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Abstract

In theories of Einstein gravity coupled with a dilaton and a two-form, a soft theorem for

the two-form, known as the Kalb-Ramond B-field, has so far been missing. In this work we

fill the gap, and in turn formulate a unified soft theorem valid for gravitons, dilatons and

B-fields in any tree-level scattering amplitude involving the three massless states. The new

soft theorem is fixed by means of on-shell gauge invariance and enters at the subleading order

of the graviton’s soft theorem. In contrast to the subsubleading soft behavior of gravitons

and dilatons, we show that the soft behavior of B-fields at this order cannot be fully fixed

by gauge invariance. Nevertheless, we show that it is possible to establish a gauge invariant

decomposition of the amplitudes to any order in the soft expansion. We check explicitly the

new soft theorem in the bosonic string and in Type II superstring theories, and furthermore

demonstrate that, at the next order in the soft expansion, totally gauge invariant terms

appear in both string theories which cannot be factorized into a soft theorem.
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1 Introduction

There has been a huge effort in the last few years to connect the soft behavior of scattering
amplitudes of massless particles to underlying symmetries of the theory. This connection
has been made explicit in the case of gauge, gravity and higher-spin theories, where the soft
factorization theorems of the scattering amplitudes through subleading orders have been
shown to follow from their on-shell gauge invariance [1–5]. Their relation to asymptotic
symmetries were recently suggested [6, 7], and are now being being vastly explored (see
e.g. the recent review [8] and references therein, as well as the more recent paper [9],
which discusses also scalar soft theorems from asymptotic symmetries).

Similar results have, on the other hand, also recently been obtained in theories where
global internal [10–13] or global space-time symmetries [4, 14–18] are spontaneously bro-
ken. In these cases, it is the spontaneously broken symmetry that determines the soft
behavior of amplitudes with soft Nambu-Goldstone bosons.

The focus of this paper concerns the gravitational S-matrix in theories of gravity cou-
pled with a dilaton and a two-form. It is well known from string theory that amplitudes
of this theory can be described in a unified way, which we in short will describe. Never-
theless, while it is known that the graviton and dilaton obey soft theorems, a soft theorem
for the two form is still missing [19, 20]. The aim of this paper is to fill this gap, and to
derive a unified soft theorem valid universally for the graviton, dilaton and the two-form.
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The two-form appears particularly in theories of supergravity and string theory, where
it is known as the Kalb-Ramond two-form B-field. In string theory it enters as a closed
string massless state accompanying the graviton and dilaton. Their soft behavior, and
particularly the soft theorems obeyed by the string graviton and dilaton were recently
derived in Refs. [3, 20–26], extending the well-known graviton [27–30] and less-known
dilaton [31,32] soft theorems from the 60s and 70s to one higher order. (See also Ref. [33–
38] for other string theory related soft theorems.)

The B-field also appears in gravity as a double-copy Yang-Mills theory. An easy
way to understand this, which will later be useful, is by decomposing the double-copied
Yang-Mills field into its constituent fields:

Aµ(k)Ãν(k) =

[
AµÃν + AνÃµ

2
−

ε⊥µν√
D − 2

A · Ã

]
+

[
ε⊥µν√
D − 2

A · Ã

]
+

[
AµÃν − AνÃµ

2

]

= gµν(k) +
ε⊥µν√
D − 2

φ(k) +Bµν(k) (1.1)

where D is the number of spacetime dimensions and

ε⊥µν =
ηµν − kµk̄ν − kν k̄µ√

D − 2
, k2 = k̄2 = 0 , k · k̄ = 1 (1.2)

such that ηµνε⊥µν =
√
D − 2, and ε⊥µνε

⊥µν = 1, while k̄ is an unphysical reference mo-
mentum. The fields gµν , φ, and Bµν are naturally identified with the gravitational field,
the dilaton and the antisymmetric B-field, while ε⊥µν can be thought of as the dilaton
‘polarization tensor’ (or dilaton projector). By the Kawai-Lewellen-Tye [39] and Bern-
Carrasco-Johansson [40] relations, double-copied amplitudes of Yang-Mills theory can be
identified with amplitudes of gravity coupled with the dilaton and B-field, providing a
unified description for amplitudes involving any of the three fields.

From this double-copy construction one may näıvely expect that also the B-field should
obey soft theorems at the same order. After all, one may compute the amplitudes gener-
ically, and only in the end project the external states appropriately. However, the näıve
expectation turns out not to hold, and we will explain why.

It is useful to first review how the soft theorems for the graviton and dilaton can
be derived by using gauge invariance of the amplitude. Considering an (n + 1)-point
amplitude involving double-copied Yang-Mills states, i.e. gravitons, dilatons, and B-
fields, it is possible to decompose it into two contributions, as depicted in Fig. 1. The
decomposition of the amplitude as given in Fig. 1 can be written as:

Mn+1 =
n∑
i=1

M3(q; ki)
1

(ki + q)2
Mn(ki + q) +Nn+1(q; ki) , (1.3)
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= +

q

ki

ki + q
M3

Mn+1

q

ki

ϵµi
i ϵ̄νi

i

ϵµ
q ϵ̄

ν
q

Mn Nn+1

q

ki

Figure 1: Decomposition of an n+ 1-point amplitude into a factorizing set, involving an
exchange of a particle between the three-point amplitude M3 and the n-point amplitude
Mn, and the reminder set of diagrams Nn+1, which excludes factorization through the
former channel.

where dependence on all other kj 6= ki is implicit. We are giving a special role to the
state carrying momentum q, since we will consider its soft behavior. By using the rela-
tion Mn = εµ11 ε̄

ν1
1 · · · εµnn ε̄νnn Mnµ1ν1...µnνn , the three-point amplitude entering in the above

expression can be rewritten in terms of differential operators acting on Mn, given by [2,3]:

M3 (q, ki,−(ki + q)) = 2κDε
µ
q ε̄
ν
q

[
kiµ − iqρSi µρ

][
kiν − iqσS̄i νσ

]
, (1.4)

where κD is related to Newton’s constant by κD =

√
8πG

(D)
N and where

Si µρ = i

(
εiµ

∂

∂ερi
− εiρ

∂

∂εµi

)
; S̄i νσ = i

(
ε̄iν

∂

∂ε̄σi
− ε̄iσ

∂

∂ε̄νi

)
. (1.5)

The two contributions in Eq. (1.3) are not independently gauge invariant. We may
therefore use gauge invariance to put certain constraints on the remainder function Nn+1.
Considering the kinematical region where q � ki for any i, Eq. (1.3) can be expanded in
q. At tree-level, Nn+1 does not have any poles in q and hence at leading order one recovers
Weinberg’s soft theorem (loops do not modify this leading order result, see e.g. [41, 42]
for a recent discussion):

Mn+1 = κDεq µε̄q ν

n∑
i=1

kµi k
ν
i

ki · q
Mn(ki) +O(q0) (1.6)

To project this expression on the physical states, one takes εq µε̄q ν = εq µν to be the
polarization tensor of either the graviton, dilaton or B-field. If the soft state is projected
onto the B-field, whose polarization tensor is antisymmetric, this leading expression clearly
vanishes, but also if it is projected onto the dilaton, since ε⊥q µν k

µ
i k

ν
i = k2

i +O(q) = 0+O(q).
Only the graviton has a leading nonzero singular soft behavior. The expression is gauge
invariant due to momentum conservation

∑
i=1 k

µ
i = 0 +O(q).
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At every other order in the soft expansion, the two types of contributions are related
by gauge invariance; that is, by

qµε̄νM
µν
n+1 = qνεµM

µν
n+1 = 0 . (1.7)

These two conditions are sufficient to fix completely the orders q0 and q1 in the soft
expansion of the amplitude, when Mµν

n+1 is symmetric in its indices µν; i.e. when the
soft state is either a graviton or a dilaton [2, 3]. We will in this work additionally show
that if the soft state is a B-field, i.e. if Mµν

n+1 is antisymmetric in µν, this construction is
sufficient to fix completely its order q0 soft behavior, with the result being:

Mn+1 = −iκDεBq µν
n∑
i=1

[
kνi qρ
ki · q

(Si − S̄i)µρ −
1

2
(Si − S̄i)µν

]
Mn(ki, εi, ε̄i) +O(q) , (1.8)

where εBq µν = 1
2

(εq µε̄q ν − εq ν ε̄q µ) is the polarization tensor of the B-field. This result is
consistent with the ‘holomorphic soft theorem’ for the B-field found in the bosonic string
in Ref. [20] (further details are given in Sec. 3.1).

