number of steps during

one iteration to solve the linear system since otherwise we would have a preconditioner that changes

in between two steps, which requires the use of flexible Krylov solvers. Thus, we will now investigate

reducing the number of iteration steps to one for both the stationary iteration (see Table 7) and the

Uzawa method for the complex linear system coming from the circulant preconditioner (see Table 8).
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Fig. 2. Desired state, computed state and computed control at grid point 10τ in time for the boundary control problem. The

regularization parameter was fixed at β = 1e−4. (a) ȳ10, (b) y10 and (c) u10.

Table 5 Stationary iteration preconditioner: MINRES iterations and timings for various meshes

and values of the regularization parameter β applied to a boundary control problem

Degrees of freedom MINRES(t), β = 1e−2 MINRES(t), β = 1e−4 MINRES(t), β = 1e−6

36880 30 (10) 26 (9) 20 (7)
227280 32 (45) 38 (54) 28 (40)

1560400 38 (233) 48 (290) 38 (233)
11476560 48 (2519) 62 (3216) 58 (2995)

Table 6 Circulant preconditioner: MINRES iterations and timings for various meshes and values

of the regularization parameter β applied to a boundary control problem. The ∗ indicates a seg-

mentation fault from the n1_7 function of FFTW (Frigo & Johnson, 2005), which might be triggered

by our implementation

Degrees of freedom MINRES(t), β = 1e−2 MINRES(t), β = 1e−4 MINRES(t), β = 1e−6

36880 26 (19) 24 (18) 18 (13)
227280 30 (130) 36 (158) 26 (113)

1560400 36 (656) 48 (866) 38 (696)
11476560 42 (4775) * *

Table 7 Stationary iteration preconditioner: MINRES iterations and timings for various meshes

and values of the regularization parameter β applied to a boundary control problem with only one

step for the stationary iteration

Degrees of freedom MINRES(t), β = 1e−2 MINRES(t), β = 1e−4 MINRES(t), β = 1e−6

36880 30 (7) 26 (7) 20 (6)
227280 34 (32) 38 (36) 28 (26)

1560400 38 (154) 48 (194) 40 (161)
11476560 48 (1575) 62 (2022) 60 (2124)
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Table 8 Circulant preconditioner: MINRES iterations and timings for various meshes and values

of the regularization parameter β applied to a boundary control problem with only one step for the

Uzawa iteration

Degrees of freedom MINRES(t), β = 1e−2 MINRES(t), β = 1e−4 MINRES(t), β = 1e−6

36880 30 (14) 26 (12) 20 (9)
227280 32 (83) 32 (82) 26 (67)

1560400 34 (384) 40 (450) 36 (403)
11476560 36 (2671) * *

Table 9 Circulant preconditioner: average number of MINRES iterations per Newton step and timings

for various meshes and values of the penalty parameter ε applied to a control-constrained boundary

control problem. The upper bound is ū = 0.1 and β = 1e−2 is fixed throughout. We AS(t) denotes the

number of active set iterations and the time taken

AS(t) MINRES average AS(t) MINRES average AS(t) MINRES average
Degrees of
freedom ε = 1e−2 ε = 1e−4 ε = 1e−6

36880 6 (451) 41.2 6 (399) 41.2 6 (321) 34.0
227280 6 (2476) 55.0 6 (1964) 43.3 6 (1654) 36.0

1560400 7 (16794) 60.5 7 (12857) 46.0 7 (10673) 37.4

6.4 Boundary control with box constraints

We finally want to present results for the case of boundary control in the presence of box constraints.

The desired state ȳ is defined by

{
sin(t(1 − t)) + x0x1x2 for x0 > 0.5 and x1 < 0.5,

1 otherwise.
(6.1)

This is the same set-up as was shown in Fig. 2. As the control changes with varying β we will, in

this section, work with a fixed regularization parameter β = 1e−2. We decide to only work with an

upper bound fixed at ub = 0.10. Since the performance of the Newton iteration generally depends on the

quality of the preconditioner (see Kanzow, 2004) we use the relative tolerance of 1e−6 for which we

always observed good behaviour of the outer Newton iteration. In the case where strict complementarity

is encountered, which we will not discuss here, a strategy proposed in Bergounioux et al. (1999) is to

replace the upper bound >ū by >ū − δ where δ is of the order of machine precision. As our focus is

on the solution of the linear systems we believe that these algorithmic changes will not greatly affect

the performance of the iterative solver for the inner linear system but rather the outer Newton iteration.

Based on Kanzow (2004) this might require a more accurate solve of the linear system, which we show

in this section tends to produce satisfying results.

Please note that the timings for the results shown here are worse than the timings without control

constraints. This is due to the fact that as a proof of concept we have recomputed the AMG precon-

ditioner for every application involving a different active set. To effectively use this preconditioner in

the future the recomputation of the preconditioner needs to be avoided and other strategies such as

stationary iterations should be used.
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Table 10 Stationary iteration preconditioner: average number of MINRES iterations per Newton step

and timings for various meshes and values of the penalty parameter ε applied to a control-constrained

boundary control problem. The upper bound is ū = 0.1 and β = 1e−2 is fixed throughout

AS(t) MINRES average AS(t) MINRES average AS(t) MINRES average
Degrees of
freedom ε = 1e−2 ε = 1e−4 ε = 1e−6

36880 6 (428) 40.3 6 (372) 34.7 6 (320) 29.7
227280 6 (2002) 48.3 6 (1760) 41.7 6 (1454) 34.7

1560400 7 (17006) 57.4 7 (14998) 50.0 7 (11897) 39.7

Fig. 3. Desired state, computed state and computed control at grid point 10τ in time for the control-constrained boundary control

problem. The upper bound is given by ū = 0.1. The regularization parameter was fixed at β = 1e−2. (a) ȳ10, (b) y10 and (c) u10.

In Table 9 we show results for the active set method using the circulant preconditioner on a com-

bination of various meshes and various values of the penalty parameter ε. The same set-up is shown

in Table 10 when the stationary iteration preconditioner is used. Both methods perform very similarly

in terms of iteration numbers and timings. Here, we used three steps for the stationary iteration pre-

conditioner and only two steps of the Uzawa method for the circulant approach. The iteration numbers

are constantly low and very little mesh dependency can be observed [Fig. 3(a,b,c)]. The results for an

example with control constraints are shown in Fig. 3.

7. Conclusions and outlook

In this paper we presented a monolithic solver for the space-time discretization of an optimal control

problem subject to the time-periodic heat equation. We formulated a one-shot approach that resulted in a

huge linear system in saddle point form. With our choice of MINRES as the Krylov subspace solver we

were focusing on the task of devising good preconditioners for the Schur complement of the saddle point

matrix. We proposed two techniques, one based on a stationary iteration and the other on a circulant

formulation that allowed the use of the FFT. Both methods performed competitively for distributed

and boundary control problems. We introduced a Schur-complement approximation that allowed more

flexibility with respect to the regularization parameter β. The efficient solution of the control problem

also enabled the fast solution of the minimization when control constraints are present. We showed the

results for boundary control with box constraints on the control and illustrated the flexibility of our

approach.
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One point that needs to be addressed in future research is a more efficient implementation of the

Schur-complement preconditioner that avoids recomputation of the AMG approximation. Also, it would

be interesting to investigate scenarios where the circulant preconditioner is able to outperform the sta-

tionary iteration approximation. We believe that higher-order discretizations in time that lead to a more

complicated matrix structure can benefit from the circulant approach as, in this case, a larger number of

stationary iterations might be needed to efficiently approximate the Schur complement.
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A.5. PRECONDITIONING FOR THE STOKES EQUATIONS

A.5 Preconditioning for the Stokes equations

This paper is published as

M. Stoll and A. Wathen, All-at-once solution of time-dependent
Stokes control, J. Comput. Phys., 232 (2013), pp. 498–515.

Result from the paper

In this paper we develop robust iterative solvers for the optimal control
of Stokes equations. The techniques are then applied to two and three-
dimensional examples. A two-dimensional setup is shown in Figure A.1
where we consider a lid-driven cavity example.

(a) State (b) Desired state

Figure A.1: State and desired state
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a b s t r a c t

The solution of time-dependent PDE-constrained optimization problems subject to
unsteady flow equations presents a challenge to both algorithms and computing power.
In this paper we present an all-at-once approach where we solve for all time-steps of the
discretized unsteady Stokes problem at once. The most desirable feature of this approach
is that for all steps of an iterative scheme we only need approximate solutions of the discret-
ized Stokes operator. This leads to an efficient scheme which exhibits mesh-independent
behaviour.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

The solution of complex flow problems is one of the most interesting and demanding problems in applied mathematics
and scientific computing. Over the last decades the numerical solution of problems such as Stokes flow has received a lot of
attention both from applied scientists and mathematicians alike. The discretization of the Stokes equation via finite elements
[13,1,10] as well as the efficient solution of the corresponding linear systems in saddle point form [13,48,43,3] are well estab-
lished. In recent years, with the advances of computing power and algorithms, the solution of optimal control problems with
partial differential equation (PDE) constraints such as Stokes or Navier–Stokes flow problems have become a topic of great
interest [22,25,38,7,12].

In this paper, we want to address the issue of efficiently solving the linear systems that arise when the optimal control of
the time-dependent Stokes problem is considered. We here want to employ the so-called all-at-once approach, which is a
technique previously used in [23,24,5,44]. In detail, the discretization of the problem is constructed in the space–time do-
main and then solved for all time-steps at once. One of the advantages of this approach is that the PDE-constraint does
not need to be satisfied until convergence of the overall system is reached. We will come back to this later.

One of the crucial ingredients to derive efficient preconditioners that show robustness with respect to the important
problem parameters such as the mesh-parameter and the regularization parameter is the construction of efficient Schur-
complement approximations. Recently, Pearson and Wathen [34] introduced an approximation that satisfies these criteria
for the Poisson control problem. We here extend their result to a time-dependent problem subject to Stokes equation. In con-
trast to [34] the new approximation cannot simply be handled by a multigrid scheme but has to be embedded in a stationary
iteration due to the indefiniteness of the discrete Stokes system.
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The paper is organized as follows, we first discuss the control problem and how it can be discretized. In Section 3 we dis-
cuss the choice of the Krylov solver that should be employed. We then discuss the preconditioners for the various parts of the
saddle point problem. This is followed by numerical experiments for two different objective functions in both two and three
space dimensions and time.

2. Problem and discretization

In the following we consider the tracking-type functional

Jðy;uÞ ¼ 1
2

Z T

0

Z
X1

y� �yð Þ2dxdt þ b
2

Z T

0

Z
X2

uð Þ2dxdt þ c
2

Z
X1

yðTÞ � �yðTÞð Þ2dx ð1Þ

where X1=2 # X are bounded domains in Rd with d ¼ 2;3. Additionally, for the state y and the control u the time-dependent
Stokes equation has to be satisfied

yt � mMyþrp ¼ u in ½0; T� �X ð2Þ

�r � y ¼ 0 in ½0; T� �X ð3Þ

yðt; �Þ ¼ gðtÞ in @X; t 2 ½0; T� ð4Þ

yð0; �Þ ¼ y0 in X; ð5Þ

with y the state representing the velocity and p the pressure. Here, �y is the so-called desired (velocity) state. The goal of the
optimization is to compute the control u in such a way that the velocity field y will be as close as possible to �y. One might
impose additional constraints both on the control u and the state y. One of the most common constraints in practice are the
so-called box constraints given by

ua 6 u 6 ub and ya 6 y 6 yb;

which will not be discussed further (see [45,32] for simpler PDEs).
There are two techniques used to solve the above problem. The first is the so-called Discretize-then-Optimize approach,

where we discretize the objective function to get Jhðy;uÞ and also discretize the PDE (Eqs. (2)–(5) written as Bhðy;uÞ ¼ 0. This
allows us to form the discrete Lagrangian

Lhðy;uÞ ¼ Jhðy;uÞ þ kTBhðy;uÞ;

stationarity conditions for which would lead to a system of first order or KKT conditions. The second approach follows a Opti-
mize-then-Discretize principle where we write Eqs. (2)–(5) in the form Bðy;uÞ ¼ 0 and then formulate the Lagrangian of the
continuous problem as

Lðy;uÞ ¼ Jðy;uÞ þ hBðy;uÞ; ki

where h�; �i defines a duality product (see [26] for details). Based on the continuous Lagrangian, first order conditions are con-
sidered, which are then discretized and solved. There is no recipe as to which of these approaches has to be preferred (see the
discussion in [25]). Recently, discretization schemes have been devised so that both approaches lead to the same discrete
optimality system (e.g [23]).

We begin by considering the first order conditions of the above infinite dimensional problem. We obtain the forward
problem described in (2)–(5) from Lk ¼ 0, the relation

buþ k ¼ 0 ð6Þ

follows from Lu ¼ 0 and is usually referred to as the gradient equation, and we obtain also the adjoint PDE

� kt � mMkþrn ¼ y� �y in ½0; T� �X ð7Þ
� r � k ¼ 0 in ½0; T� �X ð8Þ
kðt; �Þ ¼ 0 on @X; t 2 ½0; T� ð9Þ
kð0; �Þ ¼ c yðTÞ � �yðTÞð Þ in X; ð10Þ

from Ly ¼ 0. For more information see [47,46,23,24].
The question is now whether we can find a discretization scheme such that the Discretize-then-Optimize and the Opti-

mize-then-Discretize approach coincide. We start the Discretize-then-Optimize approach by using a backward Euler scheme
in time to obtain for the forward Stokes problem

yk � yk�1

s
� mMyk þrpk ¼ uk ð11Þ

� r � yk ¼ 0 ð12Þ
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and similarly for the adjoint PDE we get

kk � kkþ1

s
� mMkk þrnk ¼ yk � �yk ð13Þ

� r � kk ¼ 0: ð14Þ

Note that this is not an explicit method but as the adjoint PDE is going backwards in time this also represents an implicit
scheme.

The matrix representation for these two expressions after a finite element space discretization is now given by

Myk �Myk�1

s
þ mKyk þ BT pk ¼ Muk ð15Þ

Byk ¼ 0 ð16Þ
y0 ¼ y0 ð17Þ

and

Mkk �Mkkþ1

s
þ mKkk þ BT

nk ¼ Myk �M�yk ð18Þ

Bkk ¼ 0 ð19Þ

kN ¼ cðyN � �yNÞ ð20Þ

with M being the mass matrix (for the sake of simplicity we assume M to be the lumped mass matrix), K the finite element
stiffness matrix and y0 ¼ y0 is the projection of the initial condition onto the finite element space. We will later use Mp for
the mass matrix on the pressure space but refrain from adding the index y to the mass matrix on the velocity space.

The appropriate all-at-once form for the forward PDE is now given by

L 0 0 0 0
�M0 L 0 0 0

0 �M0
. .

.
0 0

0 0 . .
.

L 0
0 0 0 �M0 L

2
66666664

3
77777775

y0

p0

y1

p1

..

.

yN

pN

2
6666666666664

3
7777777777775

ð21Þ

�

M 0 . . . 0 0
0 0 . . . 0 0
0 M . . . 0 0
0 0 . . . 0 0
..
. ..

.
. . . ..

. ..
.

0 0 . . . M 0
0 0 . . . 0 0
0 0 . . . 0 M

2
666666666666664

3
777777777777775

u0

u1

..

.

uN

2
66664

3
77775 ¼

Ly0

0
0
0
..
.

0
0

2
666666666664

3
777777777775

ð22Þ

or Kyþ � Nuþ ¼ d; ð23Þ

where

L ¼ L BT

B 0

" #
;

L ¼ s�1M þ K and M0 ¼ blkdiagðs�1M;0Þ. In Eq. (23) we use the notation yþ ¼ ½y0;p0; . . . ; yN;pN�;uþ ¼ ½u0; . . . ;uN� for the
vectors containing the state and control variables. The matrix K defines the block-lower triangular matrix in (21) and N
the rectangular matrix acting on the discretized control in (22). The right-hand side d is chosen in such a way to guarantee
that the Discretize-then-Optimize and Optimize-then-Discretize approaches coincide (neglecting boundary contributions at
this stage).

The scheme presented by (21) and (22) represents a discretization of the forward PDE; as already pointed out in [44] the
adjoint of (22) will represent the time-evolution described by (18) but the initial condition for the adjoint PDE might make
for a difference between the Discretize-then-Optimize and Optimize-then-Discretize approaches.
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In more detail, the discretization of the functional Jðy;uÞ (using yi;ui; �yi for i ¼ 0; . . . ;N at the different time-steps) via a
rectangle rule for the time and finite elements for the space leads to

Jðy;uÞ ¼ s
2

XN

i¼1

yi � �yið ÞT M yi � �yið Þ þ bs
2

XN

i¼1

uT
i Muui þ

c
2

yN � �yNð ÞT Mu yN � �yNð Þ: ð24Þ

Here M is the standard or lumped mass matrix for the velocity space as before and Mu is the mass matrix for the control
space, which in our case with a distributed control using the same finite element space leads to Mu ¼ M. Note that N denotes
the number of time-steps. In fact, we are using a slightly different approximation (note the indices of the first sums)

Jðy;uÞ ¼ s
2

XN

i¼0

yi � �yið ÞT M yi � �yið Þ þ bs
2

XN

i¼0

uT
i Muui þ

c
2

yN � �yNð ÞT Mu yN � �yNð Þ; ð25Þ

which will later give that the approaches optimize-then-discretize and discretize-then-optimize coincide. Note that this
changes the functional Jðy;uÞ only by constant terms involving the initial values for y0; �y0 and u0 but the location of the min-
imum will not be changed.

The Lagrangian of the discrete problem can now be written as

Lhðyþ;uþ; kþÞ ¼ Jðyþ;uþÞ þ kþð ÞT �Kyþ þ Nuþ þ dð Þ ð26Þ

where we use yþ ¼ ½y0;p0; . . . ; yN;pN� as before and similarly kþ ¼ ½k0; n0; . . . ; kN ; nN�. The first order or KKT conditions for
Lhðyþ;uþ; kþÞ are now given by the following system

sM 0 �KT

0 bsMu N T

�K N 0

2
64

3
75

yþ

uþ

kþ

2
64

3
75 ¼

M�yþ

0
d

2
64

3
75; ð27Þ

withM¼ blkdiagðM;0; . . . ;M;0Þ andMu ¼ blkdiagðMu; . . . ;MuÞ. We will discuss appropriate solvers and possible precondi-
tioners for system (27) in Section 3.

Our aim now is to discuss the Optimize-then-Discretize approach and how to ensure it coincides with Discretize-then-
Optimize. Here we follow the results presented in [23] for the Stokes equation (see [24] for Navier–Stokes). Hinze et al. start
with the infinite-dimensional KKT system. A straightforward discretization of the infinite dimensional problems will in gen-
eral not result in agreement of both optimization-discretization approaches. Hinze et al.[23] however employ a technique
that uses the projection of y0 onto the finite element space to guarantee that y0 is divergence free and has the correct bound-
ary conditions. The initial condition is then formulated as

y0 � sMy0 ¼ y0 � sMy0:

Now, writing down the Lagrangian for the semi-discretized problem the following first-order system can be obtained

yk � yk�1

s
� mMyk þrpk ¼ uk ð28Þ

� r � yk ¼ 0 ð29Þ
y0 � sMy0 ¼ y0 � sMy0 ð30Þ
buk þ kk ¼ 0 ð31Þ
kk � kkþ1

s
� mMkk þrnk ¼ yk � �yk ð32Þ

� r � kk ¼ 0 ð33Þ
kN � sMkN ¼ ðsþ cÞðyN � �yNÞ: ð34Þ

More details can be found in [24,23].
Using standard mixed finite elements to discretize in space we obtain the same discrete first order system for the

Optimize-then-Discretize approach as for the Discretize-then-Optimize procedure. Note that with the changes we made ear-
lier to the discretization of the cost functional Jðy;uÞ, we get agreement of the initial values of the Optimize-then-Discretize
approach and the Discretize-then-Optimize procedure.

In addition to the above considered problem, we will also discuss the numerical solution of a PDE-constrained optimiza-
tion problem that has an added pressure term in the functional Jðy;uÞ, i.e.,

Jðy;uÞ ¼ 1
2

Z T

0

Z
X1

y� �yð Þ2dxdt þ 1
2

Z T

0

Z
X1

p� �pð Þ2dxdt þ b
2

Z T

0

Z
X

uð Þ2dxdt þ c
2

Z
X1

yðTÞ � �yðTÞð Þ2dx ð35Þ

subject to the unsteady Stokes equation as shown above. Here p is the pressure and �p is the desired pressure. The discret-
ization follows the above procedure and the first order conditions Lhðyþ;u; kþÞ are now given by the following system
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sM 0 �KT

0 bsMu N T

�K N 0

2
64

3
75

yþ

uþ

kþ

2
64

3
75 ¼

M�yþ

0
d

2
64

3
75; ð36Þ

where the only difference to the system given in (27) is the matrixM¼ blkdiagðM;Mp; . . . ;M;MpÞ. Note that for reasons of
convenience we use the same notation M whether the pressure mass matrix is present or not. We will specify when it is
important to consider the two cases separately.

3. Krylov solver and preconditioning

After having derived the linear system corresponding to the solution of the optimal control problem, we now want to dis-
cuss how to solve this system efficiently. For a reasonable sized spatial discretization even in two dimensions a direct solver
might run out of memory fairly quickly as the dimensionality of the overall system crucially depends on the temporal dis-
cretization. Hence, we dismiss the possibility of using a direct solver for the overall system and rather decide to employ Kry-
lov-subspace solvers. Because of the nature of the problem, A being symmetric and indefinite, we will use MINRES [31] as it is
often the method of choice for saddle point problems. In more detail, for a linear system Ax ¼ b, initial guess x0, and initial
residual r0 ¼ b� Ax0, MINRES (and also other Krylov subspace solvers) will build up Krylov subspaces

span r0;Ar0;A2r0; . . . ;Ak�1r0

n o
by multiplying with the system matrix at each step. Here A denotes the saddle point system shown in (27) or (36). The
approximation to the solution of the linear system will then be computed such that the 2-norm (in the unpreconditioned
case) of the residual, rkk k2, is minimized over the current Krylov subspace. Naturally, MINRES will only be used with a precon-
ditioner and we refer to [13] for implementation details. In order for the preconditioned system to maintain the symmetric
and indefinite nature of the problem, we need the preconditioner to be symmetric and positive definite. Hence, our choice
will be a symmetric block-diagonal preconditioner. Before we mention the details of the preconditioner we will discuss
alternative choices for the iterative scheme. In case the upper-left block (blkdiagðsM; bsMuÞ is positive-definite, as is the
case for the added pressure term or the forward Stokes problem, we could employ a non-standard CG method also known
as the Bramble–Pasciak CG [8], which also has been successfully used for optimal control problems [45,37]. It is also possible
to use the projected CG method [19] with the so-called constraint preconditioners [27], which was demonstrated to also work
well for control problems [35,42,20,50]. For the use of indefinite preconditioners we would have to use non-symmetric
methods such as GMRES [41], BICG [14] or QMR [15] but we will refrain from using these methods in the course of this paper.
Benzi et al. [6] use Krylov methods within the preconditioner, which means that as an outer method a flexible method such
as FGMRES [40] has to be employed.

We will now discuss the choice of preconditioner best suited to be used with MINRES. Our choice is a block-diagonal pre-
conditioner of the following form

P ¼
A0 0 0
0 A1 0
0 0 Ŝ

2
64

3
75; ð37Þ

where A0 is an approximation to sM;A1 approximates the ð2;2Þ-block of the saddle point system, which we can afford to
invert in case the mass matrices are lumped, and Ŝ is a Schur complement approximation. First, we want to comment on
the blocks involving mass matrices. If we decide to use a consistent mass matrix, good preconditioners are available; Namely,
the Chebyshev semi-iteration [17,18], which is an easy-to-use but nevertheless very efficient method for systems involving
the mass matrix as illustrated in [49]. The blocks corresponding to the zero-bocks in sM, can be approximated by gI with
g > 0 as was done in [5]. Appropriate choices of the parameter g will be discussed in Section 3.4.

3.1. The Schur complement approximation

The choice of the Schur complement approximation is more tricky as the ð1;1Þ-block of A is semi-definite. Assuming for
now that sM is definite, the Schur complement of the system matrix would look like the following

s�1KM�1KT þ s�1b�1NM�1
u N

T
: ð38Þ

In the case sM is only semi-definite, we use the Schur complement approximation

s�1K �M�1KT þ s�1b�1NM�1
u N

T ð39Þ

where the zero blocks in sM are replaced by gI with small g. We will use an approach presented in [35–38] where we drop
the second term (s�1b�1NM�1

u N
T ) in (38). Hence, our approximation to the Schur complement is given by

Ŝ1 ¼ s�1KM�1KT :
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We will also employ a second approach that has recently been applied to PDE-constrained optimization problems with a
special emphasis on robustness with respect to regularization parameters is given by

Ŝ2 ¼ s�1ðK þ M̂ÞM�1ðKT þ M̂TÞ:

Here, M̂ is chosen in such a way that not only the first term of the Schur complement but also the second term is matched. In
more detail, this means that ideally

M̂M�1M̂ ¼ b�1NM�1
u N

T

by ignoring the cross terms in Ŝ2, which are hopefully small. In order to derive M̂ we need to study NM�1
u N

T and recalling
the structure of the block matrices, we can see that this is simply

NM�1
u N

T ¼

M 0 0 0 0

0 0 0 0 0

0 0 . .
.

0 0

0 0 0 M 0

0 0 0 0 0

2
6666666664

3
7777777775
:

Based on this observation we can now define M̂ as

M̂ ¼

1ffiffi
b
p M 0 0 0 0

0 0 0 0 0

0 0 . .
.

0 0

0 0 0 1ffiffi
b
p M 0

0 0 0 0 0

2
666666666664

3
777777777775
:

For both Schur complement approximations hatS1 and Ŝ2 it is infeasible to invert the block-triangular systems involving K as
this would require the exact solution of all of the discretized Stokes systems. We will therefore approximate the Stokes sys-
tems further, which is described now.

3.2. Approximation of the Stokes system

For the simpler problem of the state equation being the heat equation the authors suggest in [44] that one can replace the
solution with the discretized PDE operator by an appropriately chosen algebraic multigrid (AMG) preconditioner. We want
to do something similar for the Stokes problem but as already pointed out in [38] the approximation of the Schur comple-
ment in the case of the Stokes problem is more involved than for the simpler heat equation. In [38] the authors show that a
preconditioner for the Schur complement, namely the block-diagonal preconditioner P ¼ blkdiagðA0;MpÞ, is a good precon-
ditioner for the forward Stokes equations but in the case of Stokes control where a fourth-order operator (inverting also the
adjoint) has to be approximated, the contraction of the block-diagonal preconditioner is not sufficient for the Schur comple-
ment approximation of the control problem. Hence, Rees and Wathen suggest the use of an inexact Uzawa method using a
block-triangular preconditioner

P ¼
A0 0
B �Mp

� �
;

where A0 is an approximation to the discretized Laplacian, in general a multigrid operator, and Mp is the mass matrix on the
pressure space (see [13]). A fixed number of Uzawa steps to approximate the discrete Stokes operator represents a linear
operator and provides a good enough contraction rate such that the approximation to the Schur complement will be suffi-
cient to guarantee convergence of the overall outer MINRES iteration. For the steady case this was shown in [38]. Algorithm 1
shows a version of the inexact Uzawa method. Note that in the case of enclosed flow the Stokes-system matrix will be sin-
gular due to the hydrostatic pressure [13] but a consistent right-hand-side still enables the use of iterative solvers. As we
need to apply a forward and a backward solve with the inexact Uzawa method a scaling2 to make the right-hand-side suffi-
ciently close to a consistent right-hand-side always worked very well in our numerical experiments. In the case the Stokes sys-
tem is invertible these issues do not arise.

2 In Matlab notation: Scaling b such that Pb is close to a consistent right hand side, with P ¼ speyeðnÞ � a
n onesðn;nÞ with a close to one, e.g. 0.9.
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Algorithm 1. Inexact Uzawa method

1: Select x0.
2: for k ¼ 1;2; . . .do
3: xkþ1 ¼ xk þ P�1ðb� LxkÞ
4: end for

There is only a change in the preconditioner when moving from the steady system to the transient one. We note that the
Schur complement approximation

K̂M�1K̂T

involves a forward and backward substitution where we have to approximate the inverse of the matrix

L ¼ s�1M þ K BT

B 0

" #
ð40Þ

for the evaluation of K̂ and K̂T at each time-step. We propose to use the inexact Uzawa algorithm (see Algorithm 1) for the
matrix (40) with a block-triangular preconditioner defined as

P ¼
Â 0

B �S

" #
:

We can now simply use an algebraic or geometric multigrid for the preconditioner Â approximating s�1M þ K but the choice
of S is not so straightforward. In the case of steady Stokes problem the pressure mass matrix will allow for a suitable approx-
imation to the Schur complement. In our case, we have a different ð1;1Þ-block to the steady case and we derive a suitable
preconditioner using a technique for the steady Navier–Stokes equation. We follow [Chapter 8 [13]] by looking at the least
squares commutator (see [13]) defined by

E ¼ ðLÞr �rðLpÞ

where L ¼ s�1I þ M and Lp ¼ ðs�1I þ MÞ is defined on the pressure space. These operators are only used for the purpose of
deriving matrix preconditioners and no function spaces or boundary conditions are defined here. We expect the least squares
commutator to be small as was previously done for the derivation of Navier–Stokes preconditioners [13]. Using the finite
element method we obtain the discretization of the differential operators (see Chapter 8.2 [13]) and put this into the discret-
ized version of the above to get

Eh ¼ ðM�1LÞM�1BT �M�1BTðM�1
p LpÞ

where L ¼ s�1M þ K. We now pre-multiply the last equation by BL�1M and post-multiply by L�1
p Mp to get

BM�1BT L�1
p Mp � BL�1BT � 0; ð41Þ

under the assumption that the least squares commutator is small. The expression (41) gives

BM�1BT L�1
p Mp � BL�1BT ; ð42Þ

which allows us to use the Schur-complement approximation BM�1BT L�1
p Mp. We do not want to use the matrix BM�1BT ,

which is invertible. For our implementation, we would have to form this matrix, which would be infeasible in the case of
a consistent mass matrix. Hence, we rather use the fact that BM�1BT is spectrally equivalent to the Laplacian formed on
the pressure space Kp to give

S ¼ KpL�1
p Mp: ð43Þ

Note that as we are only interested in the application of S�1 we can further obtain

S�1 ¼ M�1
p LpK�1

p ¼ M�1
p ðs�1Mp þ KpÞK�1

p ¼ s�1K�1
p þM�1

p : ð44Þ

With the approximation (44) we are now able to provide efficient preconditioners for the solution of the time-dependent
Stokes problem within the Uzawa method. The preconditioner S�1 was first derived in [11] by Cahouet and Chabard and
is hence often referred to as the Cahouet–Chabard preconditioner. It was extensively used, analyzed and extended to for
example the Navier–Stokes case (more information can be found in [4,28,9,6,30]). Â will in our case be an algebraic multigrid
method applied to s�1M þ K and for S�1 we need the approximation to K�1

p , which can be done using algebraic multigrid as
well. Additionally, we need to approximate M�1

p , which can be efficiently approximated using the Chebyshev semi-iteration
[17,18,49] (see Algorithm 2).
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Algorithm 2. Chebyshev semi-iterative method for a number of l steps

1: Set D ¼ diagðMpÞ
2: Set relaxation parameter x
3: Compute g ¼ xD�1b̂, (with b̂ the input right-hand-side)
4: Set S ¼ ðI �xD�1MpÞ (this can be used implicitly)
5: Set zk�1 ¼ 0 and zk ¼ Szk�1 þ g
6: ck�1 ¼ 2 and ck ¼ x
7: for k ¼ 2; . . . ; l do
8: ckþ1 ¼ xck � 1

4 ck�1

9: #kþ1 ¼ x ck
ckþ1

10: zkþ1 ¼ #kþ1ðSzk þ g � zk�1Þ þ zk�1

11: end for

The identical analysis can be performed for the case when the Schur complement is approximated by
S ¼ s�1ðK þ M̂ÞM�1ðKT þ M̂TÞ as only the Cahouet–Chabard preconditioner now has to be derived for L ¼ s�1I þ 1ffiffi

b
p I þ M,

which in turn leads to

S�1 ¼ s�1 þ 1ffiffiffi
b
p

� �
K�1

p þM�1
p : ð45Þ

3.3. Eigenvalue analysis

In this section, we study the eigenvalues of the preconditioned matrix. We closely follow an earlier analysis presented in
[44].

