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Ultralight bosons can induce superradiant instabilities in spinning black holes, tapping their rotational en-
ergy to trigger the growth of a bosonic condensate. Possible observational imprints of these boson clouds
include (i) direct detection of the nearly monochromatic (resolvable or stochastic) gravitational waves emitted
by the condensate, and (ii) statistically significant evidence for the formation of “holes” at large spins in the
spin versus mass plane (sometimes also referred to as “Regge plane”) of astrophysical black holes. In this
work, we focus on the prospects of LISA and LIGO detecting or constraining scalars with mass in the range
ms ∈ [10−19, 10−15] eV andms ∈ [10−14, 10−11] eV, respectively. Using astrophysical models of black-hole
populations and black-hole perturbation theory calculations of the gravitational emission, we find that LIGO
could observe a stochastic background of gravitational radiation in the range ms ∈ [2 × 10−13, 10−12] eV,
and up to 104 resolvable events in a 4-year search if ms ∼ 3 × 10−13 eV. LISA could observe a stochas-
tic background for boson masses in the range ms ∈ [5 × 10−19, 5 × 10−16], and up to ∼ 103 resolvable
events in a 4-year search if ms ∼ 10−17 eV. LISA could further measure spins for black-hole binaries with
component masses in the range [103, 107] M�, which is not probed by traditional spin-measurement tech-
niques. A statistical analysis of the spin distribution of these binaries could either rule out scalar fields in the
mass range [4 × 10−18, 10−14] eV, or measure ms with ten percent accuracy if light scalars in the mass range
[10−17, 10−13] eV exist.

I. INTRODUCTION

The first gravitational wave (GW) detections by the Laser
Interferometric Gravitational-wave Observatory (LIGO) are
a historical landmark. GW150914 [1], GW151226 [2],
GW170104 [3] and the LVT151012 trigger [4] provided the
strongest evidence to date that stellar-mass black holes (BHs)
exist and merge [5–9]. In this work we discuss the ex-
citing possibility that LIGO and space-based detectors like
LISA [10, 11] could revolutionize our understanding of dark
matter and of fundamental interactions in the Universe.

Ultralight bosons – such as dark photons, the QCD axion
or the axion-like particles predicted by the string axiverse sce-
nario – could be a significant component of dark matter [12–
15]. These fields interact very feebly with Standard Model
particles, but the equivalence principle imposes some univer-
sality in the way that they gravitate. Light bosonic fields
around spinning black holes trigger superradiant instabilities,
which can be strong enough to have astrophysical implica-
tions [16]. Therefore, GW detectors can either probe the ex-
istence of new particles beyond the Standard Model or – in
the absence of detections – impose strong constraints on their
masses and couplings [17–21].

Superradiance by rotating BHs was first demonstrated with
a thought experiment involving particles [16, 22]. Penrose
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imagined a particle falling into a BH and splitting into two
particles. If the splitting occurs in the ergoregion, one of the
fragmentation products can be in a negative-energy state as
seen by an observer at infinity, and therefore the other frag-
mentation product can escape to infinity with energy larger
than the original particle. The corresponding process involv-
ing waves amplifies any bosonic wave whose frequency ω sat-
isfies 0 < ω < mΩH, where m is the azimuthal index of the
(spheroidal) harmonics used to separate the angular depen-
dence, and ΩH is the horizon angular velocity [16, 23, 24].
The wave is amplified at the expense of the BH’s rotational
energy. If the wave is trapped – for example, through a con-
fining mechanism like a mirror placed at some finite distance
– the amplification process will repeat, destabilizing the sys-
tem. This creates a “BH bomb” [25, 26]. Massive fields are
naturally trapped by their own mass, leading to a superradiant
instability of the Kerr geometry. The time scales and evolu-
tion of BH superradiant instabilities were extensively studied
by several authors for massive spin-0 [27–30], spin-1 [21, 31–
34] and spin-2 fields [35], using both analytic and numerical
methods.

For a bosonic field with mass ms, superradiant instabili-
ties are strongest when the Compton wavelength of the mas-
sive boson ~/(msc) is comparable to the Schwarzschild ra-
dius R = 2GM/c2, where M is the BH mass. Under these
conditions the bosonic field can bind to the BH, forming a
“gravitational atom.” Instabilities can produce holes in the
BH mass/spin plane (sometimes also called the BH “Regge
plane”): for a given boson mass, spinning BHs should not
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FIG. 1. Exclusion regions in the BH mass-spin plane (Regge plane) for a massive scalar field. For each mass ms, the instability threshold is
obtained by setting the superradiant instability time scales for l = m = 1, 2, 3 equal to a typical accretion time scale, taken to be τ = 50 Myr
(see main text for details). Black data points (with error bars) are spin estimates of stellar and massive BHs obtained through the Kα or
continuum fitting methods [36, 37]. Red data points are GW measurements of the primary and secondary BHs from the three LIGO detections
(GW150914, GW151226 and GW170104 [3, 4]). Blue, green and brown data points are projected LISA measurements under the assumption
that there are no light bosons for three different astrophysical black hole population models (popIII, Q3 and Q3-nod from [38]), as discussed
in the text. We assume a LISA observation time Tobs = 1 yr, and to avoid cluttering we only show events for which LISA spin measurement
errors are relatively small (∆χ/χ ≤ 2/3). The top horizontal line is a frequency scale corresponding to the BH mass, f ≈ µ/π with
µ ∼ 0.2/M as a reference value.

exist when the dimensionless spin χ ≡ a/M is above an in-
stability window centered around values of order unity of the
dimensionless quantity [16, 17]

2GMms

c~
= 1.5

M

106M�

msc
2

10−16eV
. (1)

Typical instability windows for selected values of ms are
shown as shaded areas in Fig. 1, which shows the spin versus
mass plane. These instability windows are obtained by requir-
ing that the instability acts on timescales shorter than known
astrophysical processes such as accretion, i.e. we require that
the superradiant instability time scales for scalar field pertur-
bations with l = m = 1, 2, 3 are shorter than a typical accre-
tion time scale, here conservatively assumed to be the Salpeter
time scale defined below for a typical efficiency η = 0.1 and
Eddington rate fEdd = 1 [cf. Eq. (51)].

In Fig. 1, black data points denote electromagnetic esti-
mates of stellar or massive BH spins obtained using either
the Kα iron line or the continuum fitting method [36, 37].
Roughly speaking, massive BH spin measurements probe the
existence of instability windows in the mass range ms ∼

10−19–10−17 eV. For stellar-mass BHs, the relevant mass
range is ms ∼ 10−12–10−11 eV. Red data points are LIGO
90% confidence levels for the spins of the primary and
secondary BHs in the three merger events detected so far
(GW150914, GW151226 and GW170104 [3, 4]). For LIGO
BH binaries accretion should not be important. In such case,
our choice for the reference timescale tS is conservative: more
accurate and stringent constraints can be imposed by compar-
ing the instability timescale with the Hubble time or with the
age of the BHs. On the other hand, in Fig. 1 we do not include
the remnant BHs detected by LIGO because the observation
time scale of the latter is obviously much shorter than the
superradiant instability time scale, and therefore post-merger
observations can not be used to place constraints on the boson
mass.

Blue, green and brown data points are projected LISA mea-
surements for three different astrophysical black-hole popula-
tion models (popIII, Q3, Q3-nod) from [38], assuming one
year of observation. The main point of Fig. 1 is to high-
light one of the most remarkable results of this work: LISA
BH spin measurements cover the intermediate mass range
(roughly ms ∼ 10−13–10−16 eV, with the lower and up-
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per bounds depending on the astrophysical model, and more
specifically on the mass of BH seeds in the early Universe),
unaccessible to electromagnetic observations of stellar and
massive BHs. In other words, LISA’s capability to measure
the mass and spin of binary BH components out to cosmo-
logical distances1 implies that LISA can also probe the exis-
tence of light bosonic particles in a large mass range that is
not accessible by other BH-spin measurement methods. In
Sec. VI below we quantify this expectation with a more de-
tailed Bayesian model-selection analysis, showing in addition
that (if light bosons exist) LISA could measure their mass with
∼ 10% accuracy.

An even more exciting prospect is the direct detection of
the GWs produced by a BH-boson condensate system [19–
21]. Through superradiance, energy and angular momentum
are extracted from a rotating BH and the number of bosons
grows exponentially, producing a bosonic “cloud” at distance
∼ ~2(2GMm2

s)
−1 from the BH. This non-axisymmetric

cloud creates a time-varying quadrupole moment, leading to
long-lasting, monochromatic GWs with frequency determined
by the boson mass. Thus, the existence of light bosons can be
tested (or constrained) directly with GW detectors.

To estimate the detectability of these signals we need care-
ful estimates of the signal strength and astrophysical mod-
els for stellar-mass and massive BH populations. Here we
compute the GW signal produced by superradiant instabilities
using GW emission models in BH perturbation theory [41],
which are expected to provide an excellent approximation for
all situations of physical interest [18, 33, 34]. On the astro-
physical side, we adopt the same BH formation models [42]
that were used in previous LISA studies [38, 43–46]. As
shown below, semicoherent searches with LISA (LIGO) could
detect individual signals at luminosity distances as large as
∼ 2 Gpc (∼ 200 Mpc) for a boson of mass 10−17(10−13) eV
(compare this with the farthest estimated distance for LIGO
BH binary merger detections so far, the 880+450

−390 Mpc of
GW170104 [3]).

The plan of the paper is as follows. In Sec. II we out-
line our calculation of gravitational radiation from bosonic
condensates around rotating BHs. In Sec. III and Sec. IV
we present our astrophysical models of massive and stellar-
mass BH formation, respectively. Our predictions for rates of
boson-condensate GW events detectable by LISA and LIGO,
either as resolvable events or as a stochastic background, are
given in Sec. V. In Sec. VI we use a Bayesian model selection
framework to quantify how LISA spin measurements in BH
binary mergers can either exclude certain boson mass ranges
by looking at the presence of holes in the Regge plane, or
(if bosons exist in the Universe) be used to estimate boson
masses. We conclude by summarizing our main results and
identifying some promising avenues for future work.

In the following, we use geometrized units G = c = 1.

1 We do not study holes in the Regge plane for LIGO because spin magnitude
measurements for the binary components are expected to be poor, even with
third-generation detectors [39, 40], and they overlap in mass with existing
EM spin estimates.