The leading soft theorem for the B-field can be added to the corresponding expression
derived for the dilaton and graviton [3,20,23] to define a unified operator that collects the
soft behaviour of amplitudes in theories of gravity coupled to a dilaton and a two form.
The full soft operator then turns out to be:

Mn+1 = κDεq,µε̄q,ν

n∑
i=1

[kµi kνi
ki · q

− i

2

kµi qρ
(
Li + 2S̄i

)νρ
ki · q

− i

2

kνi qρ
(
Li + 2Si

)µρ
ki · q

+
i

2

(
Sµν − S̄µν

)]
Mn +O(q) (1.9)

This expression generically reproduces the soft behavior of the graviton, dilaton and
B-field upon symmetrization, respectively, antisymmetrization of the polarization vectors
εq,µε̄q,ν . As such, it can be considered the soft theorem of double-copied Yang-Mills theory.

As we will also show, contrary to the case of the dilaton and graviton, it is not
possible to fix completely the term of order q in the soft behavior of the B-field by this
construction. To explain why, let us note that a caveat in the construction above is that
the quantity Nn+1 in Eq. (1.3) may, at a particular order in q, contain terms local in q
that are independently gauge invariant. Such terms can for obvious reasons not be related
to the factorizing set of diagrams by gauge invariance. For the graviton and dilaton, this
is avoided through order q in the soft momentum, since the most general local expression
for a gauge invariant symmetric two-index tensor is of O(q2) [2]:

Eµν
S = qρqσA

ρµAσν (1.10)

where, due to gauge invariance, Aρµ = −Aµρ is an antisymmetric function constructed
out of the momenta and polarization vectors of the external states, and is furthermore a
local function in q.
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For the antisymmetric B-field, however, things are different, since it is possible to write
a general expression for an antisymmetric two-index tensor local in q, which obeys gauge
invariance starting already at O(q):

Eµν
A = qρA

ρµν , (1.11)

where Aρµν is a totally antisymmetric tensor constructed from the external momenta and
polarizations, and is furthermore a local function in q. For this reason one is not able to
constraint Nn+1 through order q in the case of a soft B-field. It is nevertheless possible
to decompose the amplitude through any order in the soft expansion into two separately
gauge invariant parts, as follows using the notation v[µwν] = 1

2
(vµwν − vνwµ):

Mn+1(q, ki) =εBq µν qρA
ρµν(q, ki)− iκDεBq µν

n∑
i=1

{
1

2

[
Sµνi − S̄

µν
i

]
(1.12)

+
1

ki · q

[
qρ

(
k

[µ
i S̄

ν]ρ
i + k

[ν
i S

µ]ρ
i

)
+ iqρqσ

(
S
ρ[µ
i S̄

ν]σ
i

)]}
Mn(ki + q, εi, ε̄i) .

where one part remains unconstrained due to the preceding discussion, but is local in q,
while the other part factorizes as a soft theorem (one can Taylor expand Mn(ki + q)).
The factorizing part encodes the soft theorem, as well as containing all terms needed to
gauge covariantize the first part of Eq. (1.3) involving M3. This expression can essentially
be seen as the main consequence of the B-field obeying a soft theorem. As we will show
in Sec. 2, the order q factorizing terms can compactly be written in terms of angular
momentum operators.

We will in this work first derive the above summarized results and then explicitly
derive the soft behavior of the Kalb-Ramond B-field both in the bosonic string and in
superstrings. We confirm the proposed soft relations, and furthermore we provide explicit
expression for Aρµν showing that it is non-zero. In particular, we will see that the Bloch-
Wigner dilogarithm appears in Aρµν in both string theories, which leads us to conclude
that Aρµν cannot be written as a soft theorem. As regards the field theory limit, the form
of Aρµν remains to be understood.

The paper is organized as follows: In Sec. 2 we show that on-shell gauge invariance
fixes the leading soft behavior (of order q0) of the B-field in tree-level amplitudes, while
the subleading part (of order q) can only be partially fixed. In Sec. 3 and 4 we explicitly
compute amplitudes in the bosonic, respectively, the supersymmetric string theory in-
volving a soft Kalb-Ramond state to confirm the new soft theorem as well as to show that
the subleading soft behavior cannot be factorized. In Sec. 5 we provide our conclusions.

2 Soft theorem for Bµν from gauge invariance

In this section we derive the soft theorem for the antisymmetric tensor Bµν in an amplitude
with only massless particles, i.e. Kalb-Ramond fields, gravitons and dilatons. We will see
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that, unlike for the graviton and dilaton, in the case of the antisymmetric tensor we can
only determine the soft behavior through order q0. The soft behavior of order q1 cannot
be fixed by gauge invariance.

Let us start from the pole term given by the diagrams where the soft particle is
attached to one of the other external particles, as depicted in Fig. 1. As explained in the
introduction their sum is given by (we define Mn+1 = εµq ε̄

ν
qMµν)

Mpole
µν = κD

n∑
i=1

[kiµ − iqρSµρ][kiν − iqσS̄νσ]

ki · q
Mn(ki + q) , (2.13)

where ki and q were put on shell, i.e. k2
i = q2 = 0, the polarization tensors εµq ε̄

ν
q were

stripped off, and

Si µρ = i

(
εiµ

∂

∂ερi
− εiρ

∂

∂εµi

)
; S̄i νσ = i

(
ε̄iν

∂

∂ε̄σi
− ε̄iσ

∂

∂ε̄νi

)
. (2.14)

In the case of a soft antisymmetric tensor, where Mpole
µν is antisymmetric under the ex-

change of the indices µ and ν, the expression reduces to:

Mpole
µν = κD

n∑
i=1

−iki[µqσS̄i ν]σ − iki[νqρSi µ]ρ − qρSi [µρqσS̄i ν]σ

ki · q
Mn(ki + q) , (2.15)

where v[µwν] = 1
2

(vµwν − vνwµ). The previous expression is not gauge invariant, i.e. it is
not vanishing when we saturate it with qµ or qν . It is possible, however, to add to it a
term, local in q, which will make it gauge invariant, i.e.:

Mµν = κD

n∑
i=1

[
−iki[µqσS̄i ν]σ − iki[νqρSi µ]ρ − qρSi [µρqσS̄i ν]σ

ki · q

+
i

2

(
Si µν − S̄i µν

)]
Mn(ki + q) +Nµν(q; ki) , (2.16)

where Nµν is now the antisymmetric gauge-invariant remainder of the amplitude. It is
easy to see that the expression in the square bracket above vanishes when we saturate it
with qµ or qν . Gauge invariance then implies the following conditions on the additional
term Nµν :

qµNµν(q; ki) = qνNµν(q; ki) = 0 . (2.17)

Expanding around q = 0, at the lowest order, we get two conditions:

qµNµν(q = 0) = qνNµν(q = 0) = 0 (2.18)

that are for Nµν = −Nνµ consistent with

Nµν(q = 0) = 0 . (2.19)
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At the next order in the soft momentum q we get

qµqρ
∂

∂qρ
Nµν(q = 0) = qνqρ

∂

∂qρ
Nµν(q = 0) = 0 , (2.20)

which implies that

∂

∂qρ
Nµν(q = 0) = Aρµν , (2.21)

where Aρµν is a completely antisymmetric tensor under the exchange of the three indices,
and is only a function of the momenta and polarizations of the hard external particles.
Notice that the tensor Nµν contains in general higher powers in the soft momentum q.
Since Nµν(q; ki) = qρAρµν(ki) + O(q2) and since we assume that it is local in q, we may
just as well express it as:

Nµν(q; ki) = qρAρµν(q, ki) , (2.22)

to all orders in q, and automatically satisfying Eq. (2.17), where now Aρµν(q, ki) contains
all the higher order terms in q. We end up with:

Mµν = −κD
n∑
i=1

[
iki[µq

σS̄i ν]σ + iki[νq
ρSi µ]ρ + qρSi [µρq

σS̄i ν]σ

ki · q

− i
2

(
Si µν − S̄i µν

)]
Mn(ki + q) + qρAρµν(q, ki) . (2.23)

This is an exact relation between the n+1 and n-point amplitudes, valid to any order in the
soft expansion. Obviously, since the last term is gauge invariant, Aρµν cannot be fixed by
gauge invariance of the amplitude. To conclude, in the case of a soft antisymmetric tensor
scattering on other massless states, gauge invariance fixes the amplitude only through the
order q0. The term of order q contains a totally antisymmetric tensor that cannot be fixed
by gauge invariance.