We analyze the eigenvalues of the preconditioned matrix for a somewhat idealized case. We assume that the precondi-
tioner is given by

P ¼
�M 0 0
0 bsMu 0
0 0 Ŝ1

2
64

3
75

with Ŝ1 ¼ K �M�1KT . A congruence transformation P�1=2AP�1=2, now reveals the following matrix

P�1=2AP�1=2 ¼
D 0 BT

1

0 I BT
2

B1 B2 0

2
64

3
75 ð46Þ

where B1 ¼ Ŝ�1=2
1 K �M�1=2, and B2 ¼ s�1=2b�1=2Ŝ�1=2

1 NM�1=2
u . We will switch to the notation A ¼ blkdiagðD; IÞ and B ¼ ½B1 B2� as

for the classical saddle point problem. It is a well-known result [39] that for such a saddle point problem with symmetric and
positive-definite ð1;1Þ-block, the eigenvalues of P�1=2AP�1=2 lie in the intervals

I� ¼ 1
2

kðAÞmin �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðAÞmin

� �2
þ r2

max

r !
;
1
2

kðAÞmax �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðAÞmax

� �2
þ r2

max

r !" #

and

Iþ ¼ kA
min;

1
2

kðAÞmax þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðAÞmax

� �2
þ r2

max

r !" #
;

where rmax denotes the maximal singular value of B. This is true for both problems presented here. In the case when the
pressure is included in the objective function (35), the resulting saddle point system (36) has a positive definite ð1;1Þ-block,
which will lead to kA

min > 0. We will now discuss the bounds for Iþ and I� in more detail. In both cases, we need bounds for
eigenvalues of A. The structure of A reveals that we have an identity block and the matrix D ¼ blkdiagðI;0; I;0; . . . ; I;0Þ for the
objective function (1) and D ¼ blkdiagðI; Ip; I; Ip; . . . ; I; IpÞ for (35). It is therefore easy to read off the eigenvalues of D. The esti-
mation of the singular values of B is a bit more involved and we use the fact that the eigenvalues of BBT are the square of the
singular values of B. The structure of B now gives

BBT ¼ B1BT
1 þ B2BT

2 ¼ Ŝ1
�1=2K �M�1KT Ŝ�1=2

1 þ s�1b�1Ŝ�1=2
1 NM�1

u N
T Ŝ�1=2

1

and note that the last matrix is similar to
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Ŝ�1
1 K �M�1KT þ s�1b�1NM�1

u N
T

� �
:

This indicates that if Ŝ�1
1 is chosen to be K�T �MK�1 the above takes the following form

I þ s�1b�1K�T �MK�1NM�1
u N

T
: ð47Þ

Similar equations to (47) have been analyzed before for stationary problems [35,44]. For the transient case in (47), we have
to show that for a more refined mesh, smaller mesh parameter h, the eigenvalues of K�T �MK�1NM�1

u N
T do not change. We

are at this stage not able to prove the mesh-independence of the term s�1b�1K�T �MK�1NM�1
u N

T . In general the term �Mwill
include a multiplication by s which removes the dependency of the eigenvalue bounds on s since no other matrix involves s.
In Fig. 1 we show the largest 100 eigenvalues computed by the MATLAB eigs}command of the matrix K�T �MK�1NM�1

u N
T

where �M¼ blkdiagðM;gI; . . . ;M;gIÞ with g ¼ 10�6. The Stokes problem is for simplicity chosen with a Neumann boundary
at the bottom and Dirichlet on the remaining sides of the domain to have an invertible Stokes matrix.3 In Fig. 1 we show the
100 largest eigenvalues for two relatively small meshes with the DoF for one Stokes system given by n ¼ 578; m ¼ 81 and for
the second Stokes system n ¼ 162; m ¼ 25, where n is the number of discrete velocity variables and m the number of discrete
pressure variables. Note that these are the degrees of freedom for one instance of the unsteady problem. We chose a fixed num-
ber of time-steps N ¼ 10 and see that the eigenvalues for these problems do not depend on h; we expect this behaviour to con-
tinue for smaller h as in our numerical experiments (see Section 4) we do not observe mesh-dependent behaviour.

We further want to analyze the behaviour of the second Schur complement approximation provided by

Ŝ2 ¼ s�1ðK þ M̂ÞM�1ðKT þ M̂TÞ:

In a similar way to the results presented in [33,34], we have to consider the eigenvalues of the matrix Ŝ�1
2 S, where S is the

Schur complement. For this we consider the Rayleigh quotient with a normalized vector v of appropriate dimension, i.e.,

vT Sv
vT Ŝ2v

¼ vTðs�1KM�1KT þ s�1b�1NM�1
u N

TÞv
vTðs�1ðK þ M̂ÞM�1ðKT þ M̂TÞÞv

;

which we can also write as

1
vT ðs�1KM�1KTþs�1b�1NM�1

u N
T Þv

vT ðs�1KM�1KTþs�1b�1NM�1
u N

T Þv
þ s�1vT ðM̂M�1KTþKM�1M̂Þv

vT ðs�1KM�1KTþs�1b�1NM�1
u N

T Þv
:

Assuming that M̂M�1M̂ ¼ b�1NM�1
u N

T , this can also be written as

1

1þ s�1vT ðM̂M�1KTþKM�1M̂Þv
vT ðs�1KM�1KTþs�1b�1NM�1

u N
T Þv

:¼ R:
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Fig. 1. Largest 100 eigenvalues of K�TM̂K�1NM�1
u N

T for two small problems.

3 Note that in the enclosed flow case we have a one-dimensional kernel and this cannot be used for the illustration in Fig. 1.
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We see that the value R can be bounded below by 1
2 as

ða� bÞTða� bÞP 0() aT bþ bT a

aT aþ bT b
6 1

for any a; b and aT aþ bT b > 0 and hence for a ¼M�1=2KTv and b ¼M�1=2
u N Tv we get that R P 1

2. For previous results [34] the
boundedness of R from above used the positive definiteness of the matrix ðM̂M�1KT þKM�1M̂Þ, which for the problem pre-
sented in [34] is trivially given. Here the structure of the matrices does not give that ðM̂M�1KT þKM�1M̂Þ is positive def-
inite, i.e.,

M̂M�1 ¼ 1ffiffiffi
b
p

I 0 0 0 0
0 0 0 0 0

0 0 . .
.

0 0
0 0 0 I 0
0 0 0 0 0

2
6666664

3
7777775

results in

ðM̂M�1KT þKM�1M̂Þ ¼ 1ffiffiffi
b
p

2L BT �M 0 0 0 0 0
B 0 0 0 0 0 0 0

�M 0 0 0 . .
.

0 0 0
0 0 0 0 0 0 0 0

0 0 . .
.

0 . .
.

0 �M 0

0 0 0 0 0 . .
.

0 0
0 0 0 0 �M 2L BT

0 0 0 0 0 0 B 0

2
66666666666666664

3
77777777777777775

: ð48Þ

At this point we are unable to prove the robustness for the upper bounds but we will illustrate the behaviour of the eigen-
values based on numerical experiments. Fig. 2 is showing the eigenvalues for the case with pressure term of two small prob-
lems (n ¼ 578;m ¼ 81 and n ¼ 162;m ¼ 25) and for two different values of the regularization parameter. It can be seen that
the eigenvalues of Ŝ�1

2 S depend on the regularization parameter b but seem to be independent with respect to the mesh-
parameter h as for both matrix sizes the eigenvalues are very similar for the same regularization parameter. The situation
is different when we are dealing with a semi-definite ð1;1Þ-block (no pressure term) as the matrix �M now includes the
parameter g. Again, the lower bound 1

2 can be obtained in the same way as in the above and the upper bound can be moti-
vated by the fact that now the term

s�1vTðM̂ �M�1KT þK �M�1M̂Þv
vTðs�1K �M�1KT þ s�1b�1NM�1

u N
TÞv

ð49Þ

is g dependent. Due to the structure of M̂ �M�1 ¼ 1ffiffi
b
p blkdiagðI;0; . . . ; I;0Þ the parameter g is not influencing the term in the

numerator of (49) but only influences the value of its denominator, which helps to explain the eigenvalue distribution shown
in Fig. 3, i.e., g balances the effect of the negative eigenvalues of ðM̂ �M�1KT þK �M�1M̂Þ. In Fig. 3 we again show the eigen-
values for the two different problem sizes used earlier and two values of the regularization parameter.
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Fig. 2. Largest 30 eigenvalues of Ŝ�1
2 S for two small problems with pressure term.
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In Fig. 4 and Fig. 5 we compare the largest 30 eigenvalues of Ŝ�1S for both choices of Ŝ for the problem with and without
pressure term. In Fig. 4 we use the notation P1 for the use of Ŝ1 and P2 whenever Ŝ2 is used for a small problem with a variety
of regularization parameters. It can be seen that the eigenvalues in both cases strongly depend on the regularization param-
eter b. This is in contrast to Fig. 5 where we again compare Ŝ1 and Ŝ2 for the same small problem without pressure term and
varying regularization parameter.
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Fig. 3. Largest 30 eigenvalues of Ŝ�1
2 S for two small problems without pressure term.
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Fig. 4. Largest 30 eigenvalues of Ŝ�1S for a small problem with pressure term and varying b. P1 and P2 refer to the use of Ŝ1 and S2, respectively.
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3.4. Choice of g

We now want to motivate a heuristic for the choice of the parameter g. Note that the results below are for a two-dimen-
sional problem. We follow a strategy presented in [5] that was also used in [33] to balance the two terms in the Schur-
complement

S ¼ s�1KM�1KT þ s�1b�1NM�1
u N

T
:

We have previously observed [44,33] that a heuristic choosing g � sbhd where h is the mesh-parameter and d ¼ 2;3 is the
dimension of the domain often yields good results. In Fig. 6 we show the dependence of the 30 largest eigenvalues of the two
already considered problems with respect to varying g. Namely, we consider the choice g ¼ sb, which can be motivated only
using the diagonal blocks of K in a Schur complement approximation. This in turn leads to a balancing of the terms
LM�1Lþ g�1BT B against s�1b�1M, where we can use that the eigenvalues of BT B scale like h2 in 2D. We also show results
for the value g ¼ sbh2 that was previously used in [33]. It can be seen that this choice outperforms the first one as no depen-
dence on the mesh-parameter could be observed. This is also used in the numerical experiments presented later, where we
always obtained satisfying results using this heuristic. Note that so far we only considered the two-dimensional case but this
heuristic can easily be extended to three space dimensions to get g ¼ sbh3.

4. Numerical experiments

The numerical tests are all performed using deal.II [2]. We use a Q2=Q1 discretization of the Stokes problem. The inverse
of the pressure Laplacian is approximated by 6 steps of an AMG V-cycle and 10 steps of a Chebyshev smoother as part of the
ML Trilinos package [16]. The inverse of the Laplacian plus mass matrix block is approximated by 10 steps of a Chebyshev
smoother and 2 steps of an AMG V-cycle. In general we use a relative tolerance of 10�4 for the pseudo-residual and mention
explicitly if any other tolerance is used. Within the smoothed aggregation AMG we use a Jacobi solver for the coarsest level.4

With the setup 10 steps of a Uzawa method seem to produce good results for all our test cases. All experiments are performed
on a 64 bit Centos Linux machine with Intel (R) Xeon (R) CPU X5650 @ 2.67 GHz CPUs and 48 GB of RAM. No parallelism was
exploited in our implementation. The example we look at in this section is taken from the paper by Hinze et al. [23]. The spatial
domain is defined as X ¼ ½0;1�d and the time domain is given as ½0;1�. As we have not used special multigrid methods devised
for parameter-dependent problems it has been observed in [29] that general purpose preconditioners might loose the indepen-
dence with respect to s. This behaviour could not be observed if s scaled with the mesh-parameter and hence we are often
choosing s � h. We will also present results for a fixed s ¼ 0:05.

The target flow is the solution for the unsteady Stokes equation with Dirichlet boundary conditions, i.e. y ¼ ð1;0Þ when
the second spatial component x2 ¼ 1 and y ¼ ð0;0Þ on the remaining boundary for the two-dimensional case. In the three
dimensional case we set y ¼ ð1;0;0Þ when x2 ¼ 1 and y ¼ ð0;0;0Þ on the remaining boundary. The viscosity was chosen
to be m ¼ 1. Fig. 7 shows the desired state at t ¼ 0:63. For the control problem we now consider the following time-depen-
dent boundary conditions. For the top-boundary where x2 ¼ 1 we get y ¼ ð1þ 1

2 cosð4pt � pÞ;0Þ and zero elsewhere in two
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Fig. 6. Largest 30 eigenvalues of Ŝ�1
2 S for two small problems without pressure term and varying g.

4 The standard direct solver worked well for the Neumann problem on 32 bit machines but failed completely on 64bit machines.
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space dimensions. For this example the viscosity is set to 1=100. We also take c ¼ 0. Fig. 8 shows both the computed con-
trolled state and the uncontrolled state for the above system at t ¼ 0:63. For the choice of the scaling parameter g dealing
with the zero-blocks in the ð1;1Þ block of the saddle point system we follow the heuristic proposed above. To illustrate the
performance of our preconditioner it is imperative to consider three-dimensional results and we choose the boundary con-
dition for x2 ¼ 1 to be y ¼ ðt þ sinð0:1x1Þ; t þ cosð0:5x2Þ;0Þ; y ¼ ð0;0;0Þ on the rest of the domain, and m ¼ 1

100. This is a some-
what arbitrary choice but nevertheless exhibits all the complications expected in a realistic problem. For simplicity the initial
condition y0 is chosen to be zero within the domain and satisfying the boundary conditions on @X for the corresponding
problem.

4.1. Without pressure term

We begin our numerical experiments by computing the approximate solution to the above problems on a variety of
meshes. Fig. 8 shows the controlled and the uncontrolled state at the time t ¼ 0:63. The control for this time is shown in
Fig. 9. We denote by DoF the degrees of freedom used for the discretization of the PDE at one time-step, similar to a steady
problem, then we show the number of time-steps N. This means that for the finest mesh we are implicitly solving a linear

Fig. 7. Desired state at t ¼ 0:63.

Fig. 8. Uncontrolled vs. controlled state.
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system of dimension 3 � 37507 � 129 � 14million unknowns. Timings are given in seconds. Table 1 shows the results for a
relative tolerance of 10�4 when s � h. In Table 2 we show the results for the same setup just the number of time-steps is now
fixed. As can be seen from the results in Table 1 the iteration numbers with both preconditioners do not increase with refine-
ment in space and time. We see that the approximation Ŝ1 produces mesh-independent iterates but the results are not as
satisfactory as the ones obtained for the preconditioner Ŝ2, which comes essentially at the same cost. Thus, we will refrain
from showing the results of the Ŝ1 preconditioner for the remainder of this section. We see in Table 2 that the iteration
counts with respect to b are almost constant. The slight increase in the iteration numbers for smaller b and h is in our opinion
due to the performance of the algebraic multigrid method, which for parameter dependent problems does not always per-
form equally for decreasing parameter values. We believe that if the parameter decrease is taken into account by algebraic or
geometric multigrid, then the iteration numbers will stay constant. In fact, we can see in Table 2, where the time-step s is
constant, that the iteration numbers are constant with respect to b and h.

Table 3 shows the results for a boundary condition that is more oscillatory than the one previously used, i.e.,
y ¼ ð1þ 1

2 cosð50:5pt � pÞ;0Þwhenever x2 ¼ 1. It can be seen that iteration numbers do not change compared to the iteration
numbers presented in Table 1. It might be necessary to refine further in time and space to capture the essence of the more
oscillatory problem but as our preconditioners are robust with respect to temporal and spatial refinement we would not ex-
pect any difficulties.

The results shown in Table 4 are computed for a tolerance of 10�6 and s � h with the setup in three dimensions. Again, we
see a very moderate number of MINRES iterations for this case. We show results for the three-dimensional problem in Fig. 10

Fig. 9. Control at t ¼ 0:63.

Table 1
Number of MINRES steps with CPU-time s � h for different values of b. Results are shown for the preconditioner Ŝ1 and the preconditioner Ŝ2.

DoF N MINRES (Time) MINRES (Time) MINRES (Time)

Ŝ1 (b ¼ 10�2) Ŝ2 (b ¼ 10�4) Ŝ2 (b ¼ 10�6)

2467 33 51(1010) 15(323) 11(247)
9539 65 49(7447) 15(2454) 17(2777)
37507 129 49(48668) 15(16008) 24(24521)

Table 2
Number of MINRES steps with CPU-time for different values of b and s ¼ 0:05. Results are shown for the
preconditioner Ŝ2 with a stopping tolerance of 10�4.

DoF N MINRES (Time) MINRES (Time)

Ŝ2 (b ¼ 10�4) Ŝ2 (b ¼ 10�6)

2467 21 15(336) 12(277)
9539 21 14(1201) 14(1202)
37507 21 14(4277) 16(4832)
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and Fig. 11 with Fig. 10(a) showing the computed state, Fig. 10(b) showing the computed control, Fig. 11(b) showing the
uncontrolled state, and Fig. 11(a) showing the desired state.

Finally, in Table 5 we compute a 2D solution with tolerance 10�4 and the above setup and only change the viscosity m to be
equal to one. Again, the iteration numbers are low and robust with respect to the parameters b and h.

4.2. With pressure term

In this section we show results for the problem including a pressure term in the objective function. The desired state and
the desired pressure are obtained from solving the previously mentioned unsteady flow problem. In our case we now simply
invert the mass matrix coming from the velocity space (as it is lumped) and use the Chebyshev semi-iteration for the mass
matrix on the pressure space that corresponds to the pressure terms in the objective function, i.e., 20 steps of this method are
typically employed.

Table 6 shows results for both preconditioners in the case of the problem including pressure terms in the objective func-
tion. As indicated in the eigenvalue analysis presented in Section 3.3 both preconditioners perform reasonably for large val-
ues of b but perform badly when b becomes small.

Table 3
Number of MINRES steps with CPU-time for different values of b and s � h. The boundary condition is changed to
y ¼ ð1þ 1

2 cosð50:5pt � pÞ;0Þ for the top boundary. Results are shown for the preconditioner Ŝ2 with a stopping
tolerance of 10�4.

DoF N MINRES (Time) MINRES (Time)

Ŝ2 (b ¼ 10�4) Ŝ2 (b ¼ 10�6)

2467 33 14(322) 8(201)
9539 65 14(2367) 13(2227)

Table 4
Number of MINRES steps and CPU-time with s � h using different values of b for a three-dimensional problem.
Results are shown for the preconditioner Ŝ2. The tolerance is set to 10�6.

DoF N MINRES (Time) MINRES (Time)

Ŝ2 (b ¼ 10�4) Ŝ2 (b ¼ 10�6)

2312 9 23(364) 17(277)
15468 17 20(4711) 12(2996)

Fig. 10. Desired state and control.

512 M. Stoll, A. Wathen / Journal of Computational Physics 232 (2013) 498–515



5. Conclusions and future work

We have shown that the discretization of the PDE-constrained optimal control problem involving unsteady Stokes flow as
a PDE constraint can be efficiently cast using a Lagrangian technique into an all-at-once saddle point problem. As the dimen-
sions of these type of problems are extremely large the use of iterative solvers is imperative. We have proposed the use of
MINRES as the outer solver and block preconditioners. The Schur complement can efficiently be approximated using an inexact
Uzawa method for which we have shown that the well-known Cahouet–Chabard preconditioner can be used. The iteration
numbers for the outer MINRES method are always very low. We were able to introduce a preconditioner that showed robust-
ness with respect to the regularization parameter b.

We believe that the results for the computation of the Stokes control problem will be very similar to the ones presented
here if control constraints are present. In that case an outer Newton-type [21] method can be used and the linear systems
that have to be solved at each step of the active set iteration are similar in nature to the ones for the problem with no bound
constraints [45]. It might also be good to apply a nested approach where the solution is first approximated on a coarse mesh
and then transferred to a fine discretization (see [20]). Another interesting aspect of the above problem is to consider the

Fig. 11. Uncontrolled vs. controlled state.

Table 5
Number of MINRES steps and CPU-time with s ¼ 0:05 and varying different values of b. Here the viscosity is set to
m ¼ 1. Results are shown for the preconditioner Ŝ2.

DoF N MINRES (Time) MINRES (Time)

Ŝ2 (b ¼ 10�4) Ŝ2 (b ¼ 10�6)

2467 21 16(356) 14(305)
9539 21 16(1352) 14(1221)

Table 6
Number of MINRES steps with CPU-time s � h for different values of b in 3D. Results are shown for the preconditioner Ŝ1 and the preconditioner Ŝ2 using a
tolerance 10�4.

DoF N MINRES (Time) MINRES (Time) MINRES (Time) MINRES (Time)

Ŝ1 (b ¼ 100) Ŝ1 (b ¼ 10�2) Ŝ2 (b ¼ 100) Ŝ2 (b ¼ 10�2)

2312 9 24(442) 63(1107) 32(579) 91(1585)
15468 17 26(7012) 79(20112) 38(9931) 131(33821)

Ŝ1 (b ¼ 10�4) Ŝ1 (b ¼ 10�6) Ŝ2 (b ¼ 10�4) Ŝ2 (b ¼ 10�6)
2312 9 357(5989) 695(11619) 407(6817) 572(9779)
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more realistic scenario of boundary control for which we believe the regularization robust preconditioner can be extended.
Of course, these problems should also be analyzed and tested numerically in the future.
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A.6 Preconditioning for the H1 norm

This paper is published as
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regularized optimal control problem, Commun. Comput. Phys.,
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Result from the paper

We develop robust solvers for optimization problems with H1−regularization
for the control. Figure A.2 shows eigenvalues for two different meshes and a
variety of regularization parameters. We show coarse mesh on the left and
slightly finer mesh on the right.
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Figure A.2: Eigenvalues depending on regularization parameter.
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Abstract. In this paper we consider PDE-constrained optimization problems which in-
corporate an H1 regularization control term. We focus on a time-dependent PDE, and
consider both distributed and boundary control. The problems we consider include
bound constraints on the state, and we use a Moreau-Yosida penalty function to han-
dle this. We propose Krylov solvers and Schur complement preconditioning strategies
for the different problems and illustrate their performance with numerical examples.
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1 Introduction

As methods for numerically solving partial differential equations (PDEs) become more
accurate and well-understood, some focus has shifted to the development of numerical
methods for optimization problems with PDE constraints: see, e.g., [41,44,69] and the ref-
erences mentioned therein. The canonical PDE-constrained optimization problem takes
a given desired state, ȳ, and finds a state, y, and a control, u, to minimize the functional

‖y− ȳ‖2
Y+

β

2
R(u) (1.1)
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subject to the constraints

Ay=u,

ua ≤u≤ub,

ya ≤y≤yb ,

where ‖·‖Y is some norm and R(u) is a regularization functional. We are free to choose
both the norm and the regularization functional here; appropriate choices often depend
on the properties of the underlying application. In the description above A denotes a PDE
with appropriate boundary conditions and β denotes a scalar regularization parameter.
The focus of this manuscript is regularization based on the H1 norm of the control, which
we motivate below.

The simplest choice of R(u) is ‖u‖2
L2(Ω), where Ω denotes the domain on which the

PDE is posed. This case has been well-studied in the literature, both from a theoreti-
cal and algorithmic perspective. However, the requirements of real-world problems has
necessitated the application of alternative regularization terms.

One area where there has been much interest is in regularization using L1 norms,
see, e.g., the recent articles [12, 73]. A related norm is the total variation norm R(u) =
‖∇u‖L1(Ω), has also aroused excitement recently – see e.g. [14, 59] and the references
therein. These L1 norms have the benefit that they allow discontinuous controls, which
can be important in certain applications.

For certain applications it is desirable to have a smooth control – for this reason the
H1 semi-norm, R(u) = ‖∇u‖2

L2(Ω), has long been studied in the context of parameter-

estimation problems [10, 46, 76], image-deblurring [13, 17, 48], image reconstruction [49],
and flow control [18, 34], for example. Recently van den Doel, Ascher and Haber [19]
argued that this norm can be a superior choice to its L1-based cousin, total variation, for
problems with particularly noisy data due to the smooth nature of controls which arise.
The test problems in PDE constrained optimization by Haber and Hanson [31], which
were designed to get academics solving problems more in-line with the needs of the real-
world, suggest a regularization functional of the form R(u)=‖u‖2

L2(Ω)+α‖∇u‖2
L2(Ω) for a

given α. Indeed, this form of regularization is commonly used in the ill-posed and inverse
problem communities. Another example of a field where the standard L2 regularization
may not be appropriate is flow control – see, e.g., Gunzburger [28, Chapter 4].

At the heart of many techniques for solving the optimization problem, whether it is
a linear problem or the linearization of a non-linear problem, lies the solution of a linear
system [35,41,44,70]. These systems are very often so-called saddle point matrices [4,23],
which have the form

A=

[
A BT

B 0

]
, (1.2)

where A represents the misfit and regularization terms in (1.1) and B represents the
PDE constraint. In the systems we consider in this paper, A is symmetric positive semi-
definite. Such saddle point matrices are invertible if B has full rank and ker(A)∩ker(B)=
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{0}: this condition holds for most of the examples we consider here, and in the cases
where it doesn’t – e.g. (2.3-2.4) – there is a well-understood one dimensional null-space
that can be straightforwardly dealt with [4, Section 3.2]. We are then left with the chal-
lenge of efficiently solving linear systems of the form (1.2).

Direct solvers based on factorizations [21] can be effective, but for large and, in par-
ticular, three-dimensional problems these are no longer sufficient. In such cases we turn
to iterative Krylov subspace methods, which can deal with these large and sparse sys-
tems efficiently provided that they employ a preconditioner which enhances the con-
vergence behaviour, ideally independent of problem-dependent parameters such as the
mesh-size or the regularization parameter. For a general overview of preconditioners we
refer to [29, 61], and in the particular case of saddle point problems see [4, 23, 77].

A number of preconditioners which are robust with respect to regularization param-
eters and mesh-parameters have recently been developed for PDE-constrained optimiza-
tion [1, 15, 20, 36, 47, 52, 53, 65]. However, these methods are tailored for an optimization
problem with R(u)=‖u‖2

L2(Ω) and heavily rely on the corresponding presence of a mass

matrix in the A block of (1.2). Benzi, Haber and Taralli [5] consider a block precondi-
tioner with of R(u) given by (a variant of) the H1−norm, but their approach is general
enough to work with most regularization and the form of this term is not exploited in
the method. To the authors’ knowledge there have been no other attempts to apply block
preconditioners – which have proved so successful with L2 regularization – in the case of
other choices of R(u). We address this issue here by considering a cost-functional where

R(u)=‖u‖2
L2
+‖∇u‖2

L2
,

and we present preconditioners that show robustness with respect to the regularization
parameter for this problem, which is more challenging from a linear algebra perspective.

In the following we use the heat equations as an example PDE. In principle the ap-
proaches described here can be extended to other PDEs, as for the L2 regularization case.
We deliberately choose to focus on the simplest PDE example to highlight the issues cor-
responding directly to the regularization, not the difficulties involved in using a more
complicated model, which is discussed elsewhere.

The structure of the paper is as follows. We begin in Section 2 by stating the optimal
control problem in the time-dependent and time-independent cases with both distributed
and boundary control. We illustrate how to obtain discretized first order conditions from
a so-called discretize-then-optimize approach. In Section 3 we describe how – following
a method first proposed by Ito and Kunisch [43] – the state constraints can be handled
using a Moreau-Yosida penalty approach and show how to incorporate this into possi-
ble preconditioning strategies. Sections 2 and 3, which describe the application of well
known techniques for solving such optimal control problems, show how the bottleneck
for such codes is the solution of a very large linear system.

In Section 4 we discuss the choice of possible Krylov solvers and introduce precon-
ditioning strategies for both the time-dependent and time-independent control problem,
with an emphasis on how to handle the H1 regularization term. This builds on the work
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in the literature that has been used to efficiently solve L2 regularized problems, but the
use of the H1 norm in the cost functional causes difficulties which require novel tech-
niques to overcome. The development of such techniques is the main contribution of the
paper. Our numerical results shown in Section 6 illustrate the efficiency of our approach.

2 Problem setup and discretization

2.1 A stationary control problem

Before describing the time-dependent control problem we fix ideas by considering a sta-
tionary optimal control problem. We wish to minimize the functional

J1(y,u)=
1

2
‖y− ȳ‖2

L2(Ω1)
+

β

2
‖u‖2

H1(Ω2)

=
1

2
‖y− ȳ‖2

L2(Ω1)
+

β

2
‖u‖2

L2(Ω2)
+

β

2
‖∇u‖2

L2(Ω2)
, (2.1)

where both Ω1 and Ω2 are subdomains of Ω∈Rd with d=2,3. The constraint is given by
the following elliptic PDE

−△y=

{
u in Ω2,

0 in Ω\Ω2,
(2.2)

together with Dirichlet boundary conditions, y=g on ∂Ω. We refer to y as the state and u
as the corresponding control, which is used to drive the state variable as close as possible
to the desired state (or observations) ȳ. The above problem is the distributed control
problem, as u defines the forcing of the PDE over the interior subdomain Ω2. Another
important case is given by the Neumann boundary control problem, where Ω2 = ∂Ω
together with the PDE constraint

−△y= f in Ω, (2.3)

∂y

∂n
=u on ∂Ω, (2.4)

where f represents a fixed forcing term.
In practice, physical characteristics of the application will require box constraints on

the control and/or the state. Typical bounds would be

ua ≤u≤ub

for the control and
ya ≤y≤yb

for the state. The numerical treatment of these constraints is by now well established
[6,7,38] but nevertheless represents a computational challenge, in particular for the state
constraints [11].
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We follow the discretize-then-optimize paradigm and discretize the PDE and the ob-
jective function using Q1 finite elements [23, 67]; we employ the deal.II [2] finite element
package for our numerical experiments.

We derive the discrete optimality system for the cost functional (2.1) with the PDE
constraint (2.2), together with homogeneous Dirichlet boundary conditions for ease of ex-
position – the extension to other boundary conditions proceeds similarly. Let φ1,···φn be
a finite element basis for the interior of Ω, and suppose we extend this by φn+1,··· ,φn+∂n

to include the boundary. Let Yh
0 = 〈φ1 ···φn〉, Uh = 〈φ1 ···φn,φn+1,φn+∂n〉. Furthermore, let

YΩ1
:= 〈φ̂1 ··· φ̂m̂〉 and UΩ2

:= 〈φ̄1 ··· φ̄m̄〉 denote the subsets of Uh with support on Ω1 and
Ω2 respectively.

The finite dimensional analogue to (2.1), (2.2) is to find yh ∈Yh
0 ⊂H1

0(Ω) and uh ∈Uh ⊂
H1(Ω) which satisfy

min
yh∈YΩ1

,uh∈UΩ2

1

2
||yh − ȳ||2L2(Ω1)

+
β

2
||uh||2H1(Ω2)

,

s.t.
∫

Ω
∇yh ·∇vh =

∫

Ω2

uhvh, ∀vh ∈Yh
0 .

We can write the optimization problem in terms of matrices as

min
y,u

1

2
yT Myy−yTb+

β

2
uT Muu+

β

2
uTKuu, (2.5)

s.t. Ky=Mu, (2.6)

where

(My)i,j =
∫

Ω
φ̂iφ̂j, i, j=1,··· ,m̂, (Ku)i,j=

∫

Ω
∇φ̄i ·∇φ̄j, i, j=1,··· ,m̄,

(Mu)i,j=
∫

Ω
φ̄iφ̄j, i, j=1,··· ,m̄, (K)i,j=

∫

Ω
∇φi ·∇φj, i, j=1,··· ,n,

(M)i,j=
∫

Ω
φiφ̄j, i=1,··· ,n, j=1,··· ,m̄, bi=

∫

Ω
ȳφi, i=1,··· ,m̂.

Note that in this paper we only discuss the case where Ω2=∂Ω or Ω2=Ω and Ω1=Ω.
Other choices influence the matrix properties of My,Mu,Ku,M for which the techniques
presented here are still applicable.

In the distributed control case the first order optimality conditions lead to the follow-
ing saddle point system:




My 0 −KT

0 βMu+βKu MT

−K M 0






y
u

p


=




b
0

0


. (2.7)

Note that the addition of an H1 norm in the regularization leads to an optimality system
with substantially different properties compared to the L2 case; in particular, if p = 0
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on the boundary, we do not necessarily have that u = 0 on the boundary here, which
is known to be true if we use L2 regularization (see [58, 69, Section 2.8]). If we were to
use non-homogeneous boundary conditions the 3rd entry of the right hand side would
hold the boundary data, as the state equation (2.6) would become Ky=Mu−d for some
non-zero vector d.

We treat the boundary control problem similarly. Here we get

J1(y,u)=
1

2
yT Myy−bTy+

β

2
uT Mu,bu+

β

2
uTKu,bu (2.8)

together with
K̂y= N̂u+f. (2.9)

Here Mu,b and Ku,b are the boundary mass matrix and Laplacian, respectively, i.e.

(Ku,b)i,j=
∫

∂Ω
∇tr(φi)·∇tr(φj), (Mu,b)i,j=

∫

∂Ω
tr(φi)tr(φj), i, j=n+1,··· ,n+∂n,

where tr(·) is the trace operator, which we use here to give us a finite element discretiza-
tion of the boundary. The vector f represents the discretized forcing term, which for
simplicity we take to be zero for the remainder of the paper. The matrix K̂ is the stiff-
ness matrix, including the boundary nodes, and N̂ connects interior and boundary basis
functions, in particular

(N̂)ij =
∫

∂Ω
φitr(φj), i=1,··· ,n+∂n, j=1,···∂n.

We obtain the following first order optimality system



My 0 −K̂T

0 βMu,b+βKu,b N̂T

−K̂ N̂ 0






y

u

p


=




b

0

0


. (2.10)

2.2 Time-dependent problem

We now present a time-dependent version, which is of wide practical interest and will be
the focus of our numerical tests. The objective function is now given by

J2(y,u)=
1

2

∫ T

0

∫

Ω1

(y− ȳ)2dxdt+
β

2

∫ T

0

∫

Ω2

u2dxdt+
β

2

∫ T

0

∫

Ω2

(∇u)2
dxdt, (2.11)

where all functions are simply time-dependent versions of their steady counterparts
presented above. For the distributed control problem we apply the time-dependent
parabolic constraint

yt−△y=

{
u, for (x,t)∈Ω2×[0,T],

0, for (x,t)∈Ω\Ω2 ×[0,T],

y= g, on ∂Ω,

y=y0, at t=0,
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for some prescribed functions g, y0. In case of a boundary control problem, where Ω2 =
∂Ω and again take the heat equation as our PDE constraint:

yt−△y= f for (x,t)∈Ω×[0,T], (2.12)

∂y

∂n
=u on ∂Ω, (2.13)

y=y0, at t=0. (2.14)

For the discretization of the time-dependent objective function we use the trapezoidal
rule for the time integral and finite elements in space to give

J2(y,u)=
1

2
yTMyy+b̂Ty+

β

2
uTMuu+

β

2
uTKuu, (2.15)

where b̂=[1/2bT ,bT,··· ,bT, 1/2bT ]T,

M=blkdiag(My,··· ,My),

My=blkdiag(1/2My,My,··· ,My,1/2My),

Mu =blkdiag(1/2Mu,Mu,··· ,Mu,1/2Mu), and

Ku =blkdiag(1/2Ku,Ku,··· ,Ku,1/2Ku),

which are simply block-variants of the previously defined matrices over the domains Ω1

and Ω2. Note that in the time-dependent case we abuse the notation y, u defined earlier,

i.e., y=
[
yT

1 ,yT
2 ,··· ,yT

NT

]T
, etc.; we believe it will be clear from the context which of the

two we are currently considering. Using this notation and a backward Euler scheme, we
can write down a one-shot discretization of the time-dependent PDE as follows

−




L
−M L

. . .
. . .

−M L




︸ ︷︷ ︸
K

y+τMu=d (2.16)

with L = M+τK and d holding the initial conditions for the heat equation. For more
details see [5, 20, 66].