II. GRAVITATIONAL WAVES FROM BOSONIC
CONDENSATES AROUND BLACK HOLES

In general, the development of instabilities must be fol-
lowed through non-linear evolutions. Numerical studies of
the development of superradiant instabilities are still in their
infancy (see e.g. [33, 34, 47–50]), mainly because of the long
instability growth time for scalar perturbations, which makes
simulations computationally prohibitive. If we restrict atten-
tion to near-vacuum environments, the scalar cloud around the
spinning BH can only grow by tapping the BH’s rotational
energy. Then standard arguments [51] imply that the cloud
can store at most 29% of the BH’s mass, the spacetime is
described to a good approximation by the Kerr metric, and
perturbative calculations are expected to give good estimates
of the emitted radiation [18, 41]. These expectations were
recently validated by nonlinear numerical evolutions in the
spin-1 case [33, 34], where the instability growth time scale
is faster. Reassuringly, these numerical simulations are con-
sistent with qualitative and quantitative predictions from BH
perturbation theory [21, 31, 32]. In summary, a body of an-
alytic and numerical work justifies the use of calculations in
BH perturbation theory to estimate the gravitational radiation
emitted by bosonic condensates around Kerr BHs. We now
turn to a detailed description of this calculation.

A. Test scalar field on a Kerr background

Neglecting possible self-interaction terms or couplings to
other fields, the action describing a real scalar field minimally
coupled to gravity is

S =

∫
d4x
√
−g
(
R

16π
− 1

2
gµνΨ,µΨ,ν −

µ2

2
Ψ2

)
. (2)

Here we defined a parameter

µ = ms/~ , (3)

which has dimensions of an inverse mass (in our geometrized
units) . The field equations derived from this action are
∇µ∇µΨ = µ2Ψ and Gµν = 8πTµν , with

Tµν = Ψ,µΨ,ν − 1

2
gµν

(
Ψ,αΨ,α + µ2Ψ2

)
. (4)

In the test-field approximation, where the scalar field prop-
agates on a fixed Kerr background with mass M and spin
J = aM , the general solution of the Klein-Gordon equation
can be written as

Ψ = <
[∫

dωe−iωt+imϕ0S`m(ϑ)ψ`m(r)

]
, (5)

where a sum over harmonic indices (`, m) is implicit,
and sY`mω(ϑ, ϕ) = sS`mω(ϑ)eimϕ are the spin-weighted
spheroidal harmonics of spin weight s, which reduce to the
scalar spheroidal harmonics for s = 0 [52]. The radial and
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angular functions satisfy the following coupled system of dif-
ferential equations:

Dϑ[0S] +

[
a2(ω2 − µ2) cos2 ϑ− m2

sin2 ϑ
+ λ

]
0S = 0 ,

Dr[ψ] +
[
ω2(r2 + a2)2 − 4aMrmω + a2m2

−∆(µ2r2 + a2ω2 + λ)
]
ψ = 0 ,

where for simplicity we omit the (`, m) subscripts, r± =

M ±
√
M2 − a2 denotes the coordinate location of the inner

and outer horizons, ∆ = (r−r+)(r−r−),Dr = ∆∂r (∆∂r),
and Dϑ = (sinϑ)−1∂ϑ (sinϑ∂ϑ). For a = 0, the angular
eigenfunctions 0S`m(ϑ) reduce to the usual scalar spherical
harmonics with eigenvalues λ = `(`+ 1).

Imposing appropriate boundary conditions, a solution to
the above coupled system can be obtained using, e.g., a
continued-fraction method [29, 30]. Because of dissipation,
this boundary value problem is non-hermitian. The solutions
are generically described by an infinite, discrete set of com-
plex eigenfrequencies [53]

ω`mn ≡ ω = ωR + iωI , (6)

where n is the overtone number and {ωR, ωI} ∈ R. In par-
ticular, this system admits quasi-bound state solutions which
become unstable – i.e., from Eq. (5), have ωI > 0 – for
modes satisfying the superradiant condition ωR < mΩH, with
ΩH = a/(2Mr+) [27, 30]. For these solutions the eigenfunc-
tions are exponentially suppressed at spatial infinity:

ψ(r) ∝ rνe−
√
µ2−ω2r

r
as r →∞ , (7)

where ν = M(2ω2−µ2)/
√
µ2 − ω2. In the small-mass limit

Mµ � 1 these solutions are well approximated by a hy-
drogenic spectrum [27, 30] with angular separation constant
λ ' `(`+ 1) and frequency

ω ∼ µ− µ

2

(
Mµ

`+ n+ 1

)2

+
i

γ`

(am
M
− 2µr+

)
(Mµ)4`+5 ,

(8)
where n = 0, 1, 2..., and γ1 = 48 for the dominant unstable
` = 1 mode.

B. Gravitational-wave emission

For a real scalar, the condensate is a source of GWs. For a
monochromatic source with frequency ωR, one can easily see
by, plugging the solution (5) into the stress-energy tensor (4),
that the scalar field sources GWs with frequency 2ωR. In the
fully relativistic regime, gravitational radiation can be com-
puted using the Teukolsky formalism [54]. This calculation is
described in detail here (see also [18, 41]).

In the Teukolsky formalism, gravitational radiation is en-
coded in the Newman-Penrose scalar ψ4, which can be de-
composed as

ψ4(t, r,Ω) =
∑
`m

ρ4

∫ ∞
−∞

dω
∑
`m

R`mω(r) −2S`mω(Ω)e−iωt ,

(9)

where ρ = (r−ia cosϑ)−1. The radial functionR(r) satisfies
the inhomogeneous equation

∆2 d

dr

(
∆−1 dR

dr

)
+

(
K2 + 4i(r −M)K

∆
− 8iωr − λ

)
R

= T`mω , (10)

where again we omit angular indices for simplicity, K ≡
(r2 + a2)ω − am, λ ≡ As`m + a2ω2 − 2amω, and As`m
are the angular eigenvalues. The source term T`mω is given
by

T`mω ≡
1

2π

∫
dΩ dt−2S̄`mT eiωt , (11)

where T is related to the scalar field stress-energy tensor (4)
and can be found in [54, 55].

To solve the radial equation (10) we use a Green-function
approach. The Green function can be found by consider-
ing two linearly independent solutions of the homogeneous
Teukolsky equation (10), with the following asymptotic be-
havior (see e.g. [55]):

RH →

{
∆2e−ikr

∗
for r → r+,

r3Boute
iωr∗ + r−1Bine

−iωr∗ for r → +∞,
(12)

R∞ →

{
Aoute

ikr∗ + ∆2Aine
−ikr∗ for r → r+,

r3eiωr
∗

for r → +∞,
(13)

where k = ω − mΩH, {A,B}in,out are constants, and the
tortoise coordinate is defined as

r∗ = r +
2Mr+

r+ − r−
ln
r − r+

2M
− 2Mr−
r+ − r−

ln
r − r−

2M
. (14)

Imposing ingoing boundary conditions at the horizon and out-
going boundary conditions at infinity, one finds that the solu-
tion of Eq. (10) is given by [55]

R =
1

W

{
R∞

∫ r

r+

dr′
RHT`mω

∆2
+RH

∫ ∞
r

dr′
R∞T`mω

∆2

}
,

(15)
where the Wronskian W = (R∞∂rR

H −RH∂rR∞)/∆ is
a constant by virtue of the homogeneous Teukolsky equa-
tion (10). Using Eqs. (13) and (12) one finds

W = 2iωBin . (16)

At infinity the solutions reads

R(r →∞)→ r3eiωr
∗

2iωBin

∫ ∞
r+

dr′T`mω
RH

∆2
≡ Z̃∞r3eiωr

∗
.

(17)
Since the frequency spectrum of the source T`mω is discrete
with frequency ω̃ = ±2ω`mn and m̃ = ±2m, where ω`mn
are the scalar field eigenfrequencies, Z̃∞ takes the form

Z̃∞ =
∑
`m̃n

δ(ω − ω̃)Z∞`m̃ω , (18)
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and at r →∞, ψ4 is given by

ψ4 =
1

r

∑
`m̃n

Z∞`m̃ω̃ −2Y`m̃ω̃e
iω̃(r∗−t) . (19)

At infinity the Newman-Penrose scalar can be written as

ψ4 =
1

2

(
ḧ+ − iḧ×

)
, (20)

where h+ and h× are the two independent GW polarizations.
The energy flux carried by these waves at infinity is given by

dE

dtdΩ
=

r2

16π

(
ḣ2

+ + ḣ2
×

)
. (21)

Using equations (19) and (20) we get

dE

dt
=
∑
`m̃n

1

4πω̃2
|Z∞`m̃ω̃|2 . (22)

We note that |Z∞`m̃ω̃| ∝ (MS/M)2, where MS is the total
mass of the scalar cloud:

MS =

∫
T tt
√
−gdrdϑdϕ , (23)

and
√
−g = (r2 + a2 cos2 ϑ) sinϑ is the Kerr metric determi-

nant. Here we neglected the energy flux at the horizon, which
in general is subdominant [56]. In fact, we will only need
to compute radiation at the superradiant threshold, where the
flux at the horizon – being proportional to k = (ω −mΩH) –
vanishes exactly [57].

Figure 2 shows the dominant GW energy flux computed nu-
merically within the perturbative framework described above.
Our results are compared to the analytic results of Refs. [17,
18]. The flat-space approximation adopted in [17] underesti-
mates the flux by some orders of magnitude, especially when
µM � 0.3, for any spin. Likewise, the Schwarzschild ap-
proximation adopted in [18] overestimates the GW flux. To
improve on both approximations, in the rest of this work we
will use the numerical results, which are valid in the entire
(χ, µM) plane and agree with those of [41].

C. Evolution of the superradiant instability and of the
BH-condensate system

Current nonlinear evolutions are unable to probe the devel-
opment of the instability in the scalar case [47]. However,
since the time scales of both the superradiant instability and
the GW emission are much longer than the dynamical time
scale of the BH, the evolution of the BH-condensate system
can be studied within a quasi-adiabatic approximation [18].
The scalar field can be considered almost stationary, and its
backreaction on the geometry neglected, as long as the scalar
stress-energy tensor is small compared to the BH energy den-
sity [18].

Recent nonlinear evolutions by East and Pretorius in the
spin-1 case [33, 34], where the instability develops more

���� ���� ���� ���� ���� ���� ���� ����
��-��
��-��
��-��
��-��
��-��
��-��
��-��
��-�
��-�
��-�
��-�

�����+

����������+

FIG. 2. Flux for ` = m = 1 and taking the first two leading order
terms in the flux ˜̀ = m̃ = 2 and ˜̀ = 3, m̃ = 2 as a function of
the scalar mass and for the spin computed at the superradiant thresh-
old (25). The numerical results computed in this work are compared
with the analytic formula obtained in [18], labeled “Brito+”, and the
one obtained in [17], labeled “Arvanitaki+”.

rapidly, lend support to an adiabatic treatment of the evolution
of the field. The evolution happens in two steps characterized
by very different time scales. First a scalar condensate grows
around the BH until the superradiant condition is saturated;
then the condensate is dissipated through GW emission. Ne-
glecting accretion for simplicity, the evolution of the system
is governed by the equations [18]

Ṁ = −ĖS ,
Ṁ + ṀS = −Ė ,
J̇ = −mĖS/ωR ,
J̇ + J̇S = −mĖ/ωR ,

(24)

where ĖS = 2MSωI is the scalar energy flux extracted from
the horizon through superradiance. In the above equations,
we have used the fact that – for a single (`, m) mode – the
GW angular momentum flux is mĖ/ωR and that the angular
momentum flux of the scalar field extracted at the horizon is
mĖS/ωR.