It is convenient for later use to introduce a new tensor Ãρµν for the leading order
expression of Aρµν , in the following way

Aρµν(q = 0, ki) = Ãρµν(ki) (2.24)

− i

2
κD

n∑
i=1

[(
Si − S̄i

)
µν

∂

∂kρi
−
(
Si − S̄i

)
ρν

∂

∂kµi
−
(
Si − S̄i

)
µρ

∂

∂kνi

]
Mn(ki)

This is possible since the operator in the squared bracket is just another totally antisym-
metric tensor. Expanding Eq. (2.23) and inserting this alternative expression for Aρµν at

7



leading order, we arrive at

Mµν =− iκD
n∑
i=1

{
qρk

[ν
i (Si − S̄i)µ]ρ

ki · q
− 1

2
(Si − S̄i)µν + qρ

[
S
ρ[µ
i ∂

ν]
i + S̄

ρ[ν
i ∂

µ]
i

]
+
qρqσ
ki · q

[(
k

[µ
i S̄

ν]ρ
i + k

[ν
i S

µ]ρ
i

)
∂σi + i

(
S
ρ[µ
i S̄

ν]σ
i

)]}
Mn(ki, εi, ε̄i) + qρ Ã

ρµν(ki) +O(q2)

(2.25)

where ∂µi ≡ ∂/∂kiµ. This expression can be written more compactly, by defining holo-
morphic and antiholomorphic total angular momentum operator, as follows:

Jµνi = Lµνi + Sµνi , J̄µνi = Lµνi + S̄µνi , Lµνi = i (kµi ∂
ν
i − kνi ∂

µ
i ) , (2.26)

These operators especially turn useful, when considering the action on superstring ampli-
tude. Let us consider the operator:

εBq µν

n∑
i=1

qρqσ
ki · q

J
ρ[µ
i J̄

ν]σ
i = εBq µν

n∑
i=1

qρqσ
ki · q

[
L
ρ[µ
i L

ν]σ
i + L

ρ[µ
i S̄

ν]σ
i + S

ρ[µ
i L

ν]σ
i + S

ρ[µ
i S̄

ν]σ
i

]
(2.27)

Considering the first term on the right-hand side, it can be shown to vanish due to anti-
symmetry and transversality of εBqµν , as well as the mass-shell condition q2 = 0. Therefore
we get, after inserting the explicitly expression for Li,

εBq µν

n∑
i=1

qρqσ
ki · q

J
ρ[µ
i J̄

ν]σ
i =εBq µν

n∑
i=1

{
qρqσ
ki · q

[
i(S

ρ[µ
i − S̄

ρ[µ
i )k

ν]
i ∂

σ
i + S

ρ[µ
i S̄

ν]σ
i

]
− iqρ(Sρ[µ

i − S̄
ρ[µ
i )∂

ν]
i

}
(2.28)

which is exactly equal to the order q factorized part of Eq. (2.25). In other words, we find
a more compact form for the expanded amplitude through order q, reading:

Mn+1 =κDεµε̄ν

n∑
i=1

{
i

2
(Si − S̄i)µν + i

qρk
[µ
i (Si − S̄i)ν]ρ

ki · q
+
qρqσ
ki · q

J
ρ[µ
i J̄

ν]σ
i

}
Mn(ki, εi, ε̄i)

+ εµε̄ν qρ Ã
ρµν(ki, εi, ε̄i) +O(q2) . (2.29)

where we used that the contraction of µν is antisymmetric, and we can thus equally write
εBµν → εµε̄ν . Notice that we could also trivially rewrite the first two terms in the right-hand
side of the previous expression in terms of Ji and J̄i, since Ji − J̄i = Si − S̄i. One may
wonder whether the part that remains unfixed by gauge invariance also factorizes in terms
of a soft and a hard part due to some other property of the amplitude. In the subsequent
two sections we investigate this question by computing explicitly the unfactorized part
involving Ãρµν in the bosonic string as well as in the superstring. Our conclusion to this
question is negative, nevertheless, we provide the details and explicit expressions that may
be useful in other regards. The conclusion about the field theory limit of Ãρµν remains
open.
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3 Soft scattering of Bµν in the bosonic string

For the derivation of the scattering amplitude involving n+1 massless closed string states
in the bosonic string we refer to Sec. 2 in Ref. [23]. Therein it was shown that the
(n+ 1)-point amplitude, Mn+1, can be written as a convolution

Mn+1 = Mn ∗ S , (3.30)

where Mn is just the n-point amplitude, and where by ∗ a convolution of integrals is
understood, and S carries all the information of the additional external state. The point
is that the computation of the soft behavior of Mn+1 is equivalent to computing the soft
expansion of S. Let us quote the expressions for Mn and S:

Mn =
8π

α′

(κD
2π

)n−2
∫ ∏n

i=1 d
2zi

dVabc

∫ [ n∏
i=1

dϕi

n∏
i=1

dϕ̄i

]∏
i<j

|zi − zj|α
′kikj

× exp

[
−
∑
i<j

ϕiϕj
(zi − zj)2

(εiεj) +

√
α′

2

∑
i 6=j

ϕi(εikj)

zi − zj

]

× exp

[
−
∑
i<j

ϕ̄iϕ̄j
(z̄i − z̄j)2

(ε̄iε̄j) +

√
α′

2

∑
i 6=j

ϕ̄i(ε̄ikj)

z̄i − z̄j

]
,

(3.31)

and

S ≡κD
∫
d2z

2π

n∑
i=1

(
ϕi

(εqεi)

(z − zi)2
+

√
α′

2

(εqki)

z − zi

)
n∑
j=1

(
ϕ̄j

(ε̄q ε̄j)

(z̄ − z̄j)2
+

√
α′

2

(ε̄qki)

z̄ − z̄i

)

× exp

[
−
√
α′

2

n∑
i=1

ϕi
(εiq)

z − zi

]
exp

[
−
√
α′

2

n∑
i=1

ϕ̄i
(ε̄iq)

z̄ − z̄i

]
n∏
i=1

|z − zi|α
′qki ,

(3.32)

where zi are the Koba-Nielsen variables of the hard states, and z is for the soft state.
Grassmannian variables ϕi have been introduced and in this notation εi, the holomorphic
polarization vector of the massless closed states, are also Grassmannian, and likewise for
the antiholomorphic counterparts, denoted with a bar. ki are the momenta of the hard
states, while q is for the soft state, and α′ is the string Regge slope.

The expansion of S was computed in the decomposition:

S = κD (S1 + S2 + S3) +O(q2) , (3.33)
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defined by:

S1 =
α′

2

∫
d2z

2π

n∑
i=1

(εqki)

z − zi

n∑
j=1

(ε̄qkj)

z̄ − z̄j

n∏
i=1

|z − zi|α
′qki

×

{
1−

√
α′

2

n∑
k=1

(
ϕk

(εkq)

z − zk
+ ϕ̄k

(ε̄kq)

z̄ − z̄k

)
+

1

2

(
α′

2

)

×

[(
n∑
h=1

ϕh
(εhq)

z − zh

)2

+

(
n∑
h=1

ϕ̄h
(ε̄hq)

z̄ − z̄h

)2

+ 2

(
n∑
h=1

ϕh
(εhq)

z − zh

)(
n∑
h=1

ϕ̄h
(ε̄hq)

z̄ − z̄h

)]}
,

(3.34)

S2 =

∫
d2z

2π

n∑
i=1

(
ϕi

(εqεi)

(z − zi)2

) n∑
j=1

(
ϕ̄j

(ε̄q ε̄j)

(z̄ − z̄j)2

) n∏
`=1

|z − z`|α
′qk`

×

{
1−

√
α′

2

n∑
k=1

(
ϕk

εkq

z − zk
+ ϕ̄k

(ε̄kq)

z̄ − z̄k

)
+

1

2

(
α′

2

)

×

[(
n∑
h=1

ϕh
(εhq)

z − zh

)2

+

(
n∑
h=1

ϕ̄h
(ε̄hq)

z̄ − z̄h

)2

+ 2

(
n∑
h=1

ϕh
(εhq)

z − zh

)(
n∑
h=1

ϕ̄h
(ε̄hq)

z̄ − z̄h

)]}
,

(3.35)

S3 =

√
α′

2

∫
d2z

2π

n∑
i=1

n∑
j=1

[(
ϕi(εqεi)

(z − zi)2

)(
(ε̄qkj)

z̄ − z̄j

)
+

(
ϕ̄i(ε̄q ε̄i)

(z̄ − z̄i)2

)(
(εqkj)

z − zj

)] n∏
`=1

|z − z`|α
′qk`

×

{
1−

(√
2α′

2

)
n∑
k=1

(
ϕk

εkq

z − zk
+ ϕ̄k

(ε̄kq)

z̄ − z̄k

)
+

1

2

(
α′

2

)

×

[(
n∑
h=1

ϕh
(εhq)

z − zh

)2

+

(
n∑
h=1

ϕ̄h
(ε̄hq)

z̄ − z̄h

)2

+ 2

(
n∑
h=1

ϕh
(εhq)

z − zh

)(
n∑
h=1

ϕ̄h
(ε̄hq)

z̄ − z̄h

)]}
.

(3.36)

Each part was further split in S
(a)
i , a=0,1,2, with the index a labelling the order of

expansion in q of the integrand modulo the factor |z− zl|α
′qkl , which has to be integrated.

The explicit results for S
(a)
i can be found in Ref. [23], and apply to any massless closed-

string state. Here we are interested in the antisymmetric part in εµq ε̄
ν
q of those expressions.