We form the Lagrangian and write down the first order conditions in a linear system,



τMy 0 −KT

0 τβ(Mu+Ku) τM
−K τM 0






y

u

p


=




τb̂

0
d


, (2.17)

in the case of the distributed control problem, and



τMy 0 −KT

0 τβ(Mu,b+Ku,b) τN T

−K τN 0






y

u

p


=




Myȳ

0
d


 (2.18)

for boundary control, where N =blkdiag(N,··· ,N).
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3 Handling the state constraints

Box constraints for the state y can be dealt with efficiently using a penalty term. The
Moreau-Yosida penalty function has proven to be a viable tool: see [36, 43, 52] and the
references mentioned therein. One can also use the Moreau-Yosida technique for box
constraints on the control but the primal-dual active set method [38] is mostly the method
of choice. We briefly describe the Moreau-Yosida technique for the distributed control
problem. A more thorough discussion can be found in the references mentioned earlier.
The modified objective function becomes

JMY(y,u)=J2(y,u)+
1

2ε
‖max{0,y−yb}‖2

Q+
1

2ε
‖min{0,y−ya}‖2

Q (3.1)

for the state constrained case. Here Q=Ω1×[0,T] is the space-time cylinder. In accor-
dance with [36], we can employ a semi-smooth Newton scheme that leads to the follow-
ing linear system




τMy+ε−1GAMyGA 0 −KT

0 τβ(Mu,b+Ku,b) τN T

−K τN 0






y

u

p




=




Myȳ+ε−1
(
GA+

MyGA+
yb+GA−MyGA−ya

)

0
d


, (3.2)

where the block-diagonal matrix

GAMyGA=blkdiag(GA1 MyGA1 ,··· ,GANT MyGANT )

defines the contribution of the penalty term with the active set Ak for time-step k de-
fined as follows. We set where we define the active sets as Ak

+ =
{

i : yk
i > (yb)

k
i

}
, and

Ak
−
{

i : yk
i < (ya)k

i

}
, and Ak =Ak

+∪Ak
−; the matrices G are diagonal matrix variants of the

characteristic function for the corresponding sets, i.e.,

(GAk)ii =

{
1 for i∈Ak,
0 otherwise.

Our focus is on the efficient solution of the linear systems (3.2), which are of saddle point
type. Note that the active sets defined above within an iterative process such as the semi-
smooth Newton scheme are computed based on the state at the previous iteration, but
for simplicity we neglect the iteration index. For more details of semi-smooth Newton
methods we refer to [41, 44, 70]; there is also recent theory introducing path-following
approaches for the penalty parameter ε [39].
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4 Preconditioning

4.1 Choice of Krylov solver and Schur complement preconditioning

As mentioned in the introduction, the linear systems that arise from PDE-constrained
optimization are very often too large for direct solvers to be effective, and for scalable and
efficient solution of these linear systems the combination of a state-of-the-art solver with
an efficient preconditioning technique is crucial. In this section we derive preconditioners
for each of the problems presented earlier, but first mention the choice of the iterative
scheme. Krylov solvers are for many applications the method of choice [64], as they are
cheap to apply; at each step they only require a matrix vector product, the evaluation
of the preconditioners, and the evaluation of inner products. These methods build up
a low-dimensional subspace that can be used to approximate the solution to the linear
system.

There are a variety of Krylov subspace methods, and the most effective to use depends
on the properties of the linear system. Here we focus on the development of effective
preconditioners and we will focus less on the choice of linear solver.

Schur-complement based preconditioners, based on approximations to S :=BA−1BT,
have proved to be effective. Popular choices are a block diagonal preconditioner P1 =
blkdiag(A,S), or a nonsymmetric preconditioner,

P2=

(
A 0
B −S

)
.

Naturally, these are too expensive for any realistic problem, but if we can approximate
both the (1,1)-block and the Schur-complement of A, then the underlying Krylov method
will converge in a small number of steps. In the following sections we describe how to
find good approximations to these blocks for the application considered here.

4.2 The (1,1)-block

Our first goal is to efficiently approximate the (1,1)-block of the saddle point matrix.
Parts of the (1,1)-block here consist of lumped mass matrices, which are diagonal and
can simply be inverted. If, on the other hand, the user prefers to use consistent mass
matrices they can use the Chebyshev semi-iteration [72]. If the (1,1)-block part corre-
sponding to the discretization of the state misfit part of the objective function is only
semi-definite, e.g., via a partial observation operator, we can add a small perturbation to
the zero blocks within the preconditioned and hence make this part positive definite so
the above applies. In more detail, we replace the zero blocks in A by blocks of the form η I
with η a small parameter greater than zero. Note that this technique can also be used for
an approximation of the Schur-complement in case the (1,1)-block is semi-definite [5,66].

The matrix part corresponding to the discretization of the H1 term in the objective
function is more complicated as it is not diagonal. The good news in this case is that
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the operator and the corresponding matrix representation are not only symmetric but
also positive definite. This allows the use of either geometric [32, 75] or algebraic [24, 60]
multigrid techniques.

4.3 Schur-complement approximation

The methods described in Section 4.2 efficiently approximate the (1,1)-block, A, of the
saddle point system; we use Â to represent such an approximation to A for the remain-
der of this paper. Our goal now is to introduce efficient approximations Ŝ to the Schur-
complement S.

The Schur complement of the system matrix (2.17) is

S=τ−1KM−1
y K+τβ−1M(Mu+Ku)

−1MT. (4.1)

There are various ways to approximate S; one of the simplest is

S≈τ−1KM−1
y K,

which for larger β often performs well but is not robust with respect to this parameter.
In order to develop a more robust method we look for a more sophisticated approxi-

mation inspired by [53] that more accurately mirrors S by also including the second term
in (4.1). We have two options here, either a symmetric version,

Ŝ1=τ−1
(
K+M̂

)
M−1

y

(
K+M̂

)T
,

which can be used within MINRES [51], or a non-symmetric approximation

Ŝ2=τ−1
(
K+M̂1

)
M−1

y

(
K+M̂2

)T

to be employed with a non-symmetric solver, e.g. GMRES [63] or BICG [25]. The goal is
now to find M̂1, M̂2, and M̂ such that

τ−1M̂1M−1
y M̂T

2 =τβ−1M(Mu+Ku)
−1MT

and
τ−1M̂M−1

y M̂T =τβ−1M(Mu+Ku)
−1MT.

We start by deriving the symmetric approximation to S using

M̂ :=
τ√

β
M(Mu+Ku)

−1/2M1/2
y .

We then obtain the following Schur-complement approximation

Ŝ1=τ−1

(
K+

τ√
β
M(Mu+Ku)

−1/2M1/2
y

)
M−1

y

(
K+

τ√
β
M(Mu+Ku)

−1/2M1/2
y

)T

.
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This has the advantage that the approximation is symmetric and positive definite, which
would allow us to use MINRES. However, the drawback is that this expression involves
the square root of large-scale non-diagonal matrices, Ku.

We now turn our attention to the non-symmetric approximation. Using

M̂1 :=
τ√

β
M(Mu+Ku)

−1My, (4.2)

M̂2 :=
τ√

β
M, (4.3)

we introduce the non-symmetric approximation

Ŝ2=τ−1

(
K+

τ√
β
M(Mu+Ku)

−1My

)
M−1

y

(
K+

τ√
β
M
)T

.

This configuration does not require the square root of a potentially very large matrix.
For any preconditioner to be effective we must be able to evaluate the inverse of the

Schur-complement approximation quickly. We now focus on the non-symmetric approx-
imation but discuss the symmetric approximation in Section 5 when we analyze the ap-
proximation quality of both Schur-complement approximations.

The second part
(K+ τ√

β
M)

of Ŝ2 is easy to approximate as this is simply a block-

triangular matrix with symmetric positive definite matrices along the diagonal. We there-
fore use an algebraic multigrid approximation for the diagonal blocks and then proceed
backwards approximating the inverse of

(
K+ τ√

β
M
)

requiring the application of NT

algebraic multigrid operators.

The approximation of the inverse of
(K+ τ√

β
M(Mu+Ku)

−1My

)
is more involved.

We are interested in solving systems of the form

(
K+

τ√
β
M(Mu+Ku)

−1My

)
u= f

and interpret this as the Schur-complement of the auxiliary system

[
K M

My −
√

β

τ (Mu+Ku)

][
u
∗

]
=

[
f
0

]
. (4.4)

Recalling the block-structure of the involved matrices, it is easy to see that we can proceed
with a forward substitution that requires the solution of diagonal blocks given by

[
M+τK M

My −
√

β

τ (Mu+Ku)

]
. (4.5)
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Even this block is not suitable to be inverted directly and we use a stationary iteration to
approximate the solution to this system. Such an iteration proceeds by computing

uk+1=uk+ωW−1rk,

where rk is the residual for the system matrix used in (4.5) and a right-hand-side used
within the preconditioner application. The matrix

W=

[
M̂+τK √

β

τ
̂(Mu+Ku)

]

is the preconditioner for (4.5). Here (̂···) signifies the algebraic multigrid approximation
to the corresponding matrix.

Boundary control

The matrix structure in the case of a boundary control problem is very similar to the
distributed control problem but nevertheless there are significant differences in the prop-
erties of some of the blocks. Therefore, we now discuss a Schur complement approxi-
mation for the boundary control problem driven by the system matrix (2.18). The Schur
complement is now given by

S=τ−1KM−1
y KT+

τ

β
N (Mu,b+Ku,b)

−1N T.

For the reasons described above, we again focus on the non-symmetric approximation

Ŝ=τ−1

(
K+

τ√
β
N (Mu,b+Ku,b)

−1N T

)
M−1

y

(
K+

τ√
β
My

)T

.

Again, the evaluation of the preconditioner Ŝ−1 needs to be discussed. While the term(K+ τ√
β
My

)−T
can easily be approximated using multigrid techniques in combination

with backward substitution, the term
(
K+ τ√

β
N (Mu,b+Ku,b)

−1N T
)−1

is more compli-

cated to approximate. Note again that we only need to focus on the diagonal blocks of
this matrix which correspond to the system

[
M+τK N

NT −
√

β

τ (Mu,b+Ku,b)

]
. (4.6)

We proposed earlier the use of a stationary iteration, but found choice of damping pa-
rameter to be much more critical here; the value needed to be tuned by hand, which is
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not desirable. We therefore use the non-linear iterative method GMRES [63] to evaluate
the system (4.6), together with a preconditioner

W=

[
M̂+τK 0

NT − ̂(Mu,b+Ku,b)

]
. (4.7)

Here ·̂ ·· again represents that the action of the inverse of these blocks is given by a fixed
number of steps of an algebraic multigrid method. Note that, because of the use of GM-
RES as an inner iteration, the preconditioner P2 is nonlinear, and theory dictates that we
should use a flexible outer method such as FGMRES [62]. By using a rather small tolerance
to stop GMRES we seem to avoid convergence difficulties, allowing us to use a standard
Krylov method; see Section 6 for details. An alternative would be to use a sparse direct
method [22, 42] to solve for the sub-problem (4.6), giving us a hybrid solution method.

State constraints

The situation is not much different in the case when state constraints are present. Here
the system matrix is 


τMε 0 −KT

0 τβ(Mu+Ku) τM
−K τM 0


, (4.8)

where each of the blocks of Mε is now given by My+ε−1GAi
MyGAi

. The Schur-complement
is now

S=τ−1KM−1
ε KT+

τ

β
M(Mu+Ku)

−1M.

We can now proceed as n the absence of state constraints. An approximation of S is
chosen to be

Ŝ=τ−1

(
K+

τ√
β
M(Mu+Ku)

−1M1/2
ε

)
M−1

ε

(
KT+

τ√
β
M1/2

ε M
)

.

We use the symmetric matrix M1/2
ε because this makes all factors of the approximation

Ŝ dependent on ε. A solve with Ŝ is approximated as before, where the diagonal blocks

of
(KT+ τ√

β
M1/2

ε M)−1
are approximated by an algebraic multigrid technique. Note

that due to the matrix Mε the diagonal blocks of this matrix are different at each outer
iteration, and we need to recompute the algebraic multigrid approximation; update tech-
niques to exploiting this structure should be investigated in the future to streamline the
solver.

The term
(
K+ τ√

β
M(Mu+Ku)

−1M1/2
ε

)
is again harder to deal with and as previ-

ously we use an auxiliary system
[

K M
M1/2

ε
−
√

β

τ (Mu+Ku)

]
,
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which we can permute to be of block-triangular form. We are then left with approxi-
mately solving a system for

[
M+τK M

M1/2
ε,i

−
√

β

τ (Mu+Ku)

]
,

where i indicates the i-th block corresponding to the i-th point in time and its correspond-
ing structure coming from the active set. Our strategy is again to use an accurate solution
via a preconditioner GMRES method employing the preconditioner

Wi =

[
̂[M+τK] 0

M1/2
ε,i − ̂[Mu+Ku]

]
.

Here [̂··· ] indicates the use of an algebraic multigrid in the inversion of this matrix.

5 Eigenvalue analysis

Our goal here is to analyze the quality of the preconditioners proposed earlier. As de-
scribed in the previous section, the approximation of the (1,1)-block is relatively straight-
forward using standard tools, such as multigrid, which are well understood. We therefore
focus solely on the quality of the Schur-complement approximation.

We use the methodology introduced by Pearson and Wathen [54] for the stationary
case that was later generalized for the time-dependent case (see [53]). There a symmetric
Schur-complement approximation was chosen, and the quality of the approximation was
measured by bounding the eigenvalues of Ŝ−1S via the Rayleigh quotient

R :=
vTSv

vT Ŝ1v
.

We here briefly illustrate their argument in order to assess what parts carry over here.
One can write

vTSv

vT Ŝ1v
=

aTa+bTb

aTa+bTb+bTa+aTb
(5.1)

with suitably chosen vectors a and b. It is easy to see from

0≤ (a−b)T(a−b)= aT a+bTb−aTb−bTa (5.2)

that R≥ 1
2 . Pearson and co-authors then proceeded by showing that aTb+bTa is positive

to conclude that the R is bounded by 1 from above. For the distributed control case this
is both true in the steady [54] and transient [53] case.
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Our goal is to carry this analysis over to our setup. We focus on the distributed control
case here, where

a :=τ−1/2M−1/2
y KTv, (5.3)

b :=τ1/2β−1/2(Mu+Ku)
−1/2MTv. (5.4)

Using

vTSv= aT a+bTb

as well as (5.2) we can see that the lower bound for the approximation Ŝ1 is still valid,
i.e., R≥ 1

2 regardless of the mesh-parameter and the regularization parameter.

The interesting question from now on is whether the upper bound R≤1 is still valid.
For this to be true we immediately see from (5.1) that aTb+bTa needs to be positive. We
proceed by considering the simpler time-independent case for which the matrix structure
is very similar. In that case we obtain

aTb+bTa=β−1/2vT
(

KM−1/2
y (Mu+Ku)

−1/2 MT+M(Mu+Ku)
−1/2 M−1/2

y K
)

v.

To see that in the L2 norm case this was positive we set Ku = 0 and Mu = My = M and
obtain

β−1/2vT
(

K+KT
)

v

which is obviously positive. The same is true for the time-dependent problem without
H1-norm (see [53] for a proof). Unfortunately, once the H1-norm is considered the posi-
tivity of aTb+bTa is lost.

So why does the H1-norm cause a problem as its discretization only introduces a
symmetric and positive definite matrix Mu+Ku? This is clear from the fact that in gen-
eral WV+VW≯0 even when both V and W are symmetric and positive definite matrices.
A simple example is given when W and V correspond to a Dirichlet and Neumann Lapla-
cian, respectively.

Note that in our case aTb+bTa is of precisely this form and the computation of the

eigenvalues of
(
KM−1/2

y (Mu+Ku)
−1/2 MT+M(Mu+Ku)

−1/2 M−1/2
y K

)
reveals several neg-

ative eigenvalues.

Nevertheless, the spread of the eigenvalues above the desired value of 1 with varying
β and mesh-parameter is not severe as illustrated by the eigenvalues shown in Fig. 1.
Fig. 1(a) shows the eigenvalues of Ŝ1 for a coarse mesh and four values of the regular-
ization parameter β and Fig. 1(b) shows the eigenvalues for the same values of β but
on a finer mesh. From these pictures we can see that the magnitude of the eigenvalues
does not increase for the finer mesh and that most of the eigenvalues are contained in the
interval

[
1
2 ,1
]

with some outliers that do not move much beyond 1 when the regulariza-

tion parameter is decreased. The major disadvantage of the approximation Ŝ1 is the use
of the matrix square roots, which is infeasible for large systems. We hence move to the
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Figure 1: Eigenvalues for two different meshes and a variety of regularization parameters. We show coarse mesh
on the left and slightly finer mesh on the right. We use NT =5.
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Figure 2: Eigenvalues for two different meshes and a variety of regularization parameters. We show coarse mesh
on the left and slightly finer mesh on the right. We use NT =5.

nonsymmetric approximation Ŝ2 for which the above used Rayleigh quotient analysis is
unfortunately not applicable.

Nevertheless, we expect the eigenvalues of the pencil (S,Ŝ2) to provide guidance on
the speed of convergence of our iterative scheme. We here want to numerically study the
eigenvalues of Ŝ−1

2 S to obtain information that can allow us to understand the conver-
gence of a nonsymmetric solver using the nonsymmetric Schur-complement approxima-
tion Ŝ2.

Fig. 2 shows eigenvalue distributions of Ŝ−1
2 S for two different mesh-sizes and a va-

riety of regularization parameters. The comparison of both plots 2(a) for the coarse mesh
and 2(b) for the refined one indicates that for very small values of β the eigenvalues move
closer towards the origin but stay sufficiently far away from zero. Additionally, this be-
haviour does not change when the mesh is refined so we expect robust iteration numbers
with respect to a refinement in space. We computed approximations to the eigenvalues
closest to the origin of Ŝ−1

2 S for one further mesh and found these to be in the same region
as the smallest eigenvalues shown in Fig. 2.

Our numerical results given in Section 6 indicate that this choice of Schur complement
approximation allows for good convergence with relatively robust iteration numbers.
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Figure 3: Eigenvalues for two different meshes and a variety of regularization parameters. We show a coarse
mesh on the left and slightly finer mesh on the right. The top row shows the eigenvalues for Ŝ−1

2 S for NT =5.

The lower figures illustrate the dependency of the smallest and largest eigenvalues of Ŝ−1
2 S on the number of

time-steps and hence τ.

6 Numerical results

We now want to illustrate how the preconditioners presented above perform when ap-
plied to a variety of problems. As mentioned earlier we employ a finite element dis-
cretization, here done with the finite element package deal.II [2]. We discretize the state,
control and adjoint state variables using Q1 elements. For symmetric methods the stop-
ping criterion is often inherent to the problem [74]. In the nonsymmetric context the
debate is much more open an we decide to use the relative residual with x0=0 based on
the discussion in [3]. Hence, we present results for both a tolerance of 10−4 and a tighter
tolerance of 10−6 for the relative residual within BICG using the preconditioner P2. For
the algebraic multigrid preconditioner we use the Trilinos ML package [27] that imple-
ments a smoothed aggregation AMG. Within the algebraic multigrid we used 6 steps of
a Chebyshev smoother in combination with the application of two V-cycles. For time-
dependent problems we show the degrees of freedom only for one grid point in time (i.e.
for a single time-step) and we are implicitly solving a linear system of dimension 3 times
the number of time-steps (Nt) times the degrees of freedom of the spatial discretization
(n). For example, a spatial discretization with 274625 spatial unknowns and 20 time-steps
corresponds to an overall linear system of dimension 16 477 500.
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6.1 Distributed control

No state constraints

In this section we show results for the time-dependent case. First, we consider the case
when no state constraints are present. Here, we work with a fixed time-step τ = 0.05,
which results in 20 time-steps. In all tables we only show the degrees of freedom as-
sociated with the discretization of the spatial domain. The desired state is now given
by

ȳ=exp
(
−64

(
(x0−0.5)2+(x1−0.5)2

))

and y= ȳ on ∂Ω, where the domain is [0,1]2. The results for this setup are shown in Table
1 for various mesh-parameters and values of the regularization parameter β.

Table 1: Results for the distributed control problem and varying mesh and regularization parameter. This table
shows iteration numbers and timings for BICG with a nonsymmetric Schur complement approximation using 10
Uzawa steps and a damping parameter ω=0.1. The tolerance of the iterative solver is set to 10−6.

DoF β=10−2 β=10−4 β=10−6

# it(t) # it(t) # it(t)

1089 15(40.1) 17(45.9) 28(72.9)

4225 15(129.2) 18(153.5) 29(242.1)

16641 18(554.2) 22(669.7) 31(932.2)

66049 19(1627.6) 27(2280.1) 36(2995.4)

263169 23(5922.8) 28(7203.9) 44(11389.2)

Table 2: Results for the distributed control problem and varying mesh and regularization parameter. This table
shows iteration numbers and timings for BICG with a nonsymmetric Schur complement approximation using 10
Uzawa steps and a damping parameter ω=0.1. The tolerance of the iterative solver is set to 10−6.

DoF β=10−2 β=10−4 β=10−6

# it(t) # it(t) # it(t)

1089 13(35.1) 13(35.2) 22(57.3)

4225 13(112.6) 15(128.8) 22(184.8)

16641 15(462.3) 15(462.2) 25(756.1)

66049 17(1442.6) 20(1691.4) 31(2578.7)

263169 19(4928.3) 22(5843.9) 34(8368.3)

State constraints

We now consider the problem with state constraints. The defining parameters are given
by the desired state

ȳ=−tx0exp
(
−
(
(x0−0.5)2+(x1−0.5)2

))
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Table 3: Results for the distributed control problem and varying mesh and regularization parameter. This table
shows iteration numbers and timings for BICG with a nonsymmetric Schur complement approximation using 10
Uzawa steps and a damping parameter ω=0.1. The tolerance of the iterative solver is set to 10−6.

DoF β=10−2 β=10−4 β=10−6

# it(t) # it(t) # it(t)

1089 13(35.1) 13(35.2) 22(57.3)

4225 13(112.6) 15(128.8) 22(184.8)

16641 15(462.3) 15(462.2) 25(756.1)

66049 17(1442.6) 20(1691.4) 31(2578.7)

263169 19(4928.3) 22(5843.9) 34(8368.3)

Table 4: Results for the state-constrained problem. We here vary the penalization parameter ε. Shown are the
Newton iteration numbers for a Newton tolerance of 10−3 for the first two columns and a tolerance for 10−2

for the case ε=10−4. As the number of Newton iterations increased we here only show iteration numbers for a
stopping tolerance of 10−2 for the outer iteration. Further we give the average number of BICG iterations and
the maximal number of GMRESiterations needed for the evaluation of the preconditioner. The tolerance of the
iterative solver is set to 10−6.

DoF ε=100 ε=10−2 ε=10−4

AS/BICG/GMRES AS/BICG/GMRES AS/BICG/GMRES

81 3/23.7/12 7/21.3/19 6/25.8/41

289 3/32.7/16 7/26.9/23 6/35.2/52

1089 3/51.3/19 6/37.0/27 2/45.5/75

4225 3/74.0/23 6/53.3/43 2/56.5/109

with zero initial and boundary condition. We then consider a fixed regularization pa-
rameter β = 10−4, which then allows us to consider the lower bound −0.1 ≤ y for all
time-steps. The results are shown in Table 4, where we vary the penalization parameter
from 1 to 10−4. The iteration numbers obtained show a small increase with respect to the
mesh-size. This might be due to the approximation quality of the diagonal blocks used
within the evaluation of the preconditioner W. We observed that we needed to increase
the number of V-cycles within the AMG method to 8 to obtain a robust performance. Fu-
ture research should be devoted to obtaining preconditioners that allow updating to deal
with the changing blocks involving components from the active sets and also show more
robustness with respect to parameter-dependent matrices (here in particular β and ε).

6.2 Boundary control

We now show results for the boundary control case where the desired state is given by

ȳ=−exp(t)sin(2πx0x1x2)exp
(−((x0−0.5)2+(x1−0.5)2+(x2−0.5)2

))

on the three-dimensional domain Ω = [0,1]3. The results with the Schur complement
approximation Ŝ with varying mesh-size and regularization parameter β are shown in
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Table 5: Results for the boundary control problem and varying mesh and regularization parameter. This table
shows iteration numbers for BICG and the maximal number of GMRES iterations used for the preconditioner.
The tolerance of the iterative solver is set to 10−6.

DoF β=10−2 β=10−4

BICG/GMRES BICG/GMRES

729 18(21) 19(38)

4913 18(22) 17(40)

35937 19(24) 17(44)

274625 19(25) 19(47)

Table 5. We again want to emphasize that we use preconditioned GMRES to evaluate
the diagonal-blocks of the Schur-complement approximation. The tolerance is set rather
tight on the one hand to guarantee that as an outer iteration BICG is still suited and on the
other hand to guarantee that we obtain robustness with respect to parameter changes. We
additionally state for every problem the maximal number of iterations that was needed
for GMRES. It can be seen that the number of BICGiterations are robust with respect to
parameter changes. The number of iterations for the GMRES preconditioner increases
slightly with a decrease of the regularization parameter.

(a) Desired state ȳ12 (b) Computed state y12

Figure 4: Desired state and computed state for boundary control problem. Here the regularization parameter
was set to β=10−6.

7 Conclusions and outlook

In this paper we presented optimal control problems subject to the Poisson equation or
the heat equation in a distributed or boundary control setting. The control was added to
the objective function as a regularization term in the H1 norm. We introduced the corre-
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sponding discrete optimality system and introduced preconditioners for both the steady
as well as the transient problem. Due to the Laplacian term coming from the H1 norm we
were not able to introduce preconditioners that are fully independent of the regulariza-
tion parameter but for the simple preconditioners we introduced the dependence on the
regularization parameter seemed rather weak. We also showed that our approach works
for state-constrained problems, which were treated using a Moreau-Yosida penalty ap-
proach. Numerical results showed that our preconditioners provided satisfactory results
when applied to three-dimensional test problems.

The method presented here has not focused on the storage efficiency of our all-at-once
approach. One might employ checkpointing [30] techniques when alternately solving
forward and adjoint PDEs. Multiple shooting approaches are one way of splitting up the
time-interval [33] and can lead to the same type of system. A possible way forward is to
compute suboptimal solutions on a sequential splitting of the time-interval [33] or to use a
parallel implementation of our approach. It is also possible to reduce the storage require-
ments by performing block-eliminations of some form, usually via a Schur-complement
approach.
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[60] Ruge, J. W. and Stüben, K.: Algebraic multigrid. in Multigrid methods, vol. 3 of Frontiers
Appl. Math., SIAM, Philadelphia, PA, 1987, pp. 73–130.

[61] Saad, Y.: Iterative methods for sparse linear systems. Society for Industrial and Applied
Mathematics, Philadelphia, PA (2003)

[62] Saad, Y.: A flexible inner-outer preconditioned GMRES algorithm. SIAM Journal on Scien-
tific Computing, 14 (1993), pp. 461–461.

[63] Saad, Y., Schultz, M.H.: GMRES: A generalized minimal residual algorithm for solving non-
symmetric linear systems. SIAM J. Sci. Stat. Comput., 7(3), 856–869 (1986).

[64] Simoncini, V., Szyld, D.: Recent computational developments in Krylov subspace methods
for linear systems. Numer. Linear Algebra Appl 14(1), 1–61 (2007).

[65] Stoll, M.: All-at-once solution of a time-dependent time-periodic PDE-constrained optimiza-
tion problems. IMA J Numer Anal (2013)

[66] Stoll, M., Wathen, A.: All-at-once solution of time-dependent PDE-constrained optimization
problems. Technical Report, University of Oxford, (2010)

[67] Strang, G., Fix, G.: An Analysis of the Finite Element Method 2nd Edition, 2nd edn.
Wellesley-Cambridge (2008)

[68] Takacs, S., Zulehner, W.: Convergence analysis of multigrid methods with collective point
smoothers for optimal control problems. Computing and Visualization in Science 14, 131–
141 (2011)
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A.7. PRECONDITIONING FOR REACTION-DIFFUSION PROBLEMS

A.7 Preconditioning for reaction-diffusion problems

This paper is published as

J. W. Pearson and M. Stoll, Fast Iterative Solution of Reaction-
Diffusion Control Problems Arising from Chemical Processes, SIAM
J. Sci. Comput., 35 (2013), pp. 987–1009.

Result from the paper

In this paper we consider the numerical solution of a nonlinear reaction-
diffusion model where we construct efficient preconditioners. Figure A.3
shows the three-dimensional results for a computed state and control.

(a) Computed state for first reactant
at time step 7

(b) Computed control at time step
7

Figure A.3
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Abstract. PDE-constrained optimization problems, and the development of preconditioned
iterative methods for the efficient solution of the arising matrix systems, is a field of numerical
analysis that has recently been attracting much attention. In this paper, we analyze and develop
preconditioners for matrix systems that arise from the optimal control of reaction-diffusion equations,
which themselves result from chemical processes. Important aspects of our solvers are saddle point
theory, mass matrix representation, and effective Schur complement approximation, as well as the
incorporation of control constraints and application of the outer (Newton) iteration to take into
account the nonlinearity of the underlying PDEs.
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1. Introduction. A class of problems which has numerous applications within
mathematical and physical problems is that of PDE-constrained optimization prob-
lems. One field in which these problems can be posed is that of chemical processes
[4, 19, 20, 21, 22]. In this case the underlying PDEs are reaction-diffusion equations,
and therefore the PDE constraints in our formulation are nonlinear PDEs.

When solving such reaction-diffusion control problems using a finite element
method, and employing a Lagrange–Newton iteration to take account of the non-
linearity involved in the PDEs, the resulting matrix system for each Newton iteration
will be large, sparse, and of saddle point structure. It is therefore desirable to devise
preconditioned iterative methods to solve these systems efficiently and in such a way
that the structure of the matrix is exploited. Work in constructing preconditioners
for PDE-constrained optimization problems has been considered for simpler problems
previously, for instance, Poisson control [46, 47, 53], convection-diffusion control [45],
Stokes control [36, 50, 56], and heat equation control [44, 54].

In this paper, we will consider an optimal control formulation of a reaction-
diffusion problem, which generates a symmetric matrix system upon each Newton
iteration. (Such an iteration is required to take into account the nonlinear terms
within the underlying PDEs.) We will generally search for block triangular precondi-
tioners for the matrix systems we examine, to be used in conjunction with a suitable
iterative solver. In order to do this, we will need to approximate the (1, 1)-block by
accurately representing the inverse of mass matrices amongst other things, as well as
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devise an effective approximation of the Schur complement of the matrix system. We
demonstrate with numerical tests why the choices we make are sensible for a number
of practical problems.

This paper is structured as follows. In section 2, we discuss the underlying
chemical problem (detailing the statement of the problem without and with control
constraints included) and represent it in terms of matrix systems. In section 3, we
introduce some basic saddle point theory and use this to devise effective precondi-
tioners for the matrices which arise. In section 4, we present numerical results to
demonstrate the performance of our iterative solvers in practice. Finally in section 5,
we make some concluding remarks.

2. Problem formulation and discretization. Throughout this paper we con-
sider an optimal control problem based on that considered in [4]. The objective func-
tion that has to be minimized is given by

J(u, v, c) =
αu

2
‖u − uQ‖2L2(Q) +

αv

2
‖v − vQ‖2L2(Q)

(2.1)

+
αTU

2
‖u(x, T ) − uΩ‖2L2(Ω) +

αTV

2
‖v(x, T ) − vΩ‖2L2(Ω) +

αc

2
‖c‖2L2(Σ) ,

where u and v refer to concentrations of reactants (which in this problem are state
variables), and c is the control variable, which also influences the underlying reaction.
The spatial domain on which the problem is solved is given by Ω ⊂ Rd with d ∈ {2, 3},
and the time domain is taken to be the interval t ∈ [0, T ]. We then have the space-
time domain Q given by Q := Ω× [0, T ], as well as the space-time boundary given by
Σ := ∂Ω× (0, T ). The goal of the optimization problem is to compute the quantities
u, v, and c in such a way that they are close in the L2-norm to what are often referred
to as the desired states (uQ, vQ, uΩ, vΩ). Note that we have four desired states in this
problem—two which are defined at all time points and two which are solely defined
at the final time at which the problem is being solved. These are known quantities,
which are typically determined from measurements and observations. In order for
the objective function to resemble a physical or chemical process the variables need
to satisfy the physics of the process of interest, which is typically modeled using one
or more PDEs alongside additional constraints. In our case the constraints subject
to which the objective function J(u, v, c) is minimized are given by the following
reaction-diffusion equations:

ut − D1∆u + k1u = − γ1uv in Q,(2.2)

vt − D2∆v + k2v = − γ2uv in Q,(2.3)

D1∂νu+ b(x, t, u) = c on Σ,(2.4)

D2∂νv + ε̃v = 0 on Σ,(2.5)

u(x, 0) = u0(x) in Ω,(2.6)

v(x, 0) = v0(x) in Ω,(2.7)

c ∈ Cad = {c ∈ L∞(Σ) : ca ≤ c ≤ cb a.e. on Σ}.(2.8)

The quantities αu, αv, αTU , αTV , αc, D1, D2, k1, k2, γ1, γ2, and ε̃ are nonnegative
constants. The function c describing the boundary condition (2.4) is the control
variable defined above, and ∂ν denotes the normal derivative. Equations (2.6) and
(2.7) define the initial conditions for both concentrations. Additionally, we can impose
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so-called box constraints on the control as stated in (2.8). In [22] Griesse and Volkwein
also consider an integral constraint on c, which we do not discuss here. In some cases
it might also be sensible to include state constraints for the concentrations u and v,
which would be described by

ua ≤ u ≤ ub, va ≤ v ≤ vb.

State constraints typically bring additional difficulties to optimal control problems
(see [10, 33]) and are not considered further in this present paper. For the remainder
of this paper we will also follow the assumptions of b(x, t, u) = 0 and ε̃ = 0, as studied
in [22]. There are two approaches for solving the above problem. The first is the so-
called discretize-then-optimize approach, where we discretize the objective function
and constraint to build a discrete Lagrangian, and then impose the optimality con-
ditions in the discrete setting. The second is known as the optimize-then-discretize
approach, where we instead build a Lagrangian for the infinite dimensional problem
and then discretize the first order conditions. There is no preferred approach and we
refer to [30] for a discussion of the two cases. We note that recently it has become
a paradigm to create discretization schemes such that both approaches lead to the
same discrete first order system. We also need to deal with the nonlinearity of the
PDE constraint. We here apply a simple sequential quadratic programming (SQP) or
Lagrange–Newton method. Before we proceed to the derivation of optimality condi-
tions and discretization, we split the problem into two stages: solving the nonlinear
PDEs without control constraints and solving the system with the additional control
constraints incorporated.