The system (24) shows that for a superradiantly unstable
state (ωI > 0) the instability will cause the BH to transfer
mass and spin to the scalar field until the system reaches the
saturation point, given by ωI = 0, i.e., ωR = mΩH.2 This
process occurs on a time scale τinst ≡ 1/ωI � M , and the

2 Fully non-linear evolutions of a charged scalar field around a charged BH
enclosed by a reflecting mirror [49, 58, 59] or in anti-de Sitter space-
time [50] have shown that the end-state for this system indeed consists of
a scalar condensate around a charged BH saturating the superradiant con-
dition. East and Pretorius reached the same conclusion for massive spin-1
fields [33, 34]. For complex fields, truly stationary metric solutions of the
field equations describing a boson condensate saturating the superradiant
condition around spinning BH have been explicitly shown to exist [60–62]
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saturation point corresponds a final BH angular momentum

Jf =
4mM3

fωR

m2 + 4M2
fω

2
R

< Ji , (25)

where Ji/f , Mi/f are the initial/final BH angular momentum
and mass, respectively. The system (24) also shows that the
variation of the BH mass δM is related to the variation of the
BH angular momentum δJ by δM = ωR

m δJ , which implies

Mf = Mi −
ωR
m

(Ji − Jf ) . (26)

When the instability saturates, the total mass of the scalar
cloud is roughly given by Mmax

S ∼Mi −Mf , namely

Mmax
S ∼ JiωR

m
−

4M3
fω

2
R

m2 + 4M2
fω

2
R

≈ JiωR
m

, (27)

where the last step is valid when MfωR � 1.
After the superradiant phase, the mass and the angular mo-

mentum of the BH remain constant [cf. Eq. (24)], whereas
the scalar field is dissipated through the emission of GWs3

as given by Eq. (22). We neglect GW absorption at the event
horizon – which is always sub-dominant [56] – and GW emis-
sion due to the transition of bosons between different energy
levels, which is also a sub-dominant effect as long as the con-
densate is mostly populated by a single level [19]. By using
again Eq. (24), after the superradiant phase we get

ṀS = −dE
dt

= −dẼ
dt

M2
S

M2
f

, (28)

where we used the fact that |Z∞`mω|2 ∝ M2
S to factor out the

dependence on MS(t), and we defined dẼ
dt ≡

dE
dt

M2
f

M2
S

. This
quantity is shown in Figure 2 and it is constant after the su-
perradiant phase, since it depends only on the final BH mass
and spin. Therefore, setting t = 0 to be the time at which the
superradiant phase saturates, the above equation yields

MS(t) =
Mmax
S

1 + t/τGW
, (29)

where Mmax
S is the mass of the condensate at the end of the

superradiant phase [cf. Eq. (27)] and

τGW ≈Mf

(
dẼ

dt

Mmax
S

Mf

)−1

≈ 8× 105 yr

[
Mf

106M�

] [
10−11

dẼ/dt

] [
0.2Mf

Mmax
S

]
(30)

is the gravitational radiation time scale.

3 In the language of [19] this process corresponds to the “axion+axion →
graviton” annihilation process. In our notation, their “occupation number”
is N =MS/ms.

D. Instability and gravitational radiation time scales

As discussed above, the basic features of the evolution of
the BH superradiant instability in the presence of light bosons
can be understood as a two-step process, governed by two dif-
ferent time scales. The first time scale is the typical e-folding
time of the superradiant instability given by τinst ≡ 1/ωI ,
where in the Mµ � 1 limit, ωI is the imaginary part of
Eq. (8). The boson condensate grows over the time scale τinst

until the superradiant condition is saturated. Subsequently,
the condensate is dissipated through GW emission over a time
scale τGW given by Eq. (30). In the Mµ� 1 limit, dẼ/dt =
(484 + 9π2)/23040(µM)14 ' 0.025(µM)14 [18, 41]. Thus,
using Eqs. (8), (27), (30) and reinstating physical units, the
two most relevant time scales of the system are of the order

τinst ∼ 105yr
(
M8

6µ
9
17χ
)−1

, (31)

τGW ∼ 5× 1011yr
(
M14

6 µ15
17χ
)−1

, (32)

where M6 = M/(106M�) and µ17 = ms/(10−17eV) and
χ� 1.

These relations are still a reasonably good approximation
when Mµ ∼ 1 and χ ∼ 1. They show that there is a clear
hierarchy of time scales (τGW � τinst � M ), and this is
important for two reasons. First of all it is crucial that τGW �
τinst, otherwise the boson condensate would not have time to
grow. Secondly, the time scale hierarchy justifies the use of
an adiabatic approximation to describe the evolution.

Beyond the instability and gravitational radiation time
scales, from the point of view of detection it is important to
estimate the distribution of signal durations ∆t. For LIGO
we can safely neglect accretion, because accreted matter is
not expected to significantly alter the birth spin of stellar-mass
BHs [63]. We can also neglect the effect of mergers, since
mergers affect a very small fraction of the overall population
of isolated BHs [64–68], and LIGO data already suggest that
multiple mergers should be unlikely [69, 70]. Therefore, for
LIGO we will simply assume ∆t = min (τGW, t0), where
t0 ≈ 13.8 Gyr is the age of the Universe.

For massive BHs that radiate in the LISA band, both merg-
ers and accretion are expected to be important [71, 72]. There-
fore we conservatively assume that whenever an accretion
event or a merger happens the boson-condensate signal is cut
short, and for LISA we define

∆t =

〈
min

(
τGW

Nm + 1
, tS , t0

)〉
, (33)

where the signal duration τGW in the absence of mergers
and accretion is given by Eq. (30), 〈...〉 denotes an aver-
age weighted by the probability distribution function of the
Eddington ratios, tS is the “Salpeter” accretion time scale
[Eq. (51)], andNm is the average number of mergers expected
in the interval [t − τGW/2, t + τGW/2], t being the cosmic
time corresponding to the cosmological redshift z of the GW
source. Note that this definition also enforces the obvious fact
that the signal cannot last longer than the age of the Universe
(∆t ≤ t0).
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FIG. 3. Gravitational radiation time scale, instability time scale, and the signal duration ∆t [defined in Eq. (33)] for detectable LISA sources
and for different boson masses.

Figures 3 and 4 show histograms of τinst, τGW and ∆t for
resolvable sources with SNR ρ ≥ 8 [cf. Eq. (34)]. When
computing the SNR, we use an observation time Tobs = 2 yr
for LIGO and Tobs = 4 yr for LISA. We adopt the LISA noise
power spectral density specified in the ESA proposal for L3
mission concepts [11] and the design sensitivity of Advanced
LIGO [73]. The events are binned by gravitational radiation
time scale τGW, instability time scale τinst, and signal dura-
tion ∆t, as defined in Eq. (33). For concreteness, in the plot
we focus on the most optimistic astrophysical model, and we
neglect the confusion noise due to the stochastic background
produced by these sources [cf. [74]]. For LIGO we show both
Galactic and extragalactic sources.

The signal duration ∆t is typically equal to the gravitational
radiation time scale τGW, and (as anticipated) much longer
than the instability time scale τinst. Since for LIGO we ne-
glect the effects of mergers and accretion, the only visible dif-
ference between ∆t and τGW is due to the fact that we cut off
the signal when its typical time scale is longer than the age
of the Universe (i.e., as mentioned above, we set ∆t = t0 if
τGW > t0). For LISA there are more subtle effects related to
accretion and mergers [cf. Eq. (33)], but Figs. 3 and 4 demon-
strate that the signal duration ∆t is always much longer than
the instability time scale τinst, as suggested by the rough esti-
mates of Eqs. (31) and (32).

E. Gravitational waveform

Since the GW signal from boson condensates is quasi-
monochromatic, we can can compute the (average) signal-to-
noise ratio (SNR) as [75, 76]

ρ '

〈
h
√
Toverlap√
Sh(f)

〉
, (34)

where h is the root-mean-square (rms) strain amplitude;
Sh(f) is the noise power spectral density at the (detector-
frame) frequency f of the signal, which is related to the
source-frame frequency fs ≡ ω/(2π) by f = fs/(1 + z)
(z being the redshift); Toverlap is the overlap time between the
observation period Tobs and the signal duration ∆t(1 + z) [in
the detector frame, hence the factor 1 + z multiplying the sig-
nal duration ∆t in the source frame]; and 〈. . . 〉 denotes an
average over the possible overlap times. In practice, when our
astrophysical models predict that a signal should overlap with
the observation window, we compute this average by random-
izing the signal’s starting time with uniform probability distri-
bution in the interval [−∆t(1 + z), Tobs] (where we assume,
without loss of generality, that t = 0 is the starting time of the
observation period).

Coherent searches for almost-monochromatic sources are
computationally expensive, and normally only feasible when
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FIG. 4. Gravitational radiation time scale, instability time scale, and the signal duration ∆t [defined in Eq. (33)] for detectable LIGO sources
and for different boson masses. Dashed lines represent extragalactic sources and bold lines represent Galactic sources.

the intrinsic parameters of the source and its sky location are
known. For all-sky searches, where the properties and loca-
tion of the sources are typically unknown, it is more common
to use semicoherent methods, where the signal is divided in
N coherent segments with time length Tcoh. The typical sen-
sitivity threshold, for signals of duration ∆t(1 + z) � Tobs,
is [cf. e.g. [77]]

hthr '
25

N 1/4

√
Sh(f)

Tcoh
, (35)

where hthr is the minimum rms strain amplitude detectable
over the observation time N × Tcoh. This criterion was used,
for example, in [19]. In the following we consider both cases
(a full coherent search and a semicoherent method) in order to
bracket uncertainties due to specific data analysis choices. For
the semicoherent searches we only consider events for which
∆t(1 + z)� Tobs [since the threshold gived by eq. (35) only
holds for long-lived signals].

A useful quantity to compare the sensitivity of different
searches independently of the data-analysis tecnhique and the
quality and amount of data is the so-called “sensitivity depth,”
defined by [78]

D(f) =

√
Sh(f)

hthr
. (36)

For example, the average sensitivity depth of the last EIN-
STEIN@HOME search was D ≈ 35Hz−1/2 [79].