First, the result for S
(0)
1 is:

S
(0)
1 |B = εBµνq

n∑
i 6=j 6=m

kiµkjν

(
α′

2

)2

(qkm)

[
Li2

(
z̄i − z̄m
z̄i − z̄j

)
− Li2

(
zi − zm
zi − zj

)

+ log
|zi − zj|
|zi − zm|

log

(
zm − zj
z̄m − z̄j

z̄i − z̄j
zi − zj

)]
+O(q2) . (3.37)
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We can show that the part in the square bracket is just the Bloch-Wigner Dilog, which
is analytic and continuous1. Denoting ζ ≡ (zi − zm)/(zi − zj) we can write the square
bracket of the antisymmetric part as:

Li2(ζ̄)− Li2(ζ)− log |ζ| log

(
1− ζ
1− ζ̄

)
= −2i(Im(Li2(ζ)) + arg(1− ζ) log |ζ|)

= −2iD2(ζ) (3.38)

where in the second line we identified the Bloch-Wigner dilog, denoted as D2. This
function has the following properties (as well as many other, not relevant here):

• It is a real function on C, and analytic except at the points ζ = {0, 1}, where it
is only continuous, but not differentiable. For us, ζ never takes these values, since
zi 6= zm 6= zj.

• It has a six-fold symmetry:

D2(ζ) = D2(1− ζ−1) = D2

(
1

1−ζ

)
= −D2(ζ−1) = −D2(1− ζ) = −D2

(
ζ
ζ−1

)
and furthermore D2(ζ̄) = −D2(ζ), thus D2(R\{0, 1}) = 0.

The antisymmetric part of S
(0)
1 can thus be written as

S
(0)
1 |B = iεBµνq

n∑
i 6=j 6=m

(kiνkjµ − kiµkjν)
(
α′

2

)2

(qkm)D2

(
zi − zm
zi − zj

)
(3.39)

It can be checked that this expression is gauge-invariant by itself by using e.g. the relation
D2(ζ) = D2( 1

1−ζ ). In fact, we can write it in the form of Eq. (1.11), making it explicitly
gauge invariant:

S
(0)
1 |B = iεBqµν

(
α′

2

)2

qρ

n∑
i 6=j 6=m

2

3

[
kρmk

[ν
i k

µ]
j + kνmk

[µ
i k

ρ]
j + kµmk

[ρ
i k

ν]
j

]
D2

(
zi − zm
zi − zj

)
, (3.40)

where the symmetry properties of D2 were used to completely antisymmetrize the expres-
sion in the square bracket in the indices ρνµ.

It is convenient also for later use to introduce the tensorial function:

T ρµν(V,X, Y ) =
1

2
(V ρXµY ν − V ρXνY µ + V µXνY ρ

−V µXρY ν − V νXµY ρ + V νXρY µ) (3.41)

which is totally antisymmetric in its indices ρµν and in its variables V,X, Y .

1We thank Lance Dixon for pointing this out to us during the Nordita program Aspects of Amplitudes.
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In terms of this function, we compactly have:

S
(0)
1 |

µν
B =

2i

3

(
α′

2

)2 n∑
i 6=j 6=m

qρT
ρµν(ki, kj, km)D2

(
zi − zm
zi − zj

)
. (3.42)

where we stripped off the polarization tensor.

The antisymmetric part of all other S
(a)
i is simply obtained by antisymmetrizing the

expressions derived in Ref. [20,23] in the polarization indices of the soft state, leading to:

S
(1)
1 |

µν
B =

√
α′

2

∑
i 6=j

{
k

[µ
i k

ν]
j

qki

ϕiεiq

zi − zj

[
1 +

∑
l 6=i

α′qkl log |zi − zl|

]

+ α′k
[µ
i k

ν]
j

[
ϕiεiq

2(zi − zj)
+
∑
l 6=i

ϕlεlq

zi − zl
log |zi − zj| −

∑
l 6=i,j

ϕlεlq

zi − zl
log |zj − zl|

]}
+ c.c.

(3.43)

S
(2)
1 |

µν
B =− α′

2

n∑
i 6=j

(
k

[µ
i k

ν]
j

qki

(ϕiεiq)

(zi − zj)
∑
l 6=i

(
ϕlεlq

(zi − zl)
+

ϕ̄lε̄lq

(z̄i − z̄l)

)
+ c.c.

)

+
α′

2

n∑
i 6=j 6=l

k
[µ
j k

ν]
l

qki

(ϕiεiq)(ϕ̄iε̄iq)

(zi − zj)(z̄i − z̄l)
(3.44)

S
(0)
2 |

µν
B =

α′

2

n∑
i 6=j

∑
l 6=i

{
(qkj)(qkl)

qki

(ϕiε
[µ
i )(ϕ̄iε̄

ν]
i )

(zi − zj)(z̄i − z̄l)

+
(ϕiε

[µ
i )(ϕ̄j ε̄

ν]
j )(qkl) + (ϕlε

[µ
l )(ϕ̄iε̄

ν]
i )(qkj) + (ϕlε

[µ
l )(ϕ̄j ε̄

ν]
j )(qki)

(zi − zl)(z̄i − z̄j)

}
, (3.45a)

S
(1)
2 |

µν
B =

√
α′

2

n∑
i 6=j

∑
l 6=i

{
qkl
qki

(
(ϕiε

[µ
i )(ϕjεjq)− (ϕjε

[µ
j )(ϕiεiq)

)
(ϕ̄iε̄

ν]
i )

(zi − zj)2(z̄i − z̄l)

+

(
(ϕiε

[µ
i )(ϕlεlq)− (ϕlε

[µ
l )(ϕiεiq)

)
(ϕ̄j ε̄

ν]
j )

(z̄i − z̄j)(zi − zj)2

}
+ c.c. , (3.45b)

S
(2)
2 |

µν
B =

∑
i 6=j

1

qki

∑
l 6=i

(
(ϕiε

[µ
i )(ϕjεjq)− (ϕjε

[µ
j )(ϕiεiq)

(zi − zj)2

)(
(ϕ̄iε̄

ν]
i )(ϕ̄lε̄lq)− (ϕ̄lε̄

ν]
l )(ϕ̄iε̄iq)

(z̄i − z̄l)2

)
,

(3.45c)
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S
(0)
3 |

µν
B =

√
α′

2

n∑
i 6=j

[
k

[ν
i (ϕiε

µ]
i )

zi − zj
qkj
qki
−
k

[ν
j (ϕiε

µ]
i )

zi − zj
+
α′

2

k
[ν
i (ϕiε

µ]
i )qkj − k[ν

j (ϕiε
µ]
i )qki

zi − zj

+ α′
∑
l 6=i

[(qkl)k
[ν
i − (qki)k

[ν
l ](ϕjε

µ]
j )− (qkj)k

[ν
l (ϕiε

µ]
i )

zi − zj
log |zi − zl|

+ α′
∑
l 6=i

(qkj)(qkl)

qki

k
[ν
i (ϕiε

µ]
i )

zi − zj
log |zi − zl|

]
+ c.c. , (3.46a)

S
(1)
3 |

µν
B =

n∑
i 6=j

{
(ϕjεjq)(ϕiε

[µ
i )

(zi − zj)2

(
k
ν]
i

kiq
−
k
ν]
j

kjq

)
−α′

(ϕiεiq)(ϕjε
[µ
j )k

ν]
i

(zi − zj)2

∑
l 6=i

qkl
qki

log |zi − zl|

−α′
∑
l 6=i

qkl
qki

(ϕjεjq)(ϕiε
[µ
i )k

ν]
i

zi − zj

(
1

2(zi − zl)
− log |zi − zl|

(zi − zj)

)

−α
′

2

∑
l 6=i

qkl
qki

(ϕiε
[µ
i )(k

ν]
i ϕ̄j ε̄jq + k

ν]
j ϕ̄iε̄iq)

(z̄i − z̄j)(zi − zl)

+ α′
∑
l 6=i

(ϕiεiq)(ϕjε
[µ
j )k

ν]
l

(zi − zj)2
log |zi − zl|

+ α′
∑
l 6=i

(ϕjεjq)(ϕiε
[µ
i )k

ν]
l

zi − zj

(
1

2(zi − zl)
− log |zi − zl|

(zi − zj)

)

− α′

2

∑
l 6=i

(ϕjε
[µ
j )(k

ν]
l ϕ̄iε̄iq + k

ν]
i ϕ̄lε̄lq)

(zi − zj)(z̄i − z̄l)

}
+ c.c. , (3.46b)

S
(2)
3 |

µν
B =

√
α′

2

n∑
i 6=j

1

qki

[
n∑

l 6=i,j

(ϕlεlq)((ϕjε
[µ
j )k

ν]
i (ϕiεiq)− (ϕiε

[µ
i )k

ν]
i (ϕjεjq))