Newton system without control constraints. In this section we wish to
further describe how the above problem can be examined and in particular focus on
how to treat the nonlinearity of the PDEs. We proceed by formally building the
(continuous) Lagrangian subject to the reaction-diffusion system

ut − D1∆u + k1u = − γ1uv in Q,

vt − D2∆v + k2v = − γ2uv in Q,

D1∂νu = c on Σ,

D2∂νv = 0 on Σ,

u(x, 0) = u0(x) in Ω,

v(x, 0) = v0(x) in Ω,

giving

L(u, v, c, p, q) = J(u, v, c) +

∫

Q

p(ut − D1∆u+ k1u+ γ1uv)

+

∫

Q

q(vt − D2∆v + k2v + γ2uv)

+

∫

Σ

pΣ(D1∂νu − c) +

∫

Σ

qΣ(D2∂νv).

Here we have split up the adjoint variables p and q into interior and boundary parts
(p and pΣ, and q and qΣ). We note that for brevity, when constructing L, we included
only the PDE part without boundary and initial conditions, which of course also need
to be incorporated. We also make the assumption αTU = αTV = 0 in the working
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below; the case where this is not so may be treated similarly. A rigorous derivation
of the first order conditions can be found in [4, 22], to which we refer the interested
reader. By taking the Fréchet derivatives with respect to state, control, and adjoint
variables and equating the resulting expressions to zero, we obtain the first order
conditions, or Karush–Kuhn–Tucker (KKT) conditions, given by

−pt − D1∆p+ k1p+ γ1pv + γ2qv + αu(u − uQ) = 0 in Q,

−qt − D2∆q + k2q + γ2qu+ γ1pu+ αv(v − vQ) = 0 in Q,

∂νp = ∂νq = 0 on Σ,

αcc − p = 0 on Σ,

ut − D1∆u+ k1u+ γ1uv = 0 in Q,

vt − D2∆v + k2v + γ2uv = 0 in Q,

∂νu − D−1
1 c = 0 on Σ,

∂νv = 0 on Σ.

We may abbreviate this set of nonlinear equations describing the first order conditions,
using the notation Φ(x) = 0. We can use Newton’s method to solve this problem via
the relation Φ′(xk)sk = −Φ(xk).

We now construct the Fréchet derivative of Φ, obtaining

−(sp)t − D1∆sp + k1sp + γ1(psv + spv) + γ2(qsv + sqv) + αusu = b1,(2.9)

−(sq)t − D2∆sq + k2sq + γ2(qsu + squ) + γ1(psu + spu) + αvsv = b2,(2.10)

αcsc − sp = b3,(2.11)

(su)t − D1∆su + k1su + γ1(vsu + svu) = b4,(2.12)

(sv)t − D2∆sv + k2sv + γ2(usv + suv) = b5.(2.13)

Here we denote with b = [b1, b2, b3, b4, b5]
T := −Φ(xk) the right-hand side of the

Newton system. Note that we did not write down the boundary conditions; however,
they naturally carry through to the Newton system. If we now write all the equations
together into an infinite dimensional system, the matrix describing the Newton process
is given by

(2.14)




αuId γ1p+ γ2q 0 L′
u γ2v

γ2q + γ1p αvId 0 γ1u L′
v

0 0 αcD
−1
1 Id −D−1

1 Id 0
Lu γ1u −D−1

1 Id 0 0
γ2v Lv 0 0 0



,

where

Lu =
∂

∂t
− D1∆+ k1Id + γ1v, L′

u = − ∂

∂t
− D1∆+ k1Id + γ1v,

Lv =
∂

∂t
− D2∆+ k2Id + γ2u, L′

v = − ∂

∂t
− D2∆+ k2Id + γ2u,

and Id denotes the identity operator.
In order to numerically solve the above problem we need to discretize the system

(2.14) and the right-hand side −Φ(xk).
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We first note that the system (2.14) is in saddle point form (as defined in sec-
tion 3), and its discrete counterpart (using a backward Euler time-stepping scheme)
is given by




τM1 0 KT

0 αcτD
−1
1 Mc −τD−1

1 N T

K −τD−1
1 N 0




︸ ︷︷ ︸
A




y
c
λ


 = b(2.15)

with

M1 = blkdiag
(
M

(1)
1 ,M

(2)
1 , . . . ,M

(Nt−1)
1 ,M

(Nt)
1

)
,

Mc = blkdiag(Mc,Mc, . . . ,Mc,Mc),

N =




N
0

N
0

. . .

N
0




,

where

M
(i)
1 =

[
αuM γ1Mp(i)

+ γ2Mq(i)

γ1Mp(i)
+ γ2Mq(i) αvM

]
, i = 1, . . . , Nt.

Here, M denotes a standard finite element mass matrix, Mc is a boundary mass
matrix, and the matrix N consists of evaluations of inner products from the term∫
∂Ω wtr(z) with w a function on the boundary ∂Ω, z a test function for the domain
Ω, and tr the trace operator. The matrices Mp(i)

and Mq(i) are mass-like matrices

the entries of which are terms of the form
∫
Ω p̄φjφl and

∫
Ω q̄φjφl, respectively (where

p̄ and q̄ represent the previous Newton iterates of the adjoint variables—or Lagrange
multipliers—p and q), and the vectors y and λ correspond to the discretized state
(u,v) and adjoint (p,q) variables, respectively. The quantity Nt denotes the number
of time-steps used, with τ the size of the time-step.

Finally, the matrix K represents the discretized PDE and can be written as

K =




L(1)

−Md L(2)

. . .
. . .

−Md L(Nt−1)

−Md L(Nt)



,

where

Md =

[
M 0
0 M

]

and

L(i) =

[
M + τ(D1K + k1M + γ1Mv(i)) τγ1Mu(i)

τγ2Mv(i) M + τ(D2K + k2M + γ2Mu(i)
)

]
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with K the standard finite element stiffness matrix, and Mu(i)
and Mv(i) mass-like

matrices with terms of the form
∫
Ω
ūφjφl and

∫
Ω
v̄φjφl, where ū and v̄ correspond to

the previous Newton iterates of the state variables u and v.

Note that we can solve for the updated states, control, and adjoints directly, which
also makes the computation of the right-hand side cheaper, that is,

A




u(k+1)

v(k+1)

c(k+1)

p(k+1)

q(k+1)



= A




u(k)

v(k)

c(k)

p(k)

q(k)



+ b̃ =




αuuQ + (γ1p
(k) + γ2q

(k))v(k)

αvvQ + (γ2q
(k) + γ1p

(k))u(k)

0
γ1u

(k)v(k)

γ2v
(k)u(k)



,

in continuous form.

So far we have only discussed the Newton method to solve the KKT conditions.
Note that for certain values of the states, Lagrange multipliers, and parameters we
might run into the problem of obtaining an indefinite (1, 1)-block of A, caused by an
indefinite matrix M1 [15]. For this reason we briefly highlight that for this purpose
different techniques within the SQP step can be employed, such as line-search or trust
region approaches—these may explored in future research into this subject area. One
alternative that we also mention within the numerical results of section 4 is a Gauss–
Newton approach (see [24]), where we ignore all mixed derivatives of the Hessian
with respect to the Lagrange multipliers, resulting in a matrix system defined by the
matrix

(2.16)




αuId 0 0 L′
u γ2v

0 αvId 0 γ1u L′
v

0 0 αcD
−1
1 Id −D−1

1 Id 0
Lu γ1u −D−1

1 Id 0 0
γ2v Lv 0 0 0



.

We find that preconditioners for the matrix (2.16) can be derived using the method-
ology presented in section 3.

Problem with control constraints. The problem we have discussed so far did
not include any additional constraints on the control c. We now wish to discuss how
pointwise constraints on the control, i.e.,

ca(x, t) ≤ c(x, t) ≤ cb(x, t),

may be dealt with. The treatment of control constraints can typically be carried out
using a semismooth Newton method introduced in [7]. (For further information we
refer to [27, 30, 58].) For the special case of the reaction-diffusion system we point to
literature such as [4, 19, 20, 21, 22] for discussions on control constraints. In general
the gradient equation of the Lagrangian becomes a variational inequality, which is in
turn solved using the semismooth Newton method or equivalently [27] a primal-dual
active set method. In contrast to [7] we employ a penalty technique, which has been
applied very successfully to state-constrained optimal control problems, called the
Moreau–Yosida penalty function [25, 32, 37]—this approach has also been applied to
control-constrained problems [55]. The advantage of this approach is that the method
does not need to work on submatrices corresponding to the free variables, which would
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require a reassembly of matrices for every Newton step and would make precondition-
ing the matrix systems more difficult. From experience [55], the performance of this
approach is comparable to the approach that directly uses the semismooth Newton
method. In the Moreau–Yosida framework, the constraints

ca(x, t) ≤ c(x, t) ≤ cb(x, t)

are incorporated into the objective function via a penalization term, that is, we instead
minimize the functional

J(u, v, c) +
1

2ε
‖max {0, c − cb}‖2L2(Σ) +

1

2ε
‖min {0, c − ca}‖2L2(Σ)

subject to the state equations detailed above. We can now proceed using the semi-
smooth Newton approach, solving linear systems of the form




τM1 0 KT

0 αcτD
−1
1 Lc −τD−1

1 N T

K −τD−1
1 N 0






y
c
λ


 = b̃(2.17)

at each Newton step, where

Lc =




Mc + ε−1GA(1)McGA(1)

. . .

Mc + ε−1GA(Nt)McGA(Nt)


 .

Here A(i) = A(i)
+ ∪ A(i)

− defines the active sets for every time-step of the discretized
problem, that is,

A(i)
+ = {j ∈ {1, 2, . . . , N} : (ci)j > (cb)i,j} ,(2.18)

A(i)
− = {j ∈ {1, 2, . . . , N} : (ci)j < (ca)i,j} ,(2.19)

using the control c from the previous iteration. The quantities (ci)j , (cb)i,j , and
(ca)i,j denote the values of c, cb, and ca at the ith time-step and the jth node, with
N representing the total number of nodes. This method is schematically shown in
Algorithm 1, where we assume here that the problem is already discretized.

Algorithm 1. Active set algorithm.

1: Choose initial values for c(0), p(0), q(0), u(0), v(0)

2: Set the active sets A(0)
+ , A(0)

− and A(0)
I by using c(0) in (2.18), (2.19)

3: for k = 1, 2, . . . do

4: Solve (2.17) (a system on the free variables from the previous iteration (A(k−1)
I ))

5: Set the active sets A(k)
+ , A(k)

− and A(k)
I by using c(k) as given in (2.18), (2.19)

6: if A(k)
+ = A(k−1)

+ , A(k)
− = A(k−1)

− , and A(k)
I = A(k−1)

I then
7: STOP (Algorithm converged)
8: end if
9: end for
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3. Solving the linear systems.

Krylov solvers. We now wish to discuss how to efficiently solve linear systems
of the form Ax = b that arise at the heart of the Lagrange–Newton method dis-
cussed in the previous section. We here decide to employ Krylov subspace methods,
which have previously been found to be very efficient for a number of optimal con-
trol problems subject to PDE constraints [47, 48, 49, 53]. In our case, as the system
matrix is symmetric and indefinite, one option would be to employ the Minres [43]
method introduced by Paige and Saunders. This is a short-term recurrence method
[12], requiring only a minimal amount of storage and involving one matrix-vector mul-
tiplication per iteration. Minres minimizes the 2-norm of the residual rk = b− Axk

over the current Krylov subspace, where xk is the approximation to x at step k of
this procedure. Alternatively, there are many widely used nonsymmetric solvers such
as Gmres [52] and biconjugate gradients (Bicg) [13] which could be used. Of course,
any Krylov method should only be effective if a preconditioner P is introduced such
that the properties of the left-preconditioned system

P−1Ax = P−1b

are better than that of the unpreconditioned system Ax = b. Specifically, P is
constructed in order to capture the properties of the matrix A well and so that it is
easy to invert. For excellent introductions to the topic of constructing preconditioners
for saddle point problems, we refer to [5, 11] and the references mentioned therein.
As a guideline for constructing good preconditioners we use the known results that if
the saddle point matrix

A =

[
A BT

B −C

]

is invertible, then the (ideal) block preconditioners

P1 =

[
A 0
0 S

]
, P2 =

[
A 0
B −S

]
,

where A is the unchanged (1, 1)-block of the saddle point matrix and S = C+BA−1BT

is the (negative) Schur complement of A, satisfy λ(P−1
1 A) ∈ {1, 1±

√
5

2 } provided

C = 0 [38, 39], and λ(P−1
2 A) ∈ {1} for any matrix C [31]. Therefore, although P2

is nondiagonalizable, both P1 and P2 are extremely effective preconditioners for A.
Of course in practice, we would not wish to explicitly invert A and S to apply the
ideal preconditioner; however, if we construct good approximations to the (1, 1)-block
and the Schur complement of the system (2.15), an appropriate iterative solver is
likely to converge rapidly when used with a preconditioner consisting of these ap-
proximations. As pointed out earlier the (1, 1)-block of the preconditioner may be
indefinite—in this case we cannot employ a symmetric Krylov subspace solver. Now
faced with the decision of choosing a nonsymmetric Krylov method, we wish to point
out that it is not straightforward to pick the “best method” (see [40]) and the con-
vergence of the Krylov subspace solver might not be adequately described by the
eigenvalues of the preconditioned matrix system [18]. Nevertheless in practice a good
clustering of the eigenvalues often leads to fast convergence of the iterative scheme,
and it can be seen that with a good preconditioner many methods behave in a similar
way.
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It is also possible to employ multigrid approaches to such saddle point problems.
This class of methods has previously been shown to demonstrate good performance
when applied to solve a number of PDE-constrained optimization problems, subject
to both steady and transient PDEs [1, 2, 8, 9, 23, 24, 28, 29, 57].

We emphasize once more that the matrix systems we seek to solve fit into this
saddle point framework. For the problem described in section 2 without control
constraints, for instance,

A =

[
τM1 0
0 αcτD

−1
1 Mc

]
, B =

[
K −τD−1

1 N
]
, C =

[
0
]
.

We may therefore employ the theory of saddle point systems to develop precondition-
ers for this problem.

Approximating the (1, 1)-block. In the case of a PDE-constrained optimiza-
tion problem with a linear PDE as the constraint and a cost functional of the form
discussed in section 2, the (1, 1)-block of the resulting matrix system is a block di-
agonal matrix containing mass matrices (see [47, 49, 53], for instance), which can be
handled very efficiently. In this case, however, we have to take into account that the
(1, 1)-block now contains blocks of the form

[
αuM γ1Mp(i)

+ γ2Mq(i)

γ1Mp(i)
+ γ2Mq(i) αvM

]
,(3.1)

which demonstrates one of the major complexities encountered when attempting to
solve such nonlinear problems numerically. When we seek to approximate these blocks,
we use the saddle point theory as stated above to take as our approximation

[
αuM − α−1

v

(
γ1Mp(i)

+ γ2Mq(i)

)
M−1

(
γ1Mp(i)

+ γ2Mq(i)

)
0

γ1Mp(i)
+ γ2Mq(i) αvM

]

=:

[
A

(i)
0 0

γ1Mp(i)
+ γ2Mq(i) αvM

]
.

Using the saddle point result concerning block triangular preconditioners, we observe
that each preconditioned block has eigenvalues all equal to 1 using this approximation.
Note that these complicated looking matrices are actually straightforward to handle
as we assume that the mass matrices are lumped for our work.1 The block Mc,
which also forms part of the (1, 1)-block of our matrix systems, may be approximated
using Chebyshev semi-iteration [16, 17, 59] for consistent mass matrices or by simple
inversion for lumped mass matrices.

Approximating the Schur complement. We now focus on approximating the
Schur complement of the matrix system, which is given by

S =
1

τ
KM−1

1 KT +
τ

αcD1
NM−1

c N T .

One approach that we would predict to prove successful for moderate values of the
parameter αc (motivated by work undertaken in [47], for instance) is to use the ap-
proximation

(3.2) Ŝ1 =
1

τ
KM−1

1 KT ,

1In the case where mass matrices are not lumped, we believe that we may take a similar approx-
imation but replace the mass matrices by their diagonals within the preconditioner.
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that is, to drop the second term of the exact Schur complement for our approxima-
tion. However for smaller values of αc we find this approximation does not produce
satisfactory results. Hence, approximations that provide robustness with respect to
the crucial problem parameters have been investigated (see [35, 44, 46, 53, 60]). The
idea introduced in [44, 46] for simpler problems uses an approximation of the form

Ŝ2 =
1

τ

(
K + M̂

)
M−1

1

(
K + M̂

)T
,

where M̂ is chosen to accommodate a better approximation of the term that was
initially dropped from S. To discover an approach for finding such an approximation,
we first study Ŝ2 more closely:

Ŝ2 =
1

τ

(
KM−1

1 KT + M̂M−1
1 M̂ + KM−1

1 M̂ + M̂M−1
1 KT

)
.

Our goal is for the second term of the Schur complement approximation Ŝ2 to accu-
rately approximate the second term of the exact Schur complement S, that is,

1

τ
M̂M−1

1 M̂ ≈ τ

αcD1
NM−1

c N T .(3.3)

We now consider a block diagonal approximation M̂ and recall the block structure of
the other matrices involved. The most complex term which needs to be considered is
the M−1

1 term, which involves inverting 2 × 2 block matrices of the form (3.1). To
carry out this task, we observe that, given suitable invertibility conditions, the inverse

of a 2 × 2 block matrix
[
A11 A12

A21 A22

]
may be expressed as

[
(A11 − A12A

−1
22 A21)

−1 −(A11 − A12A
−1
22 A21)

−1A12A
−1
22

−(A22 − A21A
−1
11 A12)

−1A21A
−1
11 (A22 − A21A

−1
11 A12)

−1

]
,

which can be easily checked. We may use this expression to note that the problem
of finding a suitable approximation (3.3) can be reduced to finding a matrix M̂ =

blkdiag(M̂
(1)
1 , M̂

(1)
2 , M̂

(2)
1 , M̂

(2)
2 , . . . , M̂

(Nt)
1 , M̂

(Nt)
2 ) such that

[
τ−1M̂

(i)
1 A

−(i)
0 M̂

(i)
1 0

0 τ−1α−1
v M̂

(i)
2 M−1M̂

(i)
2

]
≈
[

τα−1
c D−1

1 NM−1
c NT 0

0 0

]

for i = 1, . . . , Nt, where A
−(i)
0 :=

(
A

(i)
0

)−1
.

We may therefore conclude that it is appropriate to take M̂
(1)
2 = M̂

(2)
2 = · · · =

M̂
(Nt)
2 = 0, with M̂

(i)
1 chosen such that

1

τ
M̂

(i)
1 A

−(i)
0 M̂

(i)
1 ≈ τ

αcD1
MΓ,

where MΓ := NM−1
c NT . Given that the matrices A

−(i)
0 and MΓ are diagonal, the

above criterion will be satisfied if M̂
(i)
1 is a diagonal matrix, with diagonal entries

given by

m̂
(i)
1,jj =

τ√
D1αc

|a(i)0,jj |1/2m
1/2
Γ,jj ,
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where a
(i)
0,jj and mΓ,jj are the jth diagonal entries of A

(i)
0 and MΓ, respectively. It

would also be appropriate to make the selection

m̂
(i)
1,jj =

τ√
D1αc

h
1
2 (d−1)|a(i)0,jj |1/2

when j corresponds to a node on ∂Ω, using the fact that Mc (which is equal to the
nonzero part of MΓ) is spectrally equivalent to hd−1I, where d is the dimension of Ω
and h the mesh-size used.

We may build these choices of M̂
(i)
1 into the matrix M̂ and in turn into the Schur

complement approximation Ŝ2. We can also check heuristically that these choices of
M̂ ensure that τ−1M̂M−1

1 M̂ ≈ τα−1
c D−1

1 NM−1
c N T by taking the approximations

M ≈ hdI, Mc ≈ hd−1I (where I are identity matrices of different dimensions), and
writing
(
1

τ
M̂M−1

1 M̂
)

jj

≈ 1

τ
· τ√

D1αc

h
1
2 (d−1)|a(i)0,jj |1/2 · a−(i)

0,jj · τ√
D1αc

h
1
2 (d−1)|a(i)0,jj |1/2

=
τ

αcD1
hd−1 ≈

(
τ

αcD1
NM−1

c N T

)

jj

whenever the index j corresponds to a boundary node. (Both sides of the expression

would be equal to zero otherwise.) In the above work, we have assumed that a
(i)
0,jj 	= 0.

Let us now consider how our approximations of the (1, 1)-block A and (negative)
Schur complement S may be applied. Due to the potential indefiniteness of A, as
well as the nonsymmetry of the preconditioner used, a nonsymmetric solver, such as
Gmres or Bicg, needs to be applied. Given that this is the case, we recommend that
a block triangular preconditioner of the form P2 be used, of the following structure:

P2 =




τM̂1 0 0
0 αcτD

−1
1 Mc 0

K −τD−1
1 N −Ŝ2


 ,

where M̂1 denotes the approximation of M1 described above.

Alternative Schur complement approximation. We note at this point that
as we apply a nonsymmetric iterative method to solve the matrix system discussed,
we see no reason a nonsymmetric Schur complement approximation could not be used.
For instance, it seems feasible to utilize an approximation

Ŝ3 =
1

τ

(
K + M̂

)
M−1

1

(
K + M̃

)T
,

where in general M̂ is not equal to M̃. We may consider block diagonal matrices

M̂ = blkdiag
(
M̂

(1)
11 , 0, M̂

(2)
11 , 0, . . . , M̂

(Nt)
11 , 0

)
,

M̃ = blkdiag
(
M̂

(1)
21 , 0, M̂

(2)
21 , 0, . . . , M̂

(Nt)
21 , 0

)

and, similarly to above, select M̂
(i)
11 and M̂

(i)
21 to be diagonal matrices. Their diagonal

entries may be given by

m̂
(i)
11,jj =

τ√
D1αc

|a(i)0,jj |,

m̂
(i)
21,jj =

τ√
D1αc

mΓ,jj , or m̂
(i)
21,jj =

τ√
D1αc

h
1
2 (d−1),
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Algorithm 2. Inexact Uzawa method.

1: Select x0.
2: for k = 0, 1, 2, . . . do

3: xk+1 = xk + P−1
(
b −
(
L+ blkdiag(M̂, 0)

)
xk

)

4: end for

for example. Such choices of M̂ and M̃ should ensure that the approximation
τ−1M̂M−1

1 M̃ ≈ τα−1
c D−1

1 NM−1
c N T holds, as for the Schur complement approx-

imation Ŝ2.
We note that whether the Schur complement approximation Ŝ2 or Ŝ3 is used, the

inverses of matrices of the form K+M̂ need to be approximated for every application
of the Schur complement. We here use a Uzawa scheme [51] that approximately solves

for diagonal blocks of the form L+ blkdiag(M̂, 0) of K + M̂. (See Algorithm 2 for a
sketch of the routine used.) The preconditioner P is of block diagonal form and for
each of these matrices applies an algebraic multigrid (AMG) technique to approximate

the diagonal blocks of L+ blkdiag(M̂, 0).

Preconditioning for Gauss–Newton system. Let us now consider whether
the approach detailed above may be applied to the matrix systems arising from a
Gauss–Newton method. The matrix involved is given by (2.16) in continuous form,
which in discrete form results in the same matrix (2.15) as for the Newton method,
except now with

M1 = blkdiag (αuM,αvM,αuM,αvM, . . . , αuM,αvM) .

For this matrix, we may approximate the (1, 1)-block A = blkdiag
(
τM1, ταcD

−1
1 Mc

)

exactly. When developing an approximation of the form

Ŝ2 =
1

τ

(
K + M̂

)
M−1

1

(
K + M̂

)T

to the Schur complement

S =
1

τ
KM−1

1 KT +
τ

αcD1
NM−1

c N T ,

we may therefore look again for a matrix of the form M̂ such that

1

τ
M̂M−1

1 M̂ ≈ τ

αcD1
NM−1

c N T .

As for the Newton system, this problem reduces to finding an alternating block diag-

onal matrix M̂ = blkdiag(M̂
(1)
1 , 0, M̂

(2)
1 , 0, . . . , M̂

(Nt)
1 , 0) such that

1

τ

[
M̂

(i)
1 0
0 0

] [
αuM 0
0 αvM

]−1 [
M̂

(i)
1 0
0 0

]
≈ τ

αcD1

[
NM−1

c NT 0
0 0

]

for i = 1, . . . , Nt. This suggests that we should take

1

ταu
M̂

(i)
1 M−1M̂

(i)
1 ≈ τ

αcD1
MΓ,
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which is achieved if M̂
(1)
1 = · · · = M̂

(Nt)
1 = M̂1, where M̂1 is a diagonal matrix with

diagonal entries

m̂1,jj = τ

√
αu

D1αc
m

1/2
jj m

1/2
Γ,jj or τ

√
αu

D1αc
hd− 1

2 .

Here, mjj and mΓ,jj denote the jth diagonal entries of M and MΓ, respectively.
These approximations of A and S may be incorporated into a block diagonal or

block triangular saddle point preconditioner. For the numerical results of section 4,
we will once again consider block triangular preconditioners for matrix systems of this
form.

Preconditioning for control constraints. We also wish to examine how the
system (2.17), which incorporates inequality constraints on the control variable, may
be preconditioned effectively. The (1, 1)-block now contains the matrix αcτD

−1
1 Lc,

which is a simple block diagonal matrix that can be treated in the same way as the
(1, 1)-block of the problem without control constraints. Approximating the Schur
complement

S =
1

τ
KM−1

1 KT +
τ

αcD1
NL−1

c N T

is again the more challenging task. We now wish to use the technique employed earlier
and write

Ŝ2 =
1

τ

(
K + M̂

)
M−1

1

(
K + M̂

)T
,

where M̂ is chosen such that

1

τ
M̂M−1

1 M̂ ≈ τ

αcD1
NL−1

c N T .

Note that τ
αcD1

NL−1
c N T is a block diagonal matrix with blocks of the form

τ

αcD1
N
(
Mc + ε−1GA(i)McGA(i)

)−1
NT , i = 1, . . . , Nt,

alternating with zero blocks. Hence, we see that M̂ should again have an alternat-

ing block diagonal structure, that is, M̂ = blkdiag(M̂
(1)
1 , 0, M̂

(2)
1 , 0, . . . , M̂

(Nt)
1 , 0), as

before.
Let us now employ the notation l

(i)
Γ,jj for the diagonal entries of the matrix

N
(
Mc + ε−1GA(i)McGA(i)

)−1
NT , which will be nonzero on the diagonals corre-

sponding to boundary nodes and zero otherwise. Then, in complete analogy to the
case without control constraints, we may motivate the following choice for the diagonal

entries of M̂
(i)
1 :

m̂
(i)
1,jj =

τ√
D1αc

|a(i)0,jj |1/2
(
l
(i)
Γ,jj

)1/2
.

These choices of M̂
(i)
1 may again be built into the matrix M̂ and hence the Schur

complement approximation Ŝ2.
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0 5 10 15 20 25 30 35 40
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Iterations (max. 40)

R
e

s
id

u
a

l 
N

o
rm

 

 

BT symmetric approximation

BD symmetric approximation

BD non−symmetric approximation

BT non−symmetric approximation

(b) Iterations αc = 1e − 3.

10
−2

10
0

10
2

10
4

10
6

−0.1

−0.05

0

0.05

0.1

Eigenvalue Real Part

E
ig

e
n
v
a
lu

e
 I

m
a
g
in

a
ry

 P
a
rt

 

 

Robust symmetric
Robust unsymmetric
Nonrobust

(c) Eigenvalues αc = 1e − 5.
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(d) Iterations αc = 1e − 5.

Fig. 3.1. Eigenvalues of Sv = λŜv for various approximations of the Schur complement (left)
including a nonrobust approximation. Gmres iterations for the saddle point problem using the differ-
ent Schur complement approximations and also block diagonal and block triangular preconditioners
(right). The problem size is relatively small (dim(S) = 5000).

Effectiveness of Schur complement approximations. To motivate our
choices of Schur complement approximation, we wish to illustrate the properties of the
preconditioned matrix systems when the approximations derived in this section are
used. We note that good clustering of these eigenvalues alone will not guarantee rapid
convergence of a nonsymmetric iterative solver such as Bicg or Gmres; however, it
should at least indicate the prudence of our selections.2

In Figure 3.1, we aim to demonstrate this effectiveness in two different ways. In
plots (a) and (c) we show, for different values of αc, the eigenvalues of the precondi-

tioned Schur complement when robust symmetric (that is, Ŝ2), robust unsymmetric

(Ŝ3), and nonrobust (Ŝ1) approximations are used. The plots indicate that whereas

the eigenvalues of both Ŝ−1
2 S and Ŝ−1

3 S seem to be fairly clustered, the results when

Ŝ2 is taken as the Schur complement approximation seem to be the best.

In plots (b) and (d), we show Gmres convergence plots for a test problem when a
range of preconditioning choices are made, for different values of αc. Specifically, we
show results when the symmetric approximation (that is, Ŝ2) and nonsymmetric ap-

proximation (Ŝ3) are taken to the Schur complement and when a BT (block triangular
preconditioner we considered in this section) and BD (analogous block diagonal pre-
conditioner) are used within the Gmres method. Whereas the plots indicate that all
four choices of preconditioner behave reasonably well, the block triangular precondi-
tioner with Schur complement approximation Ŝ2 yields the best results. We therefore
use this preconditioner for the numerical results presented in the next section.

2Figure 3.1 considers the case without control constraints, but we note that the behavior of our
preconditioners is very similar when control constraints are present.
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4. Numerical experiments. In this section we present numerical results for the
iterative methods we have described, using the Schur complement approximation Ŝ2.
We implement this methodology using the finite element package deal.II [3] with Q1 fi-
nite element basis functions on a quadrilateral mesh. For the AMG preconditioner, we
use the Trilinos ML package [14] that applies a smoothed aggregation AMG. Within
the multigrid routine we typically apply a Chebyshev smoother (10 steps) in combi-
nation with the application of 6 V-cycles. We currently regard our implementation as
a proof of concept, as at present we reinitialize the AMG preconditioner upon each
application. A possible alternative would be to store various preconditioners, however
this is prohibitive from a computer memory point of view. Therefore, we believe that
the development of an efficient technique using multigrid or a fixed number of steps
of a simple iterative solver such as a Gauss–Seidel or Jacobi method should be inves-
tigated in the future. Consequently, we wish to emphasize that the timings presented
here are not as rapid as they would be were the recomputation of the preconditioner at
each application not required. If the varying preconditioners are handled efficiently,
this could also lead to the relatively larger number of V-cycles being reduced—we
choose to use this number of V-cycles as we wish to avoid the performance of the
AMG routine being sensitive to parameter changes. Our implementation of Bicg is
stopped with a tolerance of 10−4 or smaller for the relative residual. Additionally, we
stop the SQP method whenever the relative change between two consecutive solutions
is smaller than a given tolerance, as specified in our examples. More sophisticated
techniques [41] for carrying this out could be employed in the future. We feel that
as our purpose is to illustrate the performance of our preconditioner the choice made
here is appropriate. Our experiments are performed with T = 1 and τ = 0.05, that
is, with 20 time-steps. We take the parameters αTU = αTV = 0 in all our numerical
experiments, though we find it makes little difference computationally if this is not
the case. We only consider three-dimensional examples here and specify Ω ⊂ R3 for
each example. All results are performed on a Centos Linux machine with Intel Xeon
CPU X5650 at 2.67 GHz CPUs and 48 GB of RAM. We present overall timings for
the solution process in seconds.

No control constraints.
Example 1. The first example we consider involves a cylindrical shell domain

shown in Figure 4.1(a) with inner radius 0.8, outer radius 1.0, and height 3.0. The
parameter setup for this problem is as follows: the desired state for the first reactant
is shown in Figure 4.1(b) and is given by

uQ = 2t |sin(2x1x2x3)| + 0.3,

where x = [x1, x2, x3]
T
, and the desired state for the second reactant is given by

vQ = 0. Additionally, we have D1 = D2 = k1 = k2 = 1 and γ1 = γ2 = 0.15. Figure
4.2 demonstrates computed state and control variables for this problem at a particular
time-step.

In Table 4.1 we show for each step of the SQP method the number of Bicg
iterations needed to achieve the required convergence. The first column indicates
the number of degrees of freedom (i.e., the dimension of the matrix systems being
solved), with the second and fifth columns providing the timings for all SQP steps at
the level of mesh refinement. The third and sixth columns give the number of SQP
steps needed to reach convergence, and the remaining fourth and seventh columns
give the iteration numbers needed for Bicg to converge to the desired tolerance. For
this setup we require three SQP steps to reach the tolerance of 10−6. The results
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(a) Domain (b) Desired state for first reactant at eighth
time-step

Fig. 4.1. Cylindrical shell domain for computations and desired state for the first reactant at
the eighth time-step.

(a) Computed state for first reactant at eighth
time-step

(b) Computed control at eighth time-step

Fig. 4.2. Computed control and state for the first reactant at the eighth time-step with αc =
1e − 5 and αu = αv = 1.0.

indicate a benign mesh-dependence of the preconditioner, which from our experience
can often be observed for boundary control problems. We also observe nearly constant
iteration numbers when the regularization parameter is varied.

Example 2. The setup used for the second example is similar to that for the first.
Here, however, we take the desired states

uQ =

{
0.7 for (x1, x2, x3) ∈ [0, 0.5]

3
,

0.2 otherwise,
vQ = 0,

with the parameters D1 = D2 = k1 = k2 = 1 and γ1 = γ2 = 0.15. In contrast to the
previous example we solve the optimization problem on a Hyper L domain consisting
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Table 4.1
Results on the cylindrical shell domain for varying mesh-size and regularization parameter αc.

SQP steps are shown in columns 3 and 6 with the corresponding Bicg iteration numbers in columns
4 and 7. The timings (in seconds) measure the total time for convergence of the SQP scheme.