To compute h, we first use Eqs. (9), (19) and (20) to get a
combination of the two GW polarizations,

H ≡ h+− ih× = − 2

ω̃2r

∑
`m̃n

Z∞`m̃ω̃ −2Y`m̃ω̃e
iω̃(r∗−t) . (37)

In the following we will omit the sum over `m̃n for ease
of notation. Let us focus on a single scalar field mode4. If
the scalar field has azimuthal number m and real frequency
ωR, the GW emitted by the scalar cloud will have azimuthal
number m̃ = ±2m and frequency ω̃ = ±2ωR. Defining
Z∞ = |Z|e−iφ, where |Z| and φ are both real, we have

H = −2|Z|
ω̃2r

(
−2Y`m̃ω̃e

i[ω̃(r∗−t)+φ]

+−2Y`−m̃−ω̃e
−i[ω̃(r∗−t)+φ]

)
, (38)

where we used the fact that Z∞`−m̃−ω̃ = Z∞`m̃ω̃ . Since
sY`m̃ω̃(ϑ, ϕ) = sS`m̃ω̃(ϑ)eimϕ and S is a real function for

4 In this work we will focus on the mode with the smallest instability time
scale ` = m = 1, which should be the dominant source of GW radia-
tion [19].
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real ω̃, we get

h+ = <(H) ≡− 2|Z|
ω̃2r

(−2S`m̃ω̃ + −2S`−m̃−ω̃)

× cos [ω̃(r∗ − t) + φ+ m̃ϕ] , (39)

h× = =(H) ≡− 2|Z|
ω̃2r

(−2S`m̃ω̃ − −2S`−m̃−ω̃)

× sin [ω̃(r∗ − t) + φ+ m̃ϕ] . (40)

The GW strain measured at the detector is

h = h+F+ + h×F× , (41)

where F+,× are pattern functions that depend on the orienta-
tion of the detector and the direction of the source. To get the
rms strain of the signal we angle-average over source and de-
tector directions and use

〈
F 2

+

〉
=
〈
F 2
×
〉

= 1/5, 〈F+F×〉 = 0,〈
|sS`m̃ω̃|2

〉
= 1/(4π) and

〈
cos2 [ω̃(r∗ − t) + φ+ m̃ϕ]

〉
=〈

sin2 [ω̃(r∗ − t) + φ+ m̃ϕ]
〉

= 1/2. We then obtain

h '
〈
h2
〉1/2

=

(
2|Z|2

5πω̃4r2

)1/2

=

(
4Ė

5ω̃2r2

)1/2

, (42)

where Ė is given in Eq. (22), which for a single scalar mode
reads Ė =

∑
` |Z`|2/(2πω̃2). Finally, let us factor out the

BH mass and the mass of the scalar condensate: |Z| =
A(χ, µM)(Mω̃)2MS/M

2, where A(χ, µM) is a dimension-
less quantity. The final expression for the rms strain reads

h =

√
2

5π

M

r

MS

M
A(χ, µM) . (43)

We conservatively assume that the GWs observed at the de-
tector are entirely produced after the saturation phase of the
instability. Therefore, we compute h using the final BH mass
and spin, as computed in Eqs. (26) and (25), respectively. Fi-
nally, larger initial spins imply that a larger fraction of the BH
mass is transferred to the scalar condensate [cf. Eq. (27)]. So,
for a given scalar field mass and initial BH mass, the strain
grows with the initial spin.

Equation (43) is valid for any interferometric detector for
which the arms form a 90-degree angle, such as Advanced
LIGO. For a triangular LISA-like detector the arms form a
60-degree angle, and we must multiply all amplitudes by a ge-
ometrical correction factor

√
3/2 [5, 80]. Additionally, since

we sky-average the signal, we will use an effective non-sky-
averaged noise power spectral density, obtained by multiply-
ing LISA’s sky-averaged Sh by 3/20 [81]. The analysis pre-
sented below takes into account these corrective factors.

F. Cosmological effects

Since some sources can be located at non-negligible red-
shifts, the root-mean-square strain amplitude of Eqs. (42)
and (43) must be corrected to take into account cosmologi-
cal effects, which affect the propagation of the waves to the
detector [82]. These effects have two main consequences.

First, the frequency f of the signal as measured at the
detector’s location (“detector frame”) is redshifted with re-
spect to the emission frequency fs in the “source-frame”, i.e.
f = fs/(1 + z).

Second, in the strain amplitude given by Eq. (43), the dis-
tance r to the detector should be interpreted as the comov-
ing distance, which for a flat Friedmann-Lemaitre-Robertson-
Walker model is given by

Dc(z) = DH

∫ z

0

dz′√
∆(z′)

, (44)

where ∆(z) = ΩM (1+z)3 +ΩΛ, DH is the Hubble distance,
ΩM is the dimensionless matter density and ΩΛ is the dimen-
sionless cosmological constant density. All other quantities
(masses, lengths and frequencies) in Eq. (43) should be in-
stead be interpreted as measured by an observer in the source
frame.

Alternatively, one might wish to use quantities measured
by an observer at the detector’s location to compute the strain
amplitude of Eq. (43). Detector-frame quantities are related
to source-frame ones by powers of (1 + z), namely all quan-
tities with dimensions [mass]p (in our geometrized units G =
c = 1) are multiplied by the factor (1 + z)p, e.g. masses are
multiplied by (1 + z) (“redshifted masses”), frequencies are
divided by the same factor (“redshifted frequencies”), while
the comoving distance is multiplied by a factor (1 + z), thus
becoming the luminosity distanceDL = Dc(1+z). Since the
strain amplitude of Eq. (43) is dimensionless, that equation
yields the same result when using detector-frame quantities as
when using source-frame ones.

The typical distance up to which BH-condensate sources
are detectable can be estimated by defining an “angle-
averaged range” Drange as the luminosity distance at which
either the SNR ρ(Drange) = 8 [cf. Eq. (34)] for coherent
searches, or h/hthr(Drange) = 1 for semicoherent searches
[cf. Eq. (35)].

In Fig. 5 we show Drange for both LISA and LIGO at de-
sign sensitivity under different assumptions on the initial BH
spin. The left panels refer to single coherent observation with
Tobs = 4 yr for LISA (Tobs = 2 yr for Advanced LIGO),
whereas the right panels refer to a (presumably more realistic)
semicoherent search with N = 121 coherent segments of du-
ration Tcoh = 250 hr. In the more optimistic case, sources
are detectable up to cosmological distances of ∼ 20 Gpc
(∼ 2 Gpc) if the BH is nearly extremal and the boson mass is
in the optimal mass range ms ∼ 10−17 eV (ms ∼ 10−13 eV)
for LISA (LIGO). For the semicoherent search, Drange is re-
duced by roughly one order of magnitude, with a maximum
detector reach ∼ 2 Gpc and ∼ 200 Mpc for LISA and Ad-
vanced LIGO, respectively.

III. MASSIVE BLACK HOLE POPULATION MODELS

An assessment of the detectability of GWs from superra-
diant instabilities requires astrophysical models for the mas-
sive BH population. In this section we describe the models
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FIG. 5. Angle-averaged range Drange for LISA (top) and Advanced LIGO at design sensitivity (bottom) computed for selected initial BH spin
(χi = 0.998, 0.95, 0.7). Left panels: the range is computed using a coherent search over an observation time Tobs = 4 yr (for LISA) and
Tobs = 2 yr (for LIGO). Right panels: we assume a semicoherent search withN = 121 coherent segments of duration Tcoh = 250 hr.

adopted in our study, and in particular our assumptions on (A)
the mass and spin distribution of isolated massive BHs, (B)
their Eddington ratio distribution, and (C) their merger his-
tory.

A. Mass and spin distribution of isolated black holes

Let n be the comoving-volume number density of BHs. For
the mass and spin distribution of isolated BHs we consider:

(A.1) A model where d2n/(d log10Mdχ) is computed using
the semianalytic galaxy formation model of [42] (with
later improvements described in [72, 83, 84]). This dis-
tribution is redshift-dependent and skewed toward large
spins, at least at low masses (cf. [72]). It also has a
negative slope dn/d log10M ∝ M−0.3 for BH masses
M < 107M�, which is compatible with observations
(cf. [72], Figure 7). The normalization is calibrated so
as to reproduce the observed M–σ and M–M? scaling
relations of [85], where σ is the galaxy velocity disper-
sion and M? is the stellar mass. We also account for the

bias due to the resolvability of the BH sphere of influ-
ence [86, 87]. Because of the slope, normalization and
spin distribution, this model is optimistic.

(A.2) An analytic mass function [45, 46]

dn

d log10M
= 0.005

(
M

3× 106M�

)−0.3

Mpc−3, (45)

which we use for redshifts and BH masses in the range
104M� < M < 107M� and z < 3. For M > 107M�
we use a mass distribution with normalization 10 times
lower than the optimistic one. For this model we use a
uniform distribution of the initial spins χ ∈ [0, 1]. Be-
cause of the lower normalization and the spin distribu-
tion, this model is less optimistic.

(A.3) An analytic mass function

dn

d log10M
= 0.002

(
M

3× 106M�

)0.3

Mpc−3, (46)
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which we use again for 104M� < M < 107M� and
z < 3, whereas for M > 107M� we use a mass dis-
tribution with normalization 100 times lower than the
optimistic one. For this model we also consider a uni-
form distribution of the initial spins χ ∈ [0, 1]. Because
of the normalization, slope and spin distribution, this
model is pessimistic.

B. Black hole mergers

Our standard choice for BH mergers is to compute the
comoving-volume number density nm of mergers per (loga-
rithmic) unit of total mass Mtot = M1 + M2, unit redshift
and (logarithmic) unit of mass ratio q = M2/M1 ≤ 1, i.e.

ν(Mtot, z, q) ≡
d3nm

d log10Mtotdzd log10 q
, (47)

from the semianalytic model of [42].
We can then estimate the average number of mergers (be-

tween z and z + dz) for a BH of mass M as

dNm(M, z) =
µ(M, z)

φ(M, z)
dz . (48)

Here

φ(M, z) ≡ dn

d log10M
=

∫
d2n

d log10Mdχ
dχ (49)

is the (isolated BH) mass function, and

µ(Mtot, z) ≡
d2nmerger

d log10Mtotdz
=

∫
q>qc

ν d log10 q ,

where qc is the critical mass ratio above which we assume
mergers make an impact. In practice, most BH mergers in our
semianalytic models have q & 0.01–0.001 (especially in the
LISA band, cf. [88]), so our results are robust against the exact
choice of qc. Nevertheless, to be on the conservative side,
we set qc = 0. A larger qc would produce a slightly lower
BH merger number and, in turn, a slightly higher number of
boson-condensate sources, under the conservative assumption
that mergers destroy the boson cloud. We can then compute
the average number of mergers experienced by a BH of mass
M in the redshift interval [z1, z2] as

Nm =

∫ z2

z1

dNm
dz

dz . (50)

Note that the number of mergers depends on the seeding
mechanisms of the massive BH population, as well as on the
“delays” between the mergers of galaxies and the mergers of
the BHs they host [cf. e.g. [38]].

When computing the average number of mergers Nm to
be used to estimate the number of boson-condensate GW
events from isolated BHs, i.e. when evaluating the num-
ber of resolved events [Eq. (62) below] and the amplitude

of the stochastic background [Eq. (64) below], we consider
the “popIII” model of [38] (a light-seed scenario with delays).
Choosing a different seed model would not alter our conclu-
sions. However, when considering the constraints that can be
placed on the boson mass by direct observations of BH co-
alescences by LISA, we consider all three models presented
in [38] (“popIII”, “Q3” and “Q3nod”). These models corre-
spond respectively to light seeds with delays between a galaxy
merger and the corresponding binary BH merger; heavy seeds
with delays; and heavy seeds with no delays; and they are cho-
sen to bracket the theoretical uncertainties on the astrophysics
of BH seed formation and BH delays.