(zi − zj)2(zi − zl)

+
(ϕjε

[µ
j )(ϕiεiq)− (ϕiε

[µ
i )(ϕjεjq)

(zi − zj)2

∑
l 6=i

(
k
ν]
i ϕ̄lε̄lq + k

ν]
l ϕ̄iε̄iq

)
(z̄i − z̄l)

]
+ c.c. . (3.46c)

We note that when taking the complex conjugate one must also exchange the indices
µ↔ ν, since εBqµν = −εBqµν = εBqνµ, which follows from the decomposition εq µν = εqµε̄q ν .
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3.1 The soft theorem

The terms of O(q0) appear in Eq. (3.43), (3.46a) and (3.46b) only. Summarizing, they
read:

S|µνB =
∑
i 6=j

{√
α′

2

k
[µ
i k

ν]
j

qki

ϕiεiq

zi − zj
+

√
α′

2

k
[ν
i (ϕiε

µ]
i )

zi − zj
qkj
qki
−
√
α′

2

k
[ν
j (ϕiε

µ]
i )

zi − zj

+
((ϕjεjq)(ϕiε

[µ
i )− (ϕiεiq)(ϕjε

[µ
j ))k

ν]
i

(kiq)(zi − zj)2

}
+ c.c +O(q) (3.47)

The soft theorem proposed to reproduce this is:

Mµν
B = −i

n∑
i=1

[
k

[ν
i qρ(Si − S̄i)µ]ρ

qki
− 1

2
(Si − S̄i)µν

]
Mn(ki, εi, ε̄i) +O(q). (3.48)

Using that

−iSµρi Mn = Mn ∗

[∑
j 6=i

(ϕiε
µ
i )(ϕjε

ρ
j )− (ϕjε

µ
j )(ϕiε

ρ
i )

(zi − zj)2
+

√
α′

2

∑
j 6=i

(ϕiε
µ
i )kνj − k

µ
j (ϕiε

ρ
i )

zi − zj

]
(3.49)

it is straightforward to see that Eq. (3.48) exactly reproduces Eq. (3.47). For checking
this, we note that the terms with two ϕ’s produced by (Si− S̄i)µν vanishes over the sum,
due to opposite parity of the numerator and denominator in the exchange of i↔ j.

We additionally like to make the remark that the soft operator in Eq. (3.48) follows also
from earlier considerations in Ref. [3, 20], where it was noticed that the explicit result in
Eq. (3.47) can be reproduced by the following ‘holomorphic’ soft theorem: By separating
the string amplitude into a holomorphic and an antiholomorphic part, and promoting the
momentum in the antiholomorphic sector to a (spurious) ‘antiholomorphic’ momentum,
k → k̄, it can be shown that both the bosonic string amplitude and the superstring
amplitude at O(q0) can, for any soft state, be equivalently written as:

Mn+1 = −iεµε̄ν
n∑
i=1

[
qρk̄

ν
i (Li + Si)

µρ

qki
+
qρk

µ
i (L̄i + S̄i)

νρ

qki

]
Mn(ki, εi; k̄i, ε̄i)

∣∣∣
k=k̄

+O(q)

(3.50)

where L̄i denotes the antiholomorphic angular momentum operator that acts on the k̄
quantities. The notation |k=k̄ means that the k̄ is, after the action, identified again
with the physical momentum k. In Ref. [3] it was shown that when the soft state is
symmetrically polarized, i.e. εµε̄ν → εSµν , then the above expression is easily seen to
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match the known subleading graviton soft theorem, while in Ref. [20] it was remarked
that for an antisymmetric soft state the expression reduces to:

Mn+1 = −iεµε̄ν
n∑
i=1

[
1

2
(Li − L̄i)µν +

kνi qρ
kiq

(Si − S̄i)µν
]
Mn(ki, εi; k̄i, ε̄i)

∣∣∣
k=k̄

+O(q) (3.51)

Now, notice that under a gauge transformation for the Kalb-Ramond field, εBq µν → εBq µν +
qµχν − qνχµ, the amplitude changes as follows

Mn+1 →Mn+1 + iqρχµ

n∑
i=1

[
(Li + Si)

µρ − (L̄i + S̄i)
µρ
]
Mn(ki, εi; k̄i, ε̄i)

∣∣∣
k=k̄

. (3.52)

Since for any qρ and any χµ the additional term has to vanish, the following identity must
hold

n∑
i=1

(Li − L̄i)µρMn(ki, εi; k̄i, ε̄i)
∣∣∣
k=k̄

=
n∑
i=1

(S̄i − Si)µρMn(ki, εi; k̄i, ε̄i)
∣∣∣
k=k̄

, (3.53)

which can be checked by a direct calculation. From this we conclude that Eq. (3.51) for
an antisymmetric soft state reduces to:

Mn+1 = −iεBµν
n∑
i=1

[
1

2
(Sνµi − S̄

νµ
i ) +

qρk
[ν
i (Si − S̄i)µ]ρ

qki

]
Mn(ki, εi; k̄iε̄i)

∣∣∣
k=k̄

+O(q) (3.54)

Since this expression no longer involves the L̄ operator, we may readily identify k̄ = k,
making Mn(ki, εi; k̄iε̄i) = Mn the physical n-point amplitude. This reproduces, and thus
confirms once again, the soft theorem in Eq. (3.48).

3.2 The order q soft behavior

While there does not exist a complete soft operator reproducing the terms at O(q), we
are still able to greatly reduce the terms into a gauge invariant part that factorizes, and
a gauge invariant part that can be written in terms of a totally antisymmetric tensor.

The soft behavior is proposed to admit the form:

Mµν =− i
n∑
i=1

{
qρqσ
ki · q

[(
k

[µ
i S̄

ν]ρ
i + k

[ν
i S

µ]ρ
i

)
∂σi + i

(
S
ρ[µ
i S̄

ν]σ
i

)]
(3.55)

+ qρ

[
S
ρ[µ
i ∂

ν]
i + S̄

ρ[ν
i ∂

µ]
i

]}
Mn(ki, εi, ε̄i) + qρ Ã

ρµν(ki) +O(q2)
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The action of the soft operators on the lower-point amplitude read:

− i
n∑
i=1

qρqσ
ki · q

(
k

[µ
i S̄

ν]ρ
i + k

[ν
i S

µ]ρ
i

)
∂σi Mn = Mn ∗

∑
i 6=j

k
[ν
i

ki · q

×

[
α′qkj log |zi − zj| −

√
α′

2

ϕjεjq

zi − zj
−
√
α′

2

ϕ̄j ε̄jq

z̄i − z̄j

]

×
∑
l 6=i

[
(ϕiε

µ]
i )(ϕlεlq)− (ϕiεiq)(ϕlε

µ]
l )

(zi − zl)2
+

√
α′

2

(ϕiε
µ]
i )(kl · q)− (ϕiεiq)k

µ]
l

zi − zl

]
+ c.c (3.56)

n∑
i=1

qρqσ
ki · q

S
ρ[µ
i S̄

ν]σ
i Mn = Mn ∗

∑
i=1

1

ki · q

×
∑
j 6=i

[
(ϕiε

[µ
i )(ϕjεjq)− (ϕiεiq)(ϕjε

[µ
j )

(zi − zj)2
+

√
α′

2

(ϕiε
[µ
i )(kj · q)− (ϕiεiq)k

[µ
j

zi − zj

]

×
∑
l 6=i

[
(ϕ̄iε̄

ν]
i )(ϕ̄lε̄lq)− (ϕ̄iε̄iq)(ϕ̄lε̄

ν]
l )

(z̄i − z̄l)2
+

√
α′

2

(ϕ̄iε̄
ν]
i )(kl · q)− (ϕ̄iε̄iq)k

ν]
l

z̄i − z̄l

]
(3.57)

− i
n∑
i=1

qρqρ

[
S
ρ[µ
i ∂

ν]
i + S̄

ρ[ν
i ∂

µ]
i

]
Mn = Mn ∗

∑
i 6=j

[
α′k

[ν
j log |zi − zj| −

√
α′

2

(ϕjε
[ν
j )

zi − zj
−
√
α′

2

(ϕ̄j ε̄
[ν
j )

z̄i − z̄j

]

×
∑
l 6=i

[
(ϕiεiq)(ϕlε

µ]
l )− (ϕiε

µ]
i )(ϕlεlq)

(zi − zl)2
+

√
α′

2

(ϕiεiq)k
µ]
l − (ϕiε

µ]
i )(kl · q)

zi − zl

]
+ c.c. (3.58)

It is now a straightforward, but very tedious task, to show that all terms in Eq. (3.43)-
(3.46c), which have a 1/q-pole exactly matches the terms given by Eq. (3.56) and (3.57).
These simply come from the Feynman diagrams where the soft state is attached to an
external leg. This confirms that all other Feynman diagrams only produce terms that are
local in q.