DoF Time SQP step Bicg Time SQP step Bicg
αc = 1e − 5 αc = 1e − 3

538 240 1726 step 1 16 1995 step 1 17
step 2 16 step 2 20
step 3 16 step 3 20

3 331 520 14904 step 1 28 14757 step 1 28
step 2 27 step 2 31
step 3 34 step 3 29

(a) Computed state for first re-
actant

(b) Desired state (c) Computed control

Fig. 4.3. Desired state, computed control, and state for the first reactant at eighth time-step
with αc = 1e − 5 and αu = αv = 1.0.

of the cube on [−1, 1]
3
with the cube (0, 1]

3
removed (see Figure 4.3). Again, we wish

to vary the control regularization parameter αc and the mesh-size. Table 4.2 shows
the results for the setup presented here, including timings and iteration numbers as
explained in Table 4.1. We again observe a mild growth in iteration numbers with
varying mesh-size and robustness for our selection of αc values. We find all iteration
numbers are very reasonable considering the complexity of the matrix system being
solved.

Table 4.2
Results on the Hyper L domain for varying mesh-size and regularization parameter αc. SQP

steps are shown in columns 3 and 6 with the corresponding Bicg iteration numbers in columns 4
and 7. The timings (in seconds) measure the total time for convergence of the SQP scheme.

DoF Time SQP Bicg Time SQP Bicg
αc = 1e − 5 αc = 1e − 3

60920 457 step 1 23 369 step 1 19
step 2 25 step 2 20
step 3 25 step 3 20

382 840 2819 step 1 29 2624 step 1 27
step 2 35 step 2 30
step 3 33 step 3 33

2 670 200 22976 step 1 46 19128 step 1 36
step 2 52 step 2 44
step 3 53 step 3 44
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Varying parameters. We next consider a problem where the desired states are
given by

uQ =

{
0.3 for (x1, x2, x3) ∈ [0, 0.5]

3
,

0.2 otherwise,
vQ = 0,

and vary some values that have previously been assumed to be fixed. The default setup
is again D1 = D2 = k1 = k2 = 1 and γ1 = γ2 = 0.15, with the stopping tolerance
for the SQP method set as 10−4. In the remainder of this section we vary one or two
of these parameters and keep the others fixed. Clearly this does not cover all the
relevant choices that might be possible, but this should indicate the effectiveness of
our approach for a large range of parameter regimes. All computations are carried
out on a fixed mesh that leads to a saddle point system of dimension 382840. We note
that each of the problems tested represents a completely different setup of the PDE
and the optimization problem. The purpose of presenting the results in Table 4.3 is
to show that the iteration numbers for these scenarios are reasonable and sometimes
very low. There are some specific parameter regimes for which this approach is not
as effective as for the cases presented, but for a wide range of parameters (h, τ ,
αu, αv, αc, D1, D2, k1, k2, γ1, γ2) we find that our approach works very well. Also
presented in the table are results for the case when the tolerance of the iterative solver
is decreased—it can be seen that the increase in iteration numbers is not dramatic for
a decreased tolerance.

We may see from the results in Table 4.3 that especially for increasing values of γ1
and γ2 it is possible that the convergence deteriorates slightly due to the (1, 1)-block
having larger negative eigenvalues (as the increasing indefiniteness of the (1, 1)-block
in this case is not captured by our preconditioner). One way to overcome this issue is
by switching from a Newton method to a Gauss–Newton scheme [6, 42]. This means
that the off-diagonal blocks in (2.14) are ignored, which results in a typically slower
convergence of the nonlinear iteration but provides better matrix properties during

Table 4.3
Results for varying parameters on the Hyper L domain with fixed dimension 382840 and varying

regularization parameter αc. The timings (in seconds) measure the total time for convergence of the
SQP scheme. We show the number of Bicg iterations and the number of SQP steps.

Parameter Time SQP step Bicg Time SQP step Bicg
αc = 1e − 5 αc = 1e − 3

D1 = D2 = 100 1783 step 1 28 1161 step 1 16
step 2 33 step 2 22

D1 = D2 = 0.1 2083 step 1 19 1744 step 1 18
step 2 27 step 2 20
step 3 20 step 3 19

γ1 = γ2 = 0.05 2426 step 1 25 2199 step 1 22
step 2 29 step 2 25
step 3 29 step 3 25

γ1 = γ2 = 0.75 3240 step 1 20 3796 step 1 24
step 2 60 step 2 36
step 3 32 step 3 72

tol = 1e − 6 3226 step 1 34 2702 step 1 27
step 2 38 step 2 33
step 3 38 step 3 33

tol = 1e − 8 3749 step 1 39 3289 step 1 33
step 2 46 step 2 39
step 3 46 step 3 42
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Table 4.4
Results for varying parameters γ1 and γ2 on the Hyper L domain with fixed dimension 382840

and varying regularization parameter αc for the Gauss–Newton scheme. The timings (in seconds)
measure the total time for convergence of the SQP scheme. We show the number of Bicg iterations
and the number of GN steps.

Parameter Time GN Step Bicg Time GN Step Bicg
αc = 1e − 5 αc = 1e − 3

γ1 = γ2 = 0.75 3107 step 1 25 2848 step 1 22
step 2 27 step 2 25
step 3 27 step 3 25
step 4 27 step 4 24

γ1 = γ2 = 1.75 3249 step 1 25 2973 step 1 22
step 2 28 step 2 26
step 3 28 step 3 26
step 4 26 step 4 26

the solution process. We observe that all our preconditioners can be applied in this
case. Table 4.4 provides some results for this case with larger γ1 and γ2 and the
desired states

uQ =

{
0.7 for (x1, x2, x3) ∈ [0, 0.5]3 ,
0.2 otherwise,

vQ = 0.

It can be seen that we have a small increase in the number of Gauss–Newton (GN in
the table) iterations compared to the number of SQP steps to reach the tolerance of
10−4 but that the number of Bicg iterations remains (almost) constant.

Control constraints. We now present results for the case where control con-
straints are present. The domain of interest is again the Hyper L domain presented
earlier, with the desired states given by

uQ = t |sin(2x1x2x3) cos(2x1x2x3)| , vQ = 0,

and D1 = D2 = k1 = k2 = 1, γ1 = γ2 = 0.15. We work only with an upper bound on
the control given by

cb = 1.5.

The results for varying αc and different mesh-sizes are shown in Table 4.5. We note
that the convergence of the Newton method dealing with the control constraints
(CCNM in the tables) seems to depend on the tolerance used for the solution of

Table 4.5
Results on the Hyper L domain for varying mesh-size and regularization parameter αc. Shown

are the number of SQP steps, the number of the Newton iterations for the CCNM, and the average
number of Bicg iterations per step of the CCNM method.

DoF Time SQP step CCNM/Bicg Time SQP step CCNM/Bicg
αc = 1e − 5 αc = 1e − 3

60 920 859 step 1 3/22.0 1066 step 1 3/18.0
step 2 2/25.5 step 2 3/21.0

step 3 3/21.0
382 840 13358 step 1 5/28.6 5498 step 1 2/26.0

step 2 5/32.6 step 2 2/36.0
step 3 5/32.8 step 3 2/35.0
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Table 4.6
Results on the Hyper L domain for varying penalty parameter ε. Shown are the number of

SQP steps, the number of the Newton iterations for the CCNM, and the average number of Bicg
iterations per step of the CCNM method.

CCNM/ CCNM/ CCNM/
DoF SQP step av.Bicg SQP step av.Bicg SQP step av.Bicg

ε = 1e − 2 ε = 1e − 4 ε = 1e − 6
60 920 step 1 3/32.3 step 1 3/24.6 step 1 3/20.6

step 2 3/36.3 step 2 3/26.6 step 2 3/22.3

the linear system (see [34]). The smaller value of αc shown in Table 4.5 requires the
tolerance for the iterative solver to be reduced, as otherwise we do not observe con-
vergence of the Newton method to deal with the control constraints. Our stopping
criterion for the Newton method is based on the coincidence of subsequent active sets,
but a more sophisticated stopping criterion might be able to avoid the convergence
issue of the Newton method [26, 41]. Table 4.5 shows the number of SQP steps, the
number of semismooth Newton steps (CCNM) for the control constraints, and the
average number of Bicg iterations at each SQP step. We find that it is also feasible
to handle the nonlinearity of the PDEs and the control constraints within a single
Newton loop, and the matrix systems obtained using this approach are of the same
structure as that derived in section 2. We see that there is a benign growth in Bicg
iteration numbers with respect to the mesh-size. The difference in iteration numbers
for the two different values of αc is likely to be due to the fact that as we change αc

the values for the control c change, which means that more nodes belong to the active
sets than in the case with the larger value of αc.

In addition, we wish to illustrate robustness with respect to the penalty parameter
ε. We here keep the mesh-size, as well as the regularization parameter (αc = 1e− 3),
fixed and consider different values of ε. Table 4.6 illustrates that once again the
resulting iteration numbers are very reasonable given the complexity of the problem.
We also observe that the performance of the Newton method depends on the tolerance
with which the linear systems were solved. For the rather low tolerance of 10−9

we find that the Newton scheme and the SQP method often converge in very few
iterations. We sometimes observe that for smaller values of the penalty parameter
the convergence of the outer SQP method is slower than for larger values. This
may be caused by the use of our simple SQP scheme—as we mentioned previously
more sophisticated schemes may be able to avoid this. Observe that the residual of
the iterative solver depends on ε, and thus from our experience small tolerances are
typically required to ensure convergence of the outer iteration. We note that it is also
possible to replace the SQP scheme by a Gauss–Newton iteration to possibly avoid
indefinite Hessians.

5. Conclusions. In this paper we have considered a PDE-constrained optimiza-
tion problem based on reaction-diffusion equations used to model chemical processes.
We devised nonlinear solvers to solve these problems, at the heart of which lay the
solution of large-scale linear systems of saddle point structure. We have shown that
these systems can be solved using efficient preconditioning techniques for a wide range
of cases. We have introduced a preconditioner that efficiently approximates the (1, 1)-
block of the saddle point systems, and we additionally derived approximations of the
Schur complement which were intended to be robust with respect to parameters within
the construction of the problem. Our numerical results illustrated that for a variety
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of problem setups (including problems with box constraints on the control variable)
our method solves the matrix systems in low Bicg iteration numbers. To summarize,
the method presented here not only enables the accurate solution of chemical process
models but also provides fast and robust techniques to do this.
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for fruitful discussions regarding the presented work.

REFERENCES

[1] S. S. Adavani and G. Biros, Multigrid algorithms for inverse problems with linear parabolic
PDE constraints, SIAM J. Sci. Comput., 31 (2008), pp. 369–397.

[2] U. Ascher and E. Haber, A multigrid method for distributed parameter estimation problems,
Electron. Trans. Numer. Anal., 15 (2003), pp. 1–17.

[3] W. Bangerth, R. Hartmann, and G. Kanschat, deal.II. A general-purpose object-oriented
finite element library, ACM Trans. Math. Software, 33 (2007), pp. 24-1–24-7.
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A.8. PRECONDITIONING FOR PATTERN FORMATION

A.8 Preconditioning for pattern formation

This paper is published as

M. Stoll, J. W. Pearson, and P. K. Maini, Fast Solvers for Opti-
mal Control Problems from Pattern Formation, J. Comput. Phys.,
304 (2016), pp. 27-45. (2015).

Result from the paper

Pattern formation models are considered in this paper where we compare
Newton and Gauss-Newton approaches and equip them with efficient pre-
conditioners. Figure A.4 shows the computed vs. the desired state for a
two-dimensional model.

(a) Desired State û12 (b) Computed State u12

Figure A.4: Desired and computed state
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The modeling of pattern formation in biological systems using various models of reaction–
diffusion type has been an active research topic for many years. We here look at a 
parameter identification (or PDE-constrained optimization) problem where the Schnaken-
berg and Gierer–Meinhardt equations, two well-known pattern formation models, form the 
constraints to an objective function. Our main focus is on the efficient solution of the asso-
ciated nonlinear programming problems via a Lagrange–Newton scheme. In particular we 
focus on the fast and robust solution of the resulting large linear systems, which are of 
saddle point form. We illustrate this by considering several two- and three-dimensional 
setups for both models. Additionally, we discuss an image-driven formulation that allows 
us to identify parameters of the model to match an observed quantity obtained from an 
image.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

One of the fundamental problems in developmental biology is to understand how spatial patterns, such as pigmentation 
patterns, skeletal structures, and so on, arise. In 1952, Alan Turing [42] proposed his theory of pattern formation in which 
he hypothesized that a system of chemicals, reacting and diffusing, could be driven unstable by diffusion, leading to spatial 
patterns (solutions which are steady in time but vary in space). He proposed that these chemical patterns, which he termed 
morphogen patterns, set up pre-patterns which would then be interpreted by cells in a concentration-dependent manner, 
leading to the patterns that we see.

These models have been applied to a very wide range of areas (see, for example, Murray [27]) and have been shown 
to exist in chemistry [6,30]. While their applicability to biology remains controversial, there are many examples which 
suggest that Turing systems may be underlying key patterning processes (see [2,8,40] for the most recent examples). Two 
important models which embody the essence of the original Turing model are the Gierer–Meinhardt [14] and Schnakenberg 
models [39] and it is upon these models which we focus.1 In light of the fact that, to date, no Turing morphogens have 

* Corresponding author.
E-mail addresses: stollm@mpi-magdeburg.mpg.de (M. Stoll), j.w.pearson@kent.ac.uk (J.W. Pearson), maini@maths.ox.ac.uk (P.K. Maini).

1 Although the second model is commonly referred to as the Schnakenberg model, it was actually first proposed by Gierer and Meinhardt in [14] along 
with the model usually referenced as the Gierer–Meinhardt model – we therefore refer to the first and second models as ‘GM1’ and ‘GM2’ within our 
working.

http://dx.doi.org/10.1016/j.jcp.2015.10.006
0021-9991/© 2015 Elsevier Inc. All rights reserved.
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been unequivocally demonstrated, we do not have model parameter values so a key problem in mathematical biology is to 
determine parameters that give rise to certain observed patterns. It is this problem that the present study investigates.

More recently, an area in applied and numerical mathematics that has generated much research interest is that of 
PDE-constrained optimization problems (see [41] for an excellent introduction to this field). It has been found that one key 
application of such optimal control formulations is to find solutions to pattern formation problems [11,12], and so it is 
natural to explore this particular application here.

In this paper, we consider the numerical solution of optimal control (in this case parameter identification) formulations 
of these Turing models – in particular we wish to devise preconditioned iterative solvers for the matrix systems arising 
from the application of Newton and Gauss–Newton methods to the problems. The crucial aspect of the preconditioners is 
the utilization of saddle point theory to obtain effective approximations to the (1, 1)-block and Schur complement of these 
matrix systems. The solvers incorporate aspects of iterative solution strategies developed by the first and second authors to 
tackle simpler optimal control problems in literature such as [32–35].

This paper is structured as follows. In Section 2 we introduce the Gierer–Meinhardt (GM1) and Schnakenberg (GM2) 
models that we consider, and outline the corresponding optimal control problems. In Section 3 we discuss the outer 
(Newton-type) iteration that we employ for these problems, and state the resulting matrix systems at each iteration. We 
then motivate and derive our preconditioning strategies in Section 4. In Section 5 we present numerical results to demon-
strate the effectiveness of our approaches, and finally in Section 6 we make some concluding remarks.

2. A parameter identification problem

Parameter identification problems are crucial in determining the setup of a mathematical model, often given by a system 
of differential equations, that is best suited to describe measured data or an observed phenomenon. These problems are 
often posed as PDE-constrained optimization problems [20,41]. We here want to minimize an objective function of misfit 
type, i.e., the function is designed to penalize deviations of the function values from the observed or measured data. The 
particular form is given by [11,12]:

J (u, v,a,b) = β1

2
‖u(x, t) − û(x, t)‖2

L2(�×[0,T ]) + β2

2
‖v(x, t) − v̂(x, t)‖2

L2(�×[0,T ])

+ βT ,1

2
‖u(x, T ) − ûT (x)‖2

L2(�) + βT ,2

2
‖v(x, T ) − v̂ T (x)‖2

L2(�)

+ ν1

2
‖a(x, t)‖2

L2(�×[0,T ]) + ν2

2
‖b(x, t)‖2

L2(�×[0,T ]) , (2.1)

where u, v are the state variables, and a, b the control variables, in our formulation. This is to say we wish to ensure that 
the state variables are as close as possible in the L2-norm to some observed or desired states û, ̂v , ûT , v̂ T , but at the same 
time penalize the enforcement of controls that have large magnitudes in this norm. The space–time domain on which this 
problem is considered is given by � × [0, T ], where � ⊂ Rd , d ∈ {2, 3}.

Our goal is to identify the parameters of classical pattern formation equations such that the resulting optimal parameters 
allow the use of these models for real-world data. We here use models of reaction–diffusion type typically exploited to 
generate patterns seen in biological systems. The two formulations we consider are the GM1 model [14,27]:

ut − Du�u − ru2

v
+ au = r, on � × [0, T ],

vt − D v�v − ru2 + bv = 0, on � × [0, T ],
u(x,0) = u0(x), v(x,0) = v0(x), on �,

∂u

∂ν
= ∂v

∂ν
= 0, on ∂� × [0, T ], (2.2)

and the GM2 model [14,27,39]:

ut − Du�u + γ (u − u2 v) − γ a = 0, on � × [0, T ],
vt − D v�v + γ u2 v − γ b = 0, on � × [0, T ],
u(x,0) = u0(x), v(x,0) = v0(x), on �,

∂u

∂ν
= ∂v

∂ν
= 0, on ∂� × [0, T ], (2.3)

where r and γ are non-negative parameters involved in the respective models.
Both the GM1 and GM2 formulations are models of reaction–diffusion processes occurring in many types of pattern 

formation and morphogenesis processes [14,27,39]. The GM1 model relates to an “activator–inhibitor” system, whereas the 
GM2 model represents substrate-depletion. Within both models the variables u and v , the state variables in our formulation, 
represent the concentrations of chemical products. The parameters Du and D v denote the diffusion coefficients – typically 



M. Stoll et al. / Journal of Computational Physics 304 (2016) 27–45 29

it is assumed that v diffuses faster than u, so Du < D v [14]. The (given) parameters r and γ are positive: the value r in 
the GM1 model denotes the (small) production rate of the activator [14], and the parameter γ in the GM2 model is the Hill 
coefficient, which describes the cooperativity within a binding process. The variables a and b, the control variables in our 
problem, represent the rates of decay for u and v , respectively. The initial conditions u0 and v0 are known.

Throughout the remainder of this article we consider the minimization of the cost functional (2.1), with PDE constraints 
taking the form of the GM1 model or the GM2 model. PDE-constrained optimization problems of similar form have been 
considered in the literature, such as in [11,12]. When solving these problems we consider a range of values of the parameters 
involved in the PDE models, as well as variations in the coefficients βi , βT ,i , νi (i = 1, 2) within J (u, v, a, b). One typically 
chooses βi (and frequently βT ,i ) to be larger than νi in order for the states to closely resemble the desired states, due to 
the input of control not being severely penalized – the case of larger νi relates to the control variables being very small, 
with the state variables therefore failing to match the desired states as closely. However it is possible to formulate these 
problems using a wide range of parameters, and so within the numerical results of Section 5 we vary the parameter setup 
to demonstrate the robustness of our methods.

Note that the PDE constraints, for either model (2.2) or (2.3), are nonlinear, and as a result the optimization problem 
min(u,v,a,b) J (u, v, a, b) is itself nonlinear (although the cost functional is quadratic). To solve this problem we are therefore 
required to apply nonlinear programming [29] algorithms. Many of these are generalizations of Newton’s method [29]. We 
here focus on a Lagrange–Newton (or basic SQP) scheme and a Gauss–Newton method. At the heart of both approaches 
lies the solution of large linear systems, which are often in saddle point form [4,9], that represent the Hessian or an 
approximation to it. In order to be able to solve these large linear systems we need to employ iterative solvers [9,37], which 
can be accelerated using effective preconditioners.

3. Nonlinear programming

A standard way of how to proceed with the above nonlinear program is to consider a classical Lagrangian approach [41]. 
In our case, with a nonlinear constraint, we apply a nonlinear solver to the first order conditions. We hence start by deriving 
the first order conditions, or Karush–Kuhn–Tucker conditions, of the Lagrangian

L(u, v,a,b, p,q) = J (u, v,a,b) + (p,R1(u, v,a,b)) + (q,R2(u, v,a,b)) ,

where R1(u, v, a, b), R2(u, v, a, b) represent the first two equations of both GM1 and GM2 models, and p, q denote the ad-
joint variables (or Lagrange multipliers). Note that for convenience our Lagrangian ignores the boundary and initial conditions. 
In general form the first order conditions are given by

Lu = 0, Lv = 0,

La = 0, Lb = 0,

Lp = 0, Lq = 0.

The equations are in general nonlinear and a standard Newton method can be applied to them to give the following 
Lagrange–Newton or SQP scheme:⎡⎢⎢⎢⎢⎢⎢⎢⎣

Luu Luv Lua Lub Lup Luq

Lvu Lv v Lva Lvb Lvp Lvq

Lau Lav Laa Lab Lap Laq

Lbu Lbv Lba Lbb Lbp Lbq

Lpu Lpv Lpa Lpb Lpp Lpq

Lqu Lqv Lqa Lqb Lqp Lqq

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

δu

δv

δa

δb

δp

δq

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= −

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Lu

Lv

La

Lb

Lp

Lq

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (3.1)

where δu, δv , δa, δb, δp, δq denote the Newton updates for u, v , a, b, p, q.
Note that our formulation does not include any globalization techniques such as trust region or line search approaches 

[28]. In order for the optimization algorithm to converge these should in general be incorporated. As our focus here is on 
large-scale linear systems we do not focus on these approaches now. At this stage we simply state the systems obtained for 
both GM1 and GM2 models and refer the interested reader to Appendix A, where all quantities are derived in detail. The 
system given in (3.1) represents the most general Newton system but it is often possible to only use approximations to this 
system. The Gauss–Newton method [16] is often used as the corresponding system matrix in (3.1) – this ignores the mixed 
derivatives with respect to the primal variables, i.e. with the system matrix given by⎡⎢⎢⎢⎢⎢⎢⎢⎣

L̂uu 0 0 0 Lup Luq

0 L̂v v 0 0 Lvp Lvq

0 0 L̂aa 0 Lap Laq

0 0 0 L̂bb Lbp Lbq

Lpu Lpv Lpa Lpb Lpp Lpq

Lqu Lqv Lqa Lqb Lqp Lqq

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (3.2)
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where the matrices denoted by L̂:,: do not contain second derivative information (see [16,29] for more details). Additionally, 
to derive the infinite-dimensional Newton system we discretize the resulting equations using finite elements in space and a 
backward Euler scheme in time. The resulting system for the GM1 model is given by⎡⎢⎢⎢⎢⎢⎢⎢⎣

Au,GM1 −2τ rMup/v2 −τMp 0 −LT
u,GM1 2τ rMu

−2τ rMup/v2 Av,GM1 0 −τMq −τ rMu2/v2 −LT
v,GM1

−τMp 0 τν1M 0 −τMu 0

0 −τMq 0 τν2M 0 −τMv

−Lu,GM1 −τ rMu2/v2 −τMu 0 0 0

2τ rMu −Lv,GM1 0 −τMv 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

A

⎡⎢⎢⎢⎢⎢⎢⎢⎣

δu
δv
δa
δb
δp
δq

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= f,

where

Au,GM1 = τβ1M + βT ,1MT + 2τ rMp/v + 2τ rMq,

Av,GM1 = τβ2M + βT ,2MT + 2τ rMu2 p/v3 ,

Lu,GM1 = ME + τ DuK − 2τ rMu/v + τMa,

Lv,GM1 = ME + τ D v K + τMb.

Note that M and K denote standard finite element mass and stiffness matrices, respectively. Here the matrices

ME :=

⎡⎢⎢⎢⎢⎣
M

−M M
−M M

. . .
. . .

−M M

⎤⎥⎥⎥⎥⎦ , MT :=

⎡⎢⎢⎢⎢⎣
0

0
. . .

0
M

⎤⎥⎥⎥⎥⎦ ,

correspond to, respectively, the time-stepping scheme used, and the values at the final time t = T . All other mass matrices 
Mψ = blkdiag(Mψ, . . . , Mψ) are obtained from evaluating integrals of the form [Mψ ]i j = ∫

ψφiφ j for each matrix entry and 
for every time-step, where φi denote the finite element basis functions used (see the group finite element method in [23]). 
Furthermore, the matrix K = blkdiag(K , . . . , K ). The parameter τ denotes the (constant) time-step used. The vector f is the 
discrete representation at each Newton step of the following vector function:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

β1
∫
(̂u − ū) + ∫

(−p̄t − Du�p̄ − 2r ū
v̄ p̄ + ā p̄ − 2rūq̄)

β2
∫
(̂v − v̄) + ∫

(−q̄t − D v�q̄ + r ū2

v̄2 p̄ + b̄q̄)∫
(ū p̄ − ν1ā)∫
(v̄q̄ − ν2b̄)∫

(ūt − Du�ū − rū2

v̄ + āū − r)∫
(v̄t − D v�v̄ − rū2 + b̄v̄)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where ū, v̄ , ā, b̄, p̄, q̄ denote the previous Newton iterates for u, v , a, b, p, q.
The Gauss–Newton type matrix for this problem now becomes⎡⎢⎢⎢⎢⎢⎢⎢⎣

β1τM 0 0 0 −LT
u,GM1 2τ rMu

0 β2τM 0 0 −τ rMu2/v2 −LT
v,GM1

0 0 ν1τM 0 −τMu 0

0 0 0 ν2τM 0 −τMv

−Lu,GM1 −τ rMu2/v2 −τMu 0 0 0

2τ rMu −Lv,GM1 0 −τMv 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

A

⎡⎢⎢⎢⎢⎢⎢⎢⎣

δu
δv
δa
δb
δp
δq

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= fGN,

with all matrices as previously defined (see [5,16] for details on the Gauss–Newton matrix structure). We consider this 
matrix system as well as the “pure Newton” formulation of the GM1 model, as we find that the Gauss–Newton method 
often results in favorable properties from an iterative solver point-of-view.
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Moving on to the GM2 model, Appendix A reveals the following structure of the Newton system:⎡⎢⎢⎢⎢⎢⎢⎢⎣

Au,GM2 −2τγ Mu(q−p) 0 0 −LT
u,GM2 −2τγ Muv

−2τγ Mu(q−p) Av,GM2 0 0 τγ Mu2 −LT
v,GM2

0 0 τν1M 0 τγ M 0

0 0 0 τν2M 0 τγ M
−Lu,GM2 τγ Mu2 τγ M 0 0 0

−2τγ Muv −Lv,GM2 0 τγ M 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

A

⎡⎢⎢⎢⎢⎢⎢⎢⎣

δu
δv
δa
δb
δp
δq

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= g,

with

Au,GM2 = τβ1M + βT ,1MT + 2τγ Mv(q−p),

Av,GM2 = τβ2M + βT ,2MT ,

Lu,GM2 = ME + τ DuK + τγ M − 2τγ Muv ,

Lv,GM2 = ME + τ D v K + τγ Mu2 ,

and g the discrete representation of the vector function:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

β1
∫
(̂u − ū) + ∫

(−p̄t − Du�p̄ + 2γ ū v̄(q̄ − p̄) + γ p̄)

β2
∫
(̂v − v̄) + ∫

(−q̄t − D v�q̄ + γ ū2(q̄ − p̄))

− ∫
(ν1ā + γ p̄)

− ∫
(ν2b̄ + γ q̄)∫

(ūt − Du�ū + γ (ū − ū2 v̄) − γ ā)∫
(v̄t − D v�v̄ + γ ū2 v̄ − γ b̄)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The main challenge is now the numerical evaluation of the discretized problems. As we here opt for an all-at-once 
approach where we discretize in space and time and then solve the resulting linear system for all time steps simultaneously, 
we need to be able to perform this operation efficiently. Similar approaches have recently been considered in [33]. The goal 
of the next section is to introduce the appropriate methodology.

4. Preconditioning and Krylov subspace solver

The solution of large-scale linear systems of the saddle point form:

Ax = b, with A =
[

A BT

B −C

]
, (4.1)

where A ∈ Rm×m , B ∈ Rn×m (with m ≥ n), C ∈ Rn×n , is a topic of major interest within the numerical analysis community 
[4,9]. Due to the vast dimensionality of the systems derived earlier we cannot use factorization-based approaches [7]. We 
hence employ a Krylov subspace method [37] where we construct a Krylov subspace of the form

Kk(A, r0) = span
{

r0,Ar0,A2r0, . . . ,Akr0

}
,

within which we seek an approximation to the solution of a given linear system. These methods are cheap as they only 
require multiplication with the system matrix, which is often possible to perform in a matrix-free way, that is to say the 
matrix A can be a black-box that only computes Aw for some vector w. As a rule-of-thumb (rigorously in the case of 
symmetric A) the eigenvalues of A determine how fast the approximate solution converges towards the true solution.

It is very well recognized that the eigenvalues of a saddle point matrix A depend strongly on the eigenvalues of the 
individual blocks A, B , C .2 Clearly the eigenvalues of the individual matrices within these blocks depend on the mesh-size 
and time-step used, as well as all the other parameters describing the PDE and the objective function. [To give one example, 
the eigenvalues of K are contained within [c1hd, c2hd−2] for constants c1, c2, where a constant mesh-size h is taken.] As a 
result, for our problem, the eigenvalues of A depend on these problem parameters. The convergence of an iterative method 

2 For illustrative purposes, a fundamental result [36] is as follows: if A is symmetric positive definite, B is full rank, and C = 0, the eigenvalues of A are 
contained within the intervals

λ(A) ∈
[

1

2

(
μm −

√
μ2

m + 4σ 2
1

)
,

1

2

(
μ1 −

√
μ2

1 + 4σ 2
n

)]
∪
[
μm,

1

2

(
μ1 +

√
μ2

1 + 4σ 2
1

)]
,

where μ1, μm are the largest and smallest eigenvalues of A, and σ1, σn denote the largest and smallest singular values of B .
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applied directly to A can therefore be prohibitively slow, especially for large problems where h and τ are small. Our goal is 
therefore to find a preconditioning matrix P such that we can solve the equivalent preconditioned system

P−1Ax = P−1b,

and P captures the properties of A well. If this can be achieved, the dependence of eigenvalues of P−1A on the problem 
parameters can be mitigated, and in the best case removed.

For a saddle point problem of the form (4.1), this is typically achieved by preconditioners of the form

P =
[

Ã 0
0 S̃

]
or

[
Ã 0
B − S̃

]
, (4.2)

where Ã approximates the (1, 1)-block A of the saddle point matrix A, and S̃ approximates the (negative) Schur comple-
ment S := C + B A−1 BT . This is motivated by results obtained in [22,26] where it is shown that the exact preconditioners 
Ã = A and S̃ = S lead to a very small number of eigenvalues for the preconditioned system, and hence iteration numbers. 
The choice of the outer Krylov subspace solver typically depends on the nature of the system matrix and the preconditioner. 
For symmetric indefinite systems such as the ones presented here we usually choose Minres [31] based on a three-term 
recurrence relation. However as Minres typically requires a symmetric positive definite preconditioner, in the case of an 
indefinite preconditioner P we cannot use this method. We then need to apply a nonsymmetric solver of which there 
exist many, and it is not obvious which of them is best suited to any particular problem. Our rule-of-thumb is that if one 
carefully designs a preconditioner such that the eigenvalues of the preconditioned system are tightly clustered (or are con-
tained within a small number of clusters), many different solvers perform in a fairly similar way. For simplicity we here 
choose Bicg [10], which is the extension of cg [17] to nonsymmetric problems and is based on the nonsymmetric Lanczos 
process [15].

4.1. GM1 model

We now wish to derive preconditioners for all of the above linear systems. When examining the GM1 model using a 
Newton method the matrix A is written in the form of the saddle point system (4.1), with

A =

⎡⎢⎢⎣
Au,GM1 −2τ rMup/v2 −τMp 0

−2τ rMup/v2 Av,GM1 0 −τMq

−τMp 0 τν1M 0

0 −τMq 0 τν2M

⎤⎥⎥⎦ ,

B =
[−Lu,GM1 −τ rMu2/v2 −τMu 0

2τ rMu −Lv,GM1 0 −τMv

]
, C =

[
0 0
0 0

]
.

Consider first approximating the matrix A. We observe that its block structure means we can also write it in saddle 
point type form. The matrix blkdiag (τν1M, τν2M) is comparatively straightforward to work with, as it is a block diagonal 
matrix consisting solely of mass matrices, so we may devise saddle point approximations with this as the leading block, i.e.,

Ã =

⎡⎢⎢⎣
Ã1 0 0 0

0 Ã2 0 0

0 0 τν1M 0

0 0 0 τν2M

⎤⎥⎥⎦ or

⎡⎢⎢⎣
−Ã1 0 0 0

0 −Ã2 0 0

−τMp 0 τν1M 0

0 −τMq 0 τν2M

⎤⎥⎥⎦ , (4.3)

for suitable choices of Ã1 and Ã2. To make these selections, we seek to approximate the Schur complement of A, that is:[
Ã1 0

0 Ã2

]
≈
[

Au,GM1 −2τ rMup/v2

−2τ rMup/v2 Av,GM1

]
︸ ︷︷ ︸

=:̃A(1,2)

−
[
τν−1

1 MpM−1Mp 0

0 τν−1
2 MqM−1Mq

]
.

We then utilize the heuristic of approximating Ã(1,2) by its own (block diagonal) saddle point approximation, leading to the 
following candidates for Ã1 and Ã2:

Ã1 = Au,GM1 − (2τ r)2Mup/v2 A−1
v,GM1Mup/v2 − τν−1

1 MpM−1Mp,

Ã2 = Av,GM1 − τν−1
2 MqM−1Mq,

which we apply within (4.3). Within our implementation we replace the matrix M−1 with diagonal approximations, in order 
for the application of our solver to be computationally feasible.

Turning our attention now to the Schur complement of the entire matrix A:
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S =
[−Lu,GM1 −τ rMu2/v2

2τ rMu −Lv,GM1

]
Ã−1

(1,2)

[ −LT
u,GM1 2τ rMu

−τ rMu2/v2 −LT
v,GM1

]
+ τ

[
ν−1

1 MuM−1Mu 0

0 ν−1
2 Mv M−1Mv

]
,

we construct an approximation

S̃ =
[−Lu,GM1 + M̂(1)

1 τ rMu2/v2

−2τ rMu −Lv,GM1 + M̂(1)
2

]
Ã−1

(1,2)

[−LT
u,GM1 + M̂(2)

1 −2τ rMu

τ rMu2/v2 −LT
v,GM1 + M̂(2)

2

]
,

for suitably chosen matrices M̂(1)
1 , M̂(1)

2 , M̂(2)
1 and M̂(2)

2 . To do this we apply a ‘matching strategy’, where we seek an 
additional (outer) term of the Schur complement approximation to match the second term of the exact Schur complement,3

as follows:[
M̂(1)

1 0

0 M̂(1)
2

]
Ã−1

(1,2)

[
M̂(2)

1 0

0 M̂(2)
2

]
≈ τ

[
ν−1

1 MuM−1Mu 0

0 ν−1
2 Mv M−1Mv

]
.