C. Accretion

Clearly, accretion is competitive with the superradiant ex-
traction of angular momentum from the BH [18], so it is im-
portant to quantify its effect. We estimate the accretion time
scale via the Salpeter time,

tS = 4.5× 108 yr
η

fEdd(1− η)
, (51)

where fEdd is the Eddington ratio for mass accretion, and the
thin-disk radiative efficiency η is a function of the spin related
to the specific energy EISCO at the innermost stable circular
orbit [89]:

η = 1− E
ISCO

, (52)

E
ISCO

=

√
1− 2

3r
ISCO

, (53)

r
ISCO

= 3 + Z2 −
χ

|χ|
√

(3− Z1)(3 + Z1 + 2Z2) , (54)

Z1 = 1 + (1− χ2)1/3
[
(1 + χ)1/3 + (1− χ)1/3

]
, (55)

Z2 =
√

3χ2 + Z2
1 . (56)

For the Eddington ratio fEdd we consider three models:

(C.1) We use the results of our semianalytic model to con-
struct probability distribution functions for fEdd at dif-
ferent redshifts and BH masses.

(C.2) We adopt a simple model in which fEdd = 1 for 10%
of the massive BHs, and fEdd = 0 for the remaining
ones. (The choice of 10% is a reasonable estimate for
the duty cycle of active galactic nuclei [90, 91]).

(C.3) Finally, we consider a very pessimistic model in which
all BHs have fEdd = 1. Although unrealistic, this mod-
els maximizes the effects of accretion, and therefore it
yields the most conservative lower bound for the super-
radiant instability time scale.
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IV. STELLAR MASS BLACK HOLE POPULATION
MODELS

We now turn to a description of stellar-mass BHs, which are
of interest for LIGO. Here we have to model (A) extragalactic
BHs, which turn out to dominate the stochastic background of
GWs from ultralight bosons, and (B) Galactic BHs, which (as
pointed out in [19, 20]) are dominant in terms of resolvable
signals.

A. Extragalactic BHs

In the standard scenario, stellar-mass BHs are the end prod-
ucts of the evolution of massive (M & 20M�) stars. They
form either via direct collapse of the star or via a supernova
explosion followed by fallback of matter (failed supernova).
This process depends on various parameters, such as stellar
metallicity, rotation and interactions with a companion if the
star belongs to a binary system [92–95]. In particular, the
metallicity of the star determines the strength of stellar winds
and can thus have a significant impact on the mass of the stel-
lar core prior to collapse [96, 97]. In addition, BHs can grow
hierarchically through multiple mergers that occur in dense
stellar clusters [69, 70, 98, 99]. This process is expected to
leave an imprint on the distribution in the mass-spin plane:
while BHs grow in mass via mergers their spins converge to
values around ∼ 0.7 with little or no support below ∼ 0.5
[69–71].

In this work we consider only BH formation from core
collapse of massive stars. We use the analytic fits for the
BH mass as a function of initial stellar mass and metallicity
from [100], embedded in the semianalytic galaxy evolution
model from [101]. In particular, the latter model describes the
production of metals by stars [102] and the evolution of the
metallicity of the interstellar medium, which is inherited by
the stars that form there. The extragalactic BH formation rate
as a function of mass and redshift reads
dṅeg

dM
=

∫
dM?ψ[t− τ(M?)]φ(M?)δ[M? − g−1(M)] ,

(57)
where τ(M?) is the lifetime of a star with massM?, φ(M?)
is the stellar initial mass function, ψ(t) denotes the cosmic
star formation rate (SFR) density and δ is the Dirac delta. We
use the fit to the cosmic SFR described in [103], calibrated
to observations [104, 105]. We adopt a Salpeter initial mass
function φ(M?) ∝ M?

−2.35 [106] in the mass rangeM? ∈
[0.1 − 100]M� and use the stellar lifetimes from [107]. The
initial stellar mass M? and BH mass M are related by the
function M = g(M?), which can be (implicitly) redshift-
dependent (through its dependence on stellar metallicity), and
which we take from the “delayed” model of [100].

B. Galactic BHs

Resolvable signals are expected to be dominated by Galac-
tic stellar-mass BHs [19]. We estimate the present-day mass

function of these BHs as

dNMW

dM
=

∫
dt

SFR(z)

M?

dp

dM?

∣∣∣∣ dMdM?

∣∣∣∣−1

, (58)

where NMW denotes the number of BHs in the Galaxy,
dp/dM? is the normalized Salpeter initial mass function (i.e.
the probability of forming a star with mass betweenM? and
M? + dM?), and SFR(z) denotes the SFR of Milky-Way
type galaxies as a function of z [105, 108]. The integration
is over all cosmic times till the present epoch. The (dif-
ferential) relation between BH mass and initial stellar mass
dM/dM? is taken from the “delayed” model of [100], and
is also a function of redshift via the metallicity. For the lat-
ter, we use the results of [109] to describe its evolution with
cosmic time. We then “spread” dNMW/dM throughout the
Galaxy in order to obtain a (differential) density dnMW/dM ,
by assuming that the latter is everywhere proportional to the
(present) stellar density. To this purpose, we describe the
Galaxy by a bulge+disk model, where the bulge follows a
Hernquist profile [110] with mass ∼ 2 × 1010M� and scale
radius ∼ 1 kpc [111], and the disk is described by an expo-
nential profile with mass ∼ 6× 1010M� and scale radius ∼ 2
kpc [112].

Since these models (for both Galactic and extragalactic
BHs) do not predict the initial BH spins, we assume a uniform
distribution and explore different ranges (from optimistic to
pessimistic): χ ∈ [0.8, 1], [0.5, 1], [0, 1] and [0, 0.5].

V. EVENT RATES FOR LISA AND LIGO

Having in hand the calculation of the GW signal of Sec. II
and the astrophysical models of Secs. III and IV, we can now
compute event rates for LISA and LIGO. We consider two
separate classes of sources: (A) boson-condensate GW events
which are loud enough to be individually resolvable, and (B)
the stochastic background of unresolvable sources.

A. Resolvable sources

In the limit in which the (detector-frame) signal duration
∆t(1 + z) is small compared to the observation time Tobs,
∆t(1 + z)� Tobs, the number of resolvable events is propor-
tional to the observation time [113]:

N = Tobs

∫
ρ>8

d2ṅ

dMdχ

dt

dz
4πD2

cdzdMdχ , (59)

where

dt

dz
=

1

H0

√
∆(1 + z)

(60)

is the derivative of the lookback time with respect to redshift.
For long-lived sources with detector-frame duration ∆t(1+

z) � Tobs, the number of detections does not scale with
the observation time, but rather with the “duty cyle” ∆t/tf ,
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where tf ≡ n/ṅ is the formation time scale of the boson
condensate. For example, if BHs form a boson condensate
only once in their cosmic history, tf is the age of the Uni-
verse t0 ≈ 13.8 Gyr. This duty cycle has the same meaning
as the duty cycle of active galactic nuclei: it accounts for the
fact that, at any given time, only a fraction of the BH popu-
lation will be emitting GWs via boson condensates. Because
of the ergodic theorem, this fraction is given by the average
time fraction during which a BH emits GWs via boson con-
densates. This average time fraction is indeed the duty cy-
cle ∆t/tf . Therefore, the number of resolved sources when
∆t(1 + z)� Tobs is simply

N =

∫
ρ>8

d2n

dMdχ

∆t

tf

dVc
dz

dzdMdχ

=

∫
ρ>8

d2ṅ

dMdχ
∆t

dVc
dz

dzdMdχ , (61)

where dVc = 4πD2
cdDc.

Equations (59) and (61) can be merged into a single ex-
pression that remains valid also in the intermediate regime
∆t(1+z) ∼ Tobs. Indeed, the probability that a signal lasting
a time span ∆t(1+z) (in the detector frame) overlaps with an
observation of duration Tobs is simply proportional to the sum
of the two durations, ∆t(1+z)+Tobs. This can be undestood
in simple geometric terms: for the signal to overlap with the
observation window (which we define, without loss of gener-
ality, to extend from t = 0 to t = Tobs), the signal’s starting
time should fall between t = −∆t(1 + z) and t = Tobs, i.e.
in a time interval of length ∆t(1 + z) + Tobs. Therefore, we
can estimate the number of observable GW events as

N =

∫
ρ>8

d2ṅ

dMdχ

(
Tobs

1 + z
+ ∆t

)
dVc
dz

dzdMdχ . (62)

Since dDc/dz = (1 + z)dt/dz, it can be easily checked this
equation reduces to Eqs. (59) and (61) in the limits ∆t(1 +
z)� Tobs and ∆t(1 + z)� Tobs, respectively.

For extragalactic LIGO sources we compute d2ṅ/dMdχ
from the astrophysical models of Sec. IV A, while for LISA
and galactic LIGO sources we compute d2n/dMdχ as de-
scribed in Secs. III and IV B and then assume d2ṅ/dMdχ =
(d2n/dMdχ)/t0. This corresponds to assuming that the
boson-condensate formation time tf = t0 equals the age of
the Universe, or that BHs radiate via boson condensates only
once in their lifetime. This conservative assumption does not
affect our results very significantly. Once a BH-boson sys-
tem radiates, its spin decreases to low values, while the mass
remains almost unchanged. For the BH to emit again via bo-
son condensates, its spin must grow again under the effect
of accretion or mergers. In this process, however, the BH
mass also grows rapidly: for example, the simple classic esti-
mates by Bardeen [114] imply that when a BH spins up from
χ = 0 to χ = 1 via accretion, its mass increases by a factor√

6. So even if new boson clouds form due to the instability
of higher-m modes, the instability time scales will be much
larger [cf. Eq. (8)] and the GW flux will be highly suppressed
[cf. Ref. [41]].
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FIG. 6. Number of resolved LIGO and LISA events for our opti-
mistic BH population models as a function of the boson mass with
different observation times Tobs, using both full and semicoherent
searches. Thick (thin) lines were computed with (without) the con-
fusion noise from the stochastic background.

Our main results for resolvable rates are summarized in
Fig. 6, Fig. 7, Table I and Table II.

In Fig. 6 we focus on optimistic models and we show how
the number of individually resolvable events depends on the
observation time and on the chosen data-analysis method.
More specifically, for LISA we use the BH mass-spin dis-
tribution model (A.1) and accretion model (C.1), while for
LIGO we adopt the optimistic spin distribution χi ∈ [0.8, 1].
We bracket uncertainties around the nominal LISA mission
duration of Tobs = 4 yr [11] by considering single obser-
vations with duration Tobs = (2, 4, 10) yr. We also show
rates for a (presumably more realistic) semicoherent search
with 121 segmenst of Tcoh = 250 hours coherent integration
time5. For Advanced LIGO at design sensitivity, we simi-
larly consider single observations lasting either Tobs = 2 yr
or Tobs = 4 yr, as well as a semicoherent search with 121
segmenst of Tcoh = 250 hours coherent integration time.