Most of the terms given by Eq. (3.58) also matches similar terms in the explicit
expressions Eq. (3.43)-(3.46c). However, the term involving ϕiϕjϕl in Eq. (3.58) does
not have a counterpart in the explicit expressions. It therefore has to be gauge invariant
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on its own, and indeed:

−i
n∑
i=1

qρS
ρ[µ
i ∂

ν]
i Mn|ϕϕϕ =

√
α′

2

∑
i 6=j

∑
l 6=i

(ϕjε
[ν
j )((ϕiε

µ]
i )(ϕlεlq)− (ϕlε

µ]
l )ϕiεiq)

(zi − zj)(zi − zl)2

=

√
α′

2

∑
i 6=j

∑
l 6=i,j

(ϕjε
[ν
j )(ϕiε

µ]
i )(ϕlεlq)

(zi − zj)(zj − zl)(zi − zl)

=
1

3

√
α′

2

∑
i 6=j

∑
l 6=i,j

qρT
ρµν(ϕiεi, ϕjεj, ϕlεl)

(zi − zj)(zj − zl)(zl − zi)
, (3.59)

To arrive at the second line we used that the first line vanishes for l = j, because ϕjϕj = 0,
and for the third line we used the definition in Eq. (3.41), making the expression explicitly
gauge invariant.

The terms with two ϕ’s coming from Eq. (3.58) also do not match to the explicit
expression, however, as we will see below, they ensure gauge invariance of what remains,
when we subtract the terms coming from Eq. (3.56)-(3.58) from the explicit expressions.
Indeed, our most reduced expression for the soft behavior through the order q reads:

Mn ∗ (S1 + S2 + S3)|µνB

=− i
n∑
i=1

{
k

[ν
i qρ
qki

(Si − S̄i)µ]ρ − 1

2
(Si − S̄i)µν

+
qρqσ
ki · q

[(
k

[µ
i S̄

ν]ρ
i + k

[ν
i S

µ]ρ
i

)
∂σi + i

(
S
ρ[µ
i S̄

ν]σ
i

)]
+ qρ

[
S
ρ[µ
i ∂

ν]
i + S̄

ρ[ν
i ∂

µ]
i

]}
Mn

+Mn ∗

[
i

(
α′

2

)2 n∑
i 6=j 6=m

2k
[ν
i k

µ]
j (qkm)D2

(
zi − zm
zi − zj

)

+

(
α′

2

)3/2∑
i 6=j

k
[µ
i k

ν]
j (ϕiεiq) + k

[ν
i (ϕiε

µ]
i )(qkj)− k[ν

j (ϕiε
µ]
i )(qki)

zi − zj
+ c.c.

+

(
α′

2

)3/2∑
i 6=j

∑
l 6=i

k
[µ
i k

ν]
l ϕjεjq + k

[ν
i (ϕjε

µ]
j )(qkl)− k[ν

l (ϕjε
µ]
j )(qki)

zi − zj
log |zi − zl|2 + c.c.

+
α′

2

∑
i 6=j

∑
l 6=i

(ϕjε
[µ
j )(ϕ̄lε̄

ν]
l )(qki)− (ϕjε

[µ
j )k

ν]
i (ϕ̄lε̄lq)− (ϕ̄lε̄

[ν
l )k

µ]
i ϕjεjq

(zi − zj)(z̄i − z̄l)

+
α′

2

∑
i 6=j

∑
l 6=i

(ϕjεjq)(ϕiε
[µ
i )k

ν]
l + (ϕiεiq)(ϕjε

[ν
j )k

µ]
l − (ϕjε

[ν
j )(ϕiε

µ]
i )(qkl)

(zi − zj)(zi − zl)
+ c.c.

−
√
α′

2

∑
i 6=j

∑
l 6=i

(ϕjε
[ν
j )((ϕiε

µ]
i )(ϕlεlq)− (ϕlε

µ]
l )(ϕiεiq))

(zi − zj)(zi − zl)2
+ c.c.

]
(3.60)
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We can express this more compactly in terms of the totally antisymmetric tensor given
in Eq. (3.41):

Mn ∗ (S1 + S2 + S3)|µνB

= qρÃ
ρµν
bosonic − i

n∑
i=1

{
k

[ν
i qρ
qki

(Si − S̄i)µ]ρ − 1

2
(Si − S̄i)µν

+
qρqσ
ki · q

[(
k

[µ
i S̄

ν]ρ
i + k

[ν
i S

µ]ρ
i

)
∂σi + i

(
S
ρ[µ
i S̄

ν]σ
i

)]
+ qρ

[
S
ρ[µ
i ∂

ν]
i + S̄

ρ[ν
i ∂

µ]
i

]}
Mn , (3.61)

with

Ãρµνbosonic =Mn ∗
√
α′

2

∑
i 6=j

{
2i

3

(
α′

2

)3/2 n∑
i 6=j 6=l

T ρµν(ki, kj, kl)D2

(
zi − zm
zi − zj

)
+

(
α′

2

)
T ρµν(ϕiεi, ki, kj)

zi − zj
+

(
α′

2

)∑
l 6=i

T ρµν(ϕjεj, ki, kl)

zi − zj
log |zi − zl|2

+
1

2

√
α′

2

∑
l 6=i

T ρµν(ki, ϕjεj, ϕ̄lε̄l)

(zi − zj)(z̄i − z̄l)
+

√
α′

2

∑
l 6=i

T ρµν(ϕiεi, kj, ϕlεl)

(zi − zj)(zi − zl)

+
1

3

∑
l 6=i,j

T ρµν(ϕiεi, ϕjεj, ϕlεl)

(zi − zj)(zj − zl)(zl − zi)

}
+ c.c. . (3.62)

It is tempting to think that, besides the dilogarithm term, all the other non-factorizing
terms above may be reproducible in terms of gauge-invariant soft operators acting on the
lower-point amplitude. We have investigated an exhaustive number of possibilities, and
have not found any reduction as compared to the above expression. For instance, one
could consider an operator involving εαi ∂

β
εi
∂γi , where ∂βεi ≡ ∂/∂εiβ. This type of operator

leads to the following type of terms

εαi ∂
β
εi
∂γiMn = Mn ∗

∑
j 6=i

(
α′kγj log |zi − zj| −

√
α′

2

(ϕjε
γ
j )

zi − zj
−
√
α′

2

(ϕ̄j ε̄
γ
j )

z̄i − z̄j

)

×
∑
l 6=i

(
(ϕiε

α
i )(ϕlε

β
l )

(zi − zl)2
+

√
α′

2

(ϕiε
α
i )kβl

zi − zl

)
(3.63)

and is made gauge invariant by the combination:

qρ

(
ε

[µ
i ∂

ν]
εi
∂ρi + ερi ∂

[µ
εi
∂
ν]
i − ε

[µ
i ∂

ρ
εi
∂
ν]
i

)
Mn (3.64)

This operator produces the same four types of terms as the last four lines in Eq. (3.60)
plus two additional and different types of terms. However, among the four types that
are similar it is only possible to match one of them, while the other three are different in
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their Koba-Nielsen structure. Therefore in total, while matching one line in Eq. (3.60),
five new gauge-invariant expressions are generated.

One instance, where one may introduce an additional soft operator, without elongating
the expression, is

α′

2
qρ

(
k

[µ
i ε

ρ
i ∂

ν]
εi

+ k
[ν
i ε

µ]
i ∂

ρ
εi
− kρi ε

[µ
i ∂

ν]
εi

)
Mn = i

α′qρ
2

(
k

[µ
i S

ν]ρ
i +

1

2
kρi S

µν
i

)
Mn

= Mn ∗

{
α′

2

∑
j 6=i

k
[µ
i (ϕjε

ν]
j )(ϕiεiq) + k

[ν
i (ϕiε

µ]
i )(ϕjεjq)− (qki)(ϕiε

[µ
i )(ϕjε

ν]
j )

(zi − zj)2

+

(
α′

2

)3/2∑
j 6=i

k
[µ
i k

ν]
j (ϕiεiq) + k

[ν
i (ϕiε

µ]
i )(qkj)− (qki)(ϕiε

[µ
i )k

ν]
j

zi − zj

}

= Mn ∗
√
α′

2
qρ

{√
α′

2

∑
j 6=i

T ρµν(ϕiεi, ki, ϕjεj)

(zi − zj)2
+

(
α′

2

)∑
j 6=i

T ρµν(ϕiεi, ki, kj)

zi − zj

}
(3.65)

The last term matches the similar term in Eq. (3.62), but the first term is new. Therefore
this operator effectively exchanges one type of term with another. We note that, although
this operator is not exactly matching terms in Eq. (3.62) one-to-one, it shows that terms
of the form of the right-hand side above are terms of order α′, because the operator
explicitly carries such a factor.