By examining the diagonal blocks of Ã−1
(1,2) , we see that this strategy motivates the approximations:

M̂(1)
1 Ã−1

1 M̂(2)
1 ≈ τ

ν1
MuM−1Mu, Ã1 := Au,GM1 − (2τ r)2Mup/v2 A−1

v,GM1Mup/v2 ,

M̂(1)
2 Ã−1

2 M̂(2)
2 ≈ τ

ν2
Mv M−1Mv , Ã2 := Av,GM1 − (2τ r)2Mup/v2 A−1

u,GM1Mup/v2 .

To achieve such an approximation, we again recommend selecting diagonal matrices M̂(1)
1 , M̂(1)

2 , M̂(2)
1 and M̂(2)

2 , with diagonal 
entries given by[

M̂(1)
1

]
j j =

√
τ

ν1
[Mu] j j · [M]−1/2

j j ·
∣∣∣[̃A1

]
j j

∣∣∣, [
M̂(2)

1

]
j j =

√
τ

ν1
[M]−1/2

j j · [Mu] j j,

[
M̂(1)

2

]
j j =

√
τ

ν2
[Mv ] j j · [M]−1/2

j j ·
∣∣∣[̃A2

]
j j

∣∣∣, [
M̂(2)

2

]
j j =

√
τ

ν2
[M]−1/2

j j · [Mv ] j j .

Now, for any practical method, we are only interested in the inverse of the Schur complement approximation S̃ . We 
therefore evaluate the inverse of the first and last block using a fixed number of steps of an Uzawa method [37] with 
preconditioners

blkdiag
((−Lu,GM1 + M̂(1)

1

)
AMG,

(−Lv,GM1 + M̂(1)
2

)
AMG

)
or

blkdiag
((−LT

u,GM1 + M̂(2)
1

)
AMG,

(−LT
v,GM1 + M̂(2)

2

)
AMG

)
,

where (·)AMG denotes the application of an algebraic multigrid method to the relevant matrix.
For the Gauss–Newton case the derivation of the preconditioners is more straightforward. The approximation of the 

Hessian is typically not as good as in the Newton setting but the Gauss–Newton matrices are easier to handle from a 
preconditioning viewpoint. To approximate A we write⎡⎢⎢⎣

β1τM 0 0 0

0 β2τM 0 0

0 0 ν1τM 0

0 0 0 ν2τM

⎤⎥⎥⎦≈

⎡⎢⎢⎣
β1τ M̃ 0 0 0

0 β2τ M̃ 0 0

0 0 ν1τ M̃ 0

0 0 0 ν2τ M̃

⎤⎥⎥⎦=: Ã,

where M̃ is equal to M for (diagonal) lumped mass matrices. If consistent mass matrices are used instead, some approxima-
tion such as the application of Chebyshev semi-iteration [43] is chosen. The inverse of the Schur complement approximation

S̃ :=
[−Lu,GM1 + M̂(1)

1 τ rMu2/v2

−2τ rMu −Lv,GM1 + M̂(1)
2

]
Ã−1

(1,2)

[−LT
u,GM1 + M̂(2)

1 −2τ rMu

τ rMu2/v2 −LT
v,GM1 + M̂(2)

2

]
,

3 This matching strategy was originally developed by the authors [33–35] to generate approximations for more fundamental PDE-constrained optimization 
problems. Considering the Poisson control problem, for instance, the Schur complement and its approximation take the form [34]:

S = K M−1 K + 1

β
M, S̃ =

(
K + 1√

β
M

)
M−1

(
K + 1√

β
M

)
,

whereupon it can be shown that the eigenvalues of ̃S−1 S are contained within [ 1
2 , 1], independently of problem parameters and matrix dimension. This 

bound can be proved due to the comparatively simple structures of the matrices involved, and thus cannot be replicated for the complex systems studied 
here, however we have found this strategy to be very effective for a range of PDE-constrained optimization problems.
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where here Ã(1,2) = blkdiag(β1τM, β2τM), M̂(1)
1 = M̂(2)

1 = τ
√

β1
ν1

Mu , and M̂(1)
2 = M̂(2)

2 = τ
√

β2
ν2

Mv , is applied at each step of 
our iterative method.

4.2. GM2 model

In a completely analogous way we can derive saddle point preconditioners for the GM2 model, for which

A =

⎡⎢⎢⎣
Au,GM2 −2τγ Mu(q−p) 0 0

−2τγ Mu(q−p) Av,GM2 0 0

0 0 τν1M 0

0 0 0 τν2M

⎤⎥⎥⎦ ,

B =
[ −Lu,GM2 τγ Mu2 τγ M 0

−2τγ Muv −Lv,GM2 0 τγ M

]
, C =

[
0 0
0 0

]
,

in the notation of (4.1).
We may approximate the matrix A, in this case using the saddle point type structure of its upper sub-matrix, by

Ã =

⎡⎢⎢⎣
Ã1 0 0 0

0 Av,GM2 0 0

0 0 τν1M 0

0 0 0 τν2M

⎤⎥⎥⎦ or

⎡⎢⎢⎣
−Ã1 0 0 0

−2τγ Mu(q−p) Av,GM2 0 0

0 0 τν1M 0

0 0 0 τν2M

⎤⎥⎥⎦ ,

where

Ã1 = Au,GM2 − (2τγ )2Mu(q−p)A
−1
v,GM2Mu(q−p).

We follow a similar strategy as before to approximate the Schur complement

S =
[ −Lu,GM2 τγ Mu2

−2τγ Muv −Lv,GM2

]
Ã−1

(1,2)

[−LT
u,GM2 −2τγ Muv

τγ Mu2 −LT
v,GM2

]
+ τγ 2

[
ν−1

1 M 0

0 ν−1
2 M

]
,

where for this problem

Ã(1,2) :=
[

Au,GM2 −2τγ Mu(q−p)

−2τγ Mu(q−p) Av,GM2

]
.

Again applying our matching strategy, we obtain the following approximation:

S̃ =
[−Lu,GM2 + M̂(1)

1 −τγ Mu2

2τγ Muv −Lv,GM2 + M̂(1)
2

]
Ã−1

(1,2)

[−LT
u,GM2 + M̂(2)

1 2τγ Muv

−τγ Mu2 −LT
v,GM2 + M̂(2)

2

]
.

Examining the diagonal blocks of ̃A−1
(1,2) (as for the GM1 model), and applying a matching strategy to approximate the second 

term of S , we motivate the following approximations:

M̂(1)
1 Ã−1

1 M̂(2)
1 ≈ τγ 2

ν1
M, Ã1 := Au,GM2 − (2τγ )2Mu(q−p)A

−1
v,GM2Mu(q−p),

M̂(1)
2 Ã−1

2 M̂(2)
2 ≈ τγ 2

ν2
M, Ã2 := Av,GM2 − (2τγ )2Mu(q−p)A

−1
u,GM2Mu(q−p).

These approximations may be achieved by constructing diagonal matrices M̂(1)
1 , M̂(1)

2 , M̂(2)
1 , M̂(2)

2 with diagonal entries given 
by [

M̂(1)
1

]
j j =

√
τ

ν1
γ [M]1/2

j j ·
∣∣∣[̃A1

]
j j

∣∣∣, [
M̂(2)

1

]
j j =

√
τ

ν1
γ [M]1/2

j j ,

[
M̂(1)

2

]
j j =

√
τ

ν2
γ [M]1/2

j j ·
∣∣∣[̃A2

]
j j

∣∣∣, [
M̂(2)

2

]
j j =

√
τ

ν2
γ [M]1/2

j j .

We can again build these choices of M̂(1)
1 , M̂(1)

2 , M̂(2)
1 , M̂(2)

2 into the approximation S̃ within our preconditioner.
For each of our suggested iterative methods, we insert our approximations of A and S = B A−1 BT into the general 

preconditioners for saddle point systems stated in (4.2).
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4.3. Computational cost

When implementing our preconditioned iterative methods, the vast majority of the computational expense occurs when 
applying the inverse of our preconditioners. We therefore now wish to detail the solves that we are required to carry out 
when applying our preconditioner to each problem.

To enact our preconditioner for the GM1 model, we are required to perform the following:

– Solves for Ã1 and Ã2 (‘mass-like’ matrices),
– Chebyshev semi-iteration/diagonal solves for τν1M, τν2M (mass matrices),
– 1 multigrid per Uzawa iteration for each of −Lu,GM1 + M̂(1)

1 , −Lv,GM1 + M̂(1)
2 , −LT

u,GM1 + M̂(2)
1 , −LT

v,GM1 + M̂(2)
2 (to apply 

S̃−1).

From a computational point-of-view, the most straightforward operations involve inverting mass matrices, with the multi-
grid operations the most expensive.

For the Gauss–Newton approach for the same problem, the preconditioner is cheaper to apply, with the following oper-
ations dominating the computational cost:

– Chebyshev semi-iteration/diagonal solves for β1τM, β2τM, τν1M, τν2M (mass matrices),
– 1 multigrid per Uzawa iteration for each of −Lu,GM1 + M̂(1)

1 , −Lv,GM1 + M̂(1)
2 , −LT

u,GM1 + M̂(2)
1 , −LT

v,GM1 + M̂(2)
2 (for the 

new choices of M̂(1)
1 , M̂(1)

2 , M̂(2)
1 , M̂(2)

2 ).

Further, the dominant computational operations for solving the GM2 model are:

– Solves for Ã1, Au,GM2 (‘mass-like’ matrices),
– Chebyshev semi-iteration/diagonal solves for τν1M, τν2M (mass matrices),
– 1 multigrid per Uzawa iteration for each of −Lu,GM1 + M̂(1)

1 , −Lv,GM1 + M̂(1)
2 , −LT

u,GM1 + M̂(2)
1 , −LT

v,GM1 + M̂(2)
2 (to apply 

S̃−1).

We believe the amount of computational work required to apply our preconditioner is satisfactory when taking into 
account the complex structure and large dimension of the matrix systems.

4.4. Alternative methods

Before presenting numerical results we wish to briefly discuss alternative approaches for the solution of the optimization 
problem, or the linear systems at the heart of the nonlinear solver. Due to the highly complex structure of the problem 
statements and associated matrix systems, we are not aware of any robust methods that have previously been developed 
for solving these systems. We believe that this underlines the value of investigating preconditioned iterative methods for 
this important class of problems. However we wish to outline other classes of methods which could potentially be applied 
to these problems, in many cases building on the work described in this article.

The method we have presented is applied when using either a Newton or a Gauss–Newton approach for the nonlinear 
program. Alternatively, we could apply a simple gradient descent coupled with a line search procedure [29], which typically 
converges very slowly. Another alternative would be to employ an interior point scheme [44], which also requires the 
solution of saddle point problems, and we believe that many of our proposed techniques could be carried over to this 
case. In [21] the authors follow a so-called one-shot method that can be viewed as a stationary iteration of the form 
xk+1 = xk + P−1rk . The preconditioner in this case is given by a block matrix that requires the (approximate) inversion of 
the adjoint and forward PDE operator, as well as the solution of a complicated Schur complement system (here written for 
the Gauss–Newton system (3.2) with the block containing second derivatives with respect to Lagrange multipliers equal to 
zero):

S A ≈
[ L̂aa

L̂bb

]
+
[Lap Laq

Lbp Lbq

][Lup Luq

Lvp Lvq

]−1 [ L̂uu

L̂v v

][Lpu Lpv

Lqu Lqv

]−1 [Lpa Lpb

Lqa Lqb

]
.

Note that this is in general harder to approximate than the Schur complements obtained using our approach, as we here 
have the sum of mass matrices and inverse PDE operators within the Schur complement approximation. As it is the action 
of S−1

A that is important for preconditioning purposes, this approximation is extremely difficult to apply in practice.
Recently, operator preconditioning approaches have proven successful for many PDE preconditioning problems (see [25,

45]). Their use for nonlinear problems has recently attracted attention within the field [1,38], and we are currently investi-
gating how to extend these approaches to the reaction–diffusion type setting.

Of the approaches currently within reach, the stationary iteration approaches were found not to converge, and the above 
approximation S A is of a very complex nature and is infeasible to apply. The only alternative approach which we found 
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Fig. 4.1. Iteration numbers for Uzawa scheme with a block triangular version of our preconditioner. Plots are shown for every SQP step, however they can 
often not be distinguished due to very similar convergence behavior. The smaller example uses 729 degrees of freedom in space, and the larger example 
4096.

to generate sensible results for a range of parameter regimes is that of an Uzawa method, using a preconditioner of the 
form derived in this paper. In Fig. 4.1 we show the iteration numbers that are required using such an approach for two 
different meshes and two regularization parameters. We note that, while the results show that this method performs well, 
we are required to move from the block diagonal preconditioner derived in this section to a more expensive block triangular 
preconditioner, as the Uzawa method diverges when a block diagonal approach is taken. Apart from this change, the major 
computational operations required per Uzawa iteration are largely similar to those required to apply our preconditioner 
with a single Uzawa step. We also highlight that this method is itself only feasible due to the preconditioners derived in 
this paper.

5. Numerical results

We now wish to apply our methodology to a number of test problems. All results presented in this section are based 
on an implementation of the presented algorithms and (block diagonal) preconditioners within the deal.II [3] framework 
using Q 1 finite elements. The AMG preconditioner we use is part of the Trilinos ML package [13] that implements a 
smoothed aggregation AMG. Within the algebraic multigrid routine we typically apply 10 steps of a Chebyshev smoother 
in combination with the application of two V-cycles. Typically we apply 4 iterations of the Uzawa scheme within our 
Schur complement approximation, to guarantee high accuracy. For our implementation of Bicg we use a stopping tolerance 
of 10−4. Our experiments are performed for T = 1 and τ = 0.05, i.e. 20 time-steps. Typically, the spatial domain � is 
considered to be the unit square or cube. All results are performed on a Centos Linux machine with Intel(R) Xeon(R) CPU 
X5650 @ 2.67 GHz CPUs and 48 GB of RAM.

5.1. GM2 model

For both GM2 and GM1 models we start creating desired states using Gaussians placed at different positions in the unit 
square/cube that might depend on the time t . In Fig. 5.1 we illustrate two instances of the desired state and computed 
results for the GM2 formulation, with the parameters set to Du = 1, D v = 10, β1 = β2 = 1, γ = 50, and ν1 = ν2 = 10−6. As 
the regularization parameters become smaller we see that the desired and computed states are very close. This is reflected 
in the third set of images within Fig. 5.1, where the control is shown with sometimes rather high values. In Table 5.1
we present Bicg iteration numbers for solving this test problem for a range of degrees of freedom and regularization 
parameters – the results indicate that our solver is robust in a large number of problem setups.

5.2. GM1 model with Newton and Gauss–Newton methods

For the next problem we examine, the desired state for the GM1 model is created using Gaussian functions placed in 
the unit cube. This is illustrated in Fig. 5.2, where we present the desired state for the first component, the computed 
first state variable, and the corresponding control variable. The parameters for this case are chosen to be β1 = β2 = 102, 
ν1 = ν2 = 10−2, Du = 1, D v = 10, and r = 10−2. For many interesting parameter setups (including for a range of values 
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Fig. 5.1. Desired state for 8th and 12th grid points in time (upper two), computed state using the GM2 model (middle two), and the computed control 
(lower two) for two reactants using the GM2 model. The parameters are set to be Du = 1, D v = 10, β1 = β2 = 1, γ = 50, and ν1 = ν2 = 10−6.

Table 5.1
Results on unit square with Du = 1, D v = 10, β1 = β2 = 1, and γ = 50. Stated are Bicg iteration numbers for each Newton step.

DoF ν1 = ν2 = 10−2 ν1 = ν2 = 10−4 ν1 = ν2 = 10−6

Newton Bicg Newton Bicg Newton Bicg

507,000 step 1 18 step 1 16 step 1 16
step 2 20 step 2 15 step 2 15
step 3 20 step 3 15 step 3 15
step 4 20 step 4 15 step 4 15
step 5 20 step 5 15

1,996,920 step 1 23 step 1 17 step 1 17
step 2 23 step 2 18 step 2 16
step 3 24 step 3 18 step 3 16
step 4 23 step 4 18 step 4 16
step 5 23 step 5 18
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Fig. 5.2. Desired state, computed state and computed control for the first reactant in the GM1 model with parameters at β1 = β2 = 102, ν1 = ν2 = 10−2, 
Du = 1, D v = 10, and r = 10−2.

Table 5.2
Results on unit cube with β1 = β2 = 102, Du = 1, D v = 10, and r = 10−2. We here vary the mesh-size and the regularization parameters ν1 and ν2. Stated 
are Bicg iteration numbers for each Gauss–Newton step.

DoF ν1 = ν2 = 10−2 ν1 = ν2 = 10−4 ν1 = ν2 = 10−6

GN Bicg GN Bicg GN Bicg

87,480 step 1 11 step 1 11 step 1 9
step 2 11 step 2 11 step 2 9
step 3 11 step 3 11 step 3 9
step 4 11 step 4 11
step 5 11 step 5 11

589,560 step 1 11 step 1 13 step 1 11
step 2 11 step 2 12 step 2 11
step 3 11 step 3 12 step 3 11
step 4 11 step 4 12 step 4 11
step 5 11 step 5 12

4,312,440 step 1 11 step 1 13 step 1 11
step 2 11 step 2 12 step 2 11
step 3 11 step 3 12 step 3 11
step 4 11 step 4 12 step 4 11
step 5 11 step 5 12

of r) it is not trivial to find a configuration of the Newton scheme that demonstrates satisfying convergence properties. 
We instead focus on the Gauss–Newton method here, and we illustrate the Bicg iteration numbers achieved for a range of 
problems in Table 5.2 – these results demonstrate much greater robustness, with rapid convergence of the inner solver.

As we have already highlighted, the complex structure of the linear systems makes the design of efficient preconditioners 
harder when the Newton scheme is applied compared to the Gauss–Newton scheme. We use the results presented in 
Table 5.3 to illustrate the performance of both Newton and Gauss–Newton schemes. We observe that the Newton method 
and our associated preconditioner perform well when the regularization parameters are chosen to be rather large. In this 
case, whereas the Gauss–Newton scheme generates low iteration numbers, it seems to generate less meaningful numerical 
results. Whereas, in the case of smaller regularization parameters, the Gauss–Newton scheme requires a greater number of 
outer iterations, the number of inner Bicg iterations remains low. For this setup the preconditioner for the Newton scheme 
does not allow the method to converge, and therefore the scheme failed. This makes clear that careful choices concerning 
the outer iteration and preconditioner need to be made, in order to achieve good performance of the method for a particular 
parameter case.

Additionally, we illustrate in Table 5.4 the performance of the Gauss–Newton scheme when the tolerance of the inner 
solver is relaxed. We can see that for this mesh the choice of a tolerance decrease from 10−4 to 10−2 does not have a 
significant influence on the output of the optimization routine and the number of outer iterations.

We also wish to highlight that it is possible to include additional control constraints a ≤ a ≤ ā and b ≤ b ≤ b̄, to be 
enforced along with the systems of PDEs (2.2) or (2.3). Our approach to deal with these additional bounds is to include 
a Moreau–Yosida penalization [18] that can be used with a non-smooth Newton scheme. The structure of the Newton 
system is very similar to the one without control constraints, and we refer to [32] for more details on the derivation of the 
non-smooth Newton system and the choice of preconditioner. In Table 5.5 we present results for the setup 0 ≤ a and 0 ≤ b, 
where the Gauss–Newton scheme is used in conjunction with Bicg.
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Table 5.3
Results on unit cube with β1 = β2 = 1, Du = 1, D v = 10, and r = 10−4. We here vary the mesh-size and the regularization parameters ν1 and ν2. We show 
the iteration numbers for Bicg, the value of the data misfit term ‖y − ŷ‖2 in the objective function, and the relative change in the optimization variable 
between two consecutive Gauss–Newton iterations (GN�). The outer iteration is stopped if GN� is smaller than 10−4.

DoF Newton GN GN

87,480 ν1 = ν2 = 102 ν1 = ν2 = 102 ν1 = ν2 = 10−3

Bicg/‖y − ŷ‖2/GN� Bicg/‖y − ŷ‖2/GN� Bicg/‖y − ŷ‖2/GN�

step 1 2/4.67/– 2/38.53/– 2/38.53/–
step 2 5/4.27/7.4 × 10−2 7/38.45/3.6 × 10−3 16/5.1 × 10−1/9.8 × 10−1

step 3 5/4.27/1.2 × 10−2 7/38.45/9.7 × 10−4 19/3.8 × 10−2/2.1 × 100

step 4 5/4.27/1.9 × 10−3 7/38.45/3.3 × 10−6 16/3.3 × 10−2/4.3 × 10−1

step 5 5/4.27/2.2 × 10−4 15/3.3 × 10−2/2.7 × 10−3

step 6 5/4.27/1.8 × 10−5 15/3.2 × 10−2/7.9 × 10−5

Table 5.4
Results on unit cube with β1 = β2 = 102, Du = 1, D v = 10, and r = 10−2. We here vary the mesh-size and the regularization parameters ν1 and ν2. We 
show the iteration numbers for Bicg and the value of the objective function J (·). The outer iteration was stopped if the relative difference between two 
consecutive iterates was smaller than 10−4.

DoF Newton GN GN

87,480 tol = 10−4 tol = 10−2 tol = 10−1

Bicg/J (·) Bicg/J (·) Bicg/J (·)
step 1 2/1926.98 2/1926.98 2/1926.98
step 2 11/13.57 7/13.58 3/12.63
step 3 11/1.78 7/1.79 3/1.19
step 4 11/2.20 5/2.20 3/2.30
step 5 11/2.20 5/2.22 3/2.17
step 6 11/2.20 5/2.22 3/2.18
step 7 5/2.22 3/2.18
step 8 3/2.18
step 9 3/2.18

Table 5.5
Results on unit cube with β1 = β2 = 102, Du = 1, D v = 10, and r = 10−2. We here vary the mesh-size and the regularization parameters ν1 and ν2. Stated 
are Bicg iteration numbers for each Gauss–Newton step. The tolerance for the Gauss–Newton method is 10−2.

DoF ν1 = ν2 = 10−2 ν1 = ν2 = 10−4

GN Bicg GN Bicg

130,680 step 1 2 step 1 2
step 2 9 step 2 13
step 3 13 step 3 14

507,000 step 1 4 step 1 4
step 2 9 step 2 15
step 3 10 step 3 15

1,996,920 step 1 10 step 1 10
step 2 14 step 2 17
step 3 14 step 3 17

We now wish to compare the performance of our preconditioned Bicg approach with an unpreconditioned version of the 
same solver. We do so in order to demonstrate the clearly superior convergence properties of the preconditioned method, 
and show the very high accuracy to which our solver is able to solve the matrix systems. Fig. 5.3 illustrates the residual error 
of the unpreconditioned and preconditioned approaches for two test problems: it is clear that running the preconditioned 
method for only a few iterations easily outperforms the unpreconditioned version. Indeed the unpreconditioned method 
appears to diverge in many cases, demonstrating the need to construct effective preconditioners for the complex matrix 
systems involved.

5.3. Image-driven desired state and GM1 model

An attractive feature of this methodology is that it is also possible to obtain desired states by reading in pattern infor-
mation from an image. This may be done for the GM1 and GM2 models, whether or not control constraints are included. 
Image-driven parameter estimation techniques can also be found in [19]. For this problem, we choose to take an image sim-
ilar to those used in [24] – this involves reading in a pattern found on a mature jaguar. As this problem is not necessarily 
time-dependent we wish to illustrate the performance of our method by scaling the desired pattern by τi , where i denotes 
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Fig. 5.3. Residual errors of unpreconditioned (red) and preconditioned (blue) Bicg method for two test problems (DoFs 4096). (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 5.4. Results for image-driven model: Shown are computed state, desired state, and computed control for the parameter setups using β1 = β2 = 102, 
ν1 = ν2 = 10−7, Du = 1, D v = 10, and r = 10−5.

the relevant index in time. The results for applying the Gauss–Newton scheme to this image-driven problem are shown in 
Fig. 5.4.

In Fig. 5.4(b) we show the desired state used, with the computed state presented in Fig. 5.4(a) and the associated control 
in Fig. 5.4(c).

The parameters for this setup are β1 = β2 = 102, ν1 = ν2 = 10−7, Du = 1, D v = 10, and r = 10−5. For the computations 
from which Fig. 5.4 is generated, a tolerance of 10−2 is taken for the Gauss–Newton scheme. Within these computations 8
steps of the Gauss–Newton iteration are required, with an average of 20.5 Bicg iterations per Gauss–Newton step.

Overall the numerical results presented for the above experiments indicate that we are able to solve a wide range of pa-
rameter identification problems from pattern formation, with our observed Bicg iteration numbers (as well as computation 
times) being low for a large number of parameter regimes. Furthermore, the iteration numbers behave in a fairly robust 
way as the parameters involved in the problem are varied.

6. Concluding remarks and future work

In this article, we have considered the development of preconditioned iterative methods for the numerical solution 
of parameter identification problems arising from pattern formation. We have constructed our methods using effective 
strategies for approximating the (1, 1)-block and Schur complement of the saddle point systems that result from these 
problems.

The numerical results we have obtained when applying our techniques to a number of test examples (using both GM1
and GM2 models) indicate that our proposed solvers are effective ones for a wide range of parameter setups. Another 
key aspect of our methodology is that we are able to feed desired states (or “target patterns”) into our implementation 
using experimental or computational data, and use this to obtain appropriate solutions to the Turing model in question. 
Furthermore, our solvers are found to be effective at handling additional inequality constraints on the control variables.

There are a number of related areas of research which we hope to consider, including the incorporation of additional 
constraints on the state or control variables (for instance integral constraints, or bounds on the state variables), different 
time-stepping schemes, and possibly different techniques for the outer iteration. We also wish to investigate a version of 
the problem where the L2-distance between the states and desired states is only measured at the final time t = T (i.e. 
where β1 = β2 = 0), as we find that such problems have considerable physical applicability. Furthermore, we now hope to 
tackle other problems of significant interest to the mathematical biology community using the methodology presented in 
this paper.
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Appendix A. Derivation of the Newton systems

For the Gierer–Meinhardt (GM1) formulation, we examine the forward equations

ut − Du�u − ru2

v
+ au = r, on � × [0, T ],

vt − D v�v − ru2 + bv = 0, on � × [0, T ],
u(x,0) = u0(x), v(x,0) = v0(x), on �,

∂u

∂ν
= ∂v

∂ν
= 0, on ∂� × [0, T ],

and the adjoint equations (see [11])

−pt − Du�p − 2r
u

v
p + ap − 2ruq = β1(u − û), on � × [0, T ],

−qt − D v�q + r
u2

v2
p + bq = β2(v − v̂), on � × [0, T ],

p(x, T ) = βT ,1(u(x, T ) − û(x, T )), q(x, T ) = βT ,2(v(x, T ) − v̂(x, T )), on �,

∂ p

∂ν
= ∂q

∂ν
= 0, on ∂� × [0, T ],

where p and q denote the adjoint variables.
We now employ a Newton iteration, by writing at each Newton step

u = ū + δu, v = v̄ + δv, a = ā + δa, b = b̄ + δb, p = p̄ + δp, q = q̄ + δq,

where ū, v̄ , ā, b̄, p̄, q̄ denote the most recent iterates of u, v , a, b, p, q, with δu, δv , δa, δb, δp, δq denoting the changes in 
the solutions at each Newton step.

Applying this to the forward equations yields

(ū + δu)t − Du�(ū + δu) − r(ū + δu)2

v̄ + δv
+ (ā + δa)(ū + δu) = r, on � × [0, T ],

(v̄ + δv)t − D v�(v̄ + δv) − r(ū + δu)2 + (b̄ + δb)(v̄ + δv) = 0, on � × [0, T ],
(ū + δu)(x,0) = u0(x), (v̄ + δv)(x,0) = v0(x), on �,

∂(ū + δu)

∂ν
= ∂(v̄ + δv)

∂ν
= 0, on ∂� × [0, T ],

whereupon we can use the assumption (ū + δu)2 ≈ ū2 + 2ū · δu and the resulting derivation

(ū + δu)2

v̄ + δv
≈ v̄ − δv

v̄2
(ū2 + 2ū · δu) ≈ ū2 v̄ − ū2 · δv + 2ū v̄ · δu

v̄2

to write

(δu)t − Du�(δu) + r
ū2 · δv − 2ū v̄ · δu

v̄2
+ ū · δa + ā · δu = r −

(
ūt − Du�ū − rū2

v̄
+ āū

)
, on � × [0, T ], (A.1)

(δv)t − D v�(δv) − 2rū · δu + v̄ · δb + b̄ · δv = −(v̄t − D v�v̄ − rū2 + b̄ v̄), on � × [0, T ], (A.2)

(δu)(x,0) = (δv)(x,0) = 0, on �, (A.3)
∂(δu)

∂ν
= ∂(δv)

∂ν
= 0, on ∂� × [0, T ]. (A.4)

Considering now a Newton iteration applied to the adjoint equations, we have
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−(p̄ + δp)t − Du�(p̄ + δp) − 2r
ū + δu

v̄ + δv
(p̄ + δp) + (ā + δa)(p̄ + δp) − 2r(ū + δu)(q̄ + δq)

= β1((ū + δu) − û), on � × [0, T ],

−(q̄ + δq)t − D v�(q̄ + δq) + r
(ū + δu)2

(v̄ + δv)2
(p̄ + δp) + (b̄ + δb)(q̄ + δq)

= β2((v̄ + δv) − v̂), on � × [0, T ],
(p̄ + δp)(x, T ) = βT ,1((ū + δu)(x, T ) − û(x, T )), on �,

(q̄ + δq)(x, T ) = βT ,2((v̄ + δv)(x, T ) − v̂(x, T )), on �,

∂(p̄ + δp)

∂ν
= ∂(q̄ + δq)

∂ν
= 0, on ∂� × [0, T ].

Now, using the approximations

ū + δu

v̄ + δv
(p̄ + δp) ≈ (ū + δu)(v̄ − δv)(p̄ + δp)

v̄2

≈ ū v̄ p̄ + v̄ p̄ · δu − ū p̄ · δv + ū v̄ · δp

v̄2
,

(ū + δu)2

(v̄ + δv)2
(p̄ + δp) ≈ (ū + 2ū · δu)(v̄2 − 2v̄ · δv)(p̄ + δp)

v̄4

≈ ū

v̄3
(ū v̄ p̄ + 2v̄ p̄ · δu − 2ū p̄ · δv + ū v̄ · δp),

we may write

−(δp)t − Du�(δp) − 2r
ū p̄ · δv − v̄ p̄ · δu − ū v̄ · δp

v̄2
+ p̄ · δa + ā · δp − 2r(ū · δq + q̄ · δu) − β1δu

= β1(ū − û) −
(

−p̄t − Du�p̄ − 2r
ū

v̄
p̄ + ā p̄ − 2rūq̄

)
, on � × [0, T ], (A.5)

−(δq)t − D v�(δq) + rū
2v̄ p̄ · δu + ū v̄ · δp − 2ū p̄ · δv

v̄2
+ q̄ · δb + b̄ · δq − β2δv

= β2(v̄ − v̂) −
(

−q̄t − D v�q̄ + r
ū2

v̄2
p̄ + b̄q̄

)
, on � × [0, T ], (A.6)

(δp)(x, T ) = βT ,1(δu)(x, T ), (δq)(x, T ) = βT ,2(δv)(x, T ), on �, (A.7)

∂(δp)

∂ν
= ∂(δq)

∂ν
= 0, on ∂� × [0, T ]. (A.8)

Now, the forward and adjoint equations can clearly be derived by differentiating the Lagrangian

JGM1(u, v,a,b, p,q) = β1

2
‖u − û‖2

L2(�×[0,T ]) + β2

2
‖v − v̂‖2

L2(�×[0,T ])

+ βT ,1

2
‖u − ûT ‖2

L2(�) + βT ,2

2
‖v − v̂ T ‖2

L2(�)

+ ν1

2
‖a‖2

L2(�×[0,T ]) + ν2

2
‖b‖2

L2(�×[0,T ])

−
∫

�×[0,T ]
p

(
ut − Du�u − ru2

v
+ au − r

)

−
∫

�×[0,T ]
q
(

vt − D v�v − ru2 + bv
)

,

with respect to the adjoint variables p, q and the state variables u, v , respectively. Within this cost functional, we have 
excluded the constraints on the boundary conditions for readability reasons. To obtain the gradient equations we require for 
a closed system of equations, we also need to differentiate the above cost functional with respect to the control variables a
and b. Differentiating with respect to a gives the requirement
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�×[0,T ]

(up − ν1a) = 0,

and differentiating with respect to b yields similarly that∫
�×[0,T ]

(vq − ν2b) = 0.

Applying a Newton iteration to these equations gives constraints of the form∫
�×[0,T ]

(p̄ · δu + ū · δp − ν1δa) = −
∫

�×[0,T ]
(ū p̄ − ν1ā), (A.9)

∫
�×[0,T ]

(q̄ · δv + v̄ · δq − ν2δb) = −
∫

�×[0,T ]
(v̄q̄ − ν2b̄), (A.10)

at each Newton step.
Therefore the complete system which we need to solve at each Newton step corresponds to the adjoint equations 

(A.5)–(A.8), the gradient equations (A.9) and (A.10), and the forward equations (A.1)–(A.4).
We now turn our attention to the Schnakenberg (GM2) model, where we wish to deal with the forward equations

ut − Du�u + γ (u − u2 v) − γ a = 0, on � × [0, T ],
vt − D v�v + γ u2 v − γ b = 0, on � × [0, T ],
u(x,0) = u0(x), v(x,0) = v0(x), on �,

∂u

∂ν
= ∂v

∂ν
= 0, on ∂� × [0, T ],

and the adjoint equations (see [11])

−pt − Du�p + 2γ uv(q − p) + γ p = β1(u − û), on � × [0, T ],
−qt − D v�q + γ u2(q − p) = β2(v − v̂), on � × [0, T ],

p(x, T ) = βT ,1(u(x, T ) − û(x, T )), q(x, T ) = βT ,2(v(x, T ) − v̂(x, T )), on �,

∂ p

∂ν
= ∂q

∂ν
= 0, on ∂� × [0, T ].