Figure 6 (together with Figure 3 in [74]) shows that the
number of resolvable events is strongly dependent on the bo-
son mass and on the astrophysical model.

For LISA, our astrophysical populations contain mostly
BHs in the mass range 104M� < M < 108M�, and the
sensitivity curve peaks around a frequency corresponding to
ms ∼ 10−17eV [cf. Fig. 1 of [74]]. These considerations –
together with the condition for having an efficient superradi-
ant instability (namely, Mµ ∼ 0.4 at large spin) – translate
into the range 3 × 10−18 eV . ms . 5 × 10−17 eV for the
mass of detectable bosonic particles in a semicoherent search.

For LIGO, our models predict that most BHs will be in the
mass range 3M� < M < 50M�, and the most sensitive
frequency band corresponds to ms ∼ 3× 10−13eV [cf. Fig. 1

5 The number of resolved events for other choices of number of segments
and coherent integration time can be obtained from Fig. 7 and expressing
the sensitivity depth as D ≈ T 1/2

cohN
1/425−1 [cf. Eqs. (35) and (36)].
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of [74]], translating into the range 2 × 10−13 eV . ms .
3× 10−12 eV for the mass of detectable bosonic particles.

In order to quantify the “self-confusion” noise due to the
stochastic background produced by BH-boson systems, in
Fig. 6 we also display the number of resolved events that
we would obtain if we omitted the confusion noise from the
stochastic background (cf. Fig. 1 of [74] and Sec. V B). Ne-
glecting the confusion noise would overestimate the number
of resolvable events in LISA by one or two orders of magni-
tude.

The rates computed in Figure 6 refer to our optimistic as-
trophysical models. As shown in [74], resolvable event rates
in the most pessimistic models are about one order of mag-
nitude lower. Nevertheless, it is remarkable that even in
the most pessimistic scenario for direct detection (i.e., unfa-
vorable BH mass-spin distributions and semicoherent search
method for the signal), bosonic particles withms ∼ 10−17 eV
(ms ∼ 10−12 eV) would still produce around 5 (15) direct
LISA (LIGO) detections of boson-condensate GW events.

In Figure 7 we show how the number of events grows with
the sensitivity depth of the search [78], as defined in Eq. (36).
For LISA the number of events grows roughly with D3, cor-
responding to T 3/2

obs . This is expected from the fact that the
number of events for sources at & 30 Mpc should grow with
the sensitive volume, and thus decrease with ρ−3

crit, where ρcrit

is the critical SNR for detection [115].
On the other hand, LIGO will be mostly sensitive to sig-

nals within the Galaxy. For a given boson mass and distance,
τGW ∼ h−2 andM ∼ h1/8 [cf. Eqs. (30) and (42)]. Since the
Galactic stellar BH population obtained from Eq. (58) is well
fitted by dN/M ∼ e−0.2M , for a fixed volume the integral in
Eq. (61) goes as

N ∼
∫
h>hthr

h−23/8e−0.2h1/8

dh ∼ h−15/8
thr , (63)

where in the last step we took the leading order of the integral
for small hthr. From Eq. (34) one has hthr ∝ T

−1/2
obs and

therefore N ∝ T
15/16
obs . This is in agreement with the scaling

that we find.
Assuming the sensitivity depth of the last EIN-

STEIN@HOME search D ≈ 35Hz−1/2 [79] and an optimal
boson mass around ms ∼ 10−12.5 eV, we find that O1
should have detected 5 resolvable events for the optimistic
spin distribution χ ∈ [0.8, 1], and 2 events for a uniform
spin distribution χ ∈ [0, 1]. As pointed out in [74], these
optimal boson masses may already be ruled out by upper
limits from existing stochastic background searches [74]. On
the other hand, the pessimistic spin distribution χ ∈ [0, 0.5]
is still consistent with (the lack of) observations of resolvable
BH-boson GW events in O1, though marginally ruled out by
the O1 stochastic background upper limits [74].

Our results for resolvable event rates using different search
techniques, mass/spin and accretion models are summarized
in Tables I and II. For LISA we included “self-confusion”
noise in our rate estimates, and using different accretion mod-
els does not significantly affect our results. Interestingly, even
though the accretion models (C.2) and (C.3) are more pes-

simistic than model (C.1), they predict a slightly larger num-
ber of resolvable events for boson masses in the optimal range
around 10−17 eV. This is because the self-confusion noise is
lower for models (C.2) and (C.3) [cf. Section V B], and thus
the loss in signal is more than compensated by the lower total
(instrumental and self-confusion) noise floor.

ms[eV] Search method Accretion model Events

10−16 Coherent (C.1) 75 – 0
Semicoherent 0

Coherent (C.2) 75 – 0
Semicoherent 0

Coherent (C.3) 75 – 0
Semicoherent 0

10−17 Coherent (C.1) 1329 – 1022
Semicoherent 39 – 5

Coherent (C.2) 3865 – 1277
Semicoherent 36 – 4

Coherent (C.3) 5629 – 1429
Semicoherent 39 – 5

10−18 Coherent (C.1) 17 – 1
Semicoherent 0

Coherent (C.2) 18 – 1
Semicoherent 0

Coherent (C.3) 20 – 0
Semicoherent 0

TABLE I. Number of resolvable events in the LISA band com-
puted including the “self-confusion” noise from the stochastic back-
ground of BH-boson condensates for different accretion models. The
lower and upper bounds correpond to the pessimistic and optimistic
massive BH population models, respectively. For the semicoherent
search we use 121 segments of Tcoh = 250 hours coherent integra-
tion time. For the coherent search, we adopt the nominal mission
duration of Tobs = 4 years.

ms[eV] Search method Events

10−11.5 Coherent 21 – 2
Semicoherent 1 – 0

10−12 Coherent 1837 – 193
Semicoherent 50 – 2

10−12.5 Coherent 12556 – 1429
Semicoherent 205 – 15

TABLE II. Number of resolvable events for Advanced LIGO at de-
sign sensitivity. For the semicoherent search we use 121 segmenst
of Tcoh = 250 hours coherent integration time. For the coherent
search, we set Tobs = 2 years. The lower and upper bounds corre-
pond to the pessimistic (χ ∈ [0, 0.5]) and optimistic (χ ∈ [0.8, 1])
spin distributions, respectively.
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FIG. 7. Left: Number of events as a function of the sensitivity depth D [Eq. (36)] for selected boson masses in the LISA band and accretion
model (C.1). The bottom (top) of each shadowed region correspond to the pessimistic (optimistic) model. Right: Same, but for boson masses
in the LIGO band. Here the bottom (top) of each shadowed region correspond to pessimistic (optimistic) spin distributions.

B. Stochastic background

In addition to individually resolvable sources, a population
of massive BH-boson condensates at cosmological distances
can build up a detectable stochastic background. This pos-
sibility is potentially very interesting, given the spread in BH
masses (and, hence, in boson masses that would yield an insta-
bility) characterizing the BH population at different redshifts,
but to the best of our knowledge it has not been explored in
the existing literature.

The stochastic background can be computed from the for-
mation rate density per comoving volume ṅ as [116]

Ωgw(f) =
f

ρc

∫
ρ<8

dχdMdz
dt

dz

d2ṅ

dMdχ

dEs
dfs

, (64)

where ρc = 3H2
0/(8πG) is the critical density of the Uni-

verse, dEs/dfs is the energy spectrum in the source frame,
and f is the detector-frame frequency. Note that the integral
is only over unresolved sources with ρ < 8.

For extragalactic stellar mass BHs (which are sources for
LIGO), we calculate d2ṅ/dMdχ based on the model of
Sec. IV, while for LISA sources we use the model of Sec. III
to obtain d2n/dMdχ, and then (as we did for the resolved
sources) we assume d2ṅ/dMdχ = (1/t0)(d2n/dMdχ). As
before, this corresponds to the conservative assumption that
formation of boson condensates occurs only once in the cos-
mic history of each massive BH.

We compute the energy spectrum as

dEs
dfs
≈ EGWδ(f(1 + z)− fs) , (65)

where we recall that fs is the frequency of the signal in the
source frame, EGW is the total energy radiated by the bo-
son cloud in GWs during the signal duration ∆t, and the

Dirac delta is “spread out” over a frequency window of size
∼ max[1/(∆t(1 + z)), 1/Tobs] to account for the finite sig-
nal duration and the finite frequency resolution of the detec-
tor. As in the calculation of the rates of resolved sources,
∆t = min (τGW, t0) [cf. Eq. (30)] for LIGO sources, while
we account for mergers and accretion through Eq. (33) for
LISA sources. Moreover, since our calculations rely on the
implicit assumption that the instability reaches saturation be-
fore GWs are emitted, our estimates of the stochastic back-
ground only include BHs for which the expected number of
coalescences during the instability time scale is Nm < 1, and
for which τinst < ∆t (which ensures that the instability time
scale is shorter than the merger and accretion time scales).

The total energy emitted by the boson cloud during the sig-
nal duration ∆t can be estimated by integrating the GW en-
ergy flux given by Eq. (28). Using Eq. (29) we have

dEGW

dt
=
dẼ

dt

M2
S

M2
f

=
Mmax
S τGW

(t+ τGW)
2 , (66)

and by integrating over a time ∆t we get

EGW =

∫ ∆t

0

dt
dEGW

dt
=

Mmax
S ∆t

∆t+ τGW
. (67)

As shown in [74], the order of magnitude of the stochastic
background can be estimated by computing the mass fraction
of an isolated BH that is emitted by the boson cloud through
GWs. This can be defined as

fax =
EGW

Mi
, (68)

where we recall thatMi is the initial mass of the BH. In Fig. 8
we show the average fax, weighted by the BH population,
for our most optimistic models. In the LIGO and LISA band
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FIG. 8. Average fraction of mass of an isolated BH emitted by the
bosonic cloud for the optimistic models.

fax can be order O(1%), leading to a very large stochastic
background [74].