4 Soft scattering of Bµν in superstrings

For the derivation of the scattering amplitude involving n+1 massless closed string states
in superstrings we refer to Ref. [3]. As was shown in Ref. [3], we can take advantage
of knowing the results in the bosonic string case, which were presented in the previous
section. This follows by realizing that the n-point tree-level scattering amplitudes, Mn,
of closed massless superstrings can generically be written as a convolution of a bosonic
part, M b

n, with a supersymmetric part, M s
n, as follows:

Mn = M b
n ∗M s

n , (4.66)

The expressions for bosonic and supersymmetric parts of the n-point supersymmetric
string amplitude are defined by:

M b
n =

8π

α′

(κD
2π

)n−2
∫ ∏n

i=1 d
2zi

dVabc|z1 − z2|2
2∏
i=1

dθiθi

2∏
i=1

dθ̄iθ̄i

n∏
i=3

dθi

n∏
i=1

dϕi

n∏
i=3

dθ̄i

n∏
i=1

dϕ̄i

×
∏
i<j

|zi − zj|α
′ki·kj exp

[
1

2

∑
i 6=j

Ci · Cj
(zi − zj)2

+

√
α′

2

∑
i 6=j

Ci · kj
zi − zj

+ c.c.

]
,

(4.67)
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M s
n = exp

[
−1

2

∑
i 6=j

Ai · Aj
zi − zj

+ c.c.

]
. (4.68)

where κD is the D-dimensional Newton’s constant, dVabc is the volume of the Möbius
group, zi are the Koba-Nielsen variables, ϕi and θi are Grassmannian integration variables,
and we have introduced the following superkinematical quantities:

Aµi = ϕiε
µ
i +

√
α′

2
θik

µ
i ; Cµ

i = ϕiθiε
µ
i , (4.69)

where εµi and kµi are respectively the holomorphic polarization vector and momentum of
the state i, and α′ is the string Regge slope.

Apart from the integration measure, M b
n is equivalent to the same amplitude in the

bosonic string, given in Eq. (3.31); the integrands, in fact, become equal if one makes the
identification θiεi → εi and remembers that, after this substitution, εi becomes a Grass-
mann variable. The difference between M b

n and the bosonic string amplitude Eq. (3.31),
is only the presence in M b

n of the integrals over the Grassmann variables θi, θ̄i, and the
additional factor

∏2
i=1 θiθ̄i/|z1 − z2|2 coming from the correlator of the superghosts.

As in the case of the bosonic string, it is also useful to factorize the superstring
amplitude, at the integrand level, into a soft part S and a hard part as follows:

Mn+1 =Mn ∗ S (4.70)

whereMn is the full superstring amplitude of n closed massless states, and S is a function
that when convoluted with the integral expression for Mn provides the additional soft
state involved in the amplitude. The function S can further be decomposed into its
bosonic part and supersymmetric part as follows:

S = Sb + Ss + S̄s , (4.71)

where Sb is the purely bosonic part, given by:

Sb =
κD
2π

∫
d2z

n∏
i=1

|z − zi|α
′qki exp

[
−
√
α′

2

q · Ci
z − zi

−
√
α′

2

q · C̄i
z̄ − z̄i

]

×

[
n∑
i=1

ε · Ci
(z − zi)2

+
n∑
i=1

√
α′

2

ε · ki
z − zi

][
n∑
i=1

ε̄ · C̄i
(z̄ − z̄i)2

+
n∑
i=1

√
α′

2

ε̄ · ki
z̄ − z̄i

]
,

(4.72)

which is simply equal to the similar expression in the bosonic string, given in Eq. (3.32),
after identifying θiεi → εi (whereby εi becomes a Grassmann variable). Ss and S̄s are the
complex conjugates of each other and they provide the contributions from the additional
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supersymmetric states. They are given by

S̄s =
κD
2π

∫
d2z

n∏
i=1

|z − zi|α
′q·ki exp

[
−
√
α′

2

q · Ci
z − zi

−
√
α′

2

q · C̄i
z̄ − z̄i

]

×

[
1

2

n∑
i=1

√
α′

2

q · Ai
z − zi

n∑
j=1

ε · Aj
z − zj

n∑
l=1

√
α′

2

q · Āl
z̄ − z̄l

n∑
m=1

ε̄ · Ām
z̄ − z̄m

+

(
n∑
i=1

ε · Ci
(z − zi)2

+
n∑
i=1

√
α′

2

ε · ki
z − zi

)
n∑
j=1

√
α′

2

q · Āj
z̄ − z̄j

n∑
l=1

ε̄ · Āl
z̄ − z̄l

]
,

(4.73)

and Ss is given by the complex conjugate of this expression, where complex conjugation
sends zi → z̄i, ε

µ
i → ε̄µi , θi → θ̄i, and ϕi → ϕ̄i, while the momenta ki are left invariant.

This decompositions is of course useful, since we already dealt with the bosonic integral
Sb in the previous section. The additional part coming from supersymmetry, Ss + S̄s, was
furthermore computed through the order q in Ref. [3]. Here we explicitly construct their
functional form, when the soft state is an antisymmetric Kalb-Ramond field. The general
result found in Ref. [3] reads:

Ss + S̄s = 2κDεµε̄ν
∑
i 6=j

{
qρ

(ki · q)
Ā

[ρ
i Ā

ν]
j k

µ
i

(z̄i − z̄j)
+ qρ

(
α′

2

) 3
2 q · kjC̄ [ρ,

i k
ν]
i

z̄i − z̄j

(
kµi
q · ki

−
kµj
q · kj

)

+ qρ

√
α′

2

Āρ{i,Ā
ν
j}

z̄i − z̄j

∑
l 6=i

[
q · kl
q · ki

(
Cµ
i

zi − zl
+

√
α′

2
kµi log |zi − zl|2

)
+

(
Cµ
l

zi − zl
−
√
α′

2
kµl log |zi − zl|2

)]

+ qρqσ

[(
1

2
Aσ{i,A

µ
j} −

√
α′

2
Cσ
{i,k

µ
j}

)∑
l 6=i

2Āρ{i,Ā
ν
l}

q · ki(zi − zj)(z̄i − z̄l)
− α′

2

C̄
[σ,
i k

ν]
i C̄

ρ
j

(z̄i − z̄j)2

(
kµj
q · kj

− kµi
q · ki

)

−
√
α′

2

∑
l 6=i,j

kµi

(
C̄σ
j Ā

ρ
{i,Ā

ν
l} + 1

2
C̄σ
i Ā

ρ
{j,Ā

ν
l}

)
q · ki(z̄i − z̄j)(z̄i − z̄l)

−
∑
l 6=i

2Cσ
[i,C

µ
j]Ā

ρ
{i,Ā

ν
l}

q · ki(zi − zj)2(z̄i − z̄l)

]}
+ c.c. +O(q2) ,

(4.74)

where the brackets and curly-brackets in the indices denotes commutation and anticom-
mutation of the indices, e.g.:

C
[ρ,
i k

ν]
i ≡

1

2
(Cρ

i k
ν
i − Cν

i k
ρ
i )

Aµ{iA
ν
j} ≡

1

2

(
Aµi A

ν
j + AµjA

ν
i

)
.

(4.75)

These definitions differ by a factor of two with the ones in Ref. [3], where also appropriate
factors of two have been introduced in Eq. (4.74).

We must now project out the antisymmetric part, in εµε̄ν , to obtain the expression for
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the Kalb-Ramond field. At order q0 we find:

Ss + S̄s

∣∣∣µν
B

=
∑
i 6=j

qρ
(ki · q)

(
Aρ{iA

[µ
j}k

ν]
i

(zi − zj)
+
Āρ{iĀ

[ν
j}k

µ]
i

(z̄i − z̄j)

)
+O(q) (4.76)

At the next order, it can be checked that the antisymmetric part can be written as:

Ss + S̄s|O(q) = κDε
B
µν

n∑
i 6=j

{
qρ

(
α′

2

) 3
2 T ρµν(C̄i, ki, kj)

z̄i − z̄j
+

√
α′

2

qρqσ
q · ki

Āσi Ā
ν
i C̄

ρ
j k

µ
i

(z̄i − z̄j)2

+

(
α′

2

)∑
l 6=i

4qρqσ
q · ki

Āρ{i,Ā
ν
j}k

[µ
i k

σ]
l

z̄i − z̄j
log |zi − zl|2 +

√
α′

2

∑
l 6=i

8qρqσ
q · ki

Āρ{i,Ā
ν
j}C

[µ
{ik

σ]
l}

(z̄i − z̄j)(zi − zl)

+
∑
l 6=i

2qρqσ
q · ki

Aσ{i,A
µ
j}Ā

ρ
{i,Ā

ν
l}

(zi − zj)(z̄i − z̄l)
−
∑
l 6=i

4qρqσ
q · ki

Cσ
[i,C

µ
j]Ā

ρ
{i,Ā

ν
l}

(zi − zj)2(z̄i − z̄l)

−
√
α′

2

qρqσ
q · ki

∑
l 6=i

C̄σ
i k

µ
i Ā

ρ
{j,Ā

ν
l}

(z̄i − z̄j)(z̄i − z̄l)
−
√
α′

2

qρqσ
q · ki

∑
l 6=i,j

2C̄σ
j k

µ
i Ā

ρ
{i,Ā

ν
l}

(z̄i − z̄j)(z̄i − z̄l)

}
+ c.c. (4.77)

where T ρµν was defined in Eq. (3.41). It can be checked that the term involving T ρµν , in
fact, cancels out with the similar term coming from the bosonic part in Eq. (3.62).