Now, substituting

u = ū + δu, v = v̄ + δv, a = ā + δa, b = b̄ + δb, p = p̄ + δp, q = q̄ + δq,

into the forward equations at each Newton step gives

(ū + δu)t − Du�(ū + δu) + γ ((ū + δu) − (ū + δu)2(v̄ + δv)) − γ (ā + δa) = 0, on � × [0, T ],
(v̄ + δv)t − D v�(v̄ + δv) + γ (ū + δu)2(v̄ + δv) − γ (b̄ + δb) = 0, on � × [0, T ],

(ū + δu)(x,0) = u0(x), (v̄ + δv)(x,0) = v0(x), on �,

∂(ū + δu)

∂ν
= ∂(v̄ + δv)

∂ν
= 0, on ∂� × [0, T ],

which we may expand and simplify to give

(δu)t − Du�(δu) + γ (δu − ū2 · δv − 2ū v̄ · δu) − γ δa

= −(ūt − Du�ū + γ (ū − ū2 v̄) − γ · ā), on � × [0, T ], (A.11)

(δv)t − D v�(δv) + γ (ū2 · δv + 2ū v̄ · δu) − γ δb = −(v̄t − D v�v̄ + γ ū2 v̄ − γ · b̄), on � × [0, T ], (A.12)

(δu)(x,0) = (δv)(x,0) = 0, on �, (A.13)
∂(δu)

∂ν
= ∂(δv)

∂ν
= 0, on ∂� × [0, T ]. (A.14)

Applying the same substitutions to the adjoint equations gives
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−(p̄ + δp)t − Du�(p̄ + δp) + 2γ ū v̄((q̄ + δq) − (p̄ + δp)) + γ (p̄ + δp) = β1((ū + δu) − û), on � × [0, T ],
−(q̄ + δq)t − D v�(q̄ + δq) + γ ū2((q̄ + δq) − (p̄ + δp)) = β2((v̄ + δv) − v̂), on � × [0, T ],

(p̄ + δp)(x, T ) = βT ,1((ū + δu)(x, T ) − û(x, T )), on �,

(q̄ + δq)(x, T ) = βT ,2((v̄ + δv)(x, T ) − v̂(x, T )), on �,

∂(p̄ + δp)

∂ν
= ∂(q̄ + δq)

∂ν
= 0, on ∂� × [0, T ],

which may then be expanded and simplified to give

−(δp)t − Du�(δp) + 2γ (v̄q̄ · δu + ūq̄ · δv + ū v̄ · δq − v̄ p̄ · δu − ū p̄ · δv − ū v̄ · δp) + γ δp − β1δu

= β1(ū − û) − (−p̄t − Du�p̄ + 2γ ū v̄(q̄ − p̄) + γ p̄), on � × [0, T ], (A.15)

−(δq)t − D v�(δq) + γ (ū2 · δq + 2ūq̄ · δu − ū2δp − 2ū p̄ · δu) − β2δv

= β2(v̄ − v̂) − (−q̄t − D v�q̄ + γ ū2(q̄ − p̄)), on � × [0, T ], (A.16)

(δp)(x, T ) = βT ,1(δu)(x, T ), (δq)(x, T ) = βT ,2(δv)(x, T ), on �, (A.17)

∂(δp)

∂ν
= ∂(δq)

∂ν
= 0, on ∂� × [0, T ]. (A.18)

The forward and adjoint equations can be derived by differentiating the Lagrangian

JGM2(u, v,a,b, p,q) = β1

2
‖u − û‖2

L2(�×[0,T ]) + β2

2
‖v − v̂‖2

L2(�×[0,T ])

+ βT ,1

2
‖u − ûT ‖2

L2(�) + βT ,2

2
‖v − v̂ T ‖2

L2(�)

+ ν1

2
‖a‖2

L2(�×[0,T ]) + ν2

2
‖b‖2

L2(�×[0,T ])

−
∫

�×[0,T ]
p
(

ut − Du�u + γ (u − u2 v) − γ a
)

−
∫

�×[0,T ]
q
(

vt − D v�v + γ u2 v − γ b
)

,

with respect to u, v , p and q, similarly as for the GM1 model. The gradient equations for this problem may be derived by 
differentiating this Lagrangian with respect to the control variables a and b, which gives the conditions∫

�×[0,T ]
(ν1a + γ p) = 0,

∫
�×[0,T ]

(ν2b + γ q) = 0.

Applying Newton iteration to these equations gives∫
�×[0,T ]

(ν1δa + γ δp) = −
∫

�×[0,T ]
(ν1ā + γ p̄), (A.19)

∫
�×[0,T ]

(ν2δb + γ δq) = −
∫

�×[0,T ]
(ν2b̄ + γ q̄), (A.20)

at each Newton step.
Hence the system of equations which need to be solved at each Newton step are the adjoint equations (A.15)–(A.18), the 

gradient equations (A.19) and (A.20), and the forward equations (A.11)–(A.14).
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A.9. LOW-RANK IN TIME METHOD FOR PDE-CONSTRAINED
OPTIMIZATION

A.9 Low-rank in time method for PDE-constrained
optimization

This paper is published as

M. Stoll and T. Breiten, A low-rank in time approach to pde-
constrained optimization, SIAM J. Sci. Comput., 37 (2015), pp. B1–
B29.

Result from the paper

Results for full-rank (FR) minres vs. low-rank (LR) minres with both the
stationary iteration (SI) and ikpik for a fixed mesh with 16641 unknowns
in space. We show varying time-steps and additionally the rank of the
state/control/adjoint state. Both iteration numbers and computing times
in seconds are listed. OoM indicates Out of Memory in MATLAB R©. Results
are shown for β = 10−4.

DoF 20 100 200 400 600
16641 # it(t) # it(t) # it(t) # it(t) # it(t)

LR(SI) 19(108.2) 21(307.8) 25(432.7) 43(671.9) 61(937.3)
LR(ikpik ) 19(115.1) 19(288.9) 19(296.8) 21(335.3) 21(357.1)
Rank (SI) 8/10/10 10/11/11 12/13/13 11/14/14 14/15/15
FR 21(18.3) 35(124.0) 63(434.3) OoM OoM

Table A.5: Full-rank versus low-rank scheme implemented with two different
preconditioners.
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OPTIMIZATION∗
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Abstract. The solution of time-dependent PDE-constrained optimization problems is a chal-
lenging task in numerical analysis and applied mathematics. All-at-once discretizations and corre-
sponding solvers provide efficient methods to robustly solve the arising discretized equations. One of
the drawbacks of this approach is the high storage demand for the vectors representing the discrete
space-time cylinder. Here we introduce a low-rank in time technique that exploits the low-rank nature
of the solution. The theoretical foundations for this approach originate in the numerical treatment
of matrix equations and can be carried over to PDE-constrained optimization. We illustrate how
three different problems can be rewritten and used within a low-rank Krylov subspace solver with
appropriate preconditioning.

Key words. PDE-constrained optimization, low-rank methods, space-time methods, precondi-
tioning, Schur-complement, matrix equations
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1. Introduction. Many complex phenomena in the natural, engineering, and
life sciences are modeled using partial differential equations (PDEs). To obtain
optimal configurations of these equations one typically formulates this as a PDE-
constrained optimization problem of the form

minJ (y, u)

subject to

L(y, u) = 0

with J (y, u) the functional of interest and L(y, u) representing the differential oper-
ator. Problems of this type have been carefully analyzed in the past (see [49, 84] and
the references therein).

Recently with the advancement of algorithms and technology, research has focused
on the efficient numerical solution of these problems. In this paper we focus on the
efficient solution of the discretized first order conditions in a space-time framework.
The KKT conditions when considered in an all-at-once approach, i.e., simultaneous
discretization in space and time, are typically of vast dimensionality. Matrix-free
approaches have recently been developed to guarantee the (nearly) optimal conver-
gence of iterative Krylov subspace solvers. The focus for both steady [68, 73] and
transient problems [61, 81] has been on the development of efficient preconditioning
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B2 MARTIN STOLL AND TOBIAS BREITEN

strategies for the linear system that typically are of structured form (see [16, 27] for
introductions to the numerical solution of saddle point systems).

One of the obstacles using a space-time discretization is the storage requirement
for the large vectors needed to represent the solution at all times. Approaches such
as checkpointing [38] or multiple shooting [42] are possible methods to solve these
problems. Here we want to introduce an alternative to these schemes that can for
certain problems provide an efficient representation with a minimal amount of storage.
We are basing our methodology on recent developments within the solution of large
and sparse matrix equations; see, e.g., [4, 13, 25, 28, 36, 50, 51, 54, 70, 74, 77, 85]
and references therein. One classical representative in this category is the Lyapunov
equation

AX +XAT = −C̃C̃T ,

where we are interested in approximating the matrix-valued unknown X. Solving this
system is equivalent to solving the linear system

(I ⊗ A+A ⊗ I)x = c̃,

where x and c̃ are related to X and C̃C̃T, respectively. For details on the relevance
of this equation within control theory, see [3, 44, 52]. In [15, 56, 64, 65, 70] the
authors have introduced low-rank iterative schemes that approximate intermediate
iterates Xk in a low-rank fashion that is maintained until convergence. We can exploit
these technologies for problems coming from PDE-constrained optimization. It is not
expected that these techniques outperform optimal solvers with only a few time-steps.
The more crucial component is that they enable computations with many time-steps
that would otherwise not be possible.

The paper is structured as follows. In section 2 we introduce the heat equation
as our model problem and discuss its discretization. Section 3 illustrates how this
problem can be reformulated using Kronecker technology and how we need to adapt
a standard Krylov-subspace solver to be able to solve this problem efficiently. As we
need a preconditioner for fast convergence we next discuss possible preconditioners in
section 3. We provide some theoretical results in section 4. Section 5 is devoted to
illustrating that our methodology can be carried over to other state equations such
as Stokes equations and the convection-diffusion equation. Finally, in section 6 we
illustrate the competitiveness of our approach.

2. A PDE-constrained optimization model problem. We start the deriva-
tion of the low-rank in time method by considering an often used model problem in
PDE-constrained optimization (see [47, 49, 84]) that nevertheless reflects the crucial
structure exhibited by many problems of similar type. Our goal is the minimization
of a misfit functional that aims at bringing the state y as close as possible to a desired
or observed state yobs while using a control u, i.e.,

(2.1) min
y,u

1

2
‖y − yobs‖2L2(Ω1)

+
β

2
‖u‖2L2(Ω2)

,

subject to a partial differential equation that connects both state and control, referred
to as the state equation. We start by considering the heat equation with a distributed
control term,
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yt − ∇2y = u in Ω,(2.2)

y = f on ∂Ω,

or equipped with Neumann-boundary control,

yt − ∇2y = f in Ω,(2.3)

∂y

∂n
= u on ∂Ω.

For a more detailed discussion on the well-posedness, existence of solutions, etc.,
we refer the interested reader to [47, 49, 84]. Classically these problems are solved
using a Lagrangian to incorporate the constraints and then consider the first order
optimality conditions or KKT conditions [49, 58, 84]. This can be done either by
forming a discrete Lagrangian and then performing the optimization procedure or by
first considering an infinite-dimensional Lagrangian for whose first order conditions
we employ a suitable discretization. Here we perform the first approach, although
much of what we state in this paper is valid for both cases. Our goal is to build a
discrete Lagrangian using an all-at-once approach [61, 81, 40] using a discrete problem
within the space-time cylinder Ω× [0, T ]. Using the trapezoidal rule in time and finite
elements in space leads to the discrete objective function

(2.4) J(y, u) =
τ

2
(y − yobs)

T M1 (y − yobs) +
τβ

2
uTM2u

with M1 = blkdiag(12M1,M1, . . . ,M1,
1
2M1),M2 = blkdiag(12M2,M2, . . . ,M2,

1
2M2)

being space-time matrices where M1 is the mass matrix associated with the domain
Ω1 and M2 is the corresponding mass matrix for Ω2. The vectors y = [yT1 . . . yTnt

]T

and u = [uT
1 . . . uT

nt
]T are of vast dimensionality and represent a collection of spatial

vectors for all time-steps collected into one single vector.
The all-at-once discretization of the state equation using finite elements in space

and an implicit Euler scheme in time is given by

(2.5) Ky − τNu = d,

where

K =




L
−M L

. . .
. . .

−M L


, N =




N
N

. . .

N


, d =




M1y0 + f
f
...
f


.

Here, M is the mass matrix for the domain Ω, the matrix L is defined as L = M+τK,
the matrix N represents the control term either via a distributed control (square
matrix) or via the contributions of a boundary control problem (rectangular matrix),
and the right-hand-side d consists of a contribution from the initial condition y0 and
a vector f representing forcing terms and contributions of boundary conditions. The
first order conditions using a Lagrangian formulation with Lagrange multiplier p leads
to the following system:

(2.6)



τM1 0 −KT

0 βτM2 τN T

−K τN 0




︸ ︷︷ ︸
A



y
u
p


 =



τM1yobs

0
d


.
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Systems of this form have previously been studied in [81, 61, 82, 57]. As these systems
are of vast dimensionality it is crucial to find appropriate preconditioners together
with Krylov subspace solvers to efficiently obtain an approximation to the solution.
The vast dimensionality of system matrices does not allow the use of direct solvers
[26, 23] but we can employ Krylov subspace solvers in a matrix-free way by never
forming the matrix A and only implicitly performing the matrix vector product. The
main bottleneck of this approach is the storage requirement for the space-time vectors
which can be reduced by working on the Schur-complement if it exists of the matrix
A or removing the control from the system matrix [76, 45]. Other approaches that
can be employed are checkpointing schemes [38] or multiple shooting approaches [42].
In the following we want to present an alternative that uses the underlying tensor
structure of the first order conditions.

3. A Kronecker view. We noticed earlier that the linear system in (2.6) is of
vast dimensionality and that we need only very few matrices to efficiently perform the
matrix vector multiplication with A, and we can approach this in a matrix-free form
by never forming A. Nevertheless, the vectors y, u, and p themselves are enormous and
every storage reduction would help to improve the performance of an optimization
scheme. The goal now is to employ the structure of the linear system to reduce
the storage requirement for the iterative method. Our approach is based on recent
developments for matrix equations [10, 54, 36]. Using the definition of the Kronecker
product

W ⊗ V =



w11V . . . w1mV

...
. . .

...
wn1V . . . wnmV




we note that (2.6) can also be written as




D1 ⊗ τM1 0 −
(
Int ⊗ L+ CT ⊗ M

)

0 D2 ⊗ βτM2 D3 ⊗ τNT

− (Int ⊗ L+ C ⊗ M) D3 ⊗ τN 0




︸ ︷︷ ︸
A



y
u
p


(3.1)

=



D1 ⊗ τM1yobs

0
d


,

where D1 = D2 = diag
(
1
2 , 1, . . . , 1,

1
2

)
and D3 = Int . Additionally, the matrix C ∈

Rnt,nt is given by

C =




0
−1 0

. . .
. . .

−1 0




and represents the implicit Euler scheme. It is of course possible to use a different
discretization in time. So far we have simply reformulated the previously given system.
But our goal was to derive a scheme that allows for a reduction in storage requirement
for the vectors y, u, and p. For this we remind the reader of the definition of the vec
operator via
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vec (W ) =




w11

...
wn1

...
wnm




as well as the relation
(
WT ⊗ V

)
vec (Y ) = vec (V YW ).

Now employing this and using the notation

Y = [ y1, y2, . . . , ynt ], U = [ u1, u2, . . . , unt ], P = [ p1, p2, . . . , pnt ]

we get that



D1 ⊗ τM1 0 −
(
Int ⊗ L+ CT ⊗ M

)

0 D2 ⊗ βτM2 D3 ⊗ τNT

− (Int ⊗ L+ C ⊗ M) D3 ⊗ τN 0





vec (Y )
vec (U)
vec (P )


(3.2)

= vec







τM1Y DT
1 − LPITnt

− MPC

τβM2UDT
2 + τNTPDT

3

−LY ITnt
− MYCT + τNUDT

3





.

So far nothing is gained from rewriting the problem in this form. As was previously
done in [10] we assume for now that if Y, U, and P can be represented by a low-
rank approximation, any iterative Krylov subspace solver can be implemented using
a low-rank version of (3.2). We denote the low-rank representations by

Y = WY V
T
Y with WY ∈ Rn1,k1 , VY ∈ Rnt,k1 ,(3.3)

U = WUV
T
U with WU ∈ Rn2,k2 , VU ∈ Rnt,k2 ,(3.4)

P = WPV
T
P with WP ∈ Rn1,k3 , VP ∈ Rnt,k3 ,(3.5)

with k1,2,3 being small in comparison to nt, and we rewrite (3.2) accordingly to get

(3.6)




τM1WY V
T
Y DT

1 − LWPV
T
P ITnt

− MWPV
T
P C

τβM2WUV
T
U DT

2 + τNTWPV
T
P DT

3

−LWY V
T
Y ITnt

− MWY V
T
Y CT + τNWUV

T
U DT

3


,

where we skipped the vec operator and instead used matrix-valued unknowns. Note
that we can write the block-rows of (3.6) as

(3.7)

(first block-row)
[
τM1WY −LWP −MWP

]


V T
Y DT

1

V T
P ITnt

V T
P C


,

(second block-row)
[
τβM2WU τNTWP

]
[
V T
U DT

2

V T
P DT

3

]
,

(third block-row)
[
−LWY −MWY τNWU

]


V T
Y ITnt

V T
Y CT

V T
U DT

3


.
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We obtain a significant storage reduction if we can base our approximation of the
solution using the low-rank factors (3.7). It is easily seen that due to the low-rank
nature of the factors we have to perform fewer multiplications with the submatrices
by also maintaining smaller storage requirements. As the usage of a direct solver is
out of the question we here rely on a preconditioned Krylov subspace solver, namely,
MINRES introduced in [59] as the underlying matrix is symmetric and indefinite.
Before explaining all the intricacies of the method we state the resulting algorithm
and carefully explain the necessary details afterward. Algorithm 1 shows a low-rank
implementation of the classical preconditioned MINRES method as presented in [59].
Note that due to the truncation to low-rank the application of the preconditioner is
not identical for every step of the iteration and the use of a flexible solver needs to
be investigated in the future. Here we use a rather small truncation tolerance to try
to maintain a very accurate representation of what the full-rank representation would
look like.

It is hard to hide the fact that the low-rank version presented here seems much
messier than its vector-based relative. This is due to the fact that we want to maintain
the structure of the saddle point system, which is reflected in low-rank representations
associated with the state (all matrices with indices 11 and 12), the control (all matrices
with indices 21 and 22), and the Lagrange multiplier (all matrices with indices 31 and
32). Please keep in mind that

vec






Z11Z

T
12

Z21Z
T
22

Z31Z
T
32





 = z

corresponds to the associated vector z from a vector-based version of MINRES.
For Algorithm 1 to be accessible to the reader, we need to dissect its different

parts. Starting with the inner products of the classical MINRES method we see that
we can efficiently evaluate the inner product

(
z(j), v(j)

)
. In more detail, we use

vec






Z

(j)
11 (Z

(j)
12 )T

Z
(j)
21 (Z

(j)
22 )T

Z
(j)
31 (Z32)

T





 = z(j) and vec






V

(j)
11 (V

(j)
12 )T

V
(j)
21 (V

(j)
22 )T

V
(j)
31 (V32)

T





 = v(j)

and the relation for the trace

trace
(
ATB

)
= vec (A)T vec (B)

to compute the inner product
(
z(j), v(j)

)
(for convenience ignoring the index j) via

(
z(j), v(j)

)
= trace

((
Z11Z

T
12

)T (
V11V

T
12

))

+trace
((

Z21Z
T
22

)T (
V21V

T
22

))
(3.8)

+ trace
((

Z31Z
T
32

)T (
V31V

T
32

))
,

where z(j) and v(j) are the vectorization of the stacked V and Z matrices. Note that
so far we have rewritten the vector problem in matrix form, but the interested reader
might have noted that the matrices formed as part of (3.8) are of the full dimension-
ality n× nt in the case of a distributed control problem. Due to the properties of the
trace operator we are in luck as

trace
((

Z11Z
T
12

)T (
V11V

T
12

))
= trace

(
ZT
11V11V

T
12Z12

)
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Algorithm 1: Low-rank MINRES.

Zero-Initiliazation of V
(0)
11 , . . . , W

(0)
11 , . . . , and W

(1)
11 , . . . .

Choose U
(0)
11 , U

(0)
12 , U

(0)
21 , U

(0)
22 , U

(0)
31 , U

(0)
32

Set V11, V12, . . . to normalized residual
while residual norm > tolerance do

Z
(j)
11 = Z

(j)
11 /γj , Z

(j)
21 = Z

(j)
21 /γj , Z

(j)
31 = Z

(j)
31 /γj ,

[F11, F12, F21, F22, F31, F32] = Amult(Z
(j)
11 , Z

(j)
12 , Z

(j)
21 , Z

(j)
22 , Z

(j)
31 , Z

(j)
32 )

δj = traceproduct(F11, F12, F21, F22, F31, F32, Z
(j)
11 , Z

(j)
12 , Z

(j)
21 , Z

(j)
22 , Z

(j)
31 , Z

(j)
32 )

V
(j+1)
11 =

{
F11 − δj

γj
V

(j)
11 − γj

γj−1
V

(j−1)
11

}
, V

(j+1)
12 =

{
F12 V (j)

12 V (j−1)
12

}

V
(j+1)
21 =

{
F21 − δj

γj
V

(j)
21 − γj

γj−1
V

(j−1)
21

}
, V

(j+1)
22 =

{
F22 V

(j)
22 V

(j−1)
22

}

V
(j+1)
31 =

{
F31 − δj

γj
V

(j)
31 − γj

γj−1
V

(j−1)
31

}
, V

(j+1)
32 =

{
F32 V

(j)
32 V

(j−1)
32

}
{
Z

(j+1)
11 , Z

(j+1)
12 , Z

(j+1)
21 , Z

(j+1)
22 , Z

(j+1)
31 , Z

(j+1)
32

}
=

Aprec(V
(j+1)
11 , V

(j+1)
12 , V

(j+1)
21 , V

(j+1)
22 , V

(j+1)
31 , V

(j+1)
32 )

γj+1 =

√
tracepoduct(Z

(j+1)
11 , . . . , V

(j+1)
11 , . . .)

α0 = cjδj − cj−1sjγj

α1 =
√

α2
0 + γ2

j+1

α2 = sjδj + cj−1cjγj
α3 = sj−1γj
cj+1 = α0

α1

sj+1 =
γj+1

α1

W
(j+1)
11 =

{
Z

(j)
11 −α3W

(j−1)
11 −α2W

(j)
11

}
, W

(j+1)
12 =

{
Z

(j)
12 W

(j−1)
12 W

(j)
12

}

W
(j+1)
21 =

{
Z

(j)
21 −α3W

(j−1)
21 −α2W

(j)
21

}
, W

(j+1)
22 =

{
Z

(j)
22 W

(j−1)
22 W

(j)
22

}

W
(j+1)
31 =

{
Z(j)

31 −α3W
(j−1)
31 −α2W

(j)
31

}
, W

(j+1)
32 =

{
Z(j)

32 W (j−1)
32 W (j)

32

}

if Convergence criterion fulfilled then
Compute approximate solution
stop

end if
end while

allows us to to compute the trace of small matrices rather than of the ones from
the full temporal/spatial discretization. We denote the reformulation of the trace in
Algorithm 1 by the term tracepoduct.

We have now defined the matrix vector multiplication denoted by Amult in Al-
gorithm 1 and shown in detail in Algorithm 2 as well as the efficient computation of
the inner products within the low-rank MINRES algorithm. We have not yet defined
the brackets {} . The brackets U := {U1 V1 W1} and {U2 V2 W2} can be under-
stood as a concatenation and truncation by the way of an abstract function trunc that
takes as inputs the matrices [U1 V1 W1] and [U2 V2 W2] and gives back low-rank
approximations to these matrices, i.e., Z̃1 ≈ [U1 V1 W1] and Z̃2 ≈ [U2 V2 W2].
We now briefly discuss how the trunc function could be designed.

We want to perform the truncation of two matrices V and U that represent
the low-rank representation of Z = V UT . As discussed in [54] we can perform
skinny QR factorizations of both matrices, i.e., V = QvRv and U = QuRu. We
then note that Z = QvRvR

T
uQ

T
u . A singular value decomposition [32] of the matrix
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Algorithm 2: Matrix multiplication: Amult.
Input: W11,W12,W21,W22,W31,W32

Output: Z11, Z12, Z21, Z22, Z31, Z32

Z11 =
[
τM1W11 −LW31 −MW31

]

Z21 =
[
τβM2W21 τNW31

]

Z31 =
[

−LW11 −MW31 τNW21

]

Z12 =
[
D1W12 IntW32 CTW32

]

Z22 =
[
D2W22 D3W32

]

Z32 =
[
IntW12 CW12 D3W22

]

RvR
T
u = BΣCT provides the means to reduce the rank by dropping small (depend-

ing on some tolerance) singular values. Using MATLAB notation we get a low-rank

approximation via the truncated expression B(:, 1 : k)Σ(1 : k, 1 : k)C(:, 1 : k)
T
. This

leads to the overall low-rank approximation Vnew = QvB(:, 1 : k) and Unew = QvC(:
, 1 : k)Σ(1 : k, 1 : k), which in turn gives Z ≈ VnewU

T
new. We have implemented

this approach in MATLAB but noted that the computation of the skinny QR fac-
torization was rather slow. Alternatively, we exploited the MATLAB function svds

to directly compute a truncated singular value decomposition of V UT by passing a
function handle that allowed the implicit application of the Z = V UT without ever
forming this matrix. This approach proved advantageous in terms of the time needed
for the truncation. Note that alternative ways to compute the truncated SVD are of
course possible [48, 6, 79].

Before discussing the possible preconditioners, employed via the Aprec function
in Algorithm 1, we state that the vector update formulas given in Algorithm 1 are
straightforward versions of vector versions of MINRES.

We additionally want to briefly comment on some of the alternative approaches
to the presented methodology. One can of course reduce the dimensionality by elimi-
nating the control when possible and obtain a system that is still vast and can be cast
using our low-rank methodology. The use of reduced Hessian approaches typically
leads to a symmetric positive-definite system for which cg would be applicable. But
these formulations usually involve the inverse of the discretized PDE and this means
that in order to simply apply the system matrix to a vector one has to very accu-
rately solve for the PDE, as otherwise the matrix vector product does not represent
the original KKT system. We refer to [39] for more details. Many algorithms employ
the checkpointing technique [38], where only snapshots in time are stored. This is of-
ten done when the KKT system is treated in a block-Gauss–Seidel fashion, i.e., solving
adjoint PDE, gradient equation, and forward PDE in an alternating manner. For such
an iteration convergence might be slow or without proper scaling the method might
not converge at all. The multiple shooting approach presented in [42] is in spirit very
similar to the full-rank system we introduced here. Heinkenschloss [42] introduced an
augmented Lagrangian formulation that leads to a large-scale linear system than can
be reordered to obtain a system similar to (2.6). Our approach implicitly picks the
“correct” number of vectors needed to accurately represent the solution in time. On
the other hand we are currently limited to a formulation that can be written in the
tensor form shown above. This is not true for the full-space approach and techniques
based on the checkpointing methodology.

While the storage requirements can be reduced dramatically we still need to pre-
condition the linear systems as we still have to deal with possibly very large matrices
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from the discretization in space. We show in the next section that we can use many
of the techniques from the full-order space-time system for the low-rank scheme.

Preconditioning for low-rank MINRES. The study of preconditioners for
the optimal control subject to parabolic PDEs has recently seen developments that
were aimed at providing robust performance with respect to the many system pa-
rameters such as mesh-size or regularization parameters (see [73, 61, 60, 53]). More
results can be found in [40, 17] and for multigrid techniques we recommend [18] and
the references therein. We start our derivation of suitable preconditioners based on
an approach presented by Pearson and colleagues [61, 63], where we start with a
block-diagonal preconditioner

(3.9) P =



A0

A1

Ŝ


.

Here A0 ≈ τM1 and A1 ≈ τβM2 are approximations to the upper left block of A
and Ŝ is an approximation to the Schur-complement

S = τ−1KM−1
1 KT +

τ

β
NM−1

2 N T.

One approximation that has proved to be very effective [61, 63] is of the form

Ŝ = τ−1
(
K + M̂

)
M−1

1

(
K + M̂

)T

,

where in the case of a distributed control problem the matrix M̂ is given by

M̂ =
τ√
β
blkdiag(M, . . . ,M).

Note that for for simplicity we assumed D1 = D2 = D3 = Int during the Schur-
complement approximation. It is of course possible to obtain robust approximations
for other choices, but they would make the presentation of the Schur-complement
approximation less accessible (see [61] for details using different Ds). This approach
will be the basis for the derivation of efficient preconditioners for the low-rank version
of MINRES. For this we need the preconditioner P to maintain the low-rank structure
as described in (3.7). Due to the nature of the upper left block of A given by

[
D1 ⊗ τM1 0

0 D2 ⊗ βτM2

]

we see that an efficient preconditioner given, for example, by

[
D1 ⊗ τM̂1 0

0 D2 ⊗ βτM̂2

]
,

where the mass matrices are approximated by the Chebyshev semi-iteration [86], will
naturally maintain the desired structure. But what can be said about the Schur-
complement S of the above system? Starting from the previously used approximation

Ŝ = τ−1
(
Int ⊗ L̂+ C ⊗ M

)
M−1

1

(
Int ⊗ L̂+ C ⊗ M

)T

,
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where L̂ = ((1 + τ√
β
)M1 + τK), we see that there already exists an inherent tensor

structure within this approximation. In [81] the authors observe that such a system
can be easily solved as the matrix (Int ⊗ L̂ + C ⊗ M) is of block-triangular nature.
This means one can sequentially pass through the vectors associated with each grid-
point in time. For our purpose the block-triangular nature will not be sufficient to
guarantee the low-rank preserving nature of our algorithm. In simple terms, a low-
rank factorization in time does not allow for a temporal decoupling of the time-steps
as the vectors for each time-step are not readily identified. In mathematical terms we
can see that it is not possible to explicitly write down the inverse of (Int ⊗ L̂+C⊗M).
Our starting point is a Block–Jacobi version of the Schur-complement approximation.
This procedure is motivated by the fact that we can simply write

(
Int ⊗ L̂

)−1

=
(
Int ⊗ L̂−1

)
.

The last expression assures us that this preconditioner applied to any vector v =
vec

(
RST

)
can be written as

vec
(
L̂−1RST Int

)
.

We can now simply use the Schur-complement approximation

Ŝ = τ−1
(
Int ⊗ L̂

)
M1

(
Int ⊗ L̂

)T

or when using Ŝ = τ−1(Int ⊗ L̂ + C ⊗ M) M1(Int ⊗ L̂ + C ⊗ M)T approximate the
inverse of (Int ⊗ L̂+C⊗M) by a small, fixed number of steps of a stationary iteration
with the block-diagonal preconditioner (Int ⊗ L̂).

Another possibility is to employ a matrix equation approach to approximately
solve for the Schur-complement system with Ŝ, where we use that (Int ⊗ L̂+C ⊗M)
is the Kronecker representation of the generalized Sylvester operator

S(X) = L̂X +MXCT .

As mentioned in the beginning, there exist several low-rank methods such as the ADI
iteration (see, e.g., [14]) and projection-based methods (see, e.g., [74]) that allow us
to approximately solve linear matrix equations of this type. For our purposes, we use
the method ikpik, which is an inexact version of the method kpik developed in [74].
We employ this method with a small and fixed number of steps to approximately solve
the two matrix equations (Int ⊗ L+ Ĉ ⊗ M) and its transpose found in

Ŝ = τ−1
(
Int ⊗ L+ Ĉ ⊗ M

)
M−1

1

(
Int ⊗ L+ Ĉ ⊗ M

)T

.

Note that due to the nature of the problem we have rewritten Ŝ using

Ĉ =




1 + τ√
β

−1 1 + τ√
β

. . .
. . .

−1 1 + τ√
β



.
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This was done as ikpik needs to work with the inverse of Ĉ and in the old formulation
C could not be inverted. As this method is designed for the classical Sylvester equation
we transform the two systems during the preconditioning to become

(Int ⊗ M)
−1

(
Int ⊗ L+ Ĉ ⊗ M

)
=

(
Int ⊗ M−1L+ Ĉ ⊗ I

)

and similarly for the transpose equation. The inexactness in ikpik [77] allows us to
approximately solve the systems for the two matrices M−1L and Ĉ. Note that in our
case the matrix Ĉ is trivial to solve for and we employ algebraic multigrid combined
with a few steps of a stationary iteration [19] for the solution with M−1L. Note
that this approach is not yet ideal as one should use methods design for generalized
Sylvester equations. However, due to the limitation of the scope of this paper, here we
refrain from these latter ideas and instead propose them as possible topics of future
research.

These preconditioners are then embedded into Algorithm 1 via the precondition-
ing function outlined in Algorithm 3.

As was noted in [80], a time-periodic control problem where y(0, .) = y(T, .)
results in the matrix C having circulant structure and we can then make use of the
Fourier transform to transform the Schur-complement system to a system with only
block-diagonal matrices that are now of complex nature, which simplifies the Sylvester
equation.

Similar matrix structures are obtained in [1] for the simultaneous discretization
in space and time. Preconditioning results using tensor structures are found in [2, 24].

Algorithm 3: Preconditioner application: Aprec.
Input: W11,W12,W21,W22,W31,W32

Output: Z11, Z12, Z21, Z22, Z31, Z32

Solve τMZ11 = W11

Solve D1Z12 = W12
Solve τβMZ21 = W21

Solve D2MZ22 = W22

Compute Z31 and Z32 as the low rank solution of Ŝ with right-hand side defined
by W31 and W32.