Note that Eq. (64) cannot be applied to Galactic BHs which
emit in the LIGO band, because it implicitly assumes that the
number density of sources, d2ṅ/dMdχ, is homogeneous and
isotropic. That assumption is clearly invalid for Galactic BHs
[cf. Eq. (58)]. However, in this case we can simply sum the
GW densities produced by the Galactic BH population at the
position of the detector. These densities are simply given by
ρgw = Ė/(4πr2) = (5/4)πf2

s h
2 [cf. Eq. (42)], r being the

distance from the source to the detector. (Note that we neglect
redshift and cosmological effects, since those are negligible
inside the Galaxy.) Therefore, the GW energy density per
(logarithmic) unit of frequency coming from each BH in the
Galaxy is simply dρgw/d ln f ≈ (5/4)πf2

s h
2δ(ln f − ln fs),

where the Dirac delta is “spread out” over a frequency window
of size∼ max[1/∆t, 1/Tobs] to account for the finite duration
of the signal and the finite frequency resolution of the detec-
tor. Therefore, the contribution to the stochastic background
from the population of Galactic BHs can be written as

Ωgw(f) =
1

ρc

∫
dMdV

dnMW

dM

∆t

t0

dρgw

d ln f
. (69)

Here dV denotes a volume integration over the Galaxy, and
∆t/t0 is again a duty cycle (i.e., we assume that Galactic BHs
emit via boson condensates only once in their cosmic history).

To compute the SNR for the stochastic background we use

ρstoch =

√
Tobs

∫ fmax

fmin

df
Ω2

GW

Ω2
sens

. (70)

For LISA we have [117]

Ωsens = Sh(f)
2π2

3H2
0

f3 , (71)

while for LIGO [118]

Ωsens =
Ph(f)

2ΓIJ(f)

2π2

3H2
0

f3 , (72)

where Ph(f) is LIGO’s noise power spectral density, assumed
to be the same for both Livingston and Hanford, and ΓIJ is the
overlap reduction function as defined in [119]. Notice the 1/2
factor in Ωsens for LIGO compared to LISA, due to the use of
data from two detectors instead of one.

As shown in Fig. 2 of [74], the SNR for this stochastic sig-
nal can be very high. Since the galactic background only
contributes to the full spectrum in a very narrow frequency
window around fs, the contribution of the extragalactic back-
ground to the SNR largely dominates. When computing the
background for LISA we assumed the semianalytic accre-
tion model (C.1). Considering the most pessimistic accretion
model (C.3) lowers the maximum SNR by at most a factor
two.

VI. EXCLUDING OR MEASURING BOSON MASSES
THROUGH LISA BLACK HOLE SPIN MEASUREMENTS

So far we have focused on the direct detection of GWs from
bosonic condensates. However it is also possible to infer the
existence of light bosons in an indirect way. As shown in
Fig. 1, the existence of a light boson would lead to the ab-
sence of BHs with spin above the corresponding superradi-
ant instability window (i.e., there would be holes in the BH
mass-spin “Regge plane” [17]). In this section we show that
LISA measurements of the spins of merging massive BHs can
be used to either rule out bosonic fields in the mass range
[4.5 × 10−19, 7.1 × 10−13] eV, or even more excitingly (if
fields in the mass range [10−17, 10−13] eV exist in nature) to
measure their mass with percent accuracy.

In principle we could carry out a similar analysis using as-
trophysical models for stellar-mass BH binary mergers de-
tectable by Advanced LIGO or third-generation Earth-based
detectors. However, spin magnitude measurements for the
components of a merging BH binaries are expected to be
poor (∆χ ∼ 0.3 at best) even with third-generation detec-
tors [39, 40]. In addition, the mass range of BHs detectable
by LIGO or future Earth-based interferometers overlaps in
mass with existing spin estimates from low-mass X-ray bi-
naries (see [37, 120–122] for reviews of current BH spin esti-
mates). In summary, we focus on LISA for two main reasons:

(i) LISA allows for percent-level determinations of mas-
sive BH spins (see e.g. Fig. 9 of [38]).

(ii) In comparison with current electromagnetic estimates
of massive BH spins, which can be used to exclude bo-
son masses in the range [10−20, 10−17] eV (see e.g. [21,
31]), LISA BH spin measurements can probe lower BH
masses; therefore, depending on the details of massive
BH formation models, they can exclude (or measure)
boson masses all the way up to ms ∼ 7× 10−13 eV.

One of our main tasks in this context is to determine
whether LISA observations can distinguish between two mod-
els: one where a massive boson exists (depleting the cor-
responding instability region in the BH Regge plane) and a
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FIG. 9. Example of a two-year simulation of massive BHs as ob-
served by LISA assuming the Q3-nod model in the presence of
a boson of mass ms = 10−16 eV. Each blue circle corresponds
to the mass and spin of one component of an observed BH bi-
nary. The brown line corresponds to the maximum allowed spin
χmax(M, ms) for the given boson mass. This curve is shaped like
a sawtooth because different m-harmonics are more important for
different BH masses. In this particular instance, LISA measure-
ments from the simulated data would lead to a measured boson mass
0.88× 10−16 eV < mm

s < 1.35× 10−16 eV.

“standard” model where no depletion occurs. This is a stan-
dard Bayesian model selection problem (see e.g. [123–125]
for previous applications of model selection to LISA observa-
tions of massive BH binaries).

We simulate massive BH binary catalogs corresponding to
the three astrophysical models described in Sec. III B (popIII,
Q3, Q3-nod) and seven values of ms in total, one for each
decade in the boson mass range ms ∈ [10−19, 10−13] eV.

To simulate the loss of mass and angular momentum for
each BH in the catalogs we compute the final angular momen-
tum Jf and massMf according to Eqs. (25) and (26), with az-
imuthal number 1 ≤ m ≤ 4 and frequency given by (8) with
l = m and n = 0. Approximating ωR ≈ µ in Eq. (8) (which is
strictly valid if Mµ � 1, but which is a good approximation
even for Mµ of order unity) we get

χf =
4Miµ (m−Miµχi)

m2
, (73)

Mf =
m−

√
m2 − 4mMiµχf + 4M2

i µ
2χiχf

2µχf
. (74)

We migrate BHs in the Regge plane if the age of the Uni-
verse t(z) at the merger redshift is larger than the instability
time scale (t(z) > τinst = 1/ωI ) and if the spin is higher
than a threshold χmax(M,ms) set by Eq. (25). This migra-
tion causes BHs in the catalog to accumulate along the critical
line χmax(M, ms) in the Regge plane. An example of this
accumulation can be seen in Fig. 9.

To compare two modelsM1 andM2 given a set of obser-
vations (i.e., a data set D), we can use Bayes’ theorem. The

probability of modelMi given the observations is

P (Mi|D) =
P (D|Mi)P (Mi)

P (D)
, (75)

where P (Mi) is the prior on model Mi, P (D|Mi) is the
likelihood of the data given the model, and P (D) is an over-
all probability of observing the data D. Given a likelihood
function for each model, we can then compute the odds ratio
between the two models:

O(M1/M2) =
P (M1|D)

P (M2|D)
=
P (D|M1)

P (D|M2)

P (M1)

P (M2)
. (76)

A value of the odds ratio larger than one favors model M1,
while a value of the odds ratio lower than one favors model
M2. When P (M1) = P (M2) the last factor on the right-
hand side simplifies, and the odds ratio is just the ratio of
the likelihood of the data in both models (also known as the
“Bayes factor”).

We construct a likelihood function for BHs in the Regge
plane for two models: one with no ultralight boson, and one
with an ultralight boson of mass ms. To avoid a possible bias
towards high spins in the astrophysical models (see e.g. [72])
we choose the simplest likelihood function in the absence of
bosons: L0(M,χ) = 1. In the presence of bosons, we set
the likelihood Lms

(M,χ) to unity if χ ≤ χmax(M,ms),
and we set it to zero otherwise. We add to this likelihood a
Gaussian centered on the threshold χmax(M,ms) with width
σχ = 0.05, with a prefactor 1− χmax in front of it. This fac-
tor represents the fraction of BHs with spins higher than the
threshold that have migrated out of the exclusion region to ac-
cumulate on the threshold line, under the simplifying assump-
tion that they migrate in the χ direction only (i.e., we neglect
the relatively small variations in the BH mass). In summary,
the likelihood Lms(M,χ) in the presence of a boson of mass
ms is defined by

Lms(M,χ) =


1, χmax(M,ms) = 1

1 +G(χ, 0.05), χ < χmax(M,ms) < 1

G(χ, 0.05), χmax(M,ms) < χ < 1

,

(77)

G(χ, σ) =
1− χmax√

2πσ
exp

[
− (χ− χmax)2

2σ2

]
. (78)

The prefactor in front of the Gaussian ensures that the
two likelihoods L0(M,χ) and Lms(M,χ) have the same
“weight”, in the sense that the integral

∫
LMdMdχ is inde-

pendent of the model (so the presence or absence of an ultra-
light boson have, a priori, the same probability).

As stated earlier, the spin threshold χmax(M,ms) is given
by Eq. (25). In practice this criterion is slightly complicated
by the fact that the range of affected BH masses depends on
the time available for each system to radiate, which in turn
depends on the redshift. For simplicity we compute the spin
limit using a constant instablility time scale of 500 Myrs (ap-
proximately the age of the Universe at redshift z = 10), set-
ting ωR = µ in Eq. (25). The choice of this time scale is



18

conservative in the sense that the exclusion region is smaller
than it would have been if we had chosen longer time scales.
Indeed, our choice reduces the likelihood discrepancy for low
redshift BHs that will have migrated to the threshold line, but
would not have had the time to do so had they merged at
higher redshifts. For illustration, Fig. 9 shows the distribu-
tion of BH masses and spins for one realization of a two-year
catalog with ms = 10−16 eV, along with the corresponding
spin threshold χmax(M,ms).

We simulate LISA observations of these catalogs using a
Fisher-matrix analysis similar to the study presented in [38],
using the updated LISA noise PSD of [11]. In addition to in-
strumental noise, we also include the boson mass-dependent
confusion noise coming from superradiant BH instabilities
shown in Fig. 1 of [74]. For each detectable binary (where
detectability is defined as ρ > 10)6 we approximate the recov-
ered distribution for each binary BH component by a bivari-
ate Gaussian centered on the true values (M̄i, χ̄i), with spread
given by the two-dimensional inverse of the covariance matrix
Γ = Σ−1:

pobs(Mi, χi) =

√
|Γ|

2π
exp

{
− 1

2

[
ΓMiMi

(Mi − M̄i)
2

+ Γχiχi
(χi − χ̄i)2 + 2ΓMiχi

(Mi − M̄i)(χi − χ̄i)
]}
.

(79)

One problem is that GW observations can measure the
reshifted mass Mz = (1 + z)M , rather than the BH mass
in the source frame M . Lensing effects will induce an ex-
tra uncertainty on the distance to the source of typical size
σlens
DL

(z), and through the redshift-distance relation DL(z) an
extra uncertainty on the redshift of size σlens

z (z). We include
the effects of lensing by adjusting the observed distribution
pobs(Mi, χi) along the mass direction. We estimate the typi-
cal extra error on the mass due to lensing as

σlens
M (z)

M
=
σlens
z (z)

1 + z
=

dz

dDL
(z)

σlens
DL

(z)

1 + z
. (80)

where the luminosity distance error as a function of redshift
can be estimated by the approximate relation [43, 126]

σlens
DL

(z) = DL(z)× 0.066
{

4
[
1− (1 + z)−1/4

]}9/5

.