4.1 The soft theorem

As remarked in Sec. 3.1, the soft theorem can be equivalently written as in Eq. (3.51).
Since the soft theorem operator is a linear operator, and since we know that it repro-
duces the bosonic part, when acting on M b

n, we only need to show that it reproduces the
supersymmetric part, given in Eq. (4.76), when acting on M s

n, i.e.

−iεBµν
n∑
i=1

[
qρk̄

ν
i (Li + Si)

µρ

qki
+
qρk

µ
i (L̄i + S̄i)

νρ

qki

]
M s

n(ki, εi; k̄iε̄i)
∣∣∣
k=k̄

= M s
n ∗ (Ss + S̄s)

(4.78)

which is easily checked by noticing the relations:

(Li + Si)
µρAσj = iδij (ησρAµi − ησµA

ρ
i ) , (L̄i + S̄i)

µρ
i Ā

σ
j = iδij

(
ησρĀµi − ησµĀ

ρ
i

)
,

(Li + Si)
µρCσ

j = iδij (ησρCµ
i − ησµC

ρ
i ) , (L̄i + S̄i)

µρC̄σ
j = iδij

(
ησρC̄µ

i − ησµC̄
ρ
i

)
.

(4.79)

where the quantities A and C are defined in Eq. (4.69).
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4.2 The order q soft behavior

Let us now consider the order q soft operator, which up to the totally antisymmetric
tensor according to Eq. (2.29), reads:

Ŝ
(1)
B = εBq µν

n∑
i=1

qρqσ
ki · q

J
ρ[µ
i J̄

ν]σ
i (4.80)

The action of this operator on Mn can be decomposed as follows

Ŝ
(1)
B Mn =(Ŝ

(1)
B M b

n) ∗M s
n +M b

n ∗ (Ŝ
(1)
B M s

n)

+ εBq µν

n∑
i=1

qρqσ
ki · q

[
(J

ρ[µ
i M b

n) ∗ (J̄
ν]σ
i M s

n) + (J̄
σ[ν
i M b

n) ∗ (J
µ]ρ
i M s

n)
]

(4.81)

The action Ŝ
(1)
B M b

n is equivalent to the one studied in the bosonic string. We need to
analyze the remaining terms. Let us notice that

Jµνi Aρi = 2iA
[µ
i η

ν]ρ , Jµνi Cρ
i = 2iC

[µ
i η

ν]ρ

Jµνi Āρi = 2i

√
α′

2
θ̄ik

[µ
i η

ν]ρ , Jµνi C̄ρ
i = 0

(4.82)

and likewise for the antiholomorphic counterpart. We find that

Jρµi J̄νσi M s
n ∼− 4M s

n ∗
∑
j 6=i

∑
l 6=i

[
A

[ρ
i A

µ]
j Ā

[ν
i Ā

σ]
l

(zi − zj)(z̄i − z̄l)
+
α′

2

θ̄ik
[ρ
i Ā

µ]
j θik

[ν
i A

σ]
l

(z̄i − z̄j)(zi − zl)

+

√
α′

2

θ̄ik
[ρ
i Ā

µ]
j Ā

[ν
i Ā

σ]
l

(z̄i − z̄j)(z̄i − z̄l)
+

√
α′

2

θik
[σ
i A

ν]
j A

[µ
i A

ρ]
l

(zi − zj)(zi − zl)

]
. (4.83)

The first term above reproduces exactly a similar term of the explicit result of Eq. (4.77).
The terms with one θi can be reduces as follows, using that θiA

µ
i = −Cµ

i :

−4

√
α′

2

θ̄ik
[ρ
i Ā

µ]
j Ā

[ν
i Ā

σ]
l

(z̄i − z̄j)(z̄i − z̄l)
=− 2

√
α′

2

θ̄ik
ρ
i Ā

µ
j Ā

[ν
i Ā

σ]
l

(z̄i − z̄j)(z̄i − z̄l)
−
√
α′

2

C̄σ
i k

µ
i Ā

ρ
{jĀ

ν
l}

(z̄i − z̄j)(z̄i − z̄l)
(4.84)

where we also used that qρqσ
Āρj Ā

σ
l

(z̄i−z̄j)(z̄i−z̄l)
= 0, because the denominator and the numer-

ator have different parity. The other term with one θi is the complex conjugate of this
expression. The second term above also reproduces a similar term of the explicit result
of Eq. (4.77).

It is finally useful to simplify the terms with θiθ̄i, which due to εBµνk
µ
i k

ν
i = 0, can be

reduced to:
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, (4.85)
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showing that this term is totally gauge invariant and local in q.

Next, consider the second line of Eq. (4.81). It is easy to derive the following action:

(Jρµi M b
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(4.86)

The antiholomorphic version of this is simply recovered by complex conjugation, i.e.

(Jσνi M b
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(4.87)

Let us call the terms in first square bracket L1, L2, L3 and L4, and the terms in the
second square bracket R1 and R2.

It is fairly easy to see that the multiplication of (L1 + L2 + L3)×R1 produces terms
that can directly be matched with terms in Eq. (4.77). The term L4×R1 can be written
as:

4
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Aµ{iA
ρ
l}

(zi − zl)
(4.88)

The first term on the right hand side matches a similar term in Eq. (4.77), while the
second term, which was rewritten using Cj = −θjAj, remains unmatched.

All the terms multiplying R2 above also remain unmatched, however, they all simplify
to a local, totally antisymmetric expression, due to θiCi = 0 and kµi k

ν
i = 0. Specifically
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we find:
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Up to the totally antisymmetric terms local in q, there remains three terms that need
to be rewritten; one is an unmatched term in the explicit result of Eq. (4.77), and the
other two are the unmatched terms of Eq. (4.84) and (4.88). Subtracting the latter two
from the former, we find:√
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ρ
l}

(z̄i − z̄l)

]
+ c.c (4.90)

Let us consider the expression when l = j. Then the last term vanishes, since θjAjAj = 0,
and we are left with (up to the prefactor and the complex conjugates):
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(4.91)

where in the end we also used antisymmetry of the µν indices. This shows that the terms
above for l = j form a gauge invariant combination. Next we consider the l 6= j terms
(again suppressing the overall prefactors):
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where for the first equality we manipulated the summation indices i, j, l, for the second
equality we manipulated the expression using both µν antisymmetry and j, l symmetry.
Again the final expression is, consistently, a totally antisymmetric, gauge invariant term.

We are now in a position to write our entire result in terms of the totally antisymmetric
tensor. Adding also the bosonic part, derived in Eq. (3.61) with εi → θiεi, we find:
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super , (4.93)

with
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As in the bosonic string, we conclude, based on the dilogarithmic terms, that the ex-
pression above cannot be expressed as an operator acting on the lower point amplitude.
Especially, supersymmetry does not provide enough simplifications for this to happen.
We have not attempted to study the field theory implications of these results, where
especially the dilogarithmic terms should vanish, and the conclusions about the order q
factorization there remains an open question.
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5 Conclusion

We have shown using gauge invariance that the soft behavior of the antisymmetric B-
field is fixed at the order q0 in the soft momentum in amplitudes involving gravitons,
dilatons and other B-fields. We have furthermore explained why gauge invariance cannot
fix completely its soft behavior at order q, in contrast to the case of a soft graviton
or dilaton. By using the leading soft theorem, it is nevertheless possible to explicitly
decompose the amplitude into two separately gauge invariant parts to all orders in the
soft momentum.

The new soft theorem provides, together with the soft theorems through the same order
for the graviton and dilaton, the basis for the unification of the three soft theorems, which
we have offered in Eq. (1.9). This universal expression is a step towards understanding the
interplay between the infrared behaviors of Yang-Mills theory and gravity as Yang-Mills
squared theory [19].

We have explicitly checked the new soft theorem of the B-field in the bosonic string
as well as in superstrings, and we have furthermore computed the soft behavior through
order q in both theories, expressed in terms of a convoluted integral of a hard and a soft
part. Based on the structure of the soft integrand we conclude in both theories that the
soft behavior at order q cannot be factorized in form of a soft theorem. As regards the
field theory limit of these expression, the conclusion remains an open question and should
be further studied.
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