We have now obtained an overall low-rank algorithm for the computation of low-
rank in time solutions to the PDE-constrained optimization problems. We want to
comment on some of the algorithms properties before moving on to the existence of
low-rank solutions in the next section. The computational cost of the algorithm is
again dominated by the matrix vector product and the application of the precondi-
tioner. Both of these are needed in any other iterative solver and the dimensionality
of the low-rank factors determines how expensive the matrix vector products are. The
cost of the preconditioner is here dominated by how efficiently we can solve the Schur-
complement system. The stationary iteration suffers from the fact that the matrix
structure does not result in parameter independent convergence. The solver based on
standard Sylvester equations ikpik typically shows much more parameter independent
convergence behavior. We refer to section 6 for the numerical results. Nevertheless,
more research is needed to employ solvers for generalized Sylvester equations. Addi-
tionally, the algorithm has to compute the truncation of the resulting matrices. This
step is not free and one should use the full-space method for a small set of time-steps.
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Nevertheless, the computation via a truncated SVD proved to be typically quite fast
as we only needed to multiply with the large and skinny low-rank factor matrices.

4. Existence result of low-rank solutions. The previously derived low-rank
method of course is competitive only if the solution to the optimal control problem
exhibits a fast singular value decay, allowing us to replace it by a low-rank approx-
imation. It thus remains to show that this is indeed a reasonable assumption for
problems of the form (2.6). For this reason, in this section we establish a direct
connection between (2.6) and the more prominent Sylvester equation

(4.1) AX +XB = C̃,

where A ∈ Rn×n, B ∈ Rm×m, and C̃ ∈ Rn×m. For the case that C̃ is of low-rank,
i.e., C̃ = WC̃VC̃T , WC̃ ∈ Rn×k, VC̃ ∈ Rm×k, and k ≪ n,m, it is well-known
(see, e.g., [36, 35, 55]) that there exist approximations Xr = WXV T

X ≈ X with
WX ∈ Rn×r, VX ∈ Rm×r, and r ≪ n,m. Moreover, recently there has been an in-
creased interest in numerical methods that, rather than computing the true solution
and computing an approximation afterward, solely work on low-rank factors and iter-
atively construct approximations Xr converging to the true solution X, making these
approaches feasible for dimensions n,m ∼ 106. Popular methods are projection-based
methods (see [9, 30, 75]), ADI-based methods (see [8, 14, 12, 78]), and multigrid
methods (see [37]).

Let us now consider the second block-row of (2.6), for which we obtain that

(D2 ⊗ βτM2)u+
(
D3 ⊗ τNT

)
p = 0.

Solving this equation for u and inserting the result into the third block-row of (2.6)
gives

− (Int ⊗ L+ C ⊗ M) y − 1

β
(D3 ⊗ τN)

(
D−1

2 ⊗ M−1
2

) (
D3 ⊗ NT

)
p = d,

which, due to the properties of the Kronecker product and the definition of D3, can
be simplified to

− (Int ⊗ L+ C ⊗ M) y − τ

β

(
D−1

2 ⊗ NM−1
2 NT

)
p = d.

Together with the first blow-rock, we thus can reformulate (2.6) in matrix
notation as

τM1Y D1 − LP − MPC= τM1YobsD1,

−LY − MYCT − τ

β
NM−1

2 NTPD−1
2 = D.

So far, we have only eliminated the second block-row and rewritten the problem
in its matrix form. For the connection to (4.1), we have to make some additional
assumptions on our initial setup (2.1). Typically, in real-life applications we can only
observe a small portion ỹ of the state rather than the full y. In other words, the
mass matrix M1 in this case can be replaced by a low-rank matrix C̃obsC̃

T
obs = M1,

with C̃obs ∈ Rn1×ℓ determining the observable parts of y. Note that in the context of
classical control theory, C̃obs simply denotes the measurable output quantity of interest
within the state-space representation of a linear dynamical system; see [3, 44, 52].
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Similarly, in the case of boundary control, the rectangular matrix N ∈ Rn1×m usually
contains significantly fewer columns than rows. In summary, this means that we are
often interested in the solution

[
Y P

]
of the linear matrix equation

L
[
Y P

] [ 0 −I
−I 0

]
+M

[
Y P

] [ 0 −CT

−C 0

]
+ C̃obsC̃

T
obs

[
Y P

] [τD1 0
0 0

]

+NM−1
2 NT

[
Y P

] [0 0
0 − τ

βD
−1
2

]
=

[
τM1YobsD1

D

]
.

(4.2)

Pre- and postmultiplying the previous equation by M−1 and [ 0
−I

−I
0 ] leads to a gen-

eralized Sylvester equation of the form

AX + XB + Q1XR1 + Q2XR2 = E1FT
2 ,

where

A = M−1L, B =

[
CT 0
0 C

]
, Q1 = M−1C̃obsC̃

T
obs,

R1 =

[
0 −τD1

0 0

]
, Q2 = M−1NM−1

2 NT , R2 =

[
0 0

− τ
βD

−1
2 0

]
,

E1 =
[
M1WYobs

WD

]
, F1 =

[
D1VYobs

0
0 VD

]
.

Note that we assumed Yobs = WYobs
V T
Yobs

and YD = WDV T
D to be the low-rank

representations for the right-hand side.
In what follows, we proceed as in [10, 22] and use the Sherman–Morrison–Woodbury

formula [32] to simplify the previous equation. Since Q1 = U1VT
1 and Q2 = U2VT

2 , for
the Kronecker structured linear system, we subsequently obtain

(
I ⊗ A + BT ⊗ I + RT

1 ⊗ Q1 + RT
2 ⊗ Q2

)
vec (X ) = vec

(
E1FT

1

)
,

which can be rewritten as

I ⊗ A + BT ⊗ I︸ ︷︷ ︸

Ã

+
[
I ⊗ U1 I ⊗ U2

]
︸ ︷︷ ︸

Ũ

[
RT

1 ⊗ VT
1

RT
2 ⊗ VT

2

]

︸ ︷︷ ︸
Ṽ T


 vec (X ) = vec

(
E1FT

1

)
.

According to the Sherman–Morrison–Woodbury formula, we alternatively get

Ã vec (X ) = vec
(
E1FT

1

)
− Ũ (I + Ṽ T Ã−1Ũ)−1Ṽ T Ã−1 vec

(
E1FT

1

)
︸ ︷︷ ︸

vec(Y)

.

Since we have

Ũ vec (Y) = Ũ vec

([
Y1

Y2

])

=
[
I ⊗ U1 I ⊗ U2

]
vec

([
Y1

Y2

])

= vec (U1Y1) + vec (U2Y1)
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we can conclude that

Ũ vec (Y) =: vec
(
E2FT

2

)

with E2 ∈ Rn1×(l+m), F2 ∈ R2nt×(l+m). In particular, this implies

Ã vec (X ) = vec
(
E1FT

1

)
− vec

(
E2FT

2

)

or, in other words, X can also be derived as the solution to a regular Sylvester equation
of the form

AX + XB =
[
E1 −E2

] [FT
1

FT
2

]
.

We have now established that the PDE-constrained optimization problem can be
written in form of a classical Sylvester equation for which we can use the existence
results for a low-rank solution introduced in [36]. Note that we do not claim to actually
proceed this way in order to compute the solution matrix X . Obviously, determining
the intermediate solution vec (Y) would be a challenge on its own. The previous
steps rather should be understood as a theoretical evidence for the assumption that
X indeed exhibits a very strong singular value decay. Keep in mind that we had to
assume that the desired state Yobs as well as D are of low-rank and that l,m ≪ n1,
which is a reasonable assumption for realistic control problems.

A special case. One might argue that for the distributed control case, i.e., N
begin square together with an (almost) entirely observable state, i.e., C̃obsC̃

T
obs = M1,

the previous low-rank assumptions no longer hold true. Consequently, applying the
Sherman–Morrison–Woodbury formula will not simplify (4.2) and we thus will have
to deal with a linear matrix equation of the form

(4.3)

4∑

i=1

AiXBi = E1FT
1 ,

where we cannot benefit from additional structure in Ai and Bi. Still, as has already
been (numerically) observed and partially discussed in [10, 11, 22] for the special
Lyapunov type case, i.e., Bi = AT

i , the solution matrix X still seems to exhibit
similar low-rank properties.

Although the most general case certainly is an interesting topic of future research,
we want to conclude by pointing out that for the special case M2 = M1 = N = M
we immediately get an analogous (in fact even stronger) low-rank existence result for
(4.2). This is due to the fact that here (4.2) is equivalent to the Sylvester equation

L
[
Y P

] [ 0 −I
−I 0

]
+M

[
Y P

] [τD1 −CT

−C − τ
βD

−1
2

]
=

[
τMYobsD1

D

]

for which we again can apply the low-rank existence results from [36].

5. Other state equations.

Stokes equation. In addition to the heat equation as a test problem we here also
consider the Stokes equation. The discretization of the Stokes control problem can
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be performed similarly to the case for the heat equation and we refer the interested
reader to [27]. The Stokes equations are given by

yt − ν△y + ∇p = u in [0, T ]× Ω,(5.1)

−∇ · y = 0 in [0, T ]× Ω,(5.2)

y(t, .) = g(t) on ∂Ω, t ∈ [0, T ],(5.3)

y(0, .) = y0 in Ω,(5.4)

and the functional we are interested in is defined as

(5.5) J(y, u) =
1

2

∫ T

0

∫

Ω1

(y − ȳ)2 dxdt+
β

2

∫ T

0

∫

Ω2

u2dxdt.

Our goal is to build a discrete Lagrangian using an all-at-once approach [82], where we
set up a discrete problem within the space-time cylinder. Using the trapezoidal rule
and Q2/Q1 finite elements in space leads to the following discrete objective function:

(5.6) J(y, u) =
τ

2
(y − yobs)

T M1 (y − yobs) +
τβ

2
uTM2u

with

M1 = blkdiag

(
1

2
M1, 0,M1, 0, . . . ,M1, 0,

1

2
M1, 0

)
,

M2 = blkdiag

(
1

2
M2,M2, . . . ,M2,

1

2
M2

)
,

where we reuse the notation for the heat equation. Note that for the Stokes case the
vectors yi are split into a velocity v part with d = 2, 3 components and pressure part
p, i.e.,

yi =

[
yvi
ypi

]
.

The all-at-once discretization of the state equation using finite elements in space
and an implicit Euler scheme in time is given by

(5.7) Ky − τNu = d,

where

K =




L
−M L

. . .
. . .

−M L


, N =




N 0
0 0 0
0 N 0

0
. . .

0 N
0 0




, d =




Ly0 + f
0
f
...
f
0



.

Here,

L =

[
L BT

B 0

]
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represents an instance of a time-dependent Stokes problem with B the discrete di-
vergence, M is the mass matrix for the domain Ω, the matrix L is defined as L =
τ−1M +K, the matrix N is a rectangular matrix that can be written as

D3 ⊗ Ns with Ns =

[
N
0

]

which represents the distributed control term control term where N = M , the matrix

M =

[
τ−1M 0

0 0

]

is associated with the discretization in time via the implicit Euler scheme, and the
right-hand side d consists of a contribution from the initial condition y0 and a vector
f representing forcing terms and contributions of boundary conditions. Note that all
matrices here correspond to the ones introduced for the heat equation but equipped
with a block form corresponding to the components for the velocity yv and pressure
yp. The first order conditions using a Lagrangian with Lagrange multiplier p lead to
the system

(5.8)



τM1 0 −KT

0 βτM2 N T

−K N 0




︸ ︷︷ ︸
A




y
u
p


 =



τM1yobs

0
d


,

where again we can switch to a Kronecker structure defined by

(5.9)




D1 ⊗ τM 0 −
(
Int ⊗ L + CT ⊗ M

)

0 D2 ⊗ βτM2 D3 ⊗ N T
s

− (Int ⊗ L + C ⊗ M) D3 ⊗ Ns 0


.

We can now in a similar way as earlier use the low-rank MINRES method. Again,
here we apply a block-diagonal preconditioner of the form

(5.10) P =



D1 ⊗ τM̂1 0 0

0 D2 ⊗ βτM̂2 0

0 0 Ŝ


.

Here M̂ = blkdiag (M̂1, γI) with γ = βτhd (see [82] for details). Here d is the
dimension of the problem (d = 2, 3) and h the mesh parameter. The matrices M1

and M2 are approximated via a Chebyshev semi-iteration [33, 34, 86], or in the case
of lumped mass matrices we trivially have M̂1,2 = M1,2. The approximation of the
Schur-complement is much more tricky in this case as for the indefinite M1 the
Schur-complement is not well-defined. Thus, we again use the approximation M̂ =
blkdiag (M̂1, γI) to form an approximate Schur-complement

S = τ−1KM̂−1
1 KT + τ−1β−1NM−1

2 N T

with M̂1 a block-diagonal involving M̂. We in turn approximate this via

Ŝ = τ−1
(
K + M̂

)
M−1

1

(
K + M̂

)T

,
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where M̂ = blkdiag( 1√
β
M1, 0, . . . ,

1√
β
M1, 0) for the distributed control case. As in

section 3 we note that the matrix(
K + M̂

)
=

(
Int ⊗ L̃ + C ⊗ M

)

with L̃ = [ (τ
−1+β−1/2)M1+K

B
BT

0 ]. We now proceed in the following way. A stationary
iteration scheme with a fixed number of steps is used to approximately solve (Int ⊗
L̃ + C ⊗ M) with preconditioner (Int ⊗ L̃) and within this preconditioner systems
with L̃ are approximately solved using another Uzawa scheme with a fixed but small
number of iterations. For this inner Uzawa iteration the inverse of the preconditioner
is given by

[ [(
τ−1 + β−1/2

)
M1 +K

]−1

MG
0

0
(
τ−1 + β−1/2

)
[Kp]

−1
MG + [Mp]

−1
MG

]
,

where the [. . .]−1
MG indicates the use of a geometric [41, 87] or algebraic multigrid

method [69, 29]. Preconditioners of this type are of so-called Cahouet–Chabard form
[21] and the derivation can be done using a least squares commutator approach [27, 82].

Again, for more robustness, more sophisticated Sylvester solvers should be used
in the future to guarantee robustness with respect to the system parameters.

Convection-diffusion equation. Before coming to the numerical results we
quickly want to introduce the last state equation considered here. The PDE constraint
is now given by the convection-diffusion equation

yt − ε△y + w · ∇y = u in Ω,(5.11)

y(:, x) = f on ∂Ω,(5.12)

y(0, :) = y0(5.13)

as the constraint to the following objective function:

(5.14) J(y, u) =
1

2

∫ T

0

∫

Ω1

(y − ȳ)
2
dxdt+

β

2

∫ T

0

∫

Ω2

u2dxdt.

Note that the parameter ε is crucial to the convection-diffusion equation as a decrease
in its value is adding more hyperbolicity to the PDE where the wind w is predefined.
Such optimization problems have recently been discussed in [67, 43, 62] and for brevity
we do not discuss the possible pitfalls regarding the discretization. Here we focus on a
discretize-then-optimize scheme using a streamline upwind Galerkin (SUPG) approach
introduced in [20]. Note that other schemes, such as discontinuous Galerkin methods
[83] or local projection stabilization [62], are typically more suitable discretizations
for the optimal control setup as they often provide the commutation between opti-
mize first or discretize first for the first order conditions. Nevertheless, our approach
will also work for these discretizations. Once again we employ a trapezoidal rule in
connection with finite elements and now additionally use a SUPG stabilization. The
discretized objective function and state equation are given by

J(y, u) =
τ

2
(y − yobs)

T M1 (y − yobs) +
τβ

2
uTM2u,

which is the same as for the heat equation case. For the all-at-once discretization of
the convection-diffusion equation we get the same structure as before,

(5.15) Ky − τNu = d,
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with

K =




Ls

−Ms Ls

. . .
. . .

−Ms Ls


, N =




Ms

Ms

. . .

Ms


, d =




M1y0 + f
f
...
f


.

Note that due to the SUPG test functions used we now have Ms, which is obtained
entrywise from evaluating the integrals

(Ms)ij =

∫

Ω

φiφj + δ

∫

Ω

φi (w · ∇φj),

where φ are the finite element test functions and δ is a parameter coming from the
use of SUPG [20, 27]. We then have Ls = Ms + τKs, where Ks is the standard
nonsymmetric matrix representing the SUPG discretization of the convection-diffusion
equation. We can now see that this again is of the desired Kronecker form




D1 ⊗ τM1 0 − (Int ⊗ Ls + C ⊗ Ms)
T

0 D2 ⊗ βτM2 D3 ⊗ τMT
s

− (Int ⊗ Ls + C ⊗ Ms) D3 ⊗ τMs 0





y
u
p


(5.16)

=



D1 ⊗ τM1yobs

0
d


.

Again, we employ the low-rank version of MINRES to solve this system. Note that for
nonsymmetric formulations such as the one obtained from an optimize-then-discretize
strategy we can also use low-rank versions of nonsymmetric Krylov solvers such as
Gmres [72] or Bicg [31]. A preconditioner is of the form

(5.17) P =



D1 ⊗ τM̂1 0 0

0 D2 ⊗ βτM̂2 0

0 0 Ŝ


,

where the two blocks involving mass matrices are as before and the Schur-complement
of A

S = (Int ⊗ Ls + C ⊗ Ms) (D
−1
1 ⊗ τ−1M−1

1 ) (Int ⊗ Ls + C ⊗ Ms)
T

(5.18)

+ (D3 ⊗ τMs)
(
D−1

2 ⊗ β−1τ−1M−1
2

) (
D3 ⊗ τMT

s

)
.

As before with the heat and Stokes problem the aim for an efficient approximation
of S is by not dropping terms but rather to create an approximation that matches
both terms in S. In a similar way to the technique introduced in [63] for the steady
case can now be extended by introducing a term D̂ ⊗ M̂ so that

(
D̂ ⊗ M̂

)
(D−1

1 ⊗ τ−1M−1
1 )

(
D̂ ⊗ M̂

)T

≈ (D3 ⊗ τMs)
(
D−1

2 ⊗ β−1τ−1M−1
2

) (
D3 ⊗ τMT

s

)
.

If we now assume D1 = D2 = D3 = Int one can obtain

(5.19) Ŝ =
(
Int ⊗ L̂s + C ⊗ Ms

)
(D−1

1 ⊗ τ−1M−1
1 )

(
Int ⊗ L̂s + C ⊗ Ms

)T

,
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where

L̂s =

(
1 +

1√
β

)
Ms + τKs.

Note that it is of course possible to construct such an approximation without assuming
D1 = D2 = D3 = Int . We can now proceed with a stationary iteration for the
two Sylvester equations in Ŝ, or if we want to employ ikpik again we rewrite the
approximation as

(5.20) Ŝ =
(
Int ⊗ Ls + Ĉ ⊗ Ms

)
(D−1

1 ⊗ τ−1M−1
1 )

(
Int ⊗ Ls + Ĉ ⊗ Ms

)T

with

Ĉ =




1 + τ√
β

−1 1 + τ√
β

. . .
. . .

−1 1 + τ√
β



.

Now when solving with Ŝ we can approximately solve both (Int ⊗Ls + Ĉ ⊗ Ms) and
its transpose using ikpik, where we use an algebraic multigrid for the approximate
solution with the stiffness matrix Ls. These preconditioners need to be adapted when
other discretizations are used, but we expect our results to carry over to these cases
as well.

6. Numerical results. We are now going to present results for the low-rank
in time solution of certain PDE-constrained optimization problems. The results pre-
sented in this section are based on an implementation of the above described algo-
rithms within MATLAB, whereas we perform the discretization of the PDE-operators
within the deal.II [7] framework using Q1 finite elements for the heat equation and
the convection-diffusion equation. The Stokes equation is discretized with Q2 ele-
ments for the velocity and Q1 elements for the pressure component. For the algebraic
multigrid approximation, we used HSL MI 20 [19]. For some preconditioner we used
backslash within MATLAB for the innermost solution within the preconditioner. Our
implementation of MINRES is based on a vector version presented in [27] and was
stopped with a tolerance of 10−4 or 10−6 for the relative pseudoresidual. Please note
that we ideally should couple the stopping criterion for the iterative solver to the
discretization error. We also give results for the stationary iteration and ikpik used
for the approximation within the preconditioner. Our experiments are performed for
a final time T = 1 with a varying number of time-steps. As the domain Ω we consider
the unit cube, but other domains are of course possible. We specify the boundary
conditions for each problem separately. Throughout the results section we fixed the
truncation at 10−8, for which we observed good results. Additionally, we also per-
formed not-listed experiments with a tolerance of 10−10 for which we also observed
fast convergence. Larger tolerances should be combined with a deeper analysis of the
algorithms and a combination with flexible outer solvers. All results are performed on
a standard Ubuntu desktop Linux machine with Intel Xeon CPU W3503 @ 2.40GHz
and 6GB of RAM.
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Fig. 1. Desired state in full-rank and low-rank form.

Table 1
Results for full-rank MINRES versus low-rank (LR) MINRES with stationary iteration precon-

ditioner for 20 or 100 time-steps and a variety of different meshes. Both iteration numbers and
computing times in seconds are listed. DoF = degrees of freedom. OoM indicates out of memory in
MATLAB. Results are shown for β = 10−4.

DoF FR (20) LR (20) FR (100) LR (100)
# it(t) # it(t) # it(t) # it(t)

289 17(0.2) 15(5.6) 31(1.1) 19(7.6)
1089 19(0.7) 17(8.9) 33(5.56) 21(11.9)
4225 19(3.5) 17(19.7) 35(26.6) 23(26.3)

16641 21(17.5) 19(72.1) 35(125.8) 23(97.6)
66049 23(81.8) 19(324.8) OoM 25(427.4)

6.1. The heat equation.

Distributed control. As the first example shown in this section we use the heat
equation with a distributed control term. We choose the boundary conditions for this
problem to be of zero Dirichlet type. We first show how well the desired state

yobs = −64 exp
(
−
(
(x0 − 0.5t)

2
+ (x1 − 0.5t)

2
))

is approximated in low-rank form. Figure 1 illustrates this for grid point 10 in time
where the right-hand side vec−1 (τM1yobs) = B11B

T
12 is approximated by low-rank

factors of rank 2.
Table 1 shows first results for the comparison of the full-rank MINRES versus

the low-rank version. We want to point out that here we use the backslash operator
in MATLAB to evaluate the matrix L within the preconditioner, but this can easily
be replaced by a multigrid approximation and in fact is done later. For the full-rank
version, we only used a block-diagonal approximation for the matrix K and hence the
robustness with respect to changes in the number of time-steps is not given. This
would typically be the case and our results using deal.II and C++ in [81, 61] show
robustness with respect to the number of time-steps. Nevertheless, every increase in
the number of time-steps also results in an increase in the matrix size and so one would
expect when the number of time-steps is increased fivefold that the same happens for
the time needed to solve the linear system. Going back to the results in Table 1, where
both the timings and iteration numbers are shown for a variety of mesh-sizes and two
different orders of grid points in time, both methods perform mesh-independent and
we can see that the low-rank method shows almost no increase when the number of
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Table 2
Results for full-rank MINRES versus low-rank MINRES with both the stationary iteration (SI)

and ikpik for a fixed mesh with 16, 641 unknowns in space. We show varying time-steps and addi-
tionally the rank of the state/control/adjoint state. Both iteration numbers and computing times in
seconds are listed. Results are shown for β = 10−4.

DoF 20 100 200 400 600
16641 # it(t) # it(t) # it(t) # it(t) # it(t)

LR(SI) 19(108.2) 21(307.8) 25(432.7) 43(671.9) 61(937.3)
LR(ikpik ) 19(115.1) 19(288.9) 19(296.8) 21(335.3) 21(357.1)
Rank (SI) 8/10/10 10/11/11 12/13/13 11/14/14 14/15/15
FR 21(18.3) 35(124.0) 63(434.3) OoM OoM

time-steps is drastically increased. Note also the degrees of freedom given here are only
for the spatial discretization. The overall dimension of the linear system is then given
by 3nnt, where n represents the spatial degrees of freedom. We see that the iteration
times for the full rank solver go up, and using the nonoptimal preconditioners we
additionally see that the times increase more than just by a factor of five. We also see
that due to the cost of performing a low-rank truncation the full-rank method always
outperforms the low-rank scheme for a small number of time-steps. Nevertheless, the
low-rank method can easily solve problems that are no longer tractable for full-rank
methods.

Next we compare how both the full-rank and the low-rank method perform when
the number of time-steps is further increased. We therefore consider a fixed mesh for
a varying time-discretization. Table 2 shows the results for both the full-rank and
the low-rank method. We additionally show the rank of the three components of the
state, control, and adjoint state. We started computing the truncation process using a
maximum size of the truncated SVD of 20, which was sufficient for all discretizations
in time using a truncation tolerance of 10−8. In order to keep the iteration numbers
from growing too much with an increase in the number of time-steps we increased the
number of stationary iterations for the preconditioner from two to three for the last
two columns in Table 2. Additionally, we show the results for the Schur-complement
approximation when ikpik is employed. For this we employ ikpik with a fixed number
of steps. We used four steps for the results shown in Table 2. For the evaluation of the
inverse of the stiffness matrix within ikpik we used a five steps of a stationary iteration
with one cycle of an algebraic multigrid as a preconditioner. The algebraic multigrid
is also used within the stationary iteration approximation to the Sylvester equation.
We see again that the full-rank method exceeds the memory limit in MATLAB. It can
also be seen that the increase in rank and computing time is typically moderate. Note
that the system dimension considering a full-rank solution is ranging from 998, 460 to
29, 953, 800 unknowns.

In order to illustrate the distribution of the singular values we show in Figure 2
how the relative value of the singular values behaves throughout the iteration. Shown
are the scaled singular values (σj/σ1) of the approximation to the state for the prob-
lem with 4225 unknowns and 100 grid points in time. In Table 3 we illustrate the
performance of our scheme when different values for the regularization parameter are
considered. So far the preconditioners introduced based on the stationary iteration
have used a direct solver for the solution of the systems with

L̂ =

((
1 +

τ√
β

)
M1 + τK

)
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Fig. 2. Singular values of the approximate solution during the iteration before truncation.

Table 3
Results for low-rank MINRES with 100 time-steps and a varying regularization parameter on

three different meshes. Both iteration numbers and computing times in seconds are listed. The
results shown use the ikpik approximation of the Sylvester-type operators.

DoF 1089 (100) 4225 (100) 16641 (100) 16641 (100)
β # it(t) # it(t) # it(t) ‖y − ȳ‖ / ‖ȳ‖

10−4 17(25.8) 19(80.1) 19(311.9) 0.3979
10−6 17(23.8) 17(64.7) 19(267.5) 0.2019
10−8 15(20.3) 17(56.7) 19(227.2) 0.0809

both in the full-rank method and the low-rank one. We now illustrate that we can
easily approximate this matrix using an algebraic multigrid technique by also showing
that our preconditioner performs robustly with respect to the regularization parameter
β. We here compute the truncated singular value decomposition up to order 20 and
then cut off corresponding to the truncation tolerance. We additionally increased
the number of stationary iteration steps for the matrix (Int ⊗ L̂ + C ⊗ M) with
preconditioner (Int ⊗ L̂) to 4.

Boundary control. In the following we demonstrate that our approach also
works for the case of a boundary control problem. The desired state is shown in
Figure 3(a) and the computed state needed to approximate this in Figure 3(b). In
Table 4 we show results for the low-rank MINRES approximation for a variety of
mesh-parameters and regularization parameters. Details on the preconditioners used
can be found in [61]. As in the last example for the distributed control case we
choose four Uzawa iterations and a tolerance of 10−4 for the iterative solver. Here we
evaluate L̂ again using the backslash operator in MATLAB but the use of AMG is
straightforward. We do not employ ikpik as its use for this setup needs to be further
investigated.

6.2. Stokes equation. The configuration for the Stokes equation is taken from
[82] and originally appeared in [46]. The spatial domain is the unit cube Ω = [0, 1]d

with a time domain [0, 1]. The target flow is the solution for an unsteady Stokes
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Fig. 3. Desired state and computed state for a boundary control problem.

Table 4
Results for low-rank MINRES with 100 time-steps and a varying regularization parameter on

three different meshes for a boundary control example. Both iteration numbers and computing times
in seconds are listed.

DoF 289 (100) 4225 (100) 16641 (100)
β # it(t) # it(t) # it(t)

10−2 49(137.3) 61(236.18) 79(802.7)
10−4 67(179.8) 99(406.6) 151(1510.6)
10−6 63(169.2) 95(380.4) 147(1448.6)

Table 5
Results for low-rank MINRES with 100 time-steps and a varying regularization parameter on

three different meshes for a Stokes control example. Both iteration numbers and computing times
in seconds are listed.

DoF 578+81 (100) 2178+289 (100) 8450+1089 (100)
β # it(t) # it(t) # it(t)

10−1 11(224.4) 12(624.8) 14(3601.9)
10−5 15(290.2) 15(737.6) 17(4091.5)

equation with Dirichlet boundary conditions, i.e., y = (1, 0) when the second spatial
component x2 = 1 and y = (0, 0) on the remaining boundary for the two-dimensional
case. For the control problem we now consider the following time-dependent boundary
conditions. For the top-boundary where x2 = 1 we get y = (1+ 1

2 cos(4πt−π), 0) and
zero elsewhere in two space dimensions and we set viscosity to 1/100. Figure 4(a)
depicts the desired state and the corresponding computed pressure is shown in Figure
4(b). For the results shown in Table 5 we note that we needed to set the number of
stationary iteration steps for the outer iteration to 30 and for the inner one for the
small saddle point system to 5. We believe that the outer iteration can be replaced
by a robust Sylvester solver.

Apart from the approximation of the Neumann–Laplacian on the pressure space
whose inverse was evaluated using an algebraic multigrid scheme, we simply used
the backslash operator to evaluate the remaining components. A further increase in
computational efficiency can be gained when these are replaced by multigrid approx-
imations.

6.3. Convection-diffusion equation. The configuration for the convection-
diffusion equation is taken from [27] and is typically referred to as the double glazing
problem. The spatial domain is the unit cube Ω = [−1, 1]2 with a time domain [0, 1].
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(a) Desired state at grid point 10 in
time.
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Fig. 4. Desired state and computed pressure for the Stokes flow problem.
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Fig. 5. Computed state for β = 10−6 at grid point 10 in time.

The wind w is given by

w =
(
2y(1 − x2),−2x(1 − y2)

)
.

Here we set the parameter to ε to 1/200 and the boundary condition is a Dirichlet
zero condition with the exception of y = 1 when x2 = 1. The desired state is set to
zero throughout the domain [62]. In Figure 5 we show the computed state for grid
point 10 in time. Due to the nonsymmetric nature of the PDE operator we have not
employed the recommended multigrid technique [66] and simply used the backslash
operator here. The results shown in Table 6 indicate a robust performance of the
low-rank MINRES method. We here set the number of stationary iterations to 15.
We additionally show iteration numbers for the use of ikpik with the use of a direct
solver and a fixed number of ikpik steps. The tolerance for MINRES is set to 10−6.

Additionally, we show in Table 7 the numerical ranks that we obtain for the
computed state. We hereby change the parameter ε in order to make the problem
more hyperbolic. The tolerance for the low-rank truncation is chosen to be 10−8.
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Table 6
Results for low-rank MINRES with 100 or 200 time-steps and a varying regularization parameter

on a variety of meshes for a convection-diffusion control example. Both iteration numbers and
computing times in seconds are listed. The tolerance for convergence is 1e − 6.

DoF 1089 (100) 4225 (100) 16641 (100) 4225 (200) 16641 (200)
β # it(t) # it(t) # it(t) # it(t) # it(t)

SI 10−8 4(17.36) 6(66.1) 6(291.1) 6(68.8) 6(277.6)
ikpik 10−8 4(8.5) 6(35.6) 6(151.0) 6(36.7) 6(161.4)
SI 10−6 10(40.4) 10(109.7) 14(639.5) 12(128.1) 14(646.3)
ikpik 10−6 10(22.3) 10(72.3) 14(520.3) 12(98.7) 14(568.6)

Table 7
Results for low-rank MINRES with 100 time-steps and a fixed mesh with 4225 DoFs. We here

show the ranks of the low-rank factors with respect to a varying ε within the convection-diffusion
equation. The tolerance for convergence is 1e − 6.

DoF 1/50 1/500 1/5000 1/50000

ȳ1 (trunctol = 1e − 8) 9/7/7 7/6/6 7/5/5 7/5/5
ȳ2 (trunctol = 1e − 8) 30/35/35 29/49/49 29/50/50 29/50/50
ȳ2 (trunctol = 1e − 5) 4/3/3 3/4/4 3/4/4 3/4/4

We show ranks for both the zero desired state ȳ1 and a different desired state with a
higher frequency ȳ2. We note that the control and adjoint states both need more terms
for the low-rank representation when the desired state is nontrivial. The maximum
number of vectors stored was limited to 50, which was not sufficient for small values
of ε. This does not indicate that the method fails in this case but rather that it is
crucial to investigate the relation between the discretization error, the algebraic error,
and the truncation error. The truncation tolerance of 10−8 could have simply been
too tight for the level of discretization. Hence, we additionally show the results for
the truncation level 10−5, which in this case is smaller than h2.

7. Outlook. We believe that the research presented here opens some interest-
ing angles that should be studied in the future. The incorporation of additional
constraints such as control and state constraints is typically very important for real-
world scenarios. We plan to investigate a technique introduced in [45] where the state
and adjoint state are computed first and hence is amenable to low-rank techniques,
and then the constrained control is computed. It is further desired to investigate more
complicated discretizations in time. Of particular interest, we want to study back-
ward differentiation formulas [5] as these can be easily incorporated simply modifying
the C matrix in (3.1). We further plan to incorporate more sophisticated generalized
Sylvester equation solvers for (Int ⊗ L+ C ⊗ M), which we believe allows for more
robustness with respect to the system parameters and should be combined with a
flexible outer method [71]. It is further crucial to investigate how the low-rank tech-
niques can be extended to incorporate nonlinearities of both the objective function
and the PDE constraint such as [17].

8. Conclusions. In this paper we proposed the use of a low-rank methodology
for the solution to PDE-constrained optimization problems. In particular we intro-
duced a low-rank in time approach that allows us to significantly reduce the storage
requirements in time for a one-shot solution of the optimal control problem. We were
also able to rewrite the problem in such a way that we can obtain low-rank existence
results from classical Sylvester equation theory. We additionally discussed a stationary
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iteration as a preconditioner for the Schur-complement approximation within the over-
all block-diagonal preconditioner. We further illustrated that this technique can be
used for many well-known PDEs. Our numerical results illustrated that even with the
rather crude Schur-complement approximation a rather robust performance could be
obtained. The low-rank method presented enabled computations that are no longer
possible to perform with the full-rank approach, which we see as a crucial feature of
our methodology.
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