(81)

At this stage we can compute the likelihood of an observed
BH for each modelM by integrating the product

L(i|M) =

∫
pobs(Mi, χi)LM(Mi, χi)dMidχi, (82)

6 Note that this threshold is slightly different from that used elsewhere in the
paper (ρ = 8, though that was for boson-condensate sources). Still, the
results hardly depend on this choice, since barely detectable events (ρ ∼
8− 10) have anyhow very poor spin determinations.

where the index i labels the observed BH. In the absence of
ultralight bosons we get L(i|M0) = 1, and in the presence
of bosons we use Monte Carlo methods to compute L(i|ms).
In practice we generate a set of random points in the Regge
plane (Mk, χk) distributed according to pobs(Mi, χi), with
an extra (spin-independent) jump in the mass direction due
to lensing, which we assume to be Gaussian distributed with
zero mean and standard deviation σlens

M (z). The integral is
then approximated by

L(i|ms) ≈
1

N

N∏
k=1

Lms
(Mk, χk). (83)

The integration with respect to mass and spin in Eq. (82) tends
to suppress the effect on the odds ratio of potential observa-
tions in the exclusion region that would favor high spins with
low confidence. As one can see from Eq. (79), if the mea-
surement error on the spin is significant, Eq. (82) will show a
significant overlap between the two factors inside the integral,
even if the observed spin is higher than the threshold.

Using this method we can simulate a set of LISA observa-
tions D and compute its likelihood for modelM as

L(D|M) =
∏
i

L(i|M), (84)

where the product is taken over all components of a binary
observed with SNR ρ > 10. Then, assuming no prior prefer-
ence, we compute the odds ratio between a model with boson
mass ms and a model without bosons:

O(ms/M0) = L(D|ms). (85)

We simulated observations in the absence of ultralight
bosons and in the presence of an ultralight boson with seven
possible values of ms (one for each decade in the boson mass
range ms ∈ [10−19, 10−13] eV). For each boson mass and for
the model without bosons, we simulated a set of 21 realiza-
tions of the LISA mission considering the three astrophysical
models (popIII, Q3, and Q3-nod) and four choices for the ob-
servation time (6 months, 1 year, 2 years and 4 years), corre-
sponding to a total of 252 simulations per model.

In the absence of an ultralight boson, we identify as ex-
cluded the range of masses where the odds ratio O satifies
log[O(ms/M0)] < −4.5. This criterion corresponds to re-
jecting the presence of the given boson mass at 3-σ confi-
dence level. This requirement to exclude a boson of a given
mass corresponds to a false alarm rate of ∼ 10% for a four-
year mission in the popIII model, and less than 5% in the
other models: the maximum odds ratio incorrectly favoring
the presence of an ultralight boson in the 84 realizations where
we assumed its absence was log(Omax) = 5.2 for the popIII
model, 1.1 for the Q3 model, and 2.8 for the Q3-nod model.
In the popIII case, a maximum odds ratio of 4.5 was exceeded
twice. The median range of boson masses excluded in our
simulations is summarized in Table III and Fig. 10. As ex-
pected, in our light-seed (popIII) model the excluded boson
masses are higher than in the heavy-seed models Q3 and Q3-
nod, because the observed BH masses are generally lower in
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FIG. 10. Median minimum and maximum boson mass excluded by
LISA for different observation times Tobs and BH evolution models
(red, solid line: popIII; green, dotted line: Q3; blue, dashed line: Q3-
nod). Due to the reduced merger rate in the Q3 model, limits on the
boson mass could be put in more than half of the simulations only
after one year of observations.

light-seed scenarios. The Q3-nod model allows us to set more
stringent bounds than the Q3 model, because the merger rate
is higher when there are no delays between galaxy mergers
and BH mergers. Furthermore, the Q3 model failed to allow
for a boson mass exclusion after six months of observations in
12 of the 21 simulations due to its low merger rate. For any as-
trophysical models among the three we considered, four years
of LISA observations would allow us to exclude boson masses
in the range 4.1× 10−18 eV to 8× 10−15 eV.

Model Tobs [yr] Min [eV] Max [eV]

popIII 0.5 4.7× 10−17 4.7× 10−14

1 8.2× 10−18 8.9× 10−14

2 6.9× 10−18 1.3× 10−13

4 4.5× 10−18 1.6× 10−13

Q3 0.5 – –
1 9.4× 10−18 1.9× 10−15

2 6.9× 10−18 7.5× 10−15

4 4.1× 10−18 8× 10−15

Q3-nod 0.5 6.9× 10−18 3.6× 10−15

1 4.5× 10−18 6.7× 10−15

2 1.8× 10−18 1× 10−14

4 1× 10−18 2.3× 10−14

TABLE III. Median minimum and maximum boson mass excluded
by LISA for different BH evolution models (popIII, Q3, Q3-nod) and
observation times Tobs.

It is also interesting to address the following question: in
the presence of an ultralight boson, could it be detected? And
if so, what is the accuracy with which we could determine
its mass? To answer the first question we identify the mass
range where log[O(ms)/Omax] ≥ −4.5, again corresponding
to a 3-σ confidence level, and then use the simulated events

to determine the accuracy with which ms can be determined.
Our results are summarized in Table IV. We do not show re-
sults for masses where four years of observations were not
enough to claim a boson detection. In marginal detections
(log(Omax) . 10), only the order of magnitude of the boson
mass could be inferred.

For the light-seed popIII model, boson masses in the range
[10−16, 10−13] eV could be confidently detected after four
years of observations with measurement errors in ms of 5-
10 %. Model Q3-nod allows for the confident detection of a
boson in the mass range [10−17, 10−14] eV with mass mea-
surement errors of 5-15 %, while the less optimistic model
Q3 only allows detections for bosons with mass in the range
[10−16, 10−15] eV, with mass measurement errors of ∼ 40%.

We remark that the biases in the recovered boson masses
are sometimes comparable to the corresponding measurement
accuracies: in low-mass (high-mass) seed models we tend to
overestimate (underestimate) the boson mass. It is likely that
this bias could be reduced with better modeling of the relevant
physics – e.g. by evolving Eqs. (24) numerically for each BH
from formation until merger – or with a more careful choice of
the likelihood function, e.g. by taking the observed redshift of
the system into account in the definition of the threshold line
in Eq. (77), i.e. in the likelihood in the presence of bosons.
A more detailed analysis of systematic and statistical errors in
recovering the boson masses is an interesting topic for future
work.

VII. CONCLUSIONS AND OUTLOOK

In this work and in the companion paper [74] we assess
the detectability of light-boson condensates around BHs with
GW interferometers combining the best available estimates
for GW emission from these systems, state-of-the-art astro-
physical BH population models, and relatively realistic GW
data analysis techniques.

For both Advanced LIGO and LISA, we find that the most
stringest constraints on the boson mass ms should come from
the stochastic background produced by the superposition of
unresolved GW signals from BH-boson condensate systems.
We show that this background should be detectable by Ad-
vanced LIGO for ms ∈ [2 × 10−13, 10−12] eV, and by LISA
for ms ∈ [5× 10−19, 5× 10−16] eV. We also find that exist-
ing constraints on the stochastic background from Advanced
LIGO’s O1 run may already rule out a range of boson masses
in the Advanced LIGO window.

Our results indicate that ∼ 15 − 200 resolvable sources
should be detectable by Advanced LIGO for scalar field
masses ms ∼ 3 × 10−13 eV, while LISA should be able
to resolve ∼ 5 − 40 sources for ms ∼ 10−17 eV. More-
over, LISA measurements of BH spins may either determine
ms ∈ [10−17, 10−13] eV to within 10% accuracy, or rule out
boson masses in the range ms ∈ [10−18, 1.6× 10−13] eV.

We anticipate that pulsar-timing arrays [127–131], though
sensitive to the stochastic GW background in the nHz band,
may not set stringent constraints on the masses of ultralight
bosons. The reason lies in the very large instability and
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Tobs [yr] 0.5 1 2 4
Model ms [eV] κ L κ L κ L κ L

popIII 10−16 – 2.9 – 4.1 1.06± 0.25 13 1.07± 0.12 28
10−15 1± 0.4 7.9 1.05± 0.21 14 1.06± 0.11 39 1.08± 0.06 90
10−14 1± 0.6 5.4 1.02± 0.15 12 1.05± 0.1 31 1.06± 0.06 81
10−13 – 0.64 – 1.7 1± 0.15 8.6 1.02± 0.1 26

Q3 10−16 – 0.91 – 3.2 – 4.5 1± 0.4 9.7
10−15 – 0 – 1.9 – 3.6 1± 0.4 6.8

Q3-nod 10−17 – 2.9 1± 0.23 6.5 1.03± 0.19 13 1.02± 0.13 25
10−16 1± 0.4 17 0.99± 0.15 47 1± 0.08 98 0.97± 0.06 200
10−15 1± 0.5 11 0.94± 0.18 28 0.95± 0.1 65 0.98± 0.07 140
10−14 – 1.6 – 4.2 0.98± 0.21 14 0.98± 0.13 27

TABLE IV. Median measured boson massmm
s = κms and median maximum log likelihood L = log Omax for different BH evolution models,

observation times Tobs, and “true” boson masses ms.

gravitational radiation time scales for bosons masses in the
nHz band and in the paucity of massive BHs with masses
M & 1010M� [132, 133], which would be required to pro-
duce a significant background from BH-boson condensates.
Conversely, an interferometer like DECIGO [134] would al-
low one to put constraints on boson masses ms ∼ 10−14 eV.

Some of our conclusions differ from previous work on
this topic by Arvanitaki et al. [19, 20], which neglected the
stochastic background from boson condensates in the LISA
and in the LIGO band, focusing on resolved events. This had
the two-fold effect of (i) missing the strong constraints (sum-
marized above) from existing and projected stochastic back-
ground limits, and (ii) missing the “self-confusion” problem,
i.e. the fact that the stochastic background itself is a confu-
sion noise (similar to the familiar white dwarf confusion noise
in the LISA band), impairing the detectability of individual
sources.

Another important difference with respect to Arvanitaki et
al. [19, 20] lies in our astrophysical models. Refs. [19, 20]
focused on Galactic BHs as resolvable LIGO sources. This is
probably the main reason why they overlooked the presence of
a significant stochastic background, which is mostly produced
by extragalactic BHs. Likewise, the lower LISA event rates
found by [19] (in spite of their negecting the aforementioned
confusion noise from the background) seem to be due to their
simplified (and overly pessimistic) models for the massive BH
population.

Finally, our analysis of the statistical error affecting GW
measurements of BH spins in the LISA band and our use of
Bayesian model selection techniques (while far from realistic)
are a step forward with respect to the estimates of [20], and
they lead to one of the most remarkable conclusions of our
work. As shown schematically in Fig. 1, LISA could either

rule out light bosons in the mass range [4× 10−18, 10−14] eV,
or measure ms with ten percent accuracy if particles in the
mass range [10−17, 10−13] eV exist in Nature.